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Abort Landing in Windshear: Optimal Control 
Problem with Third-Order State Constraint 

and Varied Switching Structure I 

P. B E R K M A N N  2 A N D  H. J. PESCH 3 

Communicated by A. Miele 

Abstract. Optimal abort landing trajectories of an aircraft under 
different windshear-downburst situations are computed and discussed. 
In order to avoid an airplane crash due to severe winds encountered by 
the aircraft during the landing approach, the minimum altitude obtained 
during the abort landing maneuver is to be maximized. This maneuver 
is mathematically described by a Chebyshev optimal control problem. 
By a transformation to an optimal control problem of Mayer type, an 
additional state variable inequality constraint for the altitude has to be 
taken into account; here, its order is three. Due to this altitude con- 
straint, the optimal trajectories exhibit, depending on the windshear 
parameters, up to four touch points and also up to one boundary arc 
at the minimum altitude level. The control variable is the angle of attack 
time rate which enters the equations of motion linearly; therefore, the 
Hamiltonian of the problem is nonregular. The switching structures also 
includes up to three singular subarcs and up to two boundary subarcs 
of an angle of attack constraint of first order. This structure can be 
obtained by applying some advanced necessary conditions of optimal 
control theory in combination with the multiple-shooting method. The 
optimal solutions exhibit an oscillatory behavior, reaching the minimum 
altitude level several times. By the optimization, the maximum survival 
capability can also be determined; this is the maximum wind velocity 
difference for which recovery from windshear is just possible. The com- 
puted optimal trajectories may serve as benchmark trajectories, both for 
guidance laws that are desirable to approach in actual flight and for 
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pilot training in flight simulators. They are computed for a realistic 
windshear model, taking into account the possible presence of updraft/ 
downdraft regions associated with low-altitude windshears accompanied 
by vortices. 

Key Words. Abort landing, windshear-downburst models, Chebyshev 
optimal control problems, state variable inequality constraints, bound- 
ary arcs, touch points, nonregular Hamiltonian, multipoint boundary- 
value problems, multiple-shooting method. 

1. Introduction 

Low-altitude windshear must be considered as a contributing factor in 
many accidents involving large aircraft; see, e.g., Refs. 1 and 2, and the 
references cited therein. A windshear is usually associated with a downburst, 
which impacts the surface and causes strong divergent outflows of wind. 
The divergent headwind-tailwind shear of the downdraft air can easily 
become strong enough to cause an unmanageable loss of lift to an aircraft 
penetrating it. A pilot in take-off or landing may be confronted with an 
increasing headwind which lifts the plane above its intended glideslope. To 
cope with the headwind, the pilot may take actions to prevent the plane 
from climbing. These actions are then compounded by performance loss 
caused by the increased tailwind and downdraft so that the plane may fall 
below its intended glideslope: A ground impact may then be unavoidable. 
However, not only the transition from headwind to tailwind is particularly 
hazardous because of its strong additional acceleration engendered by the 
windshear, but also strong vertical wind gradients are one of the most 
dangerous aspects of microbursts; see Ref. 3. 

Much effort has therefore gone into modeling and identifying wind- 
shear, into numerical computations of safe trajectories for take-off, abort 
landing, and for penetrating landing, and into the design of controllers to 
enhance the chances for survival while encountering windshear. Primary 
among these have been the pioneering studies of Miele; see Refs. 2-19. For 
a survey, see Ref. 15. Other major contributors to the field of aircraft control 
are Bryson and Leitmann; see Refs. 20-27. Finally, in order to exemplify 
the efforts of Russian authors, Refs. 28 and 29 are given in which a game- 
against-nature approach is employed to deal with the uncertainties due to 
windshear. 

In the present paper, optimal abort landing paths through windshear 
are computed and investigated. In this respect, the present paper continues 
the works of Refs. 2 and 11. The optimality criterion to be considered is of 
minimax type: The minimum altitude obtained during final approach is to 
be maximized in order to abort the landing maneuver safely. Here, we solve 
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this Chebyshev optimal control problem directly via a transformation to a 
third-order state constrained optimal control problem of Mayer type as in 
Refs. 30 and 31. We do not apply the approximation of the Chebyshev 
functional by a Bolza functional as in Refs. 2 and 11. Extending the results 
of Refs. 30 and 31 directly, a new wind model is taken into account which 
also includes regions with upwinds as they appear in double vortex down- 
bursts. Besides the more general wind model, the survival capability is also 
computed, i.e., the maximum difference between maximum headwind and 
maximum tailwind that a windshear can have without engendering an air- 
plane crash. In all those control problem formulations, it is assumed that, 
upon sensing the aircraft to be in a windshear, the pilot has no opportunity 
to escape the downburst. For windshear escape problems, see Ref. 32. 

From a mathematical point of view, the optimal solutions turn out to 
exhibit a switching structure of enormous complexity. Since the problem is 
linear in the control variable, the Hamiltonian is nonregular. Due to this 
fact and two state constraints involved in the problem, the optimal trajecto- 
ries consist of multiple subarcs of different kind. There are several bang- 
bang subarcs, several singular subarcs, and boundary subarcs of both state 
constraints, as well as several touch points of the minimum altitude level. 
Therefore, special emphasis is laid on the formulation of the multipoint 
boundary conditions and jump conditions which are based on the necessary 
conditions of optimal control theory. The numerical method to be used is 
the well-known multiple shooting algorithm of Refs. 33 and 34; see also 
Refs. 35-37. This indirect approach for the solution of the optimal control 
problems permits one to take advantage of the advanced necessary condi- 
tions of Ref. 38. The additional scrutiny allowed by means of these condi- 
tions enables the construction of an appropriate switching structure, helps 
to reject nonoptimal solutions, and thus improves considerably the safety 
of the candidate optimal trajectory of being really optimal. Those techniques 
are also explained in detail. 

2. Optimal Control Problem 

In the following, we summarize briefly the mathematical model as 
described in Ref. 2, 11, and 30. If the initial altitude is high enough so that 
it is safer to abort the landing procedure, the flight maneuver can be modeled 
as a minimax optimal control problem as follows. 

2.1. Performance Index. To avoid crashing on the ground, the ground 
clearance, or in other words the minimal altitude, has to be maximized, 

max min h(t); (1) 
u~U O<_t<_tf 
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here, U denotes the set of  all admissible control variables u, and [0, t:] is 
the flight time interval with terminal time tf not necessarily prescribed. For 
the numerical computations in Ref. 30, it has been shown to be advantageous 
to minimize the peak value of the altitude drop instead, that is, the difference 
between a constant reference altitude hR and the instantaneous altitude, 

I . 

I[ul := max {hR- h(t) } -- mln; (2) 
o<_t<_tf 

here, the reference altitude has to be chosen so as to satisfy 

hR>_h(t), Vt~[0, tf]. (3) 

Both performance indices are equivalent. In order to be compatible with 
Ref. 30, we will retain the latter formulation here, too. This Chebyshev 
functional can be easily transformed to a Mayer functional by introducing 
a new variable (, 

( ( t )  := max {hR-h(7)}.  (4) 
o<_f<_tf 

Hence, we have the new performance index 

I [ u ]  = ((t:) "min .  (5) 

Note that ( is constant. In addition, ( must satisfy some side conditions 
which will be specified below. 

The optimization is now to be performed subject to several constraints. 

2.2. Equations of Motion. Under the assumptions that the aircraft is 
a particle of  constant mass, that the flight takes place in a vertical plane, 
that Newton's  law is valid in an Earth-fixed system, and that the wind flow 
field is steady, the equations of  motion are 

~ =  Vcos y + Wx, (6a) 

/~ = V sin ~, + Wh, (6b) 

l)'= (T/m) cos(a + g)  - O / m - g  sin y 

- ( 14,'x cos 7/+ I~'h sin ~), (6c) 

i" = (T / (mV) )  sin(a + 6 ) + L/ (m V) - (1 /V)g  cos y 

+(1/V)(14:x sin y -  l~h cos ~), (6d) 

d = u; (6e) 

for the auxiliary variable (, we have 

~=0 .  (6f) 
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The state variables are the horizontal distance x, altitude h, relative velocity 
V, relative path inclination ~,, and relative angle of attack a. The angle of 
attack rate u is the control variable here. The models for the aerodynamic 
forces, i.e., the thrust T= T(fl, V), drag D=D(V, a), and lift L=L(V,  a), 
can be found in Refs. 2 and 30. In order to be compatible with former 
results, the power setting fl, usually also a control variable, is prescribed as 
a function of time: Upon sensing the aircraft to be in a windshear, the pilot 
increases the power setting at a constant time rate until maximum power 
setting is reached. Then, fl is held constant. Note that this fixing of the 
power setting need not be made, either for the application of the theory or 
for the application of the numerical method. See the aforementioned refer- 
ences for details of those model functions. 

2.3. Wind Models. The influence of the wind is described by the wind 
velocity components Wx = Wx (x, h) and Wh = Wh(x, h) in the directions of 
x and h, respectively. The following wind model is used: 

Wx=kA(x), (7a) 

Wh = k(h/h,)B(x) ; (7b) 

the distribution of the horizontal wind versus the horizontal distance is given 
by 

I - p  + ax 3 -t- bx 4 '1- qx 5, 0 < X < Xj , 

] r ( x -  x3/2), xl _< x < x2, 
A(x) = ~ (8a)  

~;,  - a ( x 3 - x ) 3 - b ( x 3 - x ) 4 - q ( x 3 - x ) 5 ' x 2 < x < x 3 ' x 3  <_x; 

and the distribution of the vertical wind versus the horizontal distance is 
given by 

dx + ex4+sx 5, O<x<x~, 

-51  exp[-c(x - x3/2)4], xl < x < x2, 

B(x)= d(x3-x)3"- I -e (x3-x)4- l - s (x3-x)  5, X2~X~X3, (8b) 

O, x3<x. 

Here, the parameter k characterizes the intensity of the windshear/down- 
draft combination. Its value corresponds to the maximum horizontal wind 
velocity difference (maximum tailwind minus maximum headwind). By vary- 
ing the parameters, two different wind models are obtained from Eqs. (8). 
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Table 1. Parameter values for Wind Model 1. 

xr = 500 ft 
x3 = 4600 ft 
a=6x 10 -s see -~ ft -2 
c= -In(25/30.6) x 10 -~2 f t  -4  

e~6.28083 x 10 -Il sec -I ft -3 
p=50 ft sec -l 
q = 0 see-t ft-4 

x2=4100 ft 
h, = 1000 ft 
b = - 4  x 10 -11 see -1 ft -3 
d~-8.02881 x 10 -8 sec -~ ft -z 
k> 1 variable 
r=0.025 see 1 
s = 0 sec-I ft-4 

Table 2. Parameter values for Wind Model 2. 

xl = 1300 ft 
x 3 = 4600 ft 
a~ -8.55712 x 10 -s sec -l ft -2 
c=0.95 x 1 0  -12  f t  - 4  

e~-9.97370 • 10 -ll sec -1 ft -3 
p = 4 2  ft  see- i 
q~-3.87834 x 10 -14 sec -~ ft -4 

x2 = 3300 ft 
h, = 1000 ft 
b~ 1.16943 • 10 -1~ see -1 ft -3 
d~6.45597 x 10 -s sect ft -2 
k= l  
r = 0.04 see -1 
s~3.32076 x 10 -14 sec -1 ft -4 

Wind  Model  1. This coincides with the wind model  used in Ref. 30. 

It  describes a downburs t ,  i.e., a co lumn  of  fast descending air which spreads 

out  hor izonta l ly  near  the ground.  The wind velocity funct ions  Wx and  Wh 

and  the wind  profile are given in Figs. 1 and  3 of Ref. 30. The values of  the 

parameters  are given in Table  1.4 The parameters  a, b, c, d, e are chosen so 

as to make  the funct ions  A(x) and  B(x) cont inuous ly  differentiable at xl 
and  x2 and  twice con t inuous ly  differentiable at x3. Later, the intensi ty of 

the downburs t  will be increased up  to its m a x i m u m  value kf which determines 
the m a x i m u m  survival capabi l i ty  and  which is obta ined  if the m a x i m i n i m u m  

of  the al t i tude over g round  equals zero. In  other words, the m a x i m u m  survi- 

val capabi l i ty  is the critical wind  velocity difference A Wxc for which a crash 

first occurs. 

Wind  Model 2. In  this model,  the parameter  c is chosen so as to have, 

at the border  of  the downburs t ,  Wh > 0, i.e., ascending headwind as well as 
ascending tailwind. Then,  the parameters  p and  r are determined so that  the 

wind velocity c o m p o n e n t  Wx takes its extremal values approximately  at the 
zeros of  Wh. Hence,  for bo th  models,  the intensi ty k = 1 corresponds to a 
value of  abou t  A Wx = 100 ft sec -1 for the m a x i m u m  hor izonta l  wind velocity 

difference. The addi t ional  degree of  f reedom in the second wind model  is 
used to determine the other  parameters  so .that A(x) and  B(x) are twice 
con t inuous ly  differentiable. The parameter  values are given in Table  2. The 

4Note that there is a misprint in the formula for B(x), x2m~x<:x3, in Ref. 30. 
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Wind velocity components for Wind Model 2, 

wind velocity components and, for 500 ft_< h < 600 It, the associated wind 
flow field are shown in Figs. 1 and 2. This wind profile models the lower 
half of a double vortex microburst as described, for example, in Refs. 3 and 
39. Note that the downburst diameter of this second wind model is smaller 
than that of the first one. 

2.4. Control and State Variable Inequality Constraints. Both the angle 
of attack and its time derivative are subject to constraints, 

a<amax, (9) 

Umin --< U ___ Umax, Umin ~ --Umax �9 (10) 

Due to the transformation of the Chebyshev functional (2) to the Mayer 
functional (5), an additional state variable inequality constraint must be 
taken into account, 

hR-h<r (11) 

2.5. Initial and Terminal Conditions. All state variables (except the 
auxiliary variable r are prescribed at t = 0 based on the assumption of quasi- 
steady flight prior to the windshear onset. As shown in Ref. 30, optimal 
trajectories with fixed terminal time Tf and y prescribed at ?y, due to the 
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Fig. 2. Wind flow field for Wind Model 2. 

steepest climb condition in quasi-steady flight, are optimal trajectories for 
unspecified terminal time t /and unspecified 7, too, if r; is large enough. 
More precisely, ~ must be greater than the time at which the altitude h takes 
its global minimum last. 

For the meaning of all other quantities not yet mentioned and for a 
complete set of  all parameters, see Ref. 30. 

3. Necessary Conditions 

The necessary conditions of optimal control theory for this problem 
are extensively investigated in Ref. 30, and so we summarize the results only 
briefly here for the benefit of the reader. To describe the necessary conditions, 
the notation of Ref. 40 is used; see also Ref. 41 for a summary of practical 
recipes for the solution of  problems of optimal control. The following results 
provide formulations of  the necessary conditions as well-defined multipoint 
boundary-value problems which also include so-called jump conditions. 

Due to the inequality constraints imposed on the problem and because 
of nonsmooth data in the various model functions, we have to distinguish 
the following subarcs. 

3.1. Bang-Bang and Singular Subarcs. Defining the Hamiltonian on 
state unconstrained subarcs by 

H : = Hfree : = /1,xfC --{- ~l,h fl q- ,71,v ( /  q- ,~7 ~ --~ ~,aU -~. ~ , ( 1 2 )  
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the adjoint vector ,~:= (2x, ~h, A,v, Xr, 2~)v and ~ must solve the system of 
adjoint differential equations, 

~,= -Hy, y:= (x, h, V, ~', a) v, (13a) 

~r (13b) 

By the minimum principle, the optimal control u can be eliminated and 
-substituted in the coupled systems (6) and (13), 

f u . . . .  if A. < 0, 

U = ,  Umin, if &,~ > O, (14) 

~Using, if Aa = O. 

In Ref. 30, the complicated expression Using for the optimal control on singu- 
lar subarcs can be found, which is obtained by solving Xa-0  for u, while 
the derivatives are substituted by the right-hand sides of Eqs. (6) and (13). 
For the problem investigated here, singular subarcs are of order 1. Therefore, 
the optimal control is either continuously differentiable or discontinuous at 
junction points between bang-bang and singular subarcs; see Ref. 42. Only 
the latter case appears in the solutions presented in this paper. Here, it is 
tacitly assumed that the singular control also satisfies the control variable 
inequality constraint (10); otherwise, u is bang-bang. 

The a priori unknown switching points, the switches tbang from u = Umax 
to U----Umi, or vice versa, and the entry and exit points tSntry and tSxit of 
singular subarcs are determined by interior boundary conditions. At the 
switching points tb~ng, the switching function ~ must have isolated zeros, 

A,a(tbang) =0. (15) 

The switching points tSntry and tSxit are determined by one of the pairs of 
interior boundary conditions (16), (17), or (18), 

~,a(t ~ntry) =0 ,  (16a) 

,~,~(t ~ntry) =0, (16b) 

A,a (t ~xit) = O, (17a) 
�9 $ 

s ~it) =0, (17b) 

A,a (t ~,nt~y) = O, (18a) 

~,~ (t ~-xit) =0. (18b) 



30 JOTA: VOL. 85, NO. 1, APRIL 1995 

In addition, there is a necessary sign condition, the generalized 
Legendre-Clebsch or Kelley-Kopp-Moyer condition (Ref. 43), which must 
be satisfied along singular subarcs, 

(O/Ou)[(d2/dt2)Hu] <0, t~[t~ntry, t~x~t]. (19) 

According to the prescribed boundary conditions for the state vector 
y, the adjoint variables must satisfy the natural boundary conditions. For 
prescribed terminal path inclination X at prescribed terminal time ~, all 
components of ;~ (?f) except ~.~(~f) must be zero, if no state variable inequal- 
ity constraint is active at ~. Furthermore, there must hold 

~,~(0) = 0, (20a) 

&(Tf) = 1. (20b) 

In total, we have 12 two-point boundary conditions for the 12 unknown 
state and adjoint functions of the fixed-end-time problem. For terminal time 
tf unspecified, see Ref. 30 and Section 4. 

3.2. Nonsmooth Data in the Model Functions. Because of nonsmooth- 
ness in the model functions for the power setting and the aerodynamic lift 
coefficient, both the thrust T and lift L have discontinuities in higher deriva- 
tives. Therefore, we can conclude that, on singular subarcs, the optimal 
control variable is discontinuous at points at which T or L~a is discontinu- 
ous. Moreover, the first derivative of the adjoint variable Xx is discontinuous 
at points at which the wind velocity functions are only continuously differ- 
entiable. This occurs for the first wind model only. 

3.3. Angle of Attack Constrained Subarcs. The state constraint (9) is 
of order 1. Only boundary subarcs can exist as for regular Hamiltonians. 
The Hamiltonian is 

H:= H r'e~ +/1 (d/dt) (a - amax). (21) 

The right-hand sides of the differential equations for the adjoint variables 
~ teSid on a state constrained subarc [gentry, are  identical to those defined on 

state unconstrained subarcs, since the second term of H does not depend 
on the state variables explicitly. However, the variable ~ has a jump discon- 
tinuity now, which can be placed either at the entry point or at the exit 
point of the constrained subarc, e.g., 

3;a(t~2try) = A,a(t e~]~y) -- O'0. (22) 

For the jump parameter O'o, a trivial differential equation ~o = 0 must be 
added to Eqs. (6) and (13). The optimal control variable along constrained 
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subarcs is given by 

u:= u" = 0. (23) 

The three additional unknowns teantry, teaxit, and o'0 are determined by 
three interior boundary conditions, 

- (24a) (t  entry) -- amax, 
6 r  - -  

2~ (t entre) -- 0, (24b) 

2a(t ~t)  =0.  (24c) 

Moreover, the following sign conditions must be satisfied by the Lagrange 
multiplier/~ and the jump parameter or0, 

0, t~ t a ] entry, t eaxit[, (25a)  
/1 = >0,  t e  ]teantry, teaxit[, 

/.i __< 0, tE ]teantry, t eaxit[, (25b)  

or0 > 0. (25c) 

3.4. Altitude Constrained Snbares. The state constraint (11) is of  order 
3. Contrary to the case of regular Hamiltonians, both boundary arcs and 
touch points may occur. The Hamiltonian is 

H :=  H free + f t ( d 3 / d t 3 ) ( h R  - h - ( ) .  (26) 

Touch Points. If  the optimal trajectory touches the constraint at a 
point h t touch, we have two interior boundary conditions for each touch point, 

h(  thtouch) = hR -- ((ttoueh), (27a) 

�9 h 
h( t  touch) = O, (27b) 

and also jump conditions, 

h + Ah(t touch) = }l,h (t thoueh) -F 6-, (28a) 

Zc(t th~uch) = ;tr houch) + 6". (28b) 

The two unknowns t hto~r and d are determined by the two boundary condi- 
tions of  Eqs. (27). For the parameter 6-, another trivial differential equation 
must be added to Eqs. (6) and (13). In addition, a sign condition for the 
parameter 6" must be imposed, 

6"_>0. (29) 
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t h h t exit], the optimal Boundary Ares. On a constrained subarc [ entry, con- 
trol variable is given by 

u:= u h. (30) 

The complicated expression for u h is omitted here; see Ref. 30. It is obtained 
by solving 

(da/dt3)(h~- h -  5) =- 0 

for u, where again the derivatives are replaced by the right-hand sides of  
Eqs. (6) and (13). Here, it is assumed that the boundary control u h satisfies 
Eq. (10). The function u h can have at most one discontinuity caused by the 
discontinuity of  the thrust rate 7 ~, if its discontinuity lies inside the interval 

h [tentry, tehxit]- Notice that the right-hand sides of  the differential equations for 
the adjoint variables are defined differently on state constrained subarcs, 
since the second term of H depends also on the state variables. 

Five interior boundary conditions at each pair of  entry and exit points 
must be met now, 

h h 
h ( t  entry)  ~--- hR -- ~(t entry) ,  

�9 h h(t entry) = 0, 

h'(t ehntry) =0,  

h h + h-  
'q,a(tentry)[U(tentry) - -  u ( t  ent ry)]  = O, 

h-  h -  __ h + h + 
A,a ( t exit) u( t exit) - -  '~l'a ( t exit) U( t exit)- 

(31a) 

(31b) 

(31c) 

(31d) 

(31e) 

In addition, all of  the adjoint variables must satisfy certain jump conditions; 
e.g., at the entry point, 

h + (to.try) 61, (te.try)=3. h- V h - -- N~ (t entn,) (O'0, #2) v, (32a) 

h + __ h-  
/ ] , ( ( t  entry)  - -  Z~ ' ( t  entry) + (YO, (32b) 

with 

Ny = ( ~ / @ ) ( h R -  h - ( ,  - ~ ,  -] i )  T 

and the time derivatives replaced as usual by the right-hand sides of  Eqs. 
(6) and (13). The explicit form of the 5 x 3 matrix function N f  can also be 
found in Ref. 30. Again, we have a well-defined set of  interior boundary 
conditions for the five unknowns t h h entry, texit, C~'0, O'1, 1~'2. For all these jump 
parameters, trivial differential equations must be added to the system of 
differential equations. 
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In addition, some sign conditions must be imposed here, too, 

0, t~ h t h ]tontry, exit[, (33a) 
/ i =  _>0, t~]tehnt~y, h texit[, 
ft = -~.a/(  O/Ou)[(d3/dta)(hR- h -  ( ) ] ,  

/ ~ 0 ,  tE ]thentry, tehxit[, (33b) 

~ >  0, h - h _ t~ ]/entry, /exit[, (33c) 
/~<0, h h texit[, te ]tentry, (33d) 

#o>0, #1 >0, #2>0. (33e) 

Moreover, the following necessary conditions must also be satisfied at each 
exit point 5: 

/~(/~xit) = 0, (34a) 

/J(t ~xit) = 0. (34b) 

Because of (3 le) and the second equation of (33a), Eqs. (34) are equivalent 
to 

h Za(t exit) = 0, (35a) 
�9 h -  

Za(t  exit) = 0 .  (35b) 

The first equation can be exchanged for the interior boundary condition 
(3 l e), whereas the second equation must be fulfilled additionally. This sug- 
gests that a boundary arc might turn into a singular subarc. Since entry and 
exit points can be interchanged using retrogressive time, Eqs. (35) moreover 
suggest that an interior boundary arc might be embraced by two singular 
subarcs. Notice that, according to the minimum principle, a boundary con- 
trol behaves as a singular control, i.e., there holds Hu =0; see the second 
equation of (33a). 

3.5. Elimination of Auxiliary Variables. In general, some of the vari- 
ables can be eliminated. If there is a unique minimum (touch point) of the 
altitude, the auxiliary variables (, A,c, 6" can be eliminated from Eqs. (13b), 
(20), (28b). This yields # =  1. The trivial differential equations (6f) and 
(13b) for ( and ;t~, respectively, and that for #, as well as the two boundary 
conditions (20) for $c, the interior boundary condition (27a), and the jump 
condition (28b), can be dropped. Equation (28a) is a fixed jump condition 
now.  

SThere is a misprint in the formula after Eq. (38) of Ref. 30: read g instead of u. 
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Similarly, the variables (, Zc, 6"0 can be eliminated from Eqs. (6f), 
(13b), (20), (31a), (32b), if there is a single boundary arc only. 

In all other cases, one jump parameter can always be eliminated, since 
Zc is piecewisely constant with boundary conditions (20). Moreover, the 
auxiliary variable ( can be eliminated, too, for example by replacing the 
boundary conditions (27a) and (31a) by 

h(t ehntry) = h(t thouch). (36) 

However, if the minimum altitude, too, is to be computed very precisely, 
the boundary-value problem should contain 

r ((t):=hmin := min h(t), (37a) 
O<_?<_lf 

h(t ~m~y) = ((t  ehntry), h(t thouch) = ~'(t thouch). (37b) 

These equations then replace Eqs. (6f), (27a), (31a). 
Furthermore, if the integration is carried through backward, the jump 

parameter o'0 can be eliminated. Since 2a(t~ntry) is known then, the jump 
condition (22) can be performed, because of Eq. (24b), by simply setting 

Z~ (t ~ ) : =  0. (38) 

In this case, a trivial differential equation for tr0 must not be included in 
the system of differential equations. It is true that Eq. (38) coincides with 
Eq. (24b), but it is a jump condition now and not an interior boundary 
condition. 

Finally, the jump parameter (~2 c a n  be eliminated, too, if the interior 
point condition (31d) is satisfied by h- �9 ~a(tentry) = 0. This occurs, if a singular 
subarc meets the boundary subarc, with respect to the constraint (11), at 
tehnt~y. Notice that this type of junction is just suggested by Eqs. (34) and 
(35), respectively. In this case, a trivial differential equation for ~2 must not 
be included in the system of differential equations, and the interior point 
condition (31d) must be cancelled. The jump is now performed by setting 

h -  . ;L~(t ~nt~y).=0. (39) 

The integration must also be carried through backward to benefit from this 
elimination. Again, Eq. (39) has to be considered as a jump condition; it is 
not an interior boundary condition. 

It should be mentioned, however, that it is not useful to apply all of 
these possible eliminations, since some of the parameters must be computed 
very precisely, in order to check the necessary sign conditions. 

3.6. Multipoint Boundary-Value Problems. In summary, the piecewise- 
defined differential equations, the two-point boundary conditions, and the 
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interior boundary conditions form multipoint boundary-value problems for 
the state variables, adjoint variables, and various jump parameters and 
switching points. These boundary-value problems depend on the switching 
structure, i.e., the order of the different subarcs, which has to be presumed 
and verified a posteriori. In addition, some of these variables have to satisfy 
certain jump conditions. Note that the jump parameters, represented by 
trivial differential equations, influence the solution via those jump conditions 
only. Problems of this kind can be solved numerically by an appropriate 
multiple-shooting method; see, e.g., Refs. 33 and 34. Here, the FORTRAN 
code BOUNDSCO of Ref. 37 is used; see Ref. 44 for the program and the 
user manual. 

All of the above-mentioned sign conditions and also the exit conditions 
(34) for/~, which for the greater part go back to Ref. 38 (see also Theorem 
3.1 in Ref. 30 and Ref. 45), are of utmost importance for the rejection of 
nonoptimal solutions. In addition, changes of the switching structure are 
indicated by means of these conditions, as will be seen in the following 
sections. Note that these conditions are not part of the boundary-value 
problem itself, but they must be verified together with the switching structure 
afterward. 

4. Optimal Trajectories for Wind Model 1 

Starting point for the computations is the optimal control problem for 
the first wind model with the windshear intensity k = 1, a candidate optimal 
solution of which has been published in Ref. 31. The associated switching 
structure was found to be 

Umi, I Usingl Uhl Umaxl Usi,gl ualt tnouchl UalUmin. (40) 

The different subarcs are separated by vertical dashes, where touch points 
are considered as subarcs of zero length. 

First, the survival capability is to be computed. In order to compute 
the maximum difference between maximum headwind and maximum tail- 
wind that a windshear can have without engendering an airplane crash 
during the abort landing, the intensity parameter k is increased until a critical 
value kf is found, such that hmin = 0. Hence, this critical value kf is defined 
by 

/~=0, (41a) 

( (~ )=0 .  (41b) 
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The dimension of the boundary-value problem must then be increased by 
I. Numerically, the solution can be obtained via a homotopy by which the 
parameter k is increased stepwise, here with a stepsize Ak~0.02. 

Right at the beginning of the homotopy, however, the solution due to 
the above switching structure (40) does not satisfy sufficiently accurately the 
necessary exit condition (34b) for the Lagrange multiplier/2 or the equivalent 
Eq. (35b), respectively. Notice that the boundary arc is here not embraced 
by two singular subarcs, as was pointed out in Section 3. Hence, another 
singular subarc must be inserted into the above switching structure. Addi- 
tionally, a second touch point appears. The new switching structure is now 

h U h /,/ a h a 
t touch,2l u ] Umin �9 Umin]Using ]u ]Using] ~naxlttouch, fl maxlUsing]U ] ( 4 2 )  

The candidate optimal solution from Ref. 31 can also be improved by means 
�9 - t h -  of this switching structure. The value of V(,xit) then increases from about 

-0.8 x 10 -2 to about -0.8 x 10 -13, resulting in an increase of the minimum 
altitude from hmin=502.1562783 ft to hmi,=502.1562810 ft. Of course, the 
diminutiveness of 3 x 10 -6 ft in the increase of the performance index is of 
no practical importance. However, it underscores the remarkable accuracy 
which can be obtained by the multiple-shooting method. Figure 3 shows the 
altitude history, and the enlargement shows the second touch point released 
at the end of the boundary arc. The optimal trajectory includes three 
branches: a descending flight branch, followed by a slightly oscillating, 
nearly horizontal flight branch, followed by an ascending flight branch after 
the aircraft has passed through the shear region. This corresponds to the 
experience that an initial climb will be penalized by a stall at a later time. 
Notice that the last point on the minimum altitude level is just at t = tf, with 

h E  ,oo ,~ 
5 0 2 . t 5 6 !  

600 

5OO 

o 1o 

fe 

4o 
t [set] 

Fig. 3. Altitude versus time for Wind Model 1, k = 1, one boundary arc and two touch points. 
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0 

Fig. 4. Path inclination versus time for Wind Model 1, k =  1. 

tf being the terminal time of the open endtime problem: Since the optimal 
trajectory for this problem ends on a boundary subarc of the angle of attack 
constraint, thus a(t:)= a . . . .  I~a(tf) must not necessarily vanish. Because 
l~(f) = dt(tf)= 0, the transversality condition for free terminal time is how- 
ever, satisfied, 

HI ,:= Ah(tf)l;t(tf) + Aa(tf)dt(tf) = 0. (43) 

In Figs. 4-7, the histories of the path inclination, angle of attack, switch- 
ing function ~.a, and corresponding angle of attack rate u are presented. The 
state variables of the suboptimal solution given in Ref. 31 coincide, within 
drawing accuracy, with the results presented here. Along an optimal trajec- 
tory, points near the minimum velocity are reached twice, at the end of the 
shear and near t=  ~; see Fig. 37 of Ref. 31. At the beginning, the airspeed 

[deg] 

10 
/ 

S 

/ 

o 
o Io zo do 40 

Fig. 5. Angle of  attack versus time for Wind Model 1, k = 1, one boundary subarc. 
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Fig. 6. Adjoint variable ~,~ versus time for Wind Model 1, k = 1. 

is increased and the aircraft is placed in a region of lower downdraft velocity 
to enhance the chances of recovery from the microburst. The pilot should 
trade altitude for airspeed. A comparison of Figs. 6 and 7 brings much 
insight into the important role of the switching function )~, for the choice 
of the optimal angle of attack rate u. Initially, the angle of attack must be 
reduced, which will be seen later to depend very sensitively on the windshear 
parameters; compare Figs. 5-7, in particular the first detail of Fig. 6. Despite 
the special scaling for the switching function in the second detail of this 
figure, it cannot be seen clearly that )~a, too, vanishes at the exit point of 
the second singular subarc as well as at the entry point of the third singular 
subarc, as is dictated by necessary conditions. The detail of Fig. 7 shows 
the discontinuous junction between the boundary arc with respect to the 
altitude constraint and the subsequent second singular subarc. The control 
u is also discontinuous inside the first singular subarc, due to the discontinu- 
ity of the thrust rate ~i'. This discontinuity, however, is below drawing accur- 
acy; compare the similar situation in Fig. 13. 

[10 5 \ 

-a a l ;o 

[lo 

t2  14 

Zo do 40 

Fig. 7. Angle of attack rate u (control) versus time for Wind Model 1, k =  1. 
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Lagrange multiplier fi and/~ versus time for Wind Model 1, k = 1. 

For a check of the important necessary conditions (33a-d) and (34), 
see Fig. 8. Needless to say, all other sign conditions mentioned in the present 
paper are also satisfied, and this for progressive as well as retrogressive time; 
compare Ref. 30. 

Table 3 gives approximations for the various switching points, and the 
equations of the 15 interior boundary conditions for the 9 switching points 
and 6 parameters: ( (or (, respectively), tY (1), #(2) (for two touch points), 
o1, o'2 [#0 = 1 - tY (1) - tY(2)], and 0.o. The number of interior boundary condi- 
tions to be fulfilled at the various switching points is given in square brackets. 
The jump conditions are also listed. Note that the formulation of the multi- 
point boundary-value problem is generally not unique; see, e.g., Eqs. (16)- 
(18). Equation (18) usually leads to a better convergence of the multiple- 
shooting method. 

In the course of the homotopy toward maximum windshear intensity, 
the switching structure has to be adjusted twice. Firstly, the boundary subarc 
due to the third-order state constraint shrinks to a third touch point. 
Secondly, the singular control violates the lower bound of Eq. (10). Hence, 
another bang-bang subarc must be inserted. Furthermore, additional discon- 
tinuities in the approximation of the aerodynamic lift coefficient cause two 
additional discontinuities of the singular control. 

We end up with the following switching structure 

h ttouch,2lumaxlusinglU Ittouch,alu lumin. (44) UminlUsinglUminl t touch,  l lUminlUsinglUmaxl  h a h a 

The maximum value of k according to Eqs. (41) is k=kf~2.00366 corre- 
sponding to a maximum survival capability of about A Wxc=200 ft/sec, 
which is about the size of the largest values obtained from real data (compare 
Ref. 46) and about 5% higher than the value given in Ref. 6. The optimal 
trajectory, showing three touch points of the third-order state constraint, is 
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Table 3. Interior conditions for Wind Model 1 ( k =  1). 

Interior boundary 
Switching points t (sec) conditions Jump conditions 

t~t~.l 0.61 
t~ t~=t~io  11.51 Eqs. (31a-c) [3] a Eqs. (32a) ~ 

Eqs. (17) [2y 
t~ntry,2=tehxit 14.01 Eq. (31e) [1] d 
tSxit.2 14.43 Eq. (18b) [1] 
t h toueh.I 14.46 Eqs. (27) [2] ~ Eq. (28a) 
tStry,3 15.22 
t~,~,y=t~x~t,3 16.09 Eq. (24a) [1] Eq. (22) ~ 

Eqs. (17) [2] b 
t,ho~h,2 26.00 Eqs. (27) [2] ~'~ Eq. (28a) 
/~• 37.65 Eq. (24c) [1] 

"If (=hml, is to be used as parameter, Eqs. (27a) and (31a) have to be replaced by 
Eqs. (37b). 

blf or0 is to be eliminated, Eq. (22) has to be replaced by Eq. (38). In this case, Eq. 
(17a) must be cancelled and the integration must be performed in a backward 
manner. 

tHere, 6"2 can be eliminated from the fifth component of Eq. (32a). For that, Eq. 
(17a) has to be cancelled and the fifth component of Eq. (32a) has to be replaced 
by (39). In the other components of Eq. (32a), 6"2 has to be substituted. The 
integration must also be performed backward here. 

aAlternatively, Eq. (35a) [1]. 
~Here, the transversality conditions for the terminal time and the terminal flight path 

angle, both unspecified, are additionally satisfied. 

given in Figs. 9-14. Basically, the optimal trajectory reaches the minimum 
altitude level hmin = 0 twice, and the velocity drops to about 160 ft/sec at the 
end of the shear region. The figures for the path inclination and angle of 
attack show clearly the advantage of a descending flight branch for the 
recovery maneuver. The reduction of the angle of attack turns out to be the 
more distinct the more severe the shear is. Notice that the singular control 
subarc has three discontinuities, one caused by the discontinuity of T at 
t~3.09 sec (see the detail in Fig. 13) and two caused by the discontinuity 
of Laa at a = a** := 12 deg (before and after t=  10 sec; see Figs. 13 and 14). 
The details in Fig. 12 show the switching function ~,~ along the second and 
third bang-bang subarc, both encircled by singular subarcs. 

In summary, one has obtained the following result: For Wind Model 
1, there exists no abort landing trajectory through the microburst if the 
intensity factor exceeds k = k  s. Only penetrating landing might then be 
possible. 

Table 4 lists the interior point conditions and jump conditions for Wind 
Model 1 with k = kf.  The unknowns to be determined are 10 switching points 
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Altitude versus time for Wind Model 1, k =kf, three touch points. 
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Fig. 10. Path inclination versus time for Wind Model 1, k = kf. 

and 4 parameters: ( (or (, respectively), ~o), #(2) [for three touch points, 
~o) = 1 - ~o) _ #(2)], and or0. 

5. Optimal Trajectories for Wfnd Model 2 

The starting point for the computations is the optimal solution for the 
first wind model with intensity factor k = 1 now fixed. By means of homotop- 
ies with respect to the four parameters x~ (where x2:=x3-x , ) ,  c, r,p, the 
optimal solution for the second wind model can be obtained. During these 
computations, the solutions of the various multipoint boundary-value prob- 
lems must be carefully checked for changes of the switching structure. In 
the case of changing switching structures, the control laws, eventually the 
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Velocity versus time for Wind Model 1, k=kf. 
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Fig. 12. Adjoint variable ~-a versus time for Wind Model 1, k=kf. 
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Fig. 13. Angle of  attack rate u (control) versus time for Wind Model 1, k=kj,. 
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Angle of attack versus time for Wind Model 1, k=k/, one boundary subarc. 

right-hand sides of the adjoint differential equations, and the interior bound- 
ary conditions must  be appropriately adjusted. These changes of the switch- 
ing structure are indicated, for example, by the following events: 

(i) If the sign of the switching function does not match the control 
law (14), the bang-bang/singular structure must be appropriately adjusted. 

(ii) If the singular control Using violates the control constraint (10), 
an appropriate bang-bang subarc must be introduced. According to Ref. 

Table 4. Interior conditions for Wind  Model 1 (k=ks) .  

Interior boundary 
Switching points t (sec) conditions Jump conditions 

t~t~,,, 2.52 Eq. (18a) [1] 
t~x~t,j 12.55 Eq. (18b) [1] 
t h touch,I 13.61 Eqs. (27) [2] a Eq. (28a) 
/eSntry,2 13.65 Eq. (18a) [1] 
t~x~t.2 14.59 Eq. (18b) [1] 
tthouch.2 15.04 Eqs. (27) [2] a Eq. (28a) 
t~,t~y.3 16.77 Eq. (18a) [1] 
tantry=tSxit,3 17.62 Eq. (24a) [I] Eq. (22) b 

Eq. (24b) [1] b 
tthoueh,3 28.58 Eqs. (27) [2] a'c Eq. (28a) 
leaxit 36.92 Eq. (24c) [1] 

~If ( is used as parameter, Eq. (27a) has to be replaced by the second equation of 
Eqs. (37b). 

hlf tr0 is to be eliminated, Eq. (22) has to be replaced by Eq. (38). In this case, Eq. 
(24b) must be cancelled and the integration must be performed in a backward 
manner. 

"Here, the transversality conditions for the terminal time and the terminal flight path 
angle, both unspecified, are additionally satisfied. 
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42, the junction is either discontinuous or continuously differentiable. Here, 
only discontinuous junctions have appeared. 

(iii) A violation of the sign conditions (25) in the interior of an angle 
of attack constrained subarc indicates that this subarc breaks up into two 
subarcs separated by two bang-bang subarcs. 

(iv) A local minimum of the altitude with h < ~ (or hR - h > ~, respec- 
tively) indicates the appearance of either another touch point or another 
boundary subarc. In the present problem, a touch point always precedes a 
boundary subarc in case the constraint (11) becomes active, and vice versa 
in case Eq. (11) becomes inactive. 

(v) A shrinking altitude-constrained subarc indicates its transition 
to a touch point or possibly its complete disappearance. This can also be 
seen from the sign conditions (33). 

(vi) If the condition h'(tthouCh) >0 is violated, either the touch point 
splits into two touch points or changes into a boundary subarc. 

(vii) One of two touch points disappears, since the associated jump 
parameter becomes negative. 

(viii) If the jump parameters in Eqs. (32) and (33) decrease toward 
zero, the boundary subarc may turn into one touch point. 

Table 5 gives a survey of the homotopies and different switching struc- 
tures that have occurred. It should be mentioned that a favorable ordering 
can reduce both human labor and computing time considerably. However, 
the homotopies have not been optimized in this respect here. Figures 15-20 
show some of the intermediate results conceming the altitude histories. The 
optimal trajectories basically stay three or four times near the level of mini- 
mum ground clearance, which varies roughly between 530 ft and 590 ft. In 
this way, a pilot can benefit from the upwinds if controlling close to the 
optimum. 

Figures 21-26 show the optimal trajectories for Wind Model 2. The 
considerable increase of the altitude just before the end of the shear region 
(Fig. 21) corresponds to the velocity drop to about 160 ft/sec (Fig. 23), 
immediately followed by the last point of closest approach to the surface. 
Notice also the change of the sign of the angle of attack rate at the beginning, 
both during the homotopies (Table 5) and for Wind Model 2 (Figs. 25 and 
26). This indicates a considerable sensitivity with respect to the windshear 
parameters. Again, the necessary conditions (16)-(18) are satisfied; however, 
they cannot all be resolved by the details of Fig. 24. The detail of Fig. 25 
shows the discontinuous junction between the second tiny bang-bang subarc 
and the first singular subarc, which turns out to be typical for first-order 
singular subarcs, at least for the problems investigated here. Also, the 
junctions between the boundary subarc with respect to the altitude constraint 
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t [seol 
Altitude versus time, one boundary arc and three touch points, c=  0.60. 
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Altitude versus time, four touch points, c=0.80. 

and the two adjacent singular subarcs are discontinuous. Additionally, there 
is a discontinuity of  the control inside that boundary subarc, which is caused 
by the nonsmooth approximation of  the power setting. In Fig. 27, the impor- 
tant Lagrange multiplier fl is shown, indicating that the additional necessary 
conditions (33) and (34) are also satisfied. 

Finally, Table 6 gives the 18 (!) interior boundary conditions and the 
jump conditions for the formulation of  the multipoint boundary-value prob- 
lem. There are 11 switching points and 7 parameters to be determined: ( (or 
~, respectively), 6 -(~), d (2) (for two touch points), d~, #2 [do = 1 - d "(1) - #(2)], 
trY01) , trio 2) [for two subarcs due to the constraint (9)]. Recall that, at the last 
touch point, the natural boundary condition (43) for unprescribed terminal 
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Altitude versus time, one boundary arc and three touch points, r = 0.90. 
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Altitude versus time, one boundary arc and two touch points, c = 0.95. 

time tsis satisfied, too. Hence, the optimal trajectories for unspecified termi- 
nal time have been simultaneously obtained. 

6. Conclusions 

Maximum ground clearance abort  landing trajectories for an airplane 
encountering windshear have been computed by means of  the necessary 
conditions of  optimality for the underlying Chebyshev optimal control prob- 
lem and by means of  the multiple-shooting method for the solution of  the 
resulting multipoint boundary-value problems. Two different wind profiles 
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have been employed and their influence on the optimal trajectories has been 
investigated. The numerical results show a considerable sensitivity of the 
optimal trajectories with respect to these wind profiles. If  a windshear 
includes regions with upwinds, the altitude drop during the abort landing 
maneuver is much less than in a plain downburst of the same maximum wind 
velocity difference. However, the level of closest approach to the ground is 
reached up to four times depending on the shear models investigated here. 
To take advantage of the upwinds, a high price has to be paid in the form 
of a very complicated history of the angle of attack rate, which is the control 
function here. In addition, the maximum survival capability has been com- 
puted to be 20 0 ft/sec for a certain microburst model, which is of  about the 
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Fig. 22. Path inclination versus time for Wind Model 2. 

size of  the largest values obtained from real data. The different windshear/ 
downburst combinations and their associated optimal abort landing flight 
paths over ground are compared in Figs. 28-30. 

The problem seems to be also of  special mathematical interest. Since 
the Hamiltonian is nonregular, theoretical results about the existence of 
boundary arcs and touch points generally do not apply. Moreover, the 
theorems developed in Ref. 38 for optimal control problems with controls 
appearing linearly cannot be applied either, since the orders of  the state 
constraints and singular subarcs do not  match the assumptions of  those 
theorems. There is a lack o f  appropriate theoretical results about the exist- 
ence of  boundary arcs and /o r  touch points for nonregular Hamiltonian. 
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Velocity versus time for Wind Model 2. 
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Fig. 25. Angle of attack rate u (control) versus time for Wind Model 2. 
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Angle of attack versus time for Wind Model 2, two boundary subarcs. 
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Adjoint variable ti and/~ versus time for Wind Model 2. 

The computed (candidate) optimal trajectories exhibit, depending on 
the windshear parameters, switching structures with up to three singular 
subarcs, up to two boundary subarcs of the first-order angle of attack con- 
straint, up to one boundary subarc and up to four touch points of the third- 
order altitude constraint, and finally up to five bang-bang subarcs. These 
multiple subarcs can be detected during the computations by means of homo- 
topy techniques and by a scrutiny of the necessary sign conditions for certain 
Lagrange multipliers. Because of the exceptional accuracy which can be 
obtained by the multiple-shooting method, a competing direct method is 
unlikely to be able to produce solutions with such high resolution. Note 
that, in the vicinity of solutions of certain multipoint boundary-value prob- 
lems which satisfy only the usual first- and second-order necessary condi- 
tions, there are candidate optimal solutions which, in addition, satisfy those 
sign conditions and therefore yield a better performance index. 
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Altitude over ground and wind profile for Wind Model 1 ; 
downburst: 50 ft/sec; shear: 100 ft/sec. 
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Altitude over ground and wind profile for Wind Model 1 ; 
downburst: 100 ft/sec; shear: 200 ft/sec. 

Although results of such an extremely high precision are not always 
needed, especially as the wind velocities are unpredictable, nevertheless the 
present approach provides an important tool for the computation and assess- 
ment of windshear recovering trajectories because of the combination of the 
best possible performance index, the outstanding accuracy of the multiple- 
shooting method, and the critical information provided by advanced neces- 
sary conditions of optimal control theory. This approach yields a high degree 
of assurance that the candidate optimal trajectories are really optimal. These 
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Fig. 30. Altitude over ground and wind profile for Wind Model 2; 

downburst: 50 ft/sec; shear: 100 ft/sec. 

Table 6. Interior conditions for Wind  Model 2 (k = 1). 

Interior boundary 
Switching points t (sec) conditions Jump conditions 

t~o,,, 1.04 Eq. (15) [1] 
t~ntry,1 1.09 Eq. (18a) [1] 
th~nt,y=t~-~it.~ 2.50 Eqs. (31a-d) [4] "c Eqs. (32a) c 
l~ntry,2=tekxit 4.42 Eq. (18a) [1] 
/exit.2 11.42 Eq. (18b) [1] 
t h touch.1 11.53 Eqs. (27) [2]" Eq. (28a) 
t~ntry,3 11.87 Eq. (18a) [I] 
t~ntry,1 = t~xit,3 13.80 Eqs. (24a, b) [2] b Eq. (22) b 

h _ a ttoueh,z--texit.I 23.05 Eqs. (27) [2] a'd Eq. (28a) 
tb~ng.2 24.54 Eq. (15) [1] 
/~ntry.2 26.03 Eqs. (24a, b) [2] b Eq. (22) b 

alf ( i s  to be used as parameter, Eqs. (27a) and (31a) have to be replaced by Eqs. 
(37b). 

hlf (r(0 ~ and or(02) [for two subarcs due to the constraint (9)] are to be eliminated, 
Eq. (22) has to be replaced by Eq. (38). In this case, Eq. (24b) must be cancelled 
and the integration must be performed in a backward manner. 

"Here, Oz can be eliminated from the fifth component of Eq. (32a). For that, Eq. 
(31d) has to be cancelled and the fifth component of Eq. (32a) has to be replaced 
by (39). In the other components of Eq. (32a), O2 has to be substituted. The 
integration must also be performed backward here. 

dHere, the transversality conditions for the terminal time and the terminal flight path 
angle, both unspecified, are additionally satisfied. Equation (24c) is also satisfied. 
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optimal trajectories may then serve as benchmark trajectories both for guid- 
ance schemes and also for numerical methods for problems of bptimal 
control. 
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