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Duality in Nonlinear Multiobjective Programming 
Using Augmented Lagrangian Functions 1 

C .  S I N G H ,  2 D. B H A T I A ,  3 A N D  N. R U E D A  4 

Communicated by M. Avriel 

Abstract. A vector-valued generalized Lagrangian is constructed for a 
nonlinear multiobjective programming problem. Using the Lagrangian, 
a multiobjective dual is considered. Without assuming differentiability, 
weak and strong duality theorems are established using Pareto efficiency. 

Key Words. Augmented Lagrangians, Pareto efficiency, weak duality, 
strong duality, concavity. 

1. Introduction 

Many researchers have contributed to the development of duality in 
multiobjective programming (Refs. 1-10). In Refs. 1 and 5, weak and strong 
duality results are given under generalized conditions. In Refs. 2, 4, and 9, 
duality results are developed for classes of nondifferentiable multiobjective 
problems. Several authors have also studied augmented Lagrangians in non- 
linear optimization. Rockafellar proved duality results considering a quad- 
ratic augmented Lagrangian (Ref. I 1). Bertsekas (Ref. 12) combined primal- 
dual and penalty methods for equality constrained minimization. Dolecki 
and Kurcyusz (Ref. 13) studied tp-convexity with applications to augmented 
Lagrangians, and Gould (Ref. 14) considered generalized Lagrangian 
functions using multiplier functions. Gonen and Avriel (Ref. 15) introduced 
a primal and dual pair of programming problems as inf sup and sup inf of 
the same generalized augmented Lagrangian. They derived certain sufficient 
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conditions for constructing the augmented function such that the extremal 
values of primal and dual problems were equal. 

In this paper, by considering a vector-valued augmented Lagrangian 
function, we have constructed corresponding multiobjective programming 
problems and, under similar conditions, we obtain a properly efficient solu- 
tion of the primal and the dual. 

2. Preliminaries and Definitions 

Let f i ,  f2 . . . .  , f i  ; g~, g2 . . . . .  gm be real-valued functions defined on 
So_R". Consider the following multiobjective nonlinear programming 
problem: 

(P) Ve=min f ( x )  =[fi(x) ,  f i (x)  . . . .  ,fk(X)], 
x ~ S  

s.t. gj(x)=O, jem_ = { 1 , 2 , . , .  ,m}, 

where an optimal point is defined below in terms of efficiency. 
Let g(x)=(gl (x )  . . . . .  gm(X)), and let the vector-valued generalized 

augmented Lagrangian function associated with (P) be 

L(x, y, r )=  [ L I ( X  , y ,  r), L2(x, y, r) . . . . .  Lk(x, y, r)], 

Li ( x , y , r )= f . ( x )+dp(g (x ) , y , r ) ,  iek_= {1,2 . . . . .  k}, 

where r is a real-valued function, called augmented multiplier function, 
defined on some subset of R 2m+l and (y, r ) e T = R  m+~. 

Let us define 

Hi(y,  r )= inf L i (x ,y ,  r), iek_. 
x ~ S  

The multiobjective programming problem that, under certain conditions, 
may become a dual of (P) is given by 

(D) VD = max {H~(y, r), H2(y, r ) , . . . ,  HKy ,  r)}. 
(y ,r)  a T 

To obtain duality results between problems (P) and (D), we first relate the 
vector-valued Lagrangian function L to properly efficient solutions of (P) 
by making certain assumptions on ~b without making any assumptions on 
(P) itself. 

Definition 2.1. A point x* ES is said to be an efficient solution of (P) 
if there exists no x e S  such that 

f~(x)< f~(x*), iek_, ir 



JOTA: VOL. 88, NO. 3, MARCH 1996 661 

and 

(x) <s (x*). 

Definition 2.2. A point x* is said to be properly efficient for (P) if it 
is efficient for (P) and if there exists a scalar M > 0  such that, for each i, 
there exists a j with 

[fi (x*) - f i  (x)] /[ f  (x) - f j  (x*)] < M, 

Jj(x) >Jj(x*), whenever x is feasible for (P) a n d f ( x ) < f ( x * ) .  
We associate (P) to the following scalar-valued problem 

k 

(P~) Vez = inf  Z A,f(x),  
x ~ S  i= 1 

s.t. gj(x) =0, j~m_, 
k 

/ ] , i > 0 ,  ie_k, ~ )~i = 1. 
i = 1  

Similarly, we associate (D) to the following problem. 
k 

(Dz) VDz = sup ~, AiHi(y, r), 
(y,t)~ T i = l  

s.t. H,(y, r) =inf L~(x,y, r), i~k, 
x ~ S  

k 

~,i>O, iek_, ~ ~,i = 1. 
i= l  

The generalized augmented Lagrangian (Ref. 15) corresponding to problem 
(P~) is defined as 

k 

Lz (x, y, r )=  ~ ~,ifi(x) + ~b(g(x), y, r). 
i = 1  

We let 
k 

n (y, r)= Z LH,(y, r). 
i = 1  

We can derive duality results between multiobjective programming problems 
(P) and (D) by finding relationships between L, L~, Vex, and the set of 
properly efficient solutions of (P), and by using certain assumptions on ~b 
stated in Ref. 15, but without making convexity assumptions on (P) itself. 

Assumption A1. See Ref. 15. For every (y, r)~T, ~b(0, y, r )=0.  
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Assumption A2. See Ref. 15. For every u~R"u-r and every 
ceR~+, there exists a (y, r) ~ T such that ~b (u, y, r) > c. 

Let Ep denote the set of all properly efficient solutions of (P) ; similarly, 
let ED denote the set of all properly efficient solutions of (D). In terms of 
vector-valued Lagrangian function L, we consider the following problems: 

(PL) V-min I sup Ll(x, y, r), sup L2(x, y, r) . . . . .  sup Lk(x, y, r) 1, 
x ~ S  ] (y , r )~T  (y,r)~T (y,r)ET d 

(DE) V-max Iinf Ll(x, y, r), inf LE(X, y, r) . . . .  , inf Lg(x, y, r)] ,  
(y ,r )eT I x e S  x e S  x e S  d 

where (DE)= (D) the solutions to these problems are given in terms of 
efficiency. 

It is clear that 
k 

Lx(x,y,  r )=  ~ 2.iLi(x,y, r), 
i = 1  

and from Assumptions A1 and A2 it follows that 

sup Li(x,y, r )= l  f ( x ) '  g(x) =0, 

~.r)~ r ( + ~ ,  g(x) 4= O. 

Hence, 

(PL) V-mini  sup Ll(x,y,r) ,  sup L2(x,y,r) . . . . .  sup Lk(x,y,r)]  
x ~ S  I ( y , r )~T  (y,r)~T (y,r)~T d 

is the same as 

(P) V-min [fi(x),f2(x),...,fk(X)], 
x ~ S  

s.t. g(x)=O. 

3. Duality Theory 

Theorem 3.1. Weak Duality Theorem. If ~b satisfies Assumptions A1 
and A2, then 

V-min P ~ V-max D, 

where V-min and V-max are taken with respect to the sets E~, and ED. 
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Proof. Suppose that, contrary to the conclusion, 

V-min P < V-max D, 

f . (x )<Hi(y ,  r), i~k_, ir 

fj(x) < I-Ij(y, r), 

sup Li (x, y, r) __< inf Li (s, y, r), 
( y , r )~  T s ~ S  

sup L 1 (x, y, r) < inf Lj (s, y, r), 
( y , r )~  T sE S 

which imply that 
k 

x~Ee, 

Y. A.i sup Li (x, y, r) < ~ A.i inf Li (s, y, r), 
i=  1 ( y , r ) E T  i = 1 s ~ S  

o r  

Since 

i:e., 

o r  

k k 

sup ~ s  ~ J.i sup Li(x,y ,r)  
( y , r ) ~ T  i ~  1 i ~ l  ( y , r ) E T  

k k k 

< ~, )~iinfLi(s,y, r )< in f  ~ ~ ZiLi(s,y, r). 
i=  1 s ~ S  s E S  s e S  i=  1 

sup(a + b) < sup a + sup b, 

inf(a + b) > inf a + inf b, 

sup L~ (x, y, r) < inf Lz (s, y, r), 
( y , r ) ~ T  s ~ S  

663 

For every x e S  and u ~ R  rn, w e  define 

F,.(x, u )=I  f ( x ) '  if fl(g(x))<_fl(u), 
l + ~ ,  Otherwise, 

inf sup Lz (x, y, r) < sup inf Lz (s, y, r), 
x ~ S  (y ,r)  ~ T (y,r) ~ T s ~ S  

contradicting the weak duality between the scalar-valued problems (Pz) and 
(Dz). This completes the proof. [] 
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where fl: R " ~ R ~  is an operator such that 

f l (0 )=0  and Ilull__<llvll ~ 3(u)<3(v). 

We define the perturbation function associated with (P) as 
k 

Wz (u) = inf y" ~,iF,.(x, u). 
x ~ S  i =  I 

Lemma 3.1. See Ref. 15. If ~b is concave in (y, r ) ~ T f o r  every u~R", 
then E~=l A~L; and 5-'~ ~ ~iH; are concave in (y, r) e Tfor  A,i > 0, iek_. Further, 
if ~b is upper semicontinuous in (y, r ) eT  for every ueR",  then y'i~=l AjL/ 
and ~ =  i AiH~ for ~;> 0, iEk are also upper semicontinuous in (y, r)E T for 
every u e R m. 

Assumption A3. Isotonicity Assumption. See Ref. 15. For  
ulER m, u2ER m, and (y, r)~T, 

fl(ul) > fl(u 2) ~ d? (u l, y, r) > c~ (u2, y, r). 

Lelnma 3.2. See Ref. 15. If tk satisfies Assumption A3, then 

every 

(i) Lz (x, y, r) = ~k__ 1.~,it i (X, y, r) = infu~R", [ ~ = ,  A, Fi (X, u) + r (u, y, r)], 
T k for every x e S  and (y, r )e  , ~i=1 A,~= 1; 

(ii) Hx(y,  r)=infu~R,, [W~(u)+r r)], for every (y, r)eT. 

Li(x, y, r) = f ( x )  + q~ (g(x), y, r) 

< Fi (x, u) + q~ (u, y, r). 

Therefore, 

Li(x, y, r) < in f  [F/(x, u) + ~b(u, y, r)]. 
u~R m 

Hence, 

Proof. 

(i) If xES, u~R '~ such that fl(g(x))<fl(u), then by Assumption A3, 

c~ (g(x), y, r)<_ d? (u, y, r), for every (y, r )e  T. 

If fl(g(x)) ~fl(u), then 

Fi(x, u) = + ~ ,  iEk. 
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Hence, 
k k 

L~(x ,y ,  r ) =  Z A, iL i (x ,y ,  r)< Y, ;~, inf [F,.(x, u)+d?(u,y,  r)l. 
i =  1 i = 1 u ~ R m  

Also, since 
k 

we have 

Hence, 

~, &i=l,  
i = 1  

k 

Lx (x, y, r) = Z A,i[Fi(x, g(x) ) + d? (g(x), y, r)] 
i = 1  

k k 

= E ~,iFi(x, g(xl)  + Z Air y, r) 
i = 1  i = 1  

k 

= Z ~,iFi(x, g(x)) + d? (g(x), y, r) 
i = 1  

> inf [E ,~iFi(x, u) + r y, r)] 
u E R  m 

k 

> ~ ;~t {inf[F,-(x, u) + ~b(u, y, r)]}. 
i = 1  

k 1 L z ( x , y , r )  = ~ ~,i [Fi(x,u)+d?(u,y,r)]  . 
i = 1  

(ii) It follows from Lemma 4 of  Ref. 15. []  

We now introduce additional assumptions on ~b to obtain weak duality 
results under conditions different from those given in Theorem 3.1. 

Assumption A4. Behavior of  ~b for y = 0. See Ref. 15. 
r_>0. Then: 

(i) 
(ii) 
(iii) 

Assume that 

for u r  q~(u, 0, r) is nondecreasing in r; 
for u ~ 0, limr+~ q~ (u, 0, r) = + ~ ; 
let N(0) c R ~ be any spherical neighborhood of  the origin in R m, 
and let M c  R m be the complement of  N(0); then the function 0s, 
defined by 

Os(u, r) = d? (u, O, r) - qb (u, 0, s), 

is uniformly unbounded on M for every s < r; 
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(iv) for every r, there exists an N(O)=R" where ~b(u, O, r) is 
nonnegative. 

Assumption A4(iii) can be rewritten in a simpler way if ~b (u, 0, r) is 
differentiable with respect to r. 

Lemma 3.3. See Ref. 15. Let N(0) and M be as in A4(iii), and assume 
that ~b (u, 0, r) is differentiable with respect to r for all ueM.  If there exists 
r0 e R+ and e > 0 such that Oc~/Or(u, 0, r) > �9 for all u e M and r > to, then ~b 
satisfies A4(iii). 

Assumption AS. See Ref. 15. Let N(0) and M be as in A4(iii). There 
exists a real nonnegative function gt, defined on R ' x  (0, +oo), satisfying 
the following properties: 

(i) for every uER m, (y, r)eT, (z, s)eT, r>s, 

O (u, y, r) - ~)(u, z, s) > - V t ( y -  z, r - s ) ;  

(ii) for every aER", 

lira ~t(a, b) =0. 
b--*+m 

Lemma 3.4. If  4~ satisfies Assumptions A1 and A4(i), then 
~k~=~ ~,~L~(x, O, r) and ~ . ~  ,~iH~(O, r) are nondecreasing in r. 

Proof. From Assumption A1, we have q~(g(x), 0, r ) = 0  for every x 
such that g(x) = 0  and for every r. If  g(x) 50 ,  then by Assumption A4(i) we 
know that q~ (g(x), 0, r) is nondecreasing in r. Hence, each Li(x, O, r), i~k_, 
is nondecreasing in r, and it follows that 

k 

Lz (x, O, r)= ~ ~,iLi (x, O, r) 
i = l  

is nondecreasing in r~ Similarly, we can show that Hz (0, r) is also non- 
decreasing in r. []  

Lemma 3.5. If  ~b satisfies Assumptions A3 and A5(i), then for every 
r>0 ,  

H~(y, r)> sup [ H z ( z , s ) - ~ ( y - z , r - s ) ] .  
( x , s )  ~ T 
r> '~>O 

The proof  follows as H~ (y, r) is a scalar-valued function. 
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CoroBary 3.1. If ~ satisfies Assumptions A3 and A5(i), and if there 
exists a (z, s)e Tsuch that Hi(z, s) is finite for ie_k, then H~(y, r) ~ -0% iek, 
for every (y, r )eT  satisfying r>s. 

Proof. It follows from Lemma 7 of Ref. 15 that 

H i ( y , r ) > H i ( z , s ) - ~ ( y - z , r - s ) ,  iek_. 

Since ~ is real valued, Hi(y, r), i~k, is bounded below for every (y, r) such 
that r > s. [] 

Corollary 3.2. If ~b satisfies Assumptions A3, A5(i), A5(ii), then 
k 

VD~ = sup ~. X~H~(z,s)=lim H~(y,r),  foreveryyeR~.  
( z , s ) e T  i ~  1 r ~ o o  

Proof. It follows from Corollary 2 of Ref. 15. [] 

Definition 3.1. Program (P) is said to satisfy the boundedness condi- 
tion if there exists an reR 1 such that each Le (x, 0, r), iek_, is bounded below 
for every xeS.  

The boundedness condition certainly holds if ~b is bounded below on 
R" x T and ~k= 1 2~f is bounded below on S, or certainly if S is compact 
and ~iLI ~t,ifi, ~i > O, iek_ is lower semicontinuous. 

Lemma 3.6. Suppose that ~b satisfies Assumptions A1, A3, A4(i), 
A5(i), A5(ii). Then, 

V/~i#-oo, where 1,1o, is the ith component of Va, 

if and only if (P) satisfies the boundedness condition. 

Proof. This result can be established along the lines of Lemma 8 of 
Ref. 15. [] 

Theorem 3.2. If ~b satisfies Assumptions A1, A3, A4(ii), A4(iii), 
A4(iv), A5(i), A5(ii), and if (P) satisfies the boundedness condition, then 

V-min PgV-max D, 

where V-min and V-max are taken with respect to the sets Ep and ED. 
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Proof. Suppose that, contrary to the conclusion of the theorem, 

V-min P < V-max D, 

i . e . ,  

f i ( x ) < = n i ( y ,  r ) ,  

f j (x)  <Hj(y ,  r). 

Therefore, 
k k 

iek_, i~j ,  

E ~,,f~(x)< E ;~fHi(y, r). 
i = l  i ~ l  

Now, from the definition of Wz (0), 
k 

Wx(0)=inf ~ )~iFi(x, O) 
x e S  i = I 

and 

I f  (x), if fl (g(x)) -< fl(O) = O, F, (x, 0) / 
t ~ ,  otherwise. 

Therefore, 
k 

Wz (0) = inf ~ 2,.f,- (x) = Vp~. 
x e S  i=  1 

Moreover, from Lemma 3.2 and using A1, 

Ha (0, r) = inf [ Wx (u) + ~b (u, 0, r)] 
uER  nl 

< inf [ W~ (u) + ~b (0, 0, r)] __<lim inf Wz (u), 
u e R  m u-*O 

VD~ = lim H~(0, r)<lim {inf W~(u)}. 
r ~ + ~  U'-~0 

By Theorem 2 of Ref. 15, 

Ve~> VD~, 

i.e., 
k k 

E z,f,.(x)>__ E ;t/Hi(O, ~), 
iffil i=1 

(1) 

which is a contradiction to (1). [] 
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Definition 3.2. Problem (P) is said to be stable of degree 0 if and only 
if (Px) is stable of degree 0; i.e., (P) is stable of  degree 0 if there is a real 
function 0 defined on N(0), an open neighborhood of  the origin in R m, such 
that 0 is continuous and 

(i) W~(u)>O(u), for every ueN(0);  
(ii) Wx (0) = 0(0). 

Theorem 3.3. See Ref. 15. Program (P) is stable of degree 0 if and 
only if 

Wx (0) = lim infI W~ (u)], whenever W~ (0) is finite. 
u--~0 

Theorem 3.4. Let ~b satisfy Assumptions A 1, A3, A4, A5. If  (P) satisfies 
the boundedness condition and is stable of  degree zero, then 

V-min P = V-max D. 

Proof. It follows from Theorem 4 of  Ref. 15 and Lemma 1 of  Ref. 
16. [] 
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