
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 82, No. 3, SEPTEMBER 1994

A Sparse Nonlinear Optimization Algorithm 1

J. T. BETTS 2 AND P. D. FRANK 3

Communicated by H. Y. Huang

Abstract. One of the most effective numerical techniques for solving
nonlinear programming problems is the sequential quadratic program-
ming approach. Many large nonlinear programming problems arise
naturally in data fitting and when discretization techniques are applied
to systems described by ordinary or partial differential equations.
Problems of this type are characterized by matrices which are large and
sparse. This paper describes a nonlinear programming algorithm which
exploits the matrix sparsity produced by these applications. Numerical
experience is reported for a collection of trajectory optimization prob-
lems with nonlinear equality and inequality constraints.

Key Words. Sparse nonlinear programming, sequential quadratic pro-
gramming, trajectory optimization.

1. Introduction

Nonlinear programming problems arise naturally in data fitting appli-
cations and when discretization techniques are applied to systems described
by ordinary or partial differential equations. For applications of this type,
the number of variables and constraints may be large (i.e., 100 < N <
100000), and the corresponding Jacobian and Hessian matrices are very
sparse (i.e., less than 1% of the dements are nonzero). For small problems
with dense matrices, one of the most successful numerical techniques is the
sequential quadratic programming approach. However, when algorithms
appropriate for dense applications are applied to large sparse problems, the
computational expense is dominated by the solution of the quadratic

'The authors wish to acknowledge the insightful contributions of Dr. William Huffman.
2Senior Principal Scientist, Mathematics and Engineering Analysis Department, Research and
Technology Division, Boeing Computer Services, Seattle, Washington.

3Senior Principal Scientist, Mathematics and Engineering Analysis Department, Research and
Technology Division, Boeing Computer Services, Seattle, Washington.

519
0022-3239/94/0900-0519507.00[0 �9 1994 Plenum Publishing Corporation

520 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

programming subproblem and the evaluation of the Hessian matrices. This
paper describes an algorithm for solving large sparse nonlinear program-
ming problems, which addresses the deficiencies of methods suitable for
small dense problems. The method is designed to solve general nonlinear
programming problems. In particular it is not necessary to assume that the
number of degrees of freedom is small or that the constraints have a special
structure. When used in conjunction with a sparse finite difference tech-
nique for computing the Hessian and Jacobian matrices, the overall ap-
proach is an especially efficient method for solving the discretized optimal
control problem. Numerical tests also suggest that a limited memory secant
method can provide significant gains if sparse finite differencing is not
beneficial.

After defining the nonlinear programming problem in Section 2, the
sparse nonlinear programming method is stated in Section 3. Section 4
describes in more detail how the quadratic programming subproblem is
solved, and Section 5 presents a method for constructing a Hessian
approximation. Extensive numerical results are presented in Section 6, and
concluding remarks are found in Section 7.

2. Nonlinear Programming Problem

The nonlinear programming problem can be stated as follows: Find
the N-vector x which minimizes the objective function

f = f (x) , (1)
subject to the constraints

cL < c(x) < cv, (2)

where c(x) is an m-vector of constraint functions, and the simple bounds

x L <_x <-xv. (3)

Equality constraints are imposed by setting cL = Cv, and variables can be
fixed by setting xL = xv. It will be assumed that the objective and con-
straint functions are twice continuously differentiable, although the deriva-
tives may be difficult to compute.

The solution point x* must satisfy the Kuhn-Tucker necessary condi-
tions for a local minimum:

(i) x* is feasible, i.e., (2) and (3) are satisfied;
(ii) there exist Lagrange multipliers 2 and v such that

g = Gr2 + v, (4)

where V x f (x) = g(x)= g is the N-dimensional gradient vector
and G is the m x N Jacobian matrix of constraint gradients;

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 521

(iii) the Lagrange multiplier for a constraint or variable active at its
lower bound must be nonnegative;

(iv) the Lagrange multiplier for a constraint or variable active at its
upper bound must be nonpositive;

(v) the Lagrange multiplier for a strictly feasible constraint or free
variable must be zero.

3. Sparse Nonlinear Programming Algorithm

The solution of a nonlinear program can be accomplished in a wide
variety of ways. The basic approach utilized by the algorithm is to solve a
sequence of quadratic programming subproblems. The fundamental
premise of the approach is to approximate the nonlinear constraint func-
tions by a linear model, and the general objective function by a quadratic
model. First, background on the quadratic programming subproblem, and
the associated definition of a merit function are presented. Then, a descrip-
tion of three distinct optimization strategies will be given.

3.1. QP Subproblem. A primary feature of the nonlinear program-
ming algorithm to be described is the ability to solve a quadratic program-
ming (QP) subproblem. Solution of the QP subproblem is used to define
new estimates for the variables according to the formula

= x +ap, (5)

where the vector p is referred to as the search direction. The scalar
determines the step length and is initialized to one. The search direction p
is found by minimizing the quadratic

g'rp + (l[2)prHp, (6)

subject to the linear constraints

where H is a symmetric N x N positive-definite approximation to the
Hessian matrix. The upper-bound vector is defined by

b = ~ C v - C l ,
kxv - xA (8)

with a similar definition for the lower-bound vector b~. The technique for
solving this quadratic program when the relevant matrices are large and
sparse will be described in the next section.

522 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

3.2. Merit Function. When a quadratic program is used to approxi-
mate a general nonlinearly constrained problem, it may be necessary to
adjust the steplength ~ in order to achieve sufficient reduction in a merit
function that in some way combines the objective function and constraint
violations.

The merit function which we use is similar to that proposed by Gill,
Murray, Saunders, and Wright in Ref. 1 and is related to the function given
by Rockafellar in Ref. 2,

M (x , 4, v, s, t) = f - 2V(c - - s) - vV(x - t) + (1/2)(c -- s) V Q (c - s)

+ (1/2)(x - t) r R (x - t). (9)

The diagonal penalty matrices are defined by Q;~ = p, and R u = ~,.. Observe
that the merit function differs from that given in Ref. 1 by inclusion of
terms for the bounds and linear constraints. One of the algorithm options
described below maintains feasibility for the equality constraints during the
iterative process and thus does not rely on the quadratic program to
maintain feasibility of the linear constraints. For this merit function, the
slack variables s at the beginning of a step are defined by

~ C LD

s, = ~ c , - 2 d p .

I C v i ,

~ X Li ,

if CLi > Ci -- 2 i /P i ,

if CLi < C i - 2 i /P i <--Cui,

if Ci - - 2 i /Pi > CVi,

if XLi > Xi -- Vl/~i,

if XLi < X i - Vi[yi < X W ,

if X~ -- V~[7~ > XVi.

(lO)

(11)

These expressions for the slack variables yield a minimum value for the
merit function M, for given values of the variables x, 2, v and penalty
weights, subject to the bounds on the slacks. The search direction in the
real varaibles x as given by (5) is augmented to permit the multipliers and
the slack variables to vary according to

= ~ + e . (12)

The multiplier search directions ~ and t/ are defined using the QP
multipliers ~ and a~ according to

r - ~ - 4 , (13)

~/---o9 - v . (14)

J O T A : V O L . 82, N O . 3, S E P T E M B E R 1994 5 2 3

From the QP (6)-(8), the predicted slack variables are just

g = G p + c = s +q . (15)

Using this expression, define the slack vector step by

q = Gp + (c - s). (16)

A similar technique defines the bound slack vector search direction

= p + (x - t). (17)

Note that, when a full step is taken a = 1, the updated estimate for the
Lagrange multipliers 2- and ~ are just the QP estimates # and w. The slack
variables s and t are just the linear estimates of the constraints, and the
terms c - s and x - t in the merit function are measures of the deviation
from linearity.

3.3. Parameter Definitions. In Ref. 1, it is shown that the penalty
weights p~ and 7i are finite provided the Hessian matrix H used in the QP
subproblem is positive definite. For nonlinear programming applications,
the Hessian of the Lagrangian,

m r

HL = V2~f - E 2~ V2~ci, (18)
i = l

can be constructed; however, in general it is not positive definite. In fact, it
is only necessary that the projected Hessian of the Lagrangian be positive
definite at the solution with the correct active set of constraints. Conse-
quently, for the QP subproblem, we use the modified matrix

/-I = + + 1)I. (19)

The Levenberg parameter T is chosen such that 0 < �9 < 1 and is normalized
using the Gerschgorin bound for the most negative eigenvalue of HL, i.e.,

- - i ~ j

and hij is used to denote the nonzero elements of HL.
The proper choice for the Levenberg parameter v can greatly affect the

performance of the nonlinear programming algorithm. Quadratic conver-
gence can only be obtained when z = 0 and the correct active set has been
identified. On the other hand, if �9 = 1, in order to guarantee a positive-
definite Hessian, the search direction p is significantly biased toward a
gradient direction and convergence is degraded. A strategy similar to that
used for adjusting a trust region (cf. Ref. 3) is employed by the algorithm
t o maintain a current value for the Levenberg parameter �9 and adjust it

524 JOTA: VOL 82, NO. 3, SEPTEMBER 1994

from iteration to iteration. The inertia (i.e., the number of positive,
negative, and zero eigenvalues) of the related KT matrix described in the
next section is used to infer that the projected Hessian is positive definite.
Basically, the philosophy is to reduce the Levenberg parameter when the
predicted reduction in the merit function agrees with the actual reduction,
and increase it when the agreement is poor. The process is accelerated by
making the change in ~ proportional to the observed rate of change in the
projected gradient.

Although the Levenberg parameter is used to ensure that the projected
Hessian approximation is positive definite, it is still necessary to define the
penalty weights Q and R. In Ref. 1, it is shown that convergence of the
method requires choosing the weights such that

M'o < - (I [2) p r H p , (21)

where M~ denotes the directional derivative of the merit function (9) with
respect to the steplength ct evaluated at a = 0. To achieve this, let us define

~P~ - Po, if 1 < i < m,
r~ = (22)

(~l-m--Po, i f m < i < m +N,

where Po > 0 is a strictly positive threshold. Since (21) provides a single
condition for the m + N penalty prameters, we make the choice unique by
minimizing the norm [Irll2. After some lengthy algebra, we find that

r = a (a r a) - z g , (23)

where

and

~(c, - s) 2,
a, = I . (x , - m - - t~ -m) 2,

if 1 <_i _<m,
(24)

i f m < i < m + N ,

r = _ (1] 2) p r H p + # 'rq + co'r6 _ 2~T(c _ s) - 2 q V (x - - t)

- - po(C -- S)T(C - - S) - - p o (X - - t)r(X -- t). (25)

Typically, the threshold parameter Po is set to machine precision and only
increased if the minimum norm solution is zero. In essence then, the
penalty weights are chosen to be as small as possible consistent with the
descent condition (21).

3.4. Algorithm Strategy. The design of an efficient, yet robust non-
linear programming algorithm is affected by a number of (possibly conflict-
ing) factors. For example, the algorithm described in Ref. 4 is a feasible
region method, since successive iterates maintain constraint feasibility. This

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 525

philosophy is motivated by a number of considerations. The trajectory
optimization applications of interest are characterized by a relatively large
number of equality constraints, derived from the dynamics. When the
constraints are satisfied, the variables describe a valid trajectory for a fixed
discretization history. Mesh refinement to improve the accuracy of the
discretization is meaningful when performed about a valid trajectory and
may not be elsewhere. Secondly, vehicle characteristics (e.g., aerodynamic
and propulsion data) are usually only valid in regions bout real trajectories.
Finally in practice, many problems are poorly posed, and this situation is
readily detected when attempting to locate a feasible point.

In contrast, the algorithm described in Ref. 5 does not produce a
feasible point until the solution is obtained. For a well-posed problem, a
strategy which takes direct steps toward the solution without recourse to
intermediate constraint satisfaction may be more efficient, especially for
very nonlinear constraints. Furthermore, maintaining strict feasibility with
respect to inequality constraints may be prohibitively slow when the
number of inequalities is large and the active set is wrong. In order to
efficiently deal with the combinatorial nature of the problem, it is desirable
to correctly identify the active set at points well removed from the solution.
However, for very nonlinear constraints, it may be necessary to use very
large penalty weights to achieve feasibility, thus introducing the possibility
for numerical instability.

In order to explore the conflicting benefits of these alternate strategies,
three different approaches will be investigated.

(M) Minimize. Beginning at x ~ solve a sequence of quadratic
programs until the solution x* is found.

(FM) Find a feasible point, then minimize. Beginning at x ~ solve
a sequence of quadratic programs to locate a feasible point
x i, and then beginning from x y solve a sequence of quadratic
programs until the solution x* is found.

(FME) Find a feasible point, then minimize subject to equalities.
Beginning at x ~ solve a sequence of quadratic programs to
locate a feasible point x i, and then beginning from x y solve
a sequence of quadratic programs while maintaining feasible
equalities until the solution x* is found.

Philosophically, the first strategy is probably the most aggressive, while the
last strategy is probably the most conservative.

3.5. Finding a Feasible Point. The first step in either the FM or FME
strategy is to determine a point which is feasible with respect to the

526 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

constraints. A fourth strategy F, to locate a feasible point only, is also
available in the software. The approach employed is to take a series of
steps of the form given by (5) with the search direction computed to solve
a least distance program. This can be accomplished if we impose the
requirement that the search direction have minimum norm, i.e., lip [12.
However, it is also possible to encounter a locally infeasible subproblem,
simply because a linear approximation is not sufficiently accurate to model
the nonlinear constraints. Therefore, the search direction is computed to
minimize

(1 /2)p ' rp , (26)

subject to the linear constraints

The bound vectors ~ and 6u are defined by

Sf l (c L, - c i) , if ci < cLi, (28)
' = ~ ((CL~ - - Ci) , if Ci >-- CLi,

f f l (c vt - - c i) , if c i > cui ,
(29)

"~ ~((c u i - ci) , if c i < c v i ,

for i = 1 m, with a similar definition for the simple bounds xL and X u .

When the scalar relaxation parameter fl = O, the subproblem is feasible;
however, when fl = 1, the full nonlinear constraint violation is treated and
the resulting subproblem may or may not be feasible. In general, a feasible
subproblem can be created by relaxing the constraints, that is, for some
value 0 _< fl < 1.

Since the solution of this subproblem is based on a linear model of the
constraint functions, it may be necessary to adjust the steplength ~ in (5) to
produce a reduction in the constraint error. Specifically, a line search is
used to adjust ~ so that

Y(~) - Y(O) < x~T'(O),

Y'(a) < x2Y'(0),

for 0 < ~:~ < x2 < 1, where the constraint violation is defined by

"~(X) : ~ [2C i -- min(cui , ci) -- max(cL,, c,)] 2
i = l

N

+ ~ [2xi -- m i n (x v i , x l) - max(xLi, x/)] 2. (30)
l = 1

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 527

The overall strategy for locating a feasible point can now be described.
Beginning at the point x, with the primary strategy, the procedure is as
follows:

Step 1. Evaluate the constraints and Jacobian and terminate if
constraints are feasible.

Step 2. Compute the search direction.

(i) Primary strategy. Solve the QP subproblem with fl = 1
and

(a) if solution is feasible, then go to Step 3; other-
wise,

(b) change to equality relaxation strategy, and go to
Step 2(ii).

(ii) Equality relaxation strategy. Ignoring inequality con-
straints, solve the QP subproblem and

(a) if solution is feasible, then go to Step 3; other-
wise,

(b) reduce the relaxation parameter, and repeat Step
2(ii).

(iii) Inequality relaxation strategy. Solve the QP subprob-
lem and

(a) if solution is feasible, then go to Step 3; other-
wise,

(b) reduce relaxation parameter and repeat Step
2(iii).

Step 3. Line search:

(i) if the primary or inequality relaxation strategy is being
used, then choose the steplength to reduce the con-
straint violation Y(~); otherwise,

(ii) if the equality relaxation strategy is being used' then
choose the steplength to reduce the equality constraint
violation Ye(~).

Step 4. Relaxation adjustment.

(i) If the primary strategy is being used, then return to
Step 1.

(ii) If the equality relaxation strategy is being used and if
fl < 1, then increase fl, and if equality constraints are

528 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

feasible, then change to inequality relaxation strategy,
and return to Step 1.

(iii) If the inequality relaxation strategy is being used and if
< 1, then increase/~, and return to Step 1.

The essential feature of this strategy is to give priority to satisfying equality
constraints. At each step, an attempt is made to either solve the full
(unrelaxed) problem and/or increase the relaxation parameter.

3.6. Minimization Process. The three strategies M, FM, and FME
execute a series of steps to minimize the merit function (9). In the case of
strategy M, the iteration begins from the arbitrary and possibly infeasible
point x ~ On the other hand, strategy FM begins the minimization of the
merit function from a feasible point x y. Finally, the FME strategy not only
begins the minimization at a feasible point, but maintains feasibility with
respect to the equality constraints. Let us denote the equalities by e, with
Jacobian E.

The iteration begins at the point x, and proceeds as follows:

Step 1. Evaluate gradient information g and G and then:

(i) evaluate

(ii)
(iii)

Step 2.

O = g - GV2-v; (31)

terminate if the Kuhn-Tucker conditions are satisfied;
if this is the first iteration, go to Step (vi); otherwise,
compute the rate of change in the projected gradient
norlTl,

p3 = Ilo k)ll /ll o k- (32)
and
if pl < 0.25p2, then set r(k+ 1) = rnin(2z(k), 1); otherwise,
if pl > 0.75p2, then set z(k+~) = ~(k) min(0.5, P3);
compute HL from (18).

(iv)
(v)
(vi)

Construct the optimization search direction:

(i) compute H from (19);
(ii) compute p by solving the QP subproblem (6)-(7);
(iii) if the inertia of K is incorrect and

(a) if z < 1, then increase z and return to Step (i);
(b) if ~ = 1 and H ~ L then set z = 0 , H = / , and

return to Step (i);
(c) if H = / , the constraints are locally inconsistent;

terminate the algorithm;

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 529

Step 3.

Step 4.

Step 5.

Step 6.

(iv)
(v)
(vi)

(22)-(25); and
(vii) initialize p(2) = p(~) = O, a = 1, gt = O.

compute ~ and ~/from (13) and (14);
compute q and 6 from (16) and (17);
compute the penalty parameters to satisfy (21) using

Compute the predicted point for

(i) the variables from

:~ = x + ap + ~2p(2) + a3p(3);

the multipliers and slacks from (12); (ii)
(iii)

(iv)

(33)

then evaluate the constraints E = cO 7) at the predicted
point; and then
if I1~11~ - ~ or if strategy FM E is not used, set 2 ~ :?
and go to Step 7.

Solve the underdetermined system

E d = ~ (34)

for the direction d and initialize v = 1.

Compute the corrected point

0~ = :~ - yd. (35)

Evaluate the constraints ~ at the corrected point 2; then:

(i) if IIEIl~-<, and ~ = 0, compute

p(2) = (1/~2)[2 _ x - ~p]; (36)

save the corrected point (set)7 ~ 2 and ~ ~ ~), and
then go to Step 7;

(ii) else, if I1~1/~_<, and ~ ~0 , compute the elements of
p~:) and p!3), for i = 1 , . . . , N, from the system

] ~2 ~3dgo?) J = L # ' x , - ; (3 7)

save the corrected point (set)7 ~ 2 and 07 ~ ~), and
then go to Step 7;

(iii) else, if II~ll~-< I1~11~, update the corrected point (set
~ 2 and ~ ~ ~), and return to Step 4;

(iv) else, reduce the steplength v to achieve constraint re-
duction, and return to Step 5.

530 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

Step 7.

Step 8.

Evaluate the merit function M(2, 7t, % L t) = hTf and

(i) if the merit function/ff is sufficiently less than M, then
2 is an improved point; terminate the line search and go
to Step 8;

(ii) else, change the steplength ~ to reduce M, and return to
Step 3.

Update all quantities:

(i)

(ii)

compute the actual reduction

Pl = M (k) - - M (k - 1); (38)

compute the predicted reduction

P2 = ~k~ _ M(~- l}, (39)

where ~r (k) is the predicted value of the merit function;
and
return to Step 1. (iii)

The steps outlined describe the fundamental elements of the optimization
process; however, a number of points deserve additional clarification. First,
note that the algorithm consists of an outer loop (Steps 1-7) to minimize
the merit function, and an inner loop (Steps 3-6) to eliminate the error in
the equality constraints. The outer loop can be viewed as a univariate line
search in the direction p, with the steplength a adjusted to minimize the merit
function. The inner loop can be viewed as a nonlinear root-solving process
designed to eliminate the error in the equality constraints for the specified
value of ~. Note that Steps 4 - 6 are only executed for the FME strategy. The
inner constraint elimination process must be initiated with an estimate of
the variables, and this estimate is given by the expression (33). Notice
that the first prediction is based on a linear model for the constraints, since
p{2)=p(3)=0 in Step 2. However, after the constraint error has been
eliminated, the value o fp (2) is updated by (36) and the second prediction is
based on a quadratic model of the constraints. After the second corrected
point is obtained, subsequent predictions utilize the cubic model defined by
solving (37). Adjusting the value of the steplength = as required in Step 7(ii)
is accomplished using a univariate search procedure similar to that described
in Ref. 6, which constructs a quadratic and cubic model of the merit function.
The reduction is considered sufficient when

M(a) - M(O) < x, ~M'(O),

M'(~) < x2M'(O),

for 0 < t e l < K 2 < 1.

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 531

Because the constraint elimination process requires the solution of the
underdetermined system (34), there is some ambiguity in the algorithm.
This ambiguity is eliminated by choosing the minimum norm direction
which can be obtained by solving the augmented system

Notice that the Jacobian E is evaluated at the reference point x, and not
reevaluated during the inner loop iteration, even though the right-hand side

does change. Because the Jacobian is not reevaluated, the inner loop will
have a linear convergence rate. Nevertheless, this approach has been found
attractive, because:

(i) the coefficient matrix can be factored only once per outer opti-
mization iteration, thereby significantly reducing the linear alge-
bra expense; and

(ii) the corrections defined by d are orthogonal to the constraint
tangent space at the reference point x, and hence tend to produce
a well-conditioned constraint iteration process.

In order to evaluate the Hessian matrix (18), an estimate of the
Lagrange multipliers is needed. The values obtained by solving the QP with
H = I are used for the first iteration; thereafter, the values ~ from (12) are
used. Furthermore, for the very first iteration, the multiplier search direc-
tions ~ = 0 and r /= 0, so that the multipliers will be initialized to the QP
estimates/~ and to. The multipliers are reset in a similar fashion, after a
defective QP subproblem is encountered, in Step 2(~ii)(b). The Levenberg
parameter T in (19) and the penalty weights r i in (22) are initialized to zero,
and consequently the merit function is initially just the Lagrangian.

Gradient and Hessian information can be computed (a) analytically, (b)
using finite difference estimates, or (c) recursively. Many of the numerical
results construct this information using sparse finite differencing as described
in Refs. 4, 7, and 8. Although central difference estimates must be used during
optimization, forward difference estimates are used when finding a feasible
point. Numerical experience also suggests that it is not necessary to compute
a Hessian matrix for every iteration, when the algorithm is progressing well.
A recursive limited-memory secant approximation technique for the Hessian,
suitable for large problems, is described in a later section.

4. Sparse Quadratic Programming Algorithm

4.1. Sparse Linear Algebra. Development of efficient, robust soft-
ware for the solution of sparse linear systems is a field of active research.

532 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

The nonlinear programming algorithm described employs a state-of-the-art
finear algebra package. The package solves A x = b for x, where A is an
n x n real symmetric indefinite sparse matrix. Since A is symmetric, it can
be factored using a square-root-free Cholesky factorization A = L D L "r,
where L is a unit lower triangular matrix and D is a diagonal matrix. Since
A is not necessarily positive definite, pivoting to preserve stability is
required. The package uses the threshold pivoting generalization of Bunch
and Kaufman 2 x 2 block pivoting for sparse symmetric indefinite matrices
proposed by Duff and refined by Liu. The software requires storage for the
nonzero elements in the lower triangular portion of the matrix and a work
array. A complete description of the multifrontal factorization algorithm is
found in Refs. 9 and 10.

4.2. Schur-Complement Method. The quadratic programming al-
gorithm used is based on a method proposed by Gill, Murray, Saunders,
and Wright in Ref. 11, and the implementation exploits the multifrontal
algorithm for the solution of sparse linear systems. The QP (6)-(8) is first
stated in the following standard form: minimize

cTx + (1/2)xTHx, (41)

subject to the linear constraints

A x = b, (42)

and the simple bounds

XL <-- x <_ xu . (43)

Note that the variables x include slack variables to replace the general
inequality constraints and do not correspond to the notation used else-
where in the paper. Similar modifications are necessary to define the other
quantities in the standard form QP. When written in this form, variables
are either fixed at their bounds or free to move within the bounds. In
keeping with the notation of Ref. 11, we denote the nrR free variables by
FR and the fixed variables by FX. For a specific estimate of the active set
of constraints, the step to the constrained minimum is obtained by solving
the Kuhn-Tucker or KT system (cf. Ref. 4)

AF. 0 JL ~ J L ~ J=LO J"
If the estimate of the active set is correct, the solution of the KT system
defines the solution of the QP. However, in general, it will be necessary to
change the active set and solve a series of equality constrained problems. In
Ref. 11, it is demonstrated that the solution to a problem with a new active

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 533

set can be obtained by the symmetric addition of a row and column to the
original Ko with a corresponding augmentation of the right-hand side. In fact,
after k iterations, the KT system is of dimension no + k and has the form

U y
[u/~T V l l z l = [~1 , (45)

where U is no x k and V is k x k. The initial right-hand side of (44) is
denoted by the no-vectorfo, and the k-vector w defines the additions to the
right-hand side to reflect changes in the active set.

The fundamental feature of the method is that the system (45) can be
solved using factorization of Ko and C, the k x k Schur complement of K o,

C =- V - U T K o 1U. (46)

Using the Schur complement, the values for y and z are computed by
solving in turn

Kovo =fo, (47)

Cz = w - UTvo, (48)

Koy = f -- Uz. (49)

Thus each iteration of the QP requires one solution with the factorization
of Ko and one solution with the factorization of C. The solution for Vo only
needs to be done once at the first iteration. Each change in the active set
adds a new row and column to C, and it is relatively straightforward to
update both C and its factorization to accommodate the change. It is
important to keep C small enough to maintain a stable, dense factorization,
and this is achieved by refactoring the entire KT matrix whenever k > 100.
In general, the penalty for refactoring may be substantial. However, when
the QP algorithm is used within the general NLP algorithm, it is possible
to exploit previous estimates of the active set to give the QP a warm start.
In fact, as the NLP algorithm approaches a solution, it is expected that the
active set will be correctly identified--and the resulting number of itera-
tions k for the QP subproblem will become small. Limited computational
experience with the Schur complement method indicates a speedup of
nearly 200 to 1 over the dense QP algorithm (LSSOL), which is used in the
nonlinear program NPSOL in Ref. 5.

5. Computing the Hessian Using a Limited-Memory Secant Update

Computing the Hessian of the Lagrangian by sparse differences can
be very expensive for some problems. An alternative is to use a limited-

534 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

memory version of a secant update method, such as the BFGS update
(see, e.g., Ref. 12).

The use of a limited-memory Hessian avoids the problem of storing and
factoring a dense secant Hessian matrix. At each iteration, this is accom-
plished by constructing an approximation to the Hessian using information
from a limited number L of previous iterations to modify a sparse
positive-definite matrix, usually the identity. The sequence of L rank-two
updates that would transform this sparse matrix into the Hessian approxi-
mation at the current iteration is then computed and stored as 2L vectors.
The values of L typically range from two to ten.

Linear system solutions with the limited-memory Hessian involve
solutions with a factorization of the original sparse matrix. The updates are
then accounted for by using the Sherman-Morrison-Woodbury formula
(see, e.g., Ref. 13) for updating the inverse of a matrix. The above process
is discussed in more detail below.

The hope is that the limited-memory BFGS update will retain the good
local convergence of the full BFGS update, while saving greatly on linear
algebra costs. One reason for which this should be true is that the
limited-memory update is based on information obtained from the most
recent iterates. It only ignores information obtained from iterates in the
distant past. The computational results presented in the next section provide
some validation to the above premise.

The inspiration for this work is the limited-memory algorithm described
by Nash and Nocedal in Ref. 14. However, their algorithm directly updates
an approximation to the inverse of the Hessian. To solve linear systems
involving the Hessian, the inverse Hessian updates are accounted for by
successive dot products with the right-hand side. However, the inverse
Hessian does not appear directly in the linear system solutions required for
the Schur-complement QP. The Schur-complement QP method requires
solutions with a factorization of the KT linear system (44). Since the Hessian
is only a block of the KT system matrix, it was considered easier to work
directly with the secant Hessian than with the secant inverse Hessian. Thus,
the method described below is based on updating the Hessian approximation.

Using subscripts to denote iteration numbers, the BFGS Hessian
update is given by

a k = n k - 1 "~ YkykT/ykTSk -- (Hk - l S k) (n k - 1Sk)T/SkTnk - l Sk , (50)

where

Y~ = g k - - g k - I and s~ =Xk--Xk_l.

For the nonlinear programming algorithm, H and g in Eq. (50) denote the
Hessian and the gradient of the Lagrangian, respectively.

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 535

The limited-memory version of the BFGS is considered next. Let Ho
denote the Hessian L iterations prior to iteration k. The Hessian at
iteration k is formed by L BFGS updates to Ho. This Hessian can be
represented by

L L

Hk ~-Ho ~- Z UiUiT-- 2 l)iViT, (5 1)
i= l i=1

where

ui = yi/[YirSi] 1/2 and vi = Hi- lSi/[siT(ni _ IS/)] 1/2

The underlying assumption for the above approach is that H0 is a sparse
positive-definite matrix, the identity matrix in our implementation, and the
summation terms in Eq. (51) represent a small number of dense updates.

The vectors v; in (51) are defined in terms of the dot products Hi_ lsi.
These dot products can be computed by successive use of Eq. (51) with
upper limits increasing from 1 to L - 1.

The limited-memory secant Hessian yields an estimate which can be
incorporated within the Schur-complement QP algorithm described in the
preceding section. However, to fully exploit sparsity, some care must be
exercised when it is used. The main idea is to perform factorizations on a
matrix formed by modifying Ko such that only the sparse portion of the
Hessian (i.e., Ho) appears. Thus, from the definition of the KT matrix (44),
we have

r(H/c)FR AFR r]
Ko = LAFR (52)

Now, let us define the (I'IFR -~- m) x 2L matrix

W = [(ul)FR" " (I'IL)FR (Vl)FR" " " (UL)FR] " 0 ' (53)

the 2L x 2L diagonal matrix

and the beginning KT matrix in the limited-memory sequence

=~ (H~ ~FRT 1 (5 5)
Kb LA FR

Then, if we substitute the definition of H~ from (51) into (52), we obtain
the expression

Ko = Kb + W O W r. (56)

536 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

It is important to emphasize that, while K0 is now dense, the matrix Kb is
still sparse.

Now, in the Schur-complement QP method, Eqs. (46), (47), and (49)
require solving linear systems of the form Koq = b, where q and b are
the appropriate left and right-hand side vectors. Using the Sherman-
Morrison-Woodbury formula, the solution to Koq = b is given by

q = KKlb - Kb ~ W(WTKff I W + O-~) -t(Kg~ W)Tb. (57)

Notice that the solution is obtained by solving large sparse linear systems
involving Kb, not large dense linear systems involving Ko.

Efficient implementation of the computations indicated in Eq. (57) can
be done as follows:

Step 1. Preprocessing, applicable to any right-hand side.

(i) Factor Kb.
(ii) Compute K~- a W.
(iii) Compute the 2L x 2L matrix M, where

M = W T K ~ I W + D -1.

(iv) Factor M.

Step 2. Solve for the given right-hand side b.

(i) Solve for Kblb.
(ii) Compute W'rKbk
(iii) Solve Mz = WrKglb for z.
(iv) Compute the solution q = Kblb - (K~ ~ W)z.

The linear algebra costs for the above algorithm are reasonable on
large problems, because Kb is formed using a very sparse representation of
the free portion of the Hessian, usually the identity. In addition, the square
matrix M is only of dimension 2L and the matrix W has only 2L columns.
Test results for an implementation of the limited-memory update method
are presented in the next section.

6. Computational Results

Computational results on a series of trajectory optimization problems
are summarized in this section. The test set consists of 109 problems
constructed using different types of discretization methods and numbers of
gridpoints. The trajectory test set consists of the following class of prob-
lems: (a) quadratic-linear; (b) linear tangent steering; (c) spherical, nonro-
tating Earth trajectories including Shuttle reentry with heating constraints;

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 537

1.0

0.8

0.6

0.4

0.2

0.0
0 M FM FME

Failures

Third Place

Second Place

First Place

(d) Goddard rocket problem; (e) NLQR guidance problem: (f) minimum
time to climb; (g) commercial aircraft trajectory; (h) minimum lateral
acceleration guidance; (i) brachistochrone; (j) wind shear; and (k) low-
thrust orbit transfer using equinoctial elements. Space does not permit a
complete presentation of results for all problems, although more details are
described in Refs. 15 and 16. Instead, we will describe the problem set and
present a summary of significant algorithm performance parameters. All
solutions were obtained using a Sun Sparcstation IPX. Except for the
subsection on limited-memory update testing, the test results all reflect use
of a Hessian computed by sparse differencing.

A summary of the results for the test problem set is given in Fig. 1. All
109 problems were run using the three optimization strategies. The al-
gorithm performance was measured in terms of the number of function
evaluations [the number of times f(x) and c(x) are evaluated] and the
solution time. For each test problem, a first, second, and third-place
strategy was selected, where the first-place strategy required the smallest
number of function evaluations. If a particular strategy failed to solve the
problem, this was counted as a failure. It is clear from Fig. 1, that strategy
FM was in first place over 63% of the time. Furthermore, FM was either
the best or second best strategy nearly 89% of the time. Finally, notice that

538 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

strategy FM solved all 109 problems (no failures). For all but seven cases,
the least number of function evaluations corresponds to the shortest
solution time, and consequently comparing strategies based on run time
leads to the same conclusions. These results clearly indicate why strategy
FM has been selected as the default. We note that, for three problems,
there are no degrees of freedom, in which case F is the only possible
strategy, and these cases were eliminated from the comparison.

All results were obtained using Sun compiler options (- C , -g) . The
total time required to solve all 109 problems using the best strategy was
23447.04 sec. When the fast compiler option was used, the same results
were obtained in 16520.26 sec. Some insight into the solution time can be
gained by noting that the largest problem in the set (n = 2406) was solved
in 1031.9 sec, and the longest solution time (3590.5 sec) corresponded to an
equinoctial orbit transfer problem with n = 1502. In contrast to these
extreme cases, more typical performance is characterized by the median
case, which took 92.3 sec for a problem with n = 601. In general, time
comparisons with other methods have been very encouraging, and a
detailed study will be reported in the near future.

6.1. Tests Using the Limited-Memory Update Hessian. The limited-
memory update method for approximating the Hessian of the Lagrangian
was incorporated into the sparse nonlinear programming code. This
method was tested on nine instances of the trajectory optimization prob-
lems. The results for the limited-memory Hessian method are compared
with the results for the same nonlinear programming code using a Hessian
computed by sparse finite differences and using a full dense BFGS Hessian.
In each case, the FM nonlinear programming option was used.

The full BFGS Hessian is impractical for large problems, due to high
linear algebra costs and storage requirements. However, it is included to
help determine how well the limited-memory method is working. That is, if
the iteration counts for the limited-memory method are competitive with
those for the full BFGS update, then its limitations can be attributed to the
fact that it is a secant method, rather than it being a restricted version of
a secant method. Due to the high cost of linear algebra on the full BFGS
Hessians, the full BFGS method was not expected to be competitive in
terms of CPU time; and it is not.

Of the nine test problems, one problem could not be solved using the
BFGS method or the limited-memory method. The results, averaged over
the other eight problems, are summarized in Table 1. The numbers in the
columns of Table 1 are the respective ratios of the numbers of iterations,
function evaluations, and CPU time required by the competing methods. In
Table 1, fd Hessian denotes the Hessian computed using sparse differences.

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

Table 1. Limited-memory versus BFGS and sparse differences.

539

Quantity Iterations Function evaluations Time

Ratio vs fd Hessian 4.63 0.93 1.95

Ratio vs BFGS Hessian 1.07 1.01 0.06

Not surprisingly, the sparse difference Hessian requires many fewer
iterations than the limited-memory update Hessian. However, the reduction
in the number of function evaluations using the limited-memory method is
disappointingly small. In addition, the limited-memory method requires
more CPU time than the sparse differencing method.

In assessing the above results, one must account for the fact that the
currently available test problem set is biased in favor of the sparse
difference method. This is because the number Qf function evaluations
required to compute a Hessian by sparse differences is roughly half of the
square of the number of index sets (see Refs. 4, 7, and 8). An index set is
a set of variables whose influence on a given function is independent of the
members of the set. Although the test problems had hundreds of variables,
they only had on the order of eight index sets. In addition, the function
evaluations require relatively little CPU time. For problems with more
index sets and expensive function evaluations, the advantage should shift
considerably toward the limited-memory update method. It is anticipated
that future testing will validate this hypothesis.

The results in Table 1 indicate that the limited-memory update method
performs nearly as well as the full BFGS method in terms of iterations and
function evaluations. The limited-memory update method has the expected
huge advantage in CPU time due to its economical representation of the
secant updates.

7. Summary and Conclusions

This paper presents a method for solving the space nonlinear program-
ming problem. A comparison of three different strategies for using a sparse
quadratic programming algorithm suggest that an approach which first
locates a feasible point and then stays near the constraints PrOduces a
reasonable compromise between speed and robustness. Computational
experience with the algorithm when applied to a collection of discretized
trajectory optimization problems has demonstrated a significant speed
enhancement when compared tO standard dense optimization methods.

540 JOTA: VOL. 82, NO. 3, SEPTEMBER 1994

The primary deficiencies with the current algorithm involve the Hes-
sian matrix and robustness issues. Inertia-controlling methods as described
in Ref. 17 may prove useful for improving robustness. Investigation of
trust-region strategies may be attractive for dealing with indefinite Hessian
approximations. Application of a limited-memory update for the Jacobian
(instead of the Hessian) may be attractive to improve the efficiency of the
constraint satisfaction portions of the algorithm [e.g., (40)]. Finally, it may
be possible to utilize recursive Hessian approximations which exploit the
structure of the problem such as proposed in Ref. 18.

References

1. GILL, P. E., MURRAY, W., SAUNDERS, M. A., and WRIGHT, M. H., Some
Theoretical Properties of an Augmented Lagrangian Merit Function, Report
SOL 86-6, Department of Operations Research, Stanford University, 1986.

2. ROCKAFELLAR, R. T., The Multiplier Method of Hestenes and Powell Applied
to Convex Programming, Journal of Optimization Theory and Applications,
Vol. 12, pp. 555-562, 1973.

3. FLETCHER, R., Practical Methods of Optimization, Vol. 2: Constrained Opti-
mization, John Wiley and Sons, New York, New York, 1985.

4. BETTS, J. T., and HUFFMAN, W. P., Application of Sparse Nonlinear Program-
ming to Trajectory Optimization, Journal of Guidance, Control, and Dynamics,
Vol. 15, 1992.

5. GILL, P. E., MURRAY, W., SAUNDERS, M. A., and WRIGHT, M. H., User's
Guide for NPSOL (Version 4.0): A Fortran Package for Nonlinear Programming,
Report SOL 86-2, Department of Operations Research, Stanford University,
1986.

6. BETTS, J. T., and HALLMAN, W. P., NLP2 Optimization Algorithm Documenta-
tion, Report TOR-0089(4464-06)-l, The Aerospace Corporation, 1989.

7. BETTS, J. T., and HUFFMAN, W. P., Trajectory Optimization on a Parallel
Processor, Journal of Guidance, Control, and Dynamics, Vol. 14, 1991.

8. HUFFMAN, W., and CARTER, M., Software for Sparse Finite Difference Deriva-
tives, Report ECA-LR-71, Boeing Computer Services, 1991.

9. ASHCRAFT, C. C., A Vector Implementation of the Multifrontal Method for
Large Sparse, Symmetric Positive-Definite Linear Systems, Technical Report
ETA-TR-51, Boeing Computer Services, 1987.

10. ASHCRAFT, C. C., and GRIMES, R. G., The Influence of Relaxed Supernode
Partitions on the Multifrontal Method, Technical Report ETA-TR-60, Boeing
Computer Services, 1988.

11. GILL, P. E., MURRAY, W., SAUNDERS, M. A., and WRIGHT, M. H., A
Schur-Complement Method for Sparse Quadratic Programming, Report SOL
87-12, Department of Operations Research, Stanford University, 1987.

JOTA: VOL. 82, NO. 3, SEPTEMBER 1994 541

12. DENNIS, J. E., and SCHNABEL, R. B., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New
Jersey, 1983.

13. STEWART, G. W., Introduction to Matrix Computations, Academic Press, New
York, New York, 1973.

14. NASH, S. G., and NOCEDAL, J., A Numerical Study of the Limited Memory
BFGS Method and the Truncated-Newton Method for Large-Scale Optimization,
SIAM Journal on Optimization, Vol. 1, pp. 358-372, 1991.

15. BETTS, J. T., and HUFFMAN, W. P., Path Constrained Trajectory Optimization
Using Sparse Sequential Quadratic Programming, Journal of Guidance, Control,
and Dynamics, Vol. 16, 1993.

16. BETTS, J. T., and HUFFMAN, W. P., Sparse Nonlinear Programming Test
Problems (Release LO), Report BCSTECH-93-016, Boeing Computer Services,
1993.

17. GILL, P. E., MURRAY, W., SALrNDERS, M. A., and WRIGHT, M. H., Inertia-
Controlling Methods for General Sparse Quadratic Programming, SIAM Review,
Vol. 33, pp. 1-36, 1991.

18. KELLEY, C. T., and SACHS, E. W., A Pointwise Quasi-Newton Method for
Unconstrained Optimal Control Problems, Numerische Mathematik, Vol. 55, pp.
159-176, 1989.

