
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 82, No. 3, SEPTEMBER 1994 

A Sparse Nonlinear Optimization Algorithm 1 

J. T. BETTS 2 AND P. D. FRANK 3 

Communicated by H. Y. Huang 

Abstract. One of the most effective numerical techniques for solving 
nonlinear programming problems is the sequential quadratic program- 
ming approach. Many large nonlinear programming problems arise 
naturally in data fitting and when discretization techniques are applied 
to systems described by ordinary or partial differential equations. 
Problems of this type are characterized by matrices which are large and 
sparse. This paper describes a nonlinear programming algorithm which 
exploits the matrix sparsity produced by these applications. Numerical 
experience is reported for a collection of trajectory optimization prob- 
lems with nonlinear equality and inequality constraints. 

Key Words. Sparse nonlinear programming, sequential quadratic pro- 
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1. Introduction 

Nonlinear programming problems arise naturally in data fitting appli- 
cations and when discretization techniques are applied to systems described 
by ordinary or partial differential equations. For applications of this type, 
the number of variables and constraints may be large (i.e., 100 < N <  
100000), and the corresponding Jacobian and Hessian matrices are very 
sparse (i.e., less than 1% of the dements are nonzero). For small problems 
with dense matrices, one of the most successful numerical techniques is the 
sequential quadratic programming approach. However, when algorithms 
appropriate for dense applications are applied to large sparse problems, the 
computational expense is dominated by the solution of the quadratic 
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programming subproblem and the evaluation of the Hessian matrices. This 
paper describes an algorithm for solving large sparse nonlinear program- 
ming problems, which addresses the deficiencies of methods suitable for 
small dense problems. The method is designed to solve general nonlinear 
programming problems. In particular it is not necessary to assume that the 
number of degrees of freedom is small or that the constraints have a special 
structure. When used in conjunction with a sparse finite difference tech- 
nique for computing the Hessian and Jacobian matrices, the overall ap- 
proach is an especially efficient method for solving the discretized optimal 
control problem. Numerical tests also suggest that a limited memory secant 
method can provide significant gains if sparse finite differencing is not 
beneficial. 

After defining the nonlinear programming problem in Section 2, the 
sparse nonlinear programming method is stated in Section 3. Section 4 
describes in more detail how the quadratic programming subproblem is 
solved, and Section 5 presents a method for constructing a Hessian 
approximation. Extensive numerical results are presented in Section 6, and 
concluding remarks are found in Section 7. 

2. Nonlinear Programming Problem 

The nonlinear programming problem can be stated as follows: Find 
the N-vector x which minimizes the objective function 

f = f (x ) ,  (1) 
subject to the constraints 

cL < c(x) < cv, (2) 

where c(x) is an m-vector of constraint functions, and the simple bounds 

x L <_x <-xv. (3) 

Equality constraints are imposed by setting cL = Cv, and variables can be 
fixed by setting xL = xv.  It will be assumed that the objective and con- 
straint functions are twice continuously differentiable, although the deriva- 
tives may be difficult to compute. 

The solution point x* must satisfy the Kuhn-Tucker necessary condi- 
tions for a local minimum: 

(i) x* is feasible, i.e., (2) and (3) are satisfied; 
(ii) there exist Lagrange multipliers 2 and v such that 

g = Gr2 + v, (4) 

where V x f ( x ) =  g(x )=  g is the N-dimensional gradient vector 
and G is the m x N Jacobian matrix of constraint gradients; 



JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 521 

(iii) the Lagrange multiplier for a constraint or variable active at its 
lower bound must be nonnegative; 

(iv) the Lagrange multiplier for a constraint or variable active at its 
upper bound must be nonpositive; 

(v) the Lagrange multiplier for a strictly feasible constraint or free 
variable must be zero. 

3. Sparse Nonlinear Programming Algorithm 

The solution of a nonlinear program can be accomplished in a wide 
variety of ways. The basic approach utilized by the algorithm is to solve a 
sequence of quadratic programming subproblems. The fundamental 
premise of the approach is to approximate the nonlinear constraint func- 
tions by a linear model, and the general objective function by a quadratic 
model. First, background on the quadratic programming subproblem, and 
the associated definition of a merit function are presented. Then, a descrip- 
tion of three distinct optimization strategies will be given. 

3.1. QP Subproblem. A primary feature of the nonlinear program- 
ming algorithm to be described is the ability to solve a quadratic program- 
ming (QP) subproblem. Solution of the QP subproblem is used to define 
new estimates for the variables according to the formula 

= x  +ap, (5) 

where the vector p is referred to as the search direction. The scalar 
determines the step length and is initialized to one. The search direction p 
is found by minimizing the quadratic 

g'rp + (l[2)prHp, (6) 

subject to the linear constraints 

where H is a symmetric N x N positive-definite approximation to the 
Hessian matrix. The upper-bound vector is defined by 

b = ~ C v - C l ,  
kxv  - xA (8) 

with a similar definition for the lower-bound vector b~. The technique for 
solving this quadratic program when the relevant matrices are large and 
sparse will be described in the next section. 
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3.2. Merit Function. When a quadratic program is used to approxi- 
mate a general nonlinearly constrained problem, it may be necessary to 
adjust the steplength ~ in order to achieve sufficient reduction in a merit 
function that in some way combines the objective function and constraint 
violations. 

The merit function which we use is similar to that proposed by Gill, 
Murray, Saunders, and Wright in Ref. 1 and is related to the function given 
by Rockafellar in Ref. 2, 

M ( x ,  4, v, s, t) = f - 2V(c - -  s) - vV(x  - t) + (1/2)(c -- s) V Q ( c  - s) 

+ (1/2)(x - t ) r R ( x  - t). (9) 

The diagonal penalty matrices are defined by Q;~ = p, and R u  = ~,.. Observe 
that the merit function differs from that given in Ref. 1 by inclusion of 
terms for the bounds and linear constraints. One of the algorithm options 
described below maintains feasibility for the equality constraints during the 
iterative process and thus does not rely on the quadratic program to 
maintain feasibility of the linear constraints. For this merit function, the 
slack variables s at the beginning of a step are defined by 

~ C LD 

s, = ~ c ,  - 2 d p .  

I C v i ,  

~ X Li ,  

if CLi > Ci --  2 i /P i ,  

if CLi < C i -  2 i /P i  <--Cui, 

if Ci - -  2 i /Pi  > CVi, 

if XLi > Xi --  Vl/~i, 

if XLi < X i -  Vi[yi < X W ,  

if X~ --  V~[7~ > XVi. 

(lO) 

(11) 

These expressions for the slack variables yield a minimum value for the 
merit function M, for given values of the variables x, 2, v and penalty 
weights, subject to the bounds on the slacks. The search direction in the 
real varaibles x as given by (5) is augmented to permit the multipliers and 
the slack variables to vary according to 

= ~ + e . (12)  

The multiplier search directions ~ and t/ are defined using the QP 
multipliers ~ and a~ according to 

r - ~  - 4 ,  (13) 

~/---o9 - v .  (14) 
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From the QP (6)-(8), the predicted slack variables are just 

g = G p + c = s  +q .  (15) 

Using this expression, define the slack vector step by 

q = Gp + (c - s). (16) 

A similar technique defines the bound slack vector search direction 

= p  + (x - t). (17) 

Note that, when a full step is taken a = 1, the updated estimate for the 
Lagrange multipliers 2- and ~ are just the QP estimates # and w. The slack 
variables s and t are just the linear estimates of the constraints, and the 
terms c - s and x - t in the merit function are measures of the deviation 
from linearity. 

3.3. Parameter Definitions. In Ref. 1, it is shown that the penalty 
weights p~ and 7i are finite provided the Hessian matrix H used in the QP 
subproblem is positive definite. For nonlinear programming applications, 
the Hessian of the Lagrangian, 

m r 

HL = V2~f - E 2~ V2~ci, (18) 
i = l  

can be constructed; however, in general it is not positive definite. In fact, it 
is only necessary that the projected Hessian of the Lagrangian be positive 
definite at the solution with the correct active set of constraints. Conse- 
quently, for the QP subproblem, we use the modified matrix 

/-I  = + + 1)I. (19)  

The Levenberg parameter T is chosen such that 0 < �9 < 1 and is normalized 
using the Gerschgorin bound for the most negative eigenvalue of HL, i.e., 

- - i ~ j  

and hij is used to denote the nonzero elements of HL. 
The proper choice for the Levenberg parameter v can greatly affect the 

performance of the nonlinear programming algorithm. Quadratic conver- 
gence can only be obtained when z = 0 and the correct active set has been 
identified. On the other hand, if �9 = 1, in order to guarantee a positive- 
definite Hessian, the search direction p is significantly biased toward a 
gradient direction and convergence is degraded. A strategy similar to that 
used for adjusting a trust region (cf. Ref. 3) is employed by the algorithm 
t o  maintain a current value for the Levenberg parameter �9 and adjust it 
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from iteration to iteration. The inertia (i.e., the number of positive, 
negative, and zero eigenvalues) of the related KT matrix described in the 
next section is used to infer that the projected Hessian is positive definite. 
Basically, the philosophy is to reduce the Levenberg parameter when the 
predicted reduction in the merit function agrees with the actual reduction, 
and increase it when the agreement is poor. The process is accelerated by 
making the change in ~ proportional to the observed rate of change in the 
projected gradient. 

Although the Levenberg parameter is used to ensure that the projected 
Hessian approximation is positive definite, it is still necessary to define the 
penalty weights Q and R. In Ref. 1, it is shown that convergence of the 
method requires choosing the weights such that 

M'o < - (  I [ 2 ) p r H p ,  (21) 

where M~ denotes the directional derivative of the merit function (9) with 
respect to the steplength ct evaluated at a = 0. To achieve this, let us define 

~P~ - Po, if 1 < i < m, 
r~ = (22) 

(~l-m--Po, i f m  < i < m  +N,  

where Po > 0 is a strictly positive threshold. Since (21) provides a single 
condition for the m + N penalty prameters, we make the choice unique by 
minimizing the norm [Irll2. After some lengthy algebra, we find that 

r = a ( a r a ) - z g ,  (23) 

where 

and 

~(c,  - s) 2, 
a,  = I . ( x , - m  - -  t~ -m)  2, 

if 1 <_i _<m, 
(24) 

i f  m < i  < m  + N ,  

r = _ ( 1 ] 2 ) p r H p  + # 'rq  + co'r6 _ 2~T(c _ s) - 2 q V ( x  - -  t) 

- -  po(C --  S)T(C - -  S) - -  p o ( X  - -  t)r(X -- t). (25) 

Typically, the threshold parameter Po is set to machine precision and only 
increased if the minimum norm solution is zero. In essence then, the 
penalty weights are chosen to be as small as possible consistent with the 
descent condition (21). 

3.4. Algorithm Strategy. The design of an efficient, yet robust non- 
linear programming algorithm is affected by a number of (possibly conflict- 
ing) factors. For example, the algorithm described in Ref. 4 is a feasible 
region method, since successive iterates maintain constraint feasibility. This 
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philosophy is motivated by a number of considerations. The trajectory 
optimization applications of interest are characterized by a relatively large 
number of equality constraints, derived from the dynamics. When the 
constraints are satisfied, the variables describe a valid trajectory for a fixed 
discretization history. Mesh refinement to improve the accuracy of the 
discretization is meaningful when performed about a valid trajectory and 
may not be elsewhere. Secondly, vehicle characteristics (e.g., aerodynamic 
and propulsion data) are usually only valid in regions bout real trajectories. 
Finally in practice, many problems are poorly posed, and this situation is 
readily detected when attempting to locate a feasible point. 

In contrast, the algorithm described in Ref. 5 does not produce a 
feasible point until the solution is obtained. For a well-posed problem, a 
strategy which takes direct steps toward the solution without recourse to 
intermediate constraint satisfaction may be more efficient, especially for 
very nonlinear constraints. Furthermore, maintaining strict feasibility with 
respect to inequality constraints may be prohibitively slow when the 
number of inequalities is large and the active set is wrong. In order to 
efficiently deal with the combinatorial nature of the problem, it is desirable 
to correctly identify the active set at points well removed from the solution. 
However, for very nonlinear constraints, it may be necessary to use very 
large penalty weights to achieve feasibility, thus introducing the possibility 
for numerical instability. 

In order to explore the conflicting benefits of these alternate strategies, 
three different approaches will be investigated. 

(M) Minimize. Beginning at x ~ solve a sequence of quadratic 
programs until the solution x* is found. 

(FM) Find a feasible point, then minimize. Beginning at x ~ solve 
a sequence of quadratic programs to locate a feasible point 
x i, and then beginning from x y solve a sequence of quadratic 
programs until the solution x* is found. 

(FME) Find a feasible point, then minimize subject to equalities. 
Beginning at x ~ solve a sequence of quadratic programs to 
locate a feasible point x i, and then beginning from x y solve 
a sequence of quadratic programs while maintaining feasible 
equalities until the solution x* is found. 

Philosophically, the first strategy is probably the most aggressive, while the 
last strategy is probably the most conservative. 

3.5. Finding a Feasible Point. The first step in either the FM or FME 
strategy is to determine a point which is feasible with respect to the 
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constraints. A fourth strategy F, to locate a feasible point only, is also 
available in the software. The approach employed is to take a series of  
steps of  the form given by (5) with the search direction computed to solve 
a least distance program. This can be accomplished if we impose the 
requirement that the search direction have minimum norm, i.e., lip [12. 
However, it is also possible to encounter a locally infeasible subproblem, 
simply because a linear approximation is not sufficiently accurate to model 
the nonlinear constraints. Therefore, the search direction is computed to 
minimize 

(1 /2)p ' rp ,  (26) 

subject to the linear constraints 

The bound vectors ~ and 6u are defined by 

Sf l (c  L, - c i ) ,  if ci  < cLi, (28) 
' = ~ ( (CL~ - -  Ci ) ,  if Ci >-- CLi, 

f f l ( c  vt - -  c i ) ,  if c i > cui ,  
(29) 

"~ ~( (c  u i  - ci ) ,  if c i  < c v i ,  

for i = 1 . . . . .  m, with a similar definition for the simple bounds xL and X u .  

When the scalar relaxation parameter fl = O, the subproblem is feasible; 
however, when fl = 1, the full nonlinear constraint violation is treated and 
the resulting subproblem may or may not be feasible. In general, a feasible 
subproblem can be created by relaxing the constraints, that is, for some 
value 0 _< fl < 1. 

Since the solution of  this subproblem is based on a linear model of the 
constraint functions, it may be necessary to adjust the steplength ~ in (5) to 
produce a reduction in the constraint error. Specifically, a line search is 
used to adjust ~ so that 

Y(~) - Y(O) < x~T'(O),  

Y'(a) < x2Y'(0), 

for 0 < ~:~ < x2 < 1, where the constraint violation is defined by 

"~(X) : ~ [2C i -- min(cui  , ci) -- max(cL,, c,)] 2 
i = l  

N 

+ ~ [2xi -- m i n ( x v i ,  x l )  - max(xLi, x/)] 2. (30) 
l = 1  
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The overall strategy for locating a feasible point can now be described. 
Beginning at the point x, with the primary strategy, the procedure is as 
follows: 

Step 1. Evaluate the constraints and Jacobian and terminate if 
constraints are feasible. 

Step 2. Compute the search direction. 

(i) Primary strategy. Solve the QP subproblem with fl = 1 
and 

(a) if solution is feasible, then go to Step 3; other- 
wise, 

(b) change to equality relaxation strategy, and go to 
Step 2(ii). 

(ii) Equality relaxation strategy. Ignoring inequality con- 
straints, solve the QP subproblem and 

(a) if solution is feasible, then go to Step 3; other- 
wise, 

(b) reduce the relaxation parameter, and repeat Step 
2(ii). 

(iii) Inequality relaxation strategy. Solve the QP subprob- 
lem and 

(a) if solution is feasible, then go to Step 3; other- 
wise, 

(b) reduce relaxation parameter and repeat Step 
2(iii). 

Step 3. Line search: 

(i) if the primary or inequality relaxation strategy is being 
used, then choose the steplength to reduce the con- 
straint violation Y(~); otherwise, 

(ii) if the equality relaxation strategy is being used' then 
choose the steplength to reduce the equality constraint 
violation Ye(~). 

Step 4. Relaxation adjustment. 

(i) If the primary strategy is being used, then return to 
Step 1. 

(ii) If the equality relaxation strategy is being used and if 
fl < 1, then increase fl, and if equality constraints are 
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feasible, then change to inequality relaxation strategy, 
and return to Step 1. 

(iii) If the inequality relaxation strategy is being used and if 
< 1, then increase/~, and return to Step 1. 

The essential feature of this strategy is to give priority to satisfying equality 
constraints. At each step, an attempt is made to either solve the full 
(unrelaxed) problem and/or increase the relaxation parameter. 

3.6. Minimization Process. The three strategies M, FM, and FME 
execute a series of steps to minimize the merit function (9). In the case of 
strategy M, the iteration begins from the arbitrary and possibly infeasible 
point x ~ On the other hand, strategy FM begins the minimization of the 
merit function from a feasible point x y. Finally, the FME strategy not only 
begins the minimization at a feasible point, but maintains feasibility with 
respect to the equality constraints. Let us denote the equalities by e, with 
Jacobian E. 

The iteration begins at the point x, and proceeds as follows: 

Step 1. Evaluate gradient information g and G and then: 

(i) evaluate 

(ii) 
(iii) 

Step 2. 

O = g -  GV2-v;  (31) 

terminate if the Kuhn-Tucker conditions are satisfied; 
if this is the first iteration, go to Step (vi); otherwise, 
compute the rate of change in the projected gradient 
norlTl, 

p3 = Ilo k)ll /ll o k- (32) 
and 
if pl < 0.25p2, then set r(k+ 1) = rnin(2z(k), 1); otherwise, 
if pl > 0.75p2, then set z(k+~) = ~(k) min(0.5, P3); 
compute HL from (18). 

(iv) 
(v) 
(vi) 

Construct the optimization search direction: 

(i) compute H from (19); 
(ii) compute p by solving the QP subproblem (6)-(7); 
(iii) if the inertia of K is incorrect and 

(a) if z < 1, then increase z and return to Step (i); 
(b) if ~ = 1  and H ~ L  then set z = 0 ,  H = / ,  and 

return to Step (i); 
(c) if H = / ,  the constraints are locally inconsistent; 

terminate the algorithm; 
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Step 3. 

Step 4. 

Step 5. 

Step 6. 

(iv) 
(v) 
(vi) 

(22)-(25);  and 
(vii) initialize p(2) = p(~)  = O, a = 1, gt = O. 

compute ~ and ~/from (13) and (14); 
compute q and 6 from (16) and (17); 
compute the penalty parameters to satisfy (21) using 

Compute the predicted point for 

(i) the variables from 

:~ = x + ap + ~2p(2) + a3p(3); 

the multipliers and slacks from (12); (ii) 
(iii) 

(iv) 

(33) 

then evaluate the constraints E = cO 7) at the predicted 
point; and then 
if I1~11~ - ~ or if strategy FM E  is not used, set 2 ~ :? 
and go to Step 7. 

Solve the underdetermined system 

E d  = ~ (34) 

for the direction d and initialize v = 1. 

Compute the corrected point 

0~ = :~ - yd. (35) 

Evaluate the constraints ~ at the corrected point 2; then: 

(i) if IIEIl~-<, and ~ = 0, compute 

p(2) = (1/~2)[2 _ x - ~p]; (36) 

save the corrected point (set)7 ~ 2 and ~ ~ ~), and 
then go to Step 7; 

(ii) else, if I1~1/~_<, and ~ ~0 ,  compute the elements of  
p~:) and p!3), for i = 1 , . . . ,  N, from the system 

] ~2 ~3dgo?) J = L #  ' x ,  - ; ( 3 7 )  

save the corrected point (set)7 ~ 2 and 07 ~ ~), and 
then go to Step 7; 

(iii) else, if II~ll~-< I1~11~, update the corrected point (set 
~ 2 and ~ ~ ~), and return to Step 4; 

(iv) else, reduce the steplength v to achieve constraint re- 
duction, and return to Step 5. 
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Step 7. 

Step 8. 

Evaluate the merit function M(2, 7t, % L t) = hTf and 

(i) if the merit function/ff is sufficiently less than M, then 
2 is an improved point; terminate the line search and go 
to Step 8; 

(ii) else, change the steplength ~ to reduce M, and return to 
Step 3. 

Update all quantities: 

(i) 

(ii) 

compute the actual reduction 

Pl  = M ( k )  - -  M ( k -  1); (38) 

compute the predicted reduction 

P2 = ~k~ _ M(~- l}, (39) 

where ~r (k) is the predicted value of the merit function; 
and 
return to Step 1. (iii) 

The steps outlined describe the fundamental elements of the optimization 
process; however, a number of points deserve additional clarification. First, 
note that the algorithm consists of an outer loop (Steps 1-7) to minimize 
the merit function, and an inner loop (Steps 3-6) to eliminate the error in 
the equality constraints. The outer loop can be viewed as a univariate line 
search in the direction p, with the steplength a adjusted to minimize the merit 
function. The inner loop can be viewed as a nonlinear root-solving process 
designed to eliminate the error in the equality constraints for the specified 
value of ~. Note that Steps 4 -  6 are only executed for the FME strategy. The 
inner constraint elimination process must be initiated with an estimate of 
the variables, and this estimate is given by the expression (33). Notice 
that the first prediction is based on a linear model for the constraints, since 
p{2)=p(3)=0 in Step 2. However, after the constraint error has been 
eliminated, the value o fp  (2) is updated by (36) and the second prediction is 
based on a quadratic model of the constraints. After the second corrected 
point is obtained, subsequent predictions utilize the cubic model defined by 
solving (37). Adjusting the value of the steplength = as required in Step 7(ii) 
is accomplished using a univariate search procedure similar to that described 
in Ref. 6, which constructs a quadratic and cubic model of the merit function. 
The reduction is considered sufficient when 

M(a) - M(O) < x, ~M'(O), 

M'(~) < x2M'(O), 

for 0 < t e l < K 2 <  1. 
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Because the constraint elimination process requires the solution of the 
underdetermined system (34), there is some ambiguity in the algorithm. 
This ambiguity is eliminated by choosing the minimum norm direction 
which can be obtained by solving the augmented system 

Notice that the Jacobian E is evaluated at the reference point x, and not 
reevaluated during the inner loop iteration, even though the right-hand side 

does change. Because the Jacobian is not reevaluated, the inner loop will 
have a linear convergence rate. Nevertheless, this approach has been found 
attractive, because: 

(i) the coefficient matrix can be factored only once per outer opti- 
mization iteration, thereby significantly reducing the linear alge- 
bra expense; and 

(ii) the corrections defined by d are orthogonal to the constraint 
tangent space at the reference point x, and hence tend to produce 
a well-conditioned constraint iteration process. 

In order to evaluate the Hessian matrix (18), an estimate of the 
Lagrange multipliers is needed. The values obtained by solving the QP with 
H = I are used for the first iteration; thereafter, the values ~ from (12) are 
used. Furthermore, for the very first iteration, the multiplier search direc- 
tions ~ = 0 and r /= 0, so that the multipliers will be initialized to the QP 
estimates/~ and to. The multipliers are reset in a similar fashion, after a 
defective QP subproblem is encountered, in Step 2(~ii)(b). The Levenberg 
parameter T in (19) and the penalty weights r i in (22) are initialized to zero, 
and consequently the merit function is initially just the Lagrangian. 

Gradient and Hessian information can be computed (a) analytically, (b) 
using finite difference estimates, or (c) recursively. Many of the numerical 
results construct this information using sparse finite differencing as described 
in Refs. 4, 7, and 8. Although central difference estimates must be used during 
optimization, forward difference estimates are used when finding a feasible 
point. Numerical experience also suggests that it is not necessary to compute 
a Hessian matrix for every iteration, when the algorithm is progressing well. 
A recursive limited-memory secant approximation technique for the Hessian, 
suitable for large problems, is described in a later section. 

4. Sparse Quadratic Programming Algorithm 

4.1. Sparse Linear Algebra. Development of efficient, robust soft- 
ware for the solution of sparse linear systems is a field of active research. 
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The nonlinear programming algorithm described employs a state-of-the-art 
finear algebra package. The package solves A x  = b for x, where A is an 
n x n real symmetric indefinite sparse matrix. Since A is symmetric, it can 
be factored using a square-root-free Cholesky factorization A = L D L  "r, 
where L is a unit lower triangular matrix and D is a diagonal matrix. Since 
A is not necessarily positive definite, pivoting to preserve stability is 
required. The package uses the threshold pivoting generalization of Bunch 
and Kaufman 2 x 2 block pivoting for sparse symmetric indefinite matrices 
proposed by Duff and refined by Liu. The software requires storage for the 
nonzero elements in the lower triangular portion of the matrix and a work 
array. A complete description of the multifrontal factorization algorithm is 
found in Refs. 9 and 10. 

4.2. Schur-Complement Method. The quadratic programming al- 
gorithm used is based on a method proposed by Gill, Murray, Saunders, 
and Wright in Ref. 11, and the implementation exploits the multifrontal 
algorithm for the solution of sparse linear systems. The QP (6)-(8) is first 
stated in the following standard form: minimize 

cTx + (1/2)xTHx,  (41) 

subject to the linear constraints 

A x  = b, (42) 

and the simple bounds 

XL <-- x <_ xu .  (43) 

Note that the variables x include slack variables to replace the general 
inequality constraints and do not correspond to the notation used else- 
where in the paper. Similar modifications are necessary to define the other 
quantities in the standard form QP. When written in this form, variables 
are either fixed at their bounds or free to move within the bounds. In 
keeping with the notation of Ref. 11, we denote the nrR free variables by 
FR and the fixed variables by FX. For a specific estimate of the active set 
of constraints, the step to the constrained minimum is obtained by solving 
the Kuhn-Tucker or KT system (cf. Ref. 4) 

AF. 0 JL ~ J L ~ J=LO J" 
If the estimate of the active set is correct, the solution of the KT system 
defines the solution of the QP. However, in general, it will be necessary to 
change the active set and solve a series of equality constrained problems. In 
Ref. 11, it is demonstrated that the solution to a problem with a new active 
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set can be obtained by the symmetric addition of a row and column to the 
original Ko with a corresponding augmentation of the right-hand side. In fact, 
after k iterations, the KT system is of dimension no + k and has the form 

U y 
[u/~T V l l z l  = [~1 ,  (45) 

where U is no x k and V is k x k. The initial right-hand side of (44) is 
denoted by the no-vectorfo, and the k-vector w defines the additions to the 
right-hand side to reflect changes in the active set. 

The fundamental feature of the method is that the system (45) can be 
solved using factorization of Ko and C, the k x k Schur complement of K o, 

C =- V - U T K o  1U. (46) 

Using the Schur complement, the values for y and z are computed by 
solving in turn 

Kovo =fo, (47) 

Cz = w - UTvo, (48) 

Koy  = f -- Uz. (49) 

Thus each iteration of the QP requires one solution with the factorization 
of Ko and one solution with the factorization of C. The solution for Vo only 
needs to be done once at the first iteration. Each change in the active set 
adds a new row and column to C, and it is relatively straightforward to 
update both C and its factorization to accommodate the change. It is 
important to keep C small enough to maintain a stable, dense factorization, 
and this is achieved by refactoring the entire KT matrix whenever k > 100. 
In general, the penalty for refactoring may be substantial. However, when 
the QP algorithm is used within the general NLP algorithm, it is possible 
to exploit previous estimates of the active set to give the QP a warm start. 
In fact, as the NLP algorithm approaches a solution, it is expected that the 
active set will be correctly identified--and the resulting number of itera- 
tions k for the QP subproblem will become small. Limited computational 
experience with the Schur complement method indicates a speedup of 
nearly 200 to 1 over the dense QP algorithm (LSSOL), which is used in the 
nonlinear program NPSOL in Ref. 5. 

5. Computing the Hessian Using a Limited-Memory Secant Update 

Computing the Hessian of the Lagrangian by sparse differences can 
be very expensive for some problems. An alternative is to use a limited- 
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memory version of a secant update method, such as the BFGS update 
(see, e.g., Ref. 12). 

The use of a limited-memory Hessian avoids the problem of storing and 
factoring a dense secant Hessian matrix. At each iteration, this is accom- 
plished by constructing an approximation to the Hessian using information 
from a limited number L of previous iterations to modify a sparse 
positive-definite matrix, usually the identity. The sequence of L rank-two 
updates that would transform this sparse matrix into the Hessian approxi- 
mation at the current iteration is then computed and stored as 2L vectors. 
The values of L typically range from two to ten. 

Linear system solutions with the limited-memory Hessian involve 
solutions with a factorization of the original sparse matrix. The updates are 
then accounted for by using the Sherman-Morrison-Woodbury formula 
(see, e.g., Ref. 13) for updating the inverse of a matrix. The above process 
is discussed in more detail below. 

The hope is that the limited-memory BFGS update will retain the good 
local convergence of the full BFGS update, while saving greatly on linear 
algebra costs. One reason for which this should be true is that the 
limited-memory update is based on information obtained from the most 
recent iterates. It only ignores information obtained from iterates in the 
distant past. The computational results presented in the next section provide 
some validation to the above premise. 

The inspiration for this work is the limited-memory algorithm described 
by Nash and Nocedal in Ref. 14. However, their algorithm directly updates 
an approximation to the inverse of the Hessian. To solve linear systems 
involving the Hessian, the inverse Hessian updates are accounted for by 
successive dot products with the right-hand side. However, the inverse 
Hessian does not appear directly in the linear system solutions required for 
the Schur-complement QP. The Schur-complement QP method requires 
solutions with a factorization of the KT linear system (44). Since the Hessian 
is only a block of the KT system matrix, it was considered easier to work 
directly with the secant Hessian than with the secant inverse Hessian. Thus, 
the method described below is based on updating the Hessian approximation. 

Using subscripts to denote iteration numbers, the BFGS Hessian 
update is given by 

a k  = n k -  1 "~ YkykT/ykTSk -- (Hk - l S k ) ( n k -  1Sk)T/SkTnk - l Sk ,  (50)  

where 

Y~ = g k - - g k - I  and s~ =Xk--Xk_l.  

For the nonlinear programming algorithm, H and g in Eq. (50) denote the 
Hessian and the gradient of the Lagrangian, respectively. 
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The limited-memory version of the BFGS is considered next. Let Ho 
denote the Hessian L iterations prior to iteration k. The Hessian at 
iteration k is formed by L BFGS updates to Ho. This Hessian can be 
represented by 

L L 

Hk ~-Ho ~- Z UiUiT-- 2 l)iViT, ( 5 1 )  
i= l  i=1 

where 

ui = yi/[YirSi] 1/2 and vi = Hi- lSi/[siT(ni _ IS/)] 1/2 

The underlying assumption for the above approach is that H0 is a sparse 
positive-definite matrix, the identity matrix in our implementation, and the 
summation terms in Eq. (51) represent a small number of dense updates. 

The vectors v; in (51) are defined in terms of the dot products Hi_ lsi. 
These dot products can be computed by successive use of Eq. (51) with 
upper limits increasing from 1 to L - 1. 

The limited-memory secant Hessian yields an estimate which can be 
incorporated within the Schur-complement QP algorithm described in the 
preceding section. However, to fully exploit sparsity, some care must be 
exercised when it is used. The main idea is to perform factorizations on a 
matrix formed by modifying Ko such that only the sparse portion of the 
Hessian (i.e., Ho) appears. Thus, from the definition of the KT matrix (44), 
we have 

r(H/c)FR AFR r ]  
Ko = LAFR (52) 

Now, let us define the (I'IFR -~- m) x 2L matrix 

W = [  (ul)FR" " (I'IL)FR (Vl)FR" " " (UL)FR] " 0  ' (53) 

the 2L x 2L diagonal matrix 

and the beginning KT matrix in the limited-memory sequence 

=~ (H~ ~FRT 1 ( 5 5 )  
Kb LA FR 

Then, if we substitute the definition of H~ from (51) into (52), we obtain 
the expression 

Ko = Kb + W O W  r. (56) 
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It is important to emphasize that, while K0 is now dense, the matrix Kb is 
still sparse. 

Now, in the Schur-complement QP method, Eqs. (46), (47), and (49) 
require solving linear systems of the form Koq = b, where q and b are 
the appropriate left and right-hand side vectors. Using the Sherman- 
Morrison-Woodbury formula, the solution to Koq = b is given by 

q = KKlb - Kb ~ W(WTKff I W + O-~) -t(Kg~ W)Tb. (57) 

Notice that the solution is obtained by solving large sparse linear systems 
involving Kb, not large dense linear systems involving Ko. 

Efficient implementation of the computations indicated in Eq. (57) can 
be done as follows: 

Step 1. Preprocessing, applicable to any right-hand side. 

(i) Factor Kb. 
(ii) Compute K~- a W. 
(iii) Compute the 2L x 2L matrix M, where 

M = W T K ~ I W  + D -1. 

(iv) Factor M. 

Step 2. Solve for the given right-hand side b. 

(i) Solve for Kblb. 
(ii) Compute W'rKbk 
(iii) Solve Mz = WrKglb  for z. 
(iv) Compute the solution q = Kblb - (K~ ~ W)z. 

The linear algebra costs for the above algorithm are reasonable on 
large problems, because Kb is formed using a very sparse representation of 
the free portion of the Hessian, usually the identity. In addition, the square 
matrix M is only of dimension 2L and the matrix W has only 2L columns. 
Test results for an implementation of the limited-memory update method 
are presented in the next section. 

6. Computational Results 

Computational results on a series of trajectory optimization problems 
are summarized in this section. The test set consists of 109 problems 
constructed using different types of discretization methods and numbers of 
gridpoints. The trajectory test set consists of the following class of prob- 
lems: (a) quadratic-linear; (b) linear tangent steering; (c) spherical, nonro- 
tating Earth trajectories including Shuttle reentry with heating constraints; 
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(d) Goddard rocket problem; (e) NLQR guidance problem: (f) minimum 
time to climb; (g) commercial aircraft trajectory; (h) minimum lateral 
acceleration guidance; (i) brachistochrone; (j) wind shear; and (k) low- 
thrust orbit transfer using equinoctial elements. Space does not permit a 
complete presentation of results for all problems, although more details are 
described in Refs. 15 and 16. Instead, we will describe the problem set and 
present a summary of significant algorithm performance parameters. All 
solutions were obtained using a Sun Sparcstation IPX. Except for the 
subsection on limited-memory update testing, the test results all reflect use 
of a Hessian computed by sparse differencing. 

A summary of the results for the test problem set is given in Fig. 1. All 
109 problems were run using the three optimization strategies. The al- 
gorithm performance was measured in terms of the number of function 
evaluations [the number of times f(x) and c(x) are evaluated] and the 
solution time. For each test problem, a first, second, and third-place 
strategy was selected, where the first-place strategy required the smallest 
number of function evaluations. If a particular strategy failed to solve the 
problem, this was counted as a failure. It is clear from Fig. 1, that strategy 
FM was in first place over 63% of the time. Furthermore, FM was either 
the best or second best strategy nearly 89% of the time. Finally, notice that 
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strategy FM solved all 109 problems (no failures). For all but seven cases, 
the least number of function evaluations corresponds to the shortest 
solution time, and consequently comparing strategies based on run time 
leads to the same conclusions. These results clearly indicate why strategy 
FM has been selected as the default. We note that, for three problems, 
there are no degrees of freedom, in which case F is the only possible 
strategy, and these cases were eliminated from the comparison. 

All results were obtained using Sun compiler options ( - C ,  -g) .  The 
total time required to solve all 109 problems using the best strategy was 
23447.04 sec. When the fast compiler option was used, the same results 
were obtained in 16520.26 sec. Some insight into the solution time can be 
gained by noting that the largest problem in the set (n = 2406) was solved 
in 1031.9 sec, and the longest solution time (3590.5 sec) corresponded to an 
equinoctial orbit transfer problem with n = 1502. In contrast to these 
extreme cases, more typical performance is characterized by the median 
case, which took 92.3 sec for a problem with n = 601. In general, time 
comparisons with other methods have been very encouraging, and a 
detailed study will be reported in the near future. 

6.1. Tests Using the Limited-Memory Update Hessian. The limited- 
memory update method for approximating the Hessian of the Lagrangian 
was incorporated into the sparse nonlinear programming code. This 
method was tested on nine instances of the trajectory optimization prob- 
lems. The results for the limited-memory Hessian method are compared 
with the results for the same nonlinear programming code using a Hessian 
computed by sparse finite differences and using a full dense BFGS Hessian. 
In each case, the FM nonlinear programming option was used. 

The full BFGS Hessian is impractical for large problems, due to high 
linear algebra costs and storage requirements. However, it is included to 
help determine how well the limited-memory method is working. That is, if 
the iteration counts for the limited-memory method are competitive with 
those for the full BFGS update, then its limitations can be attributed to the 
fact that it is a secant method, rather than it being a restricted version of 
a secant method. Due to the high cost of linear algebra on the full BFGS 
Hessians, the full BFGS method was not expected to be competitive in 
terms of CPU time; and it is not. 

Of the nine test problems, one problem could not be solved using the 
BFGS method or the limited-memory method. The results, averaged over 
the other eight problems, are summarized in Table 1. The numbers in the 
columns of Table 1 are the respective ratios of the numbers of iterations, 
function evaluations, and CPU time required by the competing methods. In 
Table 1, fd Hessian denotes the Hessian computed using sparse differences. 
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Table 1. Limited-memory versus BFGS and sparse differences. 
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Quantity Iterations Function evaluations Time 

Ratio vs fd Hessian 4.63 0.93 1.95 

Ratio vs BFGS Hessian 1.07 1.01 0.06 

Not surprisingly, the sparse difference Hessian requires many fewer 
iterations than the limited-memory update Hessian. However, the reduction 
in the number of function evaluations using the limited-memory method is 
disappointingly small. In addition, the limited-memory method requires 
more CPU time than the sparse differencing method. 

In assessing the above results, one must account for the fact that the 
currently available test problem set is biased in favor of the sparse 
difference method. This is because the number Qf function evaluations 
required to compute a Hessian by sparse differences is roughly half of the 
square of the number of index sets (see Refs. 4, 7, and 8). An index set is 
a set of variables whose influence on a given function is independent of the 
members of the set. Although the test problems had hundreds of variables, 
they only had on the order of eight index sets. In addition, the function 
evaluations require relatively little CPU time. For problems with more 
index sets and expensive function evaluations, the advantage should shift 
considerably toward the limited-memory update method. It is anticipated 
that future testing will validate this hypothesis. 

The results in Table 1 indicate that the limited-memory update method 
performs nearly as well as the full BFGS method in terms of iterations and 
function evaluations. The limited-memory update method has the expected 
huge advantage in CPU time due to its economical representation of the 
secant updates. 

7. Summary and Conclusions 

This paper presents a method for solving the space nonlinear program- 
ming problem. A comparison of three different strategies for using a sparse 
quadratic programming algorithm suggest that an approach which first 
locates a feasible point and then stays near the constraints PrOduces a 
reasonable compromise between speed and robustness. Computational 
experience with the algorithm when applied to a collection of discretized 
trajectory optimization problems has demonstrated a significant speed 
enhancement when compared tO standard dense optimization methods. 
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The primary deficiencies with the current algorithm involve the Hes- 
sian matrix and robustness issues. Inertia-controlling methods as described 
in Ref. 17 may prove useful for improving robustness. Investigation of 
trust-region strategies may be attractive for dealing with indefinite Hessian 
approximations. Application of a limited-memory update for the Jacobian 
(instead of the Hessian) may be attractive to improve the efficiency of the 
constraint satisfaction portions of the algorithm [e.g., (40)]. Finally, it may 
be possible to utilize recursive Hessian approximations which exploit the 
structure of the problem such as proposed in Ref. 18. 
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