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Abstract. A class of projected dynamical systems (PDS), whose sta- 
tionary points solve the corresponding variational inequality problem 
(VIP), was recently studied by Dupuis and Nagurney (Ref. 1). This 
paper initiates the study of the stability of such PDS around their sta- 
tionary points and thus gives rise to the study of the dynamical stability 
of VIP solutions. Examples are constructed showing that such a study 
can be quite distinct from the classical stability study for dynamical 
systems (DS). We give the definition of a regular solution to a VIP and 
introduce the concept of a minimal face flow induced by a PDS, which 
is a standard DS of a lower dimension. We then show that, at the regular 
solutions of the VIP, the local stability of the PDS is essentially the 
same as that of its minimal face flow. Hence, we reduce the problem, in 
this case, to one of the classical stability study of DS, a more developed 
discipline. In a more direct way, we then establish a series of local 
and global stability results of the PDS, under various conditions of 
monotonicity. 

Key Words. Projected dynamical systems, variational inequalities, 
stability theory, minimal face flows. 

1. Introduction 

The last decade has witnessed the successful employment of  finite- 
dimensional variational inequality (VI) theory in the formulation, qualitative 
analysis, and computation of  various perfectly and imperfectly competitive 
equilibrium problems [see, e.g., Nagurney (Ref. 2 and references therein)]. 
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However, the majority of the works in this realm have focused on the static 
study of the equilibrium, while most of these equilibrium problems originate 
from the study of some competitive mechanisms or adjustment processes of 
time evolution. This inability of VI methods to capture the dynamic setting 
of equilibrium problems has not received enough attention from the litera- 
ture until recently. 

Dupuis and Nagurney (Ref. 1) introduced a class of projected dynam- 
ical systems (PDS) for studying the dynamic evolution of the competitive 
systems underlying many equilibrium problems. These systems are charac- 
terized by a polyhedral constraint set, and their stationary points are the 
solutions to the corresponding variational inequality problems (VIP). In 
that paper, they studied the theoretical aspects of these PDS in regard to 
existence, uniqueness, and the continuous dependence of the solutions on the 
initial values chosen. Moreover, they investigated prospective applications 
in dynamic models of oligopolistic market equilibrium, general economic 
equilibrium, and traffic network equilibrium. A general iterative numerical 
scheme was also proposed to approximate the equilibrium points through 
time discretization of the PDS. The iterative scheme induces such well-known 
algorithms in dynamical systems as the Euler method, Heun method, and 
Runge-Kutta method. Following these lines, Nagurney, Takayama, and 
Zhang (Ref. 3) developed a dynamical model for the spatial price equilibrium 
problem and implemented the proposed Euler-type method on a massively 
parallel architecture for the computation of the equilibrium. 

This paper proposes to study the stability of such projected dynamical 
systems around their stationary points. It thus raises the subject of the 
dynamical stability of VIP solutions, in contrast to parametric perturbative 
stability [cf. Dafermos (Ref. 4)]. Theoretically, since the associated ordinary 
differential equations (ODE) have discontinuous right-hand sides, due to 
the projection operator on the boundary of the constraint set, the stability 
study of PDS lies outside of the scope of standard dynamical systems (DS) 
in a continuous vector field (or more often in a C~-vector field; cf. Refs. 5 
and 6). However, as shall be established in this paper, it does naturally 
generalize the stability theory of dynamical systems with no constraints. 
Particularly, we note that, around the equilibrium points that lie in the 
interior of the constraint set, the stability of projected dynamical systems is 
identical to that of the dynamical systems in the same vector field. 

Besides the theoretical issues, we are motivated in conducting this line 
of research for the following reasons. First, it will serve as a mathematical 
machinery to analyze the stability of the equilibrium in many social and 
economic competitive systems with natural constraints, including those men- 
tioned above. For different applications, there has already been some work 
with such an orientation. For example, in the scenario of transportation, 
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Smith (Ref. 7) investigated the stability of Wardropean equilibrium under 
a dynamical system constructed to describe the drivers' behavior in changing 
their route choices. However, the approach that we propose is distinguished 
from earlier ones in that we present a more general mathematical approach 
not yet confined to or derived from a certain application scenario. 

Secondly, the equilibrium points were calculated as VIP solutions. Yet, 
we have no way of identifying which among the solutions (precisely, the 
multiple solutions) is a true equilibrium. The dynamical stability study that 
we initialize here will thus facilitate a discrimination between those VIP 
solutions having good stability as equilibria that are anticipated to occur 
realistically, and those with bad stability to be eliminated for consideration 
in applications. 

Finally, the dynamical stability study undertaken here contains the local 
and global convergence of continuous-time algorithms for the computation 
of stationary points, and thus fertilizes the convergence study of the iterative 
scheme introduced in Dupuis and Nagurney (Ref. 1) that tracks the continu- 
ous trajectory of the PDS. 

The paper is organized as follows. In Section 2, we give a brief review 
of projected dynamical systems and present the definitions and notations 
needed in addressing the study of stability. We also illustrate the difference 
between stability of standard dynamical systems and that o f  projected 
dynamical systems through some examples. In Section 3, we introduce the 
definition of a regular solution to a variational inequality problem and the 
concept of a minimal face flow around the equilibrium points, induced by 
the projected dynamical system. At those equilibrium points which solve 
the variational inequality problem regularly, we show that the projected 
dynamical system inherits many stability properties from its induced mimi- 
mal face flow. Since the latter is a standard dynamical system of a lower 
dimension, the stability of the projected dynamical systems can thus be 
exploited through the classical stability theory of dynamical systems, which 
is now more developed. In Section 4, more local and global results are 
established under various monotonicity conditions. It turns out that the 
stronger the monotonicity condition that is imposed, the better the stability 
enjoyed by the equilibrium. We close this paper with Section 5, which con- 
tains the conclusions and suggestions for future research. 

2. Background and Preliminaries 

In this section, we recall the projected dynamical system (PDS) with a 
constraint set K, studied by Dupuis and Nagurney (Ref. 1), and its associated 
variational inequality problem (VIP). We also review various stability con- 
cepts that are traditional in the stability theory of dynamical systems (DS; 
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of. Refs. 5 and 6). We close this section with some examples showing that, 
in the same vector field, the stability of  the PDS may be entirely different 
from that of  the usually induced DS without constraints. 

Let K be a closed convex subset of  R n, and let F be a mapping from K 
to RL The variational inequality problem VI(F, K) is to find an x* in K 
such that 

(F(x*), x - x * )  >_0, Vx~K, (1) 

where ( . ,  �9 ) denotes the inner product in R". 
Let OK and int K denote, respectively, the boundary and the interior of 

K. Given x~OK, we define the inward normals to K at x by 

n(x) = {~': 11711 = 1, ( r ,  x -y )<_O,  Vy~K}. (2) 

For any closed and convex subset S of  R n, let Ps: R n ~ S denote the projec- 
tion map defined by 

Ps (x) = argmin [Ix - z It. (3) 
x ~ S  

For simplicity, we often write P for PK when K is the feasible set for the 
VI(F, K). 

In this paper, we restrict ourselves to the case where K is a convex 
polyhedron, as do Dupuis and Nagurney (Ref. 1). This is the case of most 
applications that have been formulated as variational inequality problems, 
including among others traffic network equilibrium problems, spatial price 
equilibrium problems, oligopolistic market equilibrium problems, and gen- 
eral financial equilibrium problems (cf. Ref. 2 and references therein). 

Given x e K  and w R  ~, the projection of  the vector v at x is defined by 

~x(x, v) = lim [PK(x + 3v) - x]/~. (4) 
~0 

We recall the following result from Dupuis (Ref. 8), which we will use 
freely later in this paper. 

Lemma 2.1. 

(i) If  x~int  K, then 

~cx(x, v) = v. (5) 

(ii) If  x~OK, then 

zrK(x, v) = v + fl(x)n*(x), (6) 
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where 

n*(x) = argmax <v, - n ) ,  (7) 
hen(x) 

fl(x) = max{0, <v, -n*(x)>}. (8) 

Remark 2.1. It is obvious from Lemma 2.1 that 

I[zrg(X, v)ll--< lioN. (9) 

Dupuis and Nagurney (Ref. 1) proposed the following nonclassical 
ordinary differential equation (ODE): 

2 = ZK(X, --F(x)), x(O) = xoeK, (10) 

whose right-hand side is associated with a projection and hence is discontinu- 
ous on the boundary of K. It is clear from the definition that the solution 
to the ODE (10) always stays in the constraint set K. In that reference, 
the basic qualitative results of the solution to (10), such as the existence, 
uniqueness, and continuous dependence on the initial value, can be found. 
We also cite the following lemma from that paper, which established the 
connection between the VI(F, K) and the ODE (10). 

Lemma 2.2. Assume that K is a convex polyhedron. Then the station- 
ary points of the ODE (10) coincide with the solutions of the VI(F, K). 

Through this lemma, we see that the PDS, defined as the solution to 
the ODE (10), depicts the dynamical behavior of a competitive system, 
whose equilibrium was previously formulated as the solution to the VIP. 
One major advantage of taking such an approach is that it enables one to 
study the stability of the equilibrium of the PDS, while such a topic is not 
raised in the static theory of the VIP. For a variational inequality approach 
to the study of stability in the framework of specific applications (in particu- 
lar, traffic network and spatial price equilibrium problems), see Dafermos 
and Nagurney (Refs. 9 and 10). For a general approach to parametric 
perturbative stability of VIP, see Dafermos (Ref. 4). The stability study of 
the PDS is what we begin to address in this paper. In particular, we are 
interested in questions such as: 

(a) If a competitive behavior starts near an equilibrium, will it stay 
close to it forever? 

(b) Given the current state of a competitive system, will it asymptoti- 
cally approach an equilibrium? 
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To make these questions clear, we recall the following definitions and 
notation that are classical in the stability study of  dynamical systems (cf. 
Refs. 5 and 6). 

Definition 2.1. Define the projected dynamical system (PDS) 
Xo(t) :K x R ~ K as the family of  solutions to the initial-value problem (IVP) 
(10) for all xo~K. 

It is clear by the definition that x0(0)= Xo. For convenience, we will 
sometimes write x0" t for Xo(t) and say interchangeably that x* is an equili- 
brium or stationary point of  the PDS, or x* solves VI(F, K), by virtue of  
Lemma 2.2. 

Definition 2.2. For any subset A of R', the c0-1imit set of  A is defined 
by 

co(A) = {y: 3xn~.4, tn ~ ~ ,  such that xn. t~ ~ y, as n ~ ~} .  

We will use B(x, r), hereafter, to denote the open ball with radius r and 
center x. 

Definition 2.3. An equilibrium point x* is stable if, for any ~ > 0, there 
exists a ~/>0 such that, for all xeB(x*, 3) and t _ 0 ,  

x" teB(x*, E). 

The equilibrium point x* is unstable, if it is not stable. 

Definition 2.4. An equilibrium point x is asymptotically stable if it is 
stable and there exists a d; > 0 such that, for all xeB(x*, S), 

lim x-  t ~ x*. (11) 
t ~ 3  

Definition 2.5. An equilibrium point x* is exponentially stable if there 
exists a neighborhood N(x*) of x* and constants B > 0 and / t  > 0 such that 

Ilxo" t - x ' l ]  <Bllxo-x*ll exp(- / l t ) ,  Vt>0, VxoeN(x*); (12) 

x* is globally exponentially stable if (12) holds true for all xo~K. 

Definition 2.6. An equilibrium point x* is a monotone attractor, if 
there exists a c~ > 0 such that, for all xeB(x*, c5), 

d(x, t)= IIx" t -x* l l  (13) 

is a nonincreasing function of  t; x* is a global monotone attractor if d(x, t) 
is decreasing in t for all x~K. 
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An equilibrium point x* is a strictly monotone attractor if there exists 
a & > 0 such that, for all xeB(x*, ~), d(x, t) is monotonically decreasing to 
zero in t; x* is a strictly global monotone attractor if d(x, t) is monotonically 
decreasing to zero in t for all xeK. 

Definition 2.7. An equilibrium point x* is a finite-time attractor if 
there is a &>0 such that, for any xeB(x*, S), there exists some T(x)< oo 
such that 

x" t = x*, when t >_ T(x). 

The following two examples show how greatly the stability of the PDS 
can differ from the stability of  a classical DS in the same vector field. 

Example 2.1. In Fig. 1, let the constraint set K be the square ABCD. 
Let 

F(xl, x2) = q~ (x, + x2 - 4)[(x1 --4Xl/(Xl + x2), x2-- 4Xz/(XI + X 2 ) ] ,  " 

where 4)(w) = -1 ,  0, 1, when w is respectively negative, zero, or positive, and 
let 1 _ Xl _< 3, 1 _< x2_< 3. Let ff be any continuous extension of F to the whole 
space R z. Then, B(2, 2) is an equilibrium point of the PDS solving 

=  K(x, - i f (x ) ) ,  

X 2  

t X l +  X 2 =  4 
\ \ \ \ S  

\ \  
\ \  

I\\ :-, / 
[ 

A(1,2) i ~ . . . ~ B ( 2 , 2 )  

~j-- -- \ \ \  

D(1,1) - - -  

: - F ( x )  

It : 11"K (x, -F(x))  

~ "~ - X 1  
0 1 2 3 4 

Fig. 1. B is asymptotically stable for .~ = Irk(X, - F ( x ) ) ,  but  unstable for ~ = -F(x). 
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A(-2,-I) 

X I  
: 1 "  K (x,-F(x))  

B(2,-1) 

X2 

Fig. 2. O is asymptotically stable for 2 =-F(x), but unstable for .r = ~rk(x, -F(x)) .  

and it is asymptotically stable. B is also an equilibrium point of  the usual 
DS solving 

= - P ( x ) ,  

but it is not even stable there. 

Example 2.2. Let the vector field 

F ( x l ,  x2) = (xl +4x2, -Xl)  

and the constraint set K be the triangle A O B  in Fig. 2. Then, the origin 
O(0, 0) is the only equilibrium point for both the PDS solving 

.r = rc K( x ,  - F ( x )  ) 

and the usual DS solving 

Yr = - F ( x ) .  

Although O is asymptotically stable for the linear system : ~ = - F ( x ) ,  it is 
not stable for the PDS, as we easily observe along the edge O B  in Fig. 2. 

/ 

3. Local Properties under Regularity 

Having witnessed the substantial difference between the stability of  DS 
and the stability of  PDS, the following question can naturally be raised: Is 
it possible to study the stability of  PDS via the more developed theory for 
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classical DS? As we will establish in this section, the answer is affirmative, 
at least under some condition of regularity at the equilibrium points. 

For the VI(F, K) given in (1), let us specify the convex polyhedron K 
by 

K= {xeR": Bx <b }, (14) 

where B is an m x n matrix, with rows B;_, i=  1, 2 . . . .  , m, and b is an 
n-dimensional column vector. 

A convex subset E of  K is a face of K, if E is the intersection of K and 
a number of  hyperplanes that support K. So the intersection of any faces of 
K is again a face of  K. For any xeK,  denote by ~ the collection of all 
faces of K that contains x. The minimal face of K containing x, denoted by 
E(x), is defined as the intersection of all the faces of  K that contain x, 
namely, 

E(x) := 0 E. (15) 
E ~ ( x )  

For any xeK, let 

I(x) : :  {i: Oi-x=bi}, IC(x):: {i: Bi-x<b,}, 

so that 

I(x) w It(x) = { 1, 2 . . . . .  m}. 

It is apparently true that 

E(x )=  {x: Bi-x=bi,  ieI(x); Bj_x <bj,jelC(x) } 

= { S ( x ) + x }  n K ,  

where 

(16) 

S(x) = {zeR": Bt-z=O, VieI(x) } (17) 

is a subspace of R" and 

S(x) +x = {z+x:  zeS(x)} = {yeR": Bi_y=bi, VieI(x)} (18) 

is an affine manifold translated from the subspace S(x) by x, which is itself 
a supporting hyperplane at x. For completeness, we assume that 

S(x) = S(x) + x = R", E(x) = R" c~ K= K, if I(x) = ~j. 

Let x*  be any solution to VI(F, K). R" can then be expressed as the 
direct sum of the subspaee S(x*) and its orthogonal complement S'(x*).  
For any xeR", if we project x - x *  onto S(x*) and S• respectively, 
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and write 

Zl(X):=Ps{x*~(x-x*), z2(x):=Psl{,,*)(x-x*), (19) 

then z,(x) and z2(x) comprise the unique orthogonal decomposition of  
X--X*. 

We can see immediately that, for any PDS x(t) which solves IVP(10), 
zl(t) = z~(x(t)) given by (19) is a standard DS in the subspace S(x*), due to 
the fact that Pso,*) is continuous. In fact, it is this DS whose stability we are 
going to examine and exploit for studying the stability of  the PDS x(t). The 
induced D S  zl(t) will be referred to as a minimal face flow, since it is 
isomorphic to z~(t) + x*, which with reference to (16) is a DS in the minimal 
face E(x*). In what follows, we will spell this out through mathematical 
rigor. . 

Definition 3.1. Suppose that x*eK with dim S(x*)> 1 and that there 
is a corresponding 6 = 6 (x*)>  0 such that 

Zl + x* ~ (S(x*) + x*) n K, Vzl ~ S(x*) n B(O, 6). 

Define the induced governing function about  x*, 

g(. ) = g ( - ,  x*): S(x*) n B(O, 6) ~-+ S(x*), 

as 

g(z,) = g(z, , x*) := Ps(x*)F(z, + x*). (20) 

Note  that, in the above definition, since Ps(x*) is linear, continuous and 
nonexpansive, 

(i) g is continuous when F is; 
(ii) g is linear when F is; 
(iii) when F is Lipschitz continuous with constant L, so is g with 

constant Lg < L; 
(iv) when F is differentiable, g is differentiable and Vg(zO = 

Ps~x*)(VF(zl + x*)), so g is continuously differentiable when F is. 

Definition 3.2. Suppose that F is continuously differentiable. From 
the results above, the induced governing function g is also continuously 
differentiable in a neighborhood about  the origin of  the subspace S(x*). It 
follows from Peano's theorem (see, e.g., Ref. 6) that, for any 
z~ *) n B(0, 6), there exists a 0 = O(z ~ > 0 such that the IVP 

Z1 ~" -g(zl), (21) 

z, (0) = z ~ (22) 
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has a unique solution zl(t) on the interval ( - 0 ,  0). We call the solutions to 
the IVP (21)-(22) for all z~ *) c~ B(O, ~) the minimal face flow (MFF) 
about x*. 

The first result following these definitions is 

Theorem 3.1. If x* is an equilibrium point of a PDS, then OeS(x*) is 
an equilibrium point of its induced MFF. 

Proof. For any Zl eS(x*) and AeR small, AZl +x* is always in K. Since 
x* solves the VI(F, K), 

<F(x*), (Az, +x*) -x*)>  = ~ 7 ( x * ) T z  I _~0, 

for A small. Therefore, F(x*)rzx=0, and hence F(x*)~S• 
Consequently, 

-g(O) = Ps(x*)(-F(x*)) = 0; 

i.e., 0 is an equilibrium point of the MFF, by Definition 3.2. [] 

Notice that a MFF is a standard DS in a subspace, for whose stability 
study there is a relatively mature theory available. Hence, it is appealing to 
explore the relationship of stability between a PDS and its MFF. This is 
done, in this section, under some regularity condition on a VIP solution, 
which we now introduce. 

For any x e K, the normal cone of K at x is defined by 

C(x) := {yeR": yr (x ' -x )  _<0, Vx'eK}. 

Therefore, C(x) = {0}, when xeint K. 
It is direct from the definition that the necessary and sufficient condition 

of x* being a solution to the VI(F, K) is 

-F(x*)eC(x*). (23) 

Also, it is easy to see that the normal cone C(x*) is contained in the 
subspace S• i.e., 

C(x*)cS• (24) 

For any subset V of R", let L(V) denote the linear subspace spanned by V; 
then, 

S(x*) = L• - , ieI(x*)), (25) 

S• = L •177 B,_, ieI(x*) ) = L(B,_, ieI(x*) ). (26) 



108 JOTA: VOL. 85, NO. 1, APRIL 1995 

Recall that the relative interior of  C(x*), denoted by ri C(x*), is the 
interior of  C(x*) when it is regarded as the subset of  L(C(x*)) with respect 
to the induced metric topology on it; the relative boundary of  C(x*), denoted 
by rb C(x*), is defined accordingly (Ref. 11). 

In view of  the necessary and sufficient condition (23) for a solution to 
the VI(F, K), it is natural to bring in the following definition. 

Definition 3.3. A variational inequality solution x* of  the VI(F, K) is 
regular, or x* solves the VI(F, K) regularly, if 

-F (x* )  eri C(x*), when x*eOK, (27) 

F(x*) = 0, when x* eint K. (28) 

We point out that the above-defined regularity condition is not a stern 
restriction for VIP solutions. In fact, any interior solution is regular and 
any boundary solution x* is regular, if -F(x*) is in the relative interior of  
the convex cone C(x*). However, it is not regular, if -F(x*) is on the 
relative boundary of  C(x*). In particular, when x* is a solution to the 
VI(F, K) that lies on an ( n -  1)-dimensional face of  K, it is regular if and 
only if F(x*)r Hence, the regularity condition only excludes a few 
solutions, many less than those retained by it, measured in dimension. 

We aim to show that, around a regular solution to the VI(F, K), the 
PDS inherits many stability properties from its MFF,  and thus the problem 
can be reduced to a classical stability study of  DS. The next two lemmas 
are provided for establishing our major results in this section. In particular, 
Lemma 3.1 below presents an analytic characterization of  ri C(x*). 

Lemma 3.1. For any y~ri  C(x*), there exists an a > 0 such that, for 
all x ~ R n, 

(y, z2(x) > _< - a  IIz2(x)II- (29) 

Proof. For  any we C(x*), we have, by definition, 

wTx < WrX *, (30) 

whenever x solves 

Bx<b. (31) 

It follows from the nonhomogeneous Farkas lemma that there exists a 
ZeR~ such that 

either ;trB = w r and ZTb <_ wrx *, (32) 

or ZrB = 0 and ~.rb < 0. (33) 
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However, (33) cannot hold because, for any x~K, it gives 

0 = ~.rBx < &rb < 0, (34) 

which is a contradiction. Hence, (32) is true. In other words, 

C(x*)c ~iBi, ~,i>_O, i = 1 . . . . .  m . (35) 
i 

In view of  (24) and (26), it follows that 

C(x*)c{i~,(~x. } ~.iBi-, A.i>O, i~I(x*)}. (36) 

For any subset S of  R", denote its polar by S*, defined as 

S* = {yeRn: xry<O, VxeS}. 

Then, S1 c $2 implies S* ~ S*.  If  C is a closed and convex cone, then C** = 
C (Ref. 11). 

Since { ~i~1(x*l s s is the closed convex cone generated by 
{B,._, ieI(x*)}, which we will denote by Con({B~_, isI(x*)} ), its polar is 
given by (Ref. 11) 

Con*({B,-_, ieI(x*) } ) = { y e R  n" Oi- y <_ O, ieI(x*) }. (37) 

It follows from (24) that 

{yeR": Bi_ y <0, isI(x*) } c C*(x*). (38) 

On the other hand, for all x e K  and i~I(x*), we have 

Bg_ z2(x) = Bi- Zl(X) + Bi- z2(x) = B i - (x -  x*) < O. (39) 

Therefore, it follows from (38) that 

z~(x) e C*(x*), VxeK, 

and 

z2(x) ~ C*(x*) c~ S" (x*). (40) 

Since y~r i  C(x*), so 

yrw<O, Yw~C*(x*). 

We claim that, for all wEC*(x*) c~ S• *) and w~O, 

yr .  w<0.  (41) 
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If  it is not true, then there is w'e C*(x*) c~ S • (x*), w' v ~ O, such that yr .  w'= 
0. Now, w'eS• *) and ye r i  C(x*) imply that there is a sufficiently small 
E > 0 such that 

y+ ew' eC(x*). 

Hence, 

(y + Ew')rw ' :  ellw'l[ 2 > 0, (42) 

which contradicts the fact that y+ Ew'~C(x*) and w'~C*(x*). Therefore, 
(41) is true. 

C*(x*) m S'(x*)  is a dosed  convex cone. Denote its intersection with 
the unit ball B(0, 1) by W. Then, W is compact and contains an element Wo 
which maximizes the linear functional ( y , . )  on W. Namely, 

yrwo =max(yrw: Ilwll = 1, wef*(x*)  n SJ-(x*)}. (43) 

Therefore, letting a = - y r w o > O ,  from (41) we have 

YrW/II w II < - a, (44) 

for all weC*(x*)n  S• from which the result of  the lemma follows 
directly. []  

1.emma 3.2. Suppose that x* is a regular solution of  the VI(F, K) and 
that x(- ) solves the IVP (10). Let zi=z~(x), i=  1, 2, be as in (19). For any 
E > 0 and small enough, there exists a neighborhood N(x*) of x* and some 
T(xo, E), 0 < T(xo, e) < 24 -I IIz2(x0)II, such that, when xoeN(x*), 

x(T(xo, e))eB(0 ,  E) n S(x*)+x*, (45) 

where a is the constant provided by Lemma 3.1. 

Proof. Let x(t) be the solution to the IVP (10). Let To = 24~ -111z2(x0)II 
and zi(t)=zi(x(t)), i=  I, 2. By definition, and since Psr is linear and con- 
tinuous, we have 

~l(t) = (d/dt)( escx*)(x( t) - x*) ) 

= Ps(~*)(2(t)) = Ps(x.)(lr(x(t), -F(x(t)))) .  (46) 

By Lemma 2. I, 

to(x, -F (x )  ) = -F (x )  + fl(x)n *(x), (47) 

where fl(x)>>_O and n*(x) is some inward normal at x. It is clear that 
I(x) cI(x*),  when x is in some neighborhood Nl(x*) of x*, which implies 
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that 

S(x*) c S(x). (48) 

Using this fact and (47), it follows from (46) that, for x(t)eNl(x*), 

~l( t) = Ps(x*)(-F(x) + fl(x)n*(x) ) 

= Ps<x*)Ps(x)(-F(x) + fl(x)n*(x)) 

= Ps~x*)(Psr + Psr 

= Ps~x*)(Psr = Psr (49) 

On the other hand, it follows from Lemma 3.1, and Definition 3.3 that, 
since x* is a regular solutica, 

( -F(x*) ,  z2(x')) < - a  Ilz2(x')II, Vx' ~g. (50) 

Because F(x) is continuous, there exists a neighborhood N2(x*) of x* such 
that 

II F(x) - F(x*)II < a/2, when xeN2(x*). 

Therefore, 

( -F(x ) ,  z2(x')/l[z2(x')II) 

= ( -F(x*) ,  z2(x')/IIz2(x')II ) + (F(x*)  - F(x'), z2(x')/IIz2(x')II ) 

< - a  + II F(x*) -F(x)[I < - a / 2 ,  Vx'eg. (51) 

Choose 8 small enough so that the neighborhood 

N3(x*) = {x: Ilel(x)II < ~, IIz2(x)II </~} 

is contained in Nl(x*) n N2(x*). Therefore, when xeN3(x*), (49) and (51) 
always hold true. Let M be large so that 

M>max{IF(x)l ,xeN3(x*)} and M>a,  

where N3(x*) denotes the closure of N3(x*). For any e > 0, e < ~, define 

N4(x*) = {x: IIz~(x)LI < 6/2, [[zz(x)II < (a~/4M)}. 

We claim that, for any wE[0, To], when xo~N4(x*) and x(t)r 
YtE[0, w], we have 

x(t)~N3(x*), Vte[0, w]. 

In fact, if this is not true, there must be some v, re[0, w], such that 
x(t)~N3(x*), YtE[0, v), but x(v)r and x(t)r Yt~[0, v). This is 
because x(0)=xoeN4(x*)=N3(x*) and x(t) is continuous. 
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Notice that, for all te[0, v), 

(d/dt)(llz~(t) + zz(t)l[2/2) 

= (d/dt)( [[ x(t) - x* I[ 2/2) 

= (x(t)  - x*, 7t(x(t), - F ( x ( t ) ) ) )  

= (x(t)  - x * ,  - F ( x ( t ) ) )  + (x( t )  - x * ,  f l(x)n*(x(t))) 

<_ (x(t)  - x*, - F ( x ( t ) )  > 

= (Zl(t), - r ( x ( t ) ) >  + (z2(t), - V ( x ( t ) ) ) .  (52) 

The first item on the right-hand side of  (52) can be rewritten as 

(z,(t), - F ( x ( t ) ) )  

= (zt(t),  Ps(x*)(-F(x(t))) + (z,(t),  Ps~(x*)(-F(x(t)))) 

= (zl(t), Ps(x*)(-r(x( t))))  = (zl(t),  ~l(t)), (53) 

where the last equality follows from (49). 
The second expression on the right-hand side of (52) can be estimated 

from (51), namely, 

(z2(t), - F ( x (  t) ) > < - a  IIz2(t)II/2. (54) 

Substituting (53) and (54) into the right-hand side of  (52) gives 

(zl(t), ~( t )  > + IIz2(t)II (d/at)(llz2(t)II ) 

= (d/dt)([Iz~(t)112/2) + (d/dt)(llz2(t)112/2) 

= (d/at)(llzl (t) + z2(t)II 2/2) 

<_ (el(t),  ~(t)> - a Ilz2(t)II/2. (55) 

Since [[z2(t)[I >0,  Vt~[0, v], we have directly from the above that 

(d/dt)(llz2(t) II ) -< - a / 2 ,  Vte [0, v], (56) 

which means that I[z2(t)[I is strictly decreasing. However, it follows from 
(49) that 

fo [Iz,(v) II _< Ilz,(0)II + [IPs(x*)(-F(x(t)))ll dt 

__ I1z1(0)II + oM 

-< Ilzl(0)I] + 2a -1 ]lz2(0)[[M< e /2  + 2 a - l ( e a / 4 M ) M  

= E. ( 5 7 )  
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Combining (56) and (57), we conclude that x(v)eN3(x*), which is a contra- 
diction to the definition of u. Hence, the claim is correct. 

We now turn to proving the lemma. For any xoeN4(x*), there must exist 
some u ~ [0, To] such that z2(u) = 0, or equivalently x(u) ~ S(x*). Otherwise, it 
follows from the claim that x(t)~N3(x*), when t~[0, To]. So, (49) and (51) 
are valid. Notice that they are the only two conditions needed in the deriva- 
tion of (56), in addition to x(t)eS(x*), Vt~ [0, To]. Therefore, applying (56), 
we have 

f 
% 

tlz2(To) II = IIz2(0)II + ((d/at) IIz2(t)II ) at 
" 0  

< IIz=(0)II - (a/2)(2a -~ llz2(0)II ) = 0, 

which is a contradiction. 
Let 

(58) 

_u = min{u~ [0, To]: x(u) ~S(x*)}. (59) 

If  _u=0, then we are done, because Xo=X(O)~N4(x *) and by definition 
IIz~(0)ll = IIz,(x0)ll < E/2. If  _u>0, then x(t)r Yte[0, u). Using again 
the claim for w = u_, we conclude that x(t) always lies in N3(x*) when 0 < t < _u. 
Therefore, by (49), 

;o ' IIz~(_u)ll < Ilzl(0)ll + Iles(x*)(-f(x(t)))ll dt 

< E/2 + u_M 

<E/2 + ToM 

= e/2 + 2a -~ Ilz2(0)IIM< E/2 + 2a-~(ea/4M)M 

= E. (60) 

x(u_) ~B(O, ~) n S(x*) and u < To. 

So, 

[ ]  Let T(xo, e) = _u. We have completed the proof of the lemma. 

The major results of  this section are now ready for presentation. First, 
it is pointed out by the following theorem that a PDS has the best stability 
around its regular solutions to the VI(F, K) when they are extreme points 
of the feasible set K. 



114 JOTA: VOL, 85, NO. 1, APRIL 1995 

Theorem 3.2. When S(x*)= {0}, any regular solution x* to the 
VI(F, K) is a finite-time attractor for the PDS. In particular, there exists a 
neighborhood N(x*) of x* such that, when x(0)eN(x*), 

(d/dO[lx(t) -x*[I <_-a/2, Vx(t) #x*, (61) 

where a is the constant prescribed in Lemma 3.1. 

Proof. It follows directly from Lemma 3.2 that, when x* solves the 
VI(F, K) regularly, x* is a finite-time attractor. For the inequality (61), 
since S(x*)={0}, zi(x)=Ps(x.)=O, so z 2 ( x ) = x - x  *. For a neighborhood 
N(x*) of x* such that 

II F(x) - F(x*) II < a/2, YxeN(x*), 

applying Lemma 3.1, we have 

(d/dO(IIx(t) - x* II 2/2) 

= (d/dO ([1 z2(t) II 2/2) 

= (x(t) -x* ,  7r(x(t), -F(x( t ) ) ) )  

<_ (x(t) - x*, -F(x( t ))  ) 

= (z2(t), -F(x( t ) ) )  

= (z2(t), -F(x* ) )  + (z2(t), F(x*) - F(x(t))) 

< - a  IIz2(t)II/2 + IIz2(t)II II F(x*) - F(x(t))II 

< - a  Ilz2(t)]l/2. (62) 

Therefore, for z2(t) 50, 

(d/dO Ilz2(t)II -< - a  /2. 

The proof is complete. [] 

The next theorem illuminates the fact that, around a regular solution 
x*, some neighborhood on its minimal face is relatively invariant for the 
PDS. 

Theorem 3.3. Suppose that x* is a regular solution to the VI(F, K) 
and dim S(x*)> 1. Then, there exists an e > 0  such that x*+B(O, e)c~ 
S(x*) c K  and, for any x~x* + B(O, e) n S(x*), 

7r(x, -F(x) )  = -g(zl). (63) 

In other words, starting from any initial point x0 in the neighborhood 
x* + B(O, e) c~ S(x*), the PDS is identical to the MFF by a translation from 
the origin to x*. 
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Proof. Denote the relative neighborhood x*+B(O, e )nS (x* )  by 
Nr(e), and denote S(x*) by S. For a sufficiently small �9 > 0 chosen, we have 

S(x) = S(x*) = S, VxeNr(�9 (64) 

Nr(e) c K, (65) 

and 

( - F ( x ) ,  z2(x')> < - a  IIz2(x') 11/2, VxeNr(e), Vx'eK, (66a) 

or equivalently, 

(Ps• z2(x')) 

_< - a  ]lz2(x')II/2, VxeNr(e), Vx' eK, (66b) 

where (64) is direct from the definition, (65) follows from dim S>  1, and 
(66) has been proved earlier [of. (51)]. 

Since x=x* +Zl(X), when xeNr(e),  so for any x'eK, it follows from 

z2(x') = es~(X ' - x* - Zl(X) ) = es• ' -  x) 

and (66b) that 

( x ' -  x, Ps• ) )= (Ps• ' -  x), Ps• ) ) 

= (z2(x'), Ps~(-r (x ) ) )  

< - a  [[zz(x')11/2 < 0. (67) 

This implies that 

Ps~(V(x) )/][Ps~(F(x) ) 1[ en(x), 

and hence, 

Ps•177 II = n*(x). (68) 

Therefore, by Lemma 2.1 and expression (68), 

z(x,  - F ( x )  ) = - F ( x )  + fl(x)n *(x) 

= - F ( x )  + max{0, ( - r ( x ) ,  -Ps~(F(x))/IIPs~(V(x))II >} 

�9 Ps•177 

= - F ( x )  + Ps• = Ps ( -F(x*  + zO) 

= - g ( z ~ ) .  (69) 

The proof is complete�9 [] 
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Finally, we summarize the main results in the general case by the follow- 
ing theorem. 

Theorem 3.4. Suppose that x* is a regular solution to the VI(F, K). 
We have the following relationships between the stability of  the PDS and 
its induced MFF" 

(i) if 0 is a-Stable equilibrium point of  the MFF,  then x* is stable 
for the PDS; 

(ii) if 0 is an asymptotically stable equilibrium point of  the MFF,  
then x* is asymptotically stable for the PDS; 

(iii) if 0 is a finite-time attractor of  the MFF,  then x* is also a finite- 
time attractor for the PDS. 

Proof. 

(i) For any e > 0, we want to show the existence of  a 8 > 0 such that 
the solution x(t) to the initial-value problem 

(IVP(A)) Yc = 7r(x, -F(x)) ,  x(O) = Xo, 

lies forever in the e-neighborhood of  x*, whenever Ilx0-x* II < 6. 
Since 0 is a stable equilibrium point of  the MFF,  there exists a 81 > 0, 

such that, for the solution zl(t) to the initial-value problem 

(IVP(B)) ~ l = - g ( z l ) ,  Zl(0)=z ~ 

we have 

Ilzl(t) II < e, Vt>0 (70) 

when Ilz~ < 81. 
Let r > 0 be arbitrarily fixed, and let 

M =  max{ flF(x)II, xEg(x*, 20 ng). 

Choose 8 > 0 small so that 

t~ < min{r, ra/(2M), ea/ (a  + 2M)} (71) 

and B(x*, 8) is contained in the neighborhood N(x*) specified in Lemma 
3.2 for 81 > 0. 

For any x(0)=xoeB(x* ,  8), it follows from Lemma 3.2 that there is a 
Z(xo, 80, O< Z(xo, 81) <2ct -111z2(xo)11, so that 

x( T(xo, 61) )eS(O, 81) n S(x*) + x*, (72) 
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where x solves IVP(A). Let 

x(T(xo, 51))=x* +zl(T(xo, 51)). (73) 

Then, 

Ilzl(T(xo, 51))II < 51. (74) 

By the uniqueness of the solution to the IVP(A) (cf. Ref. 1), for t> T(xo, 50, 

x(t) =x l ( t -  T(xo, 50), (75) 

where xl(z) solves the initial-value problem. 

(IVP(C)) ~ l=Tr(x l , -F(x l ) ) ,  Xl(O)=x(T(xo, 5,)). 

In view of Lemma 3.3, we have 

xl(r) = x* +Zl(r), (76) 

where Zl(r) solves IVP(B) with 

z~ 50), (77) 

which combined with (70) gives 

xl(r)=x*+zl(r)ex*+S(x *) riB(0, e), Vr>0,  (78) 

o r  

x(t)eB(x*, ~), Vt> T(xo, 51). (79) 

It remains to show now that, during the finite time interval 
[0, T(xo, 51)], x(t) does not exit B(x*, E). First, we will show that 

Ilx(t)-x*ll <2r, Yte[O, T(xo, 51)]. (80) 

If not, let 

t=min{t~[0,  T(xo, 50]: Ilx(t)-x*ll >2r}. (81) 

Because of (70), IIx(0)- x* II < r, so _t > 0. Hence, we have 

fo IIx(_t)-2"11 < IIx(0) -x*ll  + II~r(x(t), -f(x(t)))ll  dt 

_< IIx(0)-x*ll +tM<r+ T(xo, 61)M 

< r + 2a-111z2(xo)II M <  r + 2a-1M5. (82) 

But this produces 

2r < r + 2a-lMS, 
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a contradiction to (71). Hence, (80) is true; therefore, for O< t< T(xo, ~1), 

fo IIx(t)-x*ll < IIx(0)-x*ll + II~r(-F(x(u)), x(u))l) du 

< ~ + T(xo, ~OM< ~ + 2a -~ Ilz2(x0)IIM 

<6(1 + 2a - lM)  

< e. (83) 

We have completed the proof for result (i). 
(ii) Given result (i), it now suffices to prove that, for 6 > 0 chosen in 

the proof for result (i), we have 

lira Xo" t=x*, (84) 
t - -~ o o  

when Hx0-x*][ < t~. But, by the assumption that 0 is asymptotically stable 
for the minimal face flow, it is direct from (75) and (76) that 

lim x0- t=  lira x(T(xo, 6l)) " ( t -  T(xo, 60) 
t ' - '* OO t ~ c O  

= lim x~(0)- t 
U--* OO 

= l im (x* + zl(t)) 

=x* +lim, z2(t) 
t ' - *  o o  

=x*. (85) 

(iii) Let Tj be such that 

zl(T(xo, ~ l ) )  t=0,  Vt>Ti.  (86) 

We have, following (75) and (76), for t> I"1 + T(xo, S1), 

xo" t=x(T(xo, ~1)) " ( t -  T(xo, ~,)) 

=xl(0) �9 ( t -  T(xo, al)) 

= x* + zl(T(xo, dl))" ( t -  T(xo, dl)) 

Hence, x* is a finite-time attractor. [] 

Theorem 3.4 states that the local stability of the PDS depends in a sense 
on the combination of the regularity at the equilibrium point and the local 
stability of its MFF. One of the extreme cases, occurring when S(x*) = {0}, 
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has been covered by Theorem 3.2, where we see that the local stability of 
the PDS is implied by the regularity at the equilibrium. When the dimension 
of S(x*) increases, the emphasis is expected to shift from the regularity to 
the local stability of the minimal face flow. Particularly, the extreme case at 
the other end is when S(x*)= R", i.e., when x is in the interior of K. Then, 
it is clear that 

z,(x)=x-x*, z2(x) =0, g(z,)=F(z). 

Hence, locally, the MFF is just a translation of the PDS from x* to the 
origin, and so they both enjoy the same stability. 

4. Local and Global Properties under Monotonicity 

The previous section aimed to explore the local stability of the projected 
dynamical system by use of the stability theory of standard dynamical sys- 
tems. In contrast, we will devote this section to Studying local and global 
stability directly under various monotonicity conditions. 

Recall (cf. Ref. 2) the following definitions: 
F(x) is locally monotone at x* if there is a neighborhood N(x*) of x*, 

such that 

(F(x)-F(x*), x-x*)>__O, VxeN(x*); (87) 

F(x) is locally strictly monotone at x* if there exists a neighborhood 
N(x*) of x*, such that 

(F(x) - F(x*), x-x*) >0, VxeN(x*), x~x*; (88) 

F(x) is locally strongly monotone at x* if there is a neighborhood 
N(x*) of x* and I/> 0, such that 

(F(x)-F(x*),x-x*)~ol[x-x*[[ 2, VxeN(x*); (89) " 

F(x) is monotone, strictly monotone, strongly monotone at x* if, 
respectively, (87), (88), (89) holds true for any xeK. 

The above definitions of monotonicity at x* are easily seen as listed 
in an order from weak to strong. In what follows, we will establish their 
correspondence to the stability at x* in the same order. Namely, monotoni- 
city implies a monotone attractor at x*; strict monotonicity implies a strictly 
monotone attractor at x* ; and strong monotonicity implies that x* is expo- 
nentially stable. We begin with the following theorem. 
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Theorem 4.1. Suppose that x* solves the VI(F, K). If F(x) is locally 
monotone at x*, then x* is a monotone attractor for the projected dynamical 
system; if F(x) is monotone, then x* is a global monotone attractor. 

Proof. By Lemma 2.1, for any xeK,  

it(x, - F ( x )  ) = - F ( x )  + fl(x)n*(x), (90) 

where fl(x) >_0 and 

(n*(x), x - y )  <0, Vy~K. (91) 

Let N(x*) be a neighborhood of x* such that (87) holds for x~N(x*). Let 
xo~N(x*) and Xo(t) solve the initial value problem (10). Define 

D(t) := Ilx0(t) - x* f12/2. (92) 

Then, 

19(t) = (xo(t) - x*, rc(x0(t), -F(xo(t)))) 

= ( x o ( t )  - x * ,  - F ( x o ( t ) ) )  

+ (Xo(t) - x*, fl(Xo(t))n(xo(t))). (93) 

Taking y=x* in (91), we have in (93) 

(Xo(t) - x*, fl(Xo(t) )n*(xo(t)) ) 

= fl(Xo(t)) (Xo(t) - x*, n*(xo(t))) <_ O, Vt >_ O. (94) 

Therefore, since x* solves the VI(F, K), 

19(t) < (xo(t) - x*, -F(xo(t)))  

<_ (xo(t) - x* ,  -F(xo(t)) ) + (Xo(t) - x* ,  F(x*) ) 

=-(Xo(t) -x*,F(xo( t ) ) -F(x*))<_O, Vt_>0, (95) 

where the last inequality follows from the local monotonicity of F. Hence, 
for XoeN(x*), [[x0(t)-x*[] is a nonincreasing function on [0, + ~ ) .  By Defi- 
nition 2.6, x* is a monotone attractor. 

I f F i s  monotone, then (95) holds for all xoeK, so x* is a global mono- 
tone attractor. [] 

Next, we have the following theorem. 

Theorem 4.2. Suppose that x* solves the VI(F, K). If F(x) is locally 
strictly monotone at x*, then x* is a strictly monotone attractor; if F(x) is 
strictly monotone at x*, then x* is a strictly global monotone attractor. 
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Proof. Since strict monotonicity implies monotonicity, (90)-(95) in 
the proof of  Theorem 4.1 still hold true here. Moreover, Inequality (95) 
now has a strict sign, due to local strict monotonicity of F(x)  at x*, that is, 

{)(t) <_ -<Xo(t) - x*, F(xo(t))  - F(x*)  > < 0, (96) 

when Xo(0 #x*.  Therefore, D(t) is monotonically decreasing but nonnega- 
tive. Let 

D_ = lim D(t). (97) 
l--* oo 

If  D_ > 0, we claim that there exists a sequence {t,}, t, ~ 0% as n ~ ~ ,  such 
that 

/)(t.) --* 0, as n --* oo. (98) 

Suppose that the claim is false. Then, there is a b > 0 and a T> 0, such that 

/)(t) < -b ,  Vt > T, (99) 

which contradicts that D_ > 0, so the claim is true. 
Since the sequence x(t . )  is bounded, it has a convergent subsequence 

{ t.j}j with 

Xo(t.) ~ 2. (100) 

From (97), we have 

lira I lxo(t . )  - x *  112/2-- 112 - x *  112/2 - -  D _  > 0,  (101) 
j--+oo 

and hence 2 r  But substituting {t.j} into (96) yields 

D(t . )  = - ( X o ( t . )  - x*, F(xo( t . ) )  - F(x*)  > < O. 

Because 
fore, by 

(102) 

of  (98), left-hand side of (102) converges to zero as j -~  ~ .  There- 
(lOO), 

lim -<Xo( t,j) - x*, F(xo( t , )  ) - F(x*)  ) 
j . . .* oo 

= - < 2 -  x*, F(2)  - F ( x * ) )  = 0. (103) 

]Lxo(t)-x*H2$O, as t --* oo. (104) 

By Definition 2.6, x* is a strictly monotone attractor. 

By strict monotonicity, (103) is a contradiction to the earlier result that 
2 # x* from (101). The contradiction shows that D_ = 0. Therefore, for any 
xoeN(x*) ,  
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It is clear from (104) that x* is a strictly global monotone attractor 
when F(x) is strictly monotone. [] 

Finally, we have the strongest result under the strongest condition. 

Theorem 4.3. Suppose that x* solves the VI(F, K). If F(x) is locally 
strongly monotone at x*, then x* is exponentially stable; if F(x) is strongly 
monotone at x*, then x* is globally exponentially stable. 

Proof. Since strong monotonicity implies strict monotonicity, it fol- 
lows from (96) that 

1)(t)<-(Xo(t)-x*, F(xo(t))-F(x*))<_-r/llxo(t)-x*ll 2. (105) 

Letting d(xo, t )= []x0(t)-x* [[,we have 

d(xo, t) < ,r/d(xo, t). (106) 

If there is some to_>O with d(xo, to)=0, because d(xo,- ) is monotone non- 
increasing, we  have 

]Ix0" t - x ' l [  =0, Yt>to. (107) 

Let B= exp(r/to); then, 

Ilx0, t - x * ll < - I l x o - x * l [  <_ n ll x o  - x * ll exp(-r / t ) .  (108) 

Combining (107) and (108), it follows that 

[IXo" t -  x* 11 < nllxo- x* [I exp(-  r/t), (109) 

so x* is exponentially stable. 
Now, suppose that d(xo, t)~O, Vt>O. Dividing (106) by d(xo, t ) and 

taking the integral, we have 

log d(xo, t) _<log d(xo, O) - Or, 

o r  

Ilxo(t) - x* 11 -< Ilxo- x* II e x p ( -  r/t). (110) 

Hence, x* is exponentially stable. 
When F(x) is monotone at x*, then (106) has no restriction for Xo. 

The same arguments above will apply and give either (108) or (110), with 
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no restriction for the initial value x0. Therefore, x* is globally exponentially 
stable. [] 

5. Summary and Conditions 

This paper initiates the study of the stability of a class of projected 
dynamical systems (PDS), whose stationary points are solutions to the asso- 
ciated variational inequality problems (VIP). Since the ordinary differential 
equations that define such PDS have discontinuous right-hand sides, corre- 
sponding to the feasibility constraints in the VIP, the stability of PDS around 
their stationary points can be quite distinct from that of standard dynamical 
systems, as illustrated in the examples presented in Section 2. 

However, despite the distinctness, it is appealing to discover the connec- 
tion between the stability of PDS and the stability of classical dynamical 
systems, and to explore a way of studying the former via the latter, which 
is a more developed discipline. Toward this end, in Section 3 we brought in 
the definition of a regular solution to a VIP and introduced the concept of 
a minimal face flow (MFF), induced by the PDS at its stationary point. We 
managed to show that, at regular solutions to the associated VIP, the PDS 
enjoys stability similar to its MFF. Since a MFF is a standard dynamical 
system in a subspace of R n, we can, in this case, access the classical stability 
theory of dynamical systems for analyzing the stability at the stationary 
points of PDS. 

In Section 4, we conducted the study following another line. Namely, 
we developed directly a series of stability results of PDS at their stationary 
points, under various monotonicity conditions. Interestingly, but not surpris- 
ingly, the stronger the monotonicity condition that is imposed, the better 
the stability enjoyed by the stationary points. 

The stability study undertaken here provides a mathematical approach 
for the analysis of the stability of equilibria in many social and economic 
competitive systems with natural constraints. In fact, some well-known 
equilibrium problems, such as oligopolistic market equilibrium problems, 
traffic network equilibrium problems, general economic equilibrium prob- 
lems, and spatial price equilibrium problems, have already been formulated 
as PDS for their dynamical model counterparts (cf. Refs. 1 and 3). Hence, 
it would be of much interest to launch the stability study for these models 
at their equilibrium points. Moreover, for those problems with multiple 
equilibria, the research interest to date has focused on the calculation of 
these equilibrium points, using typically among others variational inequality 
methods. However, it is clearly necessary to associate stability analysis with 
such calculations, since from an application point of view the VIP solutions 
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with poor  dynamical stability are not regarded as true equilibria in practice. 
It is expected that potential research as such will directly benefit from the 
theoretical results established in this paper. 
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