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Natural Frequencies of Structures with 
Uncertain but Nonrandom Parameters 

Z .  P .  Q I u ,  2 S.  H .  C H E N ,  3 A N D  I.  E L I S H A K O F F  4 

Communicated by G. Leitmann 

Abstract. In this paper, we present a method for computing upper and 
lower bounds of the natural frequencies of a structure with parameters 
which are unknown, except for the fact that they belong to given inter- 
vals. These parameters are uncertain, yet they are not treated as being 
random, since no information is available on their probabilistic charac- 
teristics. The set of possible states of the system is described by interval 
matrices. By solving the generalized interval eigenvalue problem, the 
bounds on the natural frequencies of the structure with interval param- 
eters are evaluated. Numerical results show that the proposed method 
is extremely effective. 

Key Words. Eigenvalue problems, elastic structures, uncertainty 
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1. Introduction 

Uncertainties in the system parameters are usually analyzed through 
identifying the uncertain parameters with random variables or random fields. 
A comprehensive review of  the studies performed for the analysis of  the 
systems with random parameters  was given by Ibrahim (Ref. 1). Conditional 
probabili ty concepts [Kozin (Ref. 2) and Elishakoff and Spencer (Ref. 3)] 
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or perturbation techniques [Thomson (Ref. 4)] are usually employed to 
tackle the problem. The present state of the art on the behavior of systems 
with stochastic parameters is summarized in the recent monograph by Chen 
(Ref. 5). 

Recently, a stochastic finite-element method was developed extensively 
to deal with uncertain stochastic structures (Refs. 6-7). Such an analysis 
requires the knowledge of the probabilistic characteristics of elastic moduli, 
masses, and other uncertain parameters. However, as Shinozuka (Ref. 8) 
mentions: " . . .  it is rather difficult to estimate experimentally the autocorre- 
lation function, or equivalently the spectral density function of the stochastic 
variation of the material properties. In view of this, upper bound results are 
particularly important, since the bounds der ived. . ,  do not require know- 
ledge of the autocorrelation function." 

In this study, the mathematical theory of interval analysis (Refs. 9-11) 
is utilized to deal with the analysis of structures with uncertain parameters. 
These are not treated as random variables or fields, but rather as interval 
variables. The idea of the compatibility of interval analysis to treating uncer- 
tainty in structures was expressed by Elishakoff (Ref. 12). In this study, we 
present a method for computing upper and lower bounds for the natural 
frequencies of a structure with interval parameters. 

2. Problem Formulation 

Consider the eigenvalue problem described by the equation 

Ku = ,~Mu, (1) 

subject to constraints representing the uncertainties in the stiffness and mass 
matrices, 

K_<K<K, (2) 

_M< M<_~t, (3) 

where 

R= (&), _X= (~-,9 

are upper and lower bounds on the stiffness matrix K= (ku), which is uncer- 
tain but nonrandom (or unknown but bounded), 

~r= (r~0), _M= (m_u) 
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are upper and lower bounds on the mass matrix M =  (mu), which is uncertain 
but nonrandom, ~ = o92 is a squared frequency of the uncertain but nonran- 
dom matrix pair K and M, denoted (K, M )  and u is the associated 
eigenvector. 

We shall study a method for computing the eigenvalues in Eq. (1), in 
which the elements k o. and mo., with i , j=  1, 2 , . . . ,  n, of the matrices K and 
M are not known precisely. The incomplete information about the elements 
of the matrices K and M is the result of measurement errors, changes in 
operating conditions, aging, maintenance-induced errors, and manufactur- 
ing errors, etc. In such cases, we do not know precisely the elements of 
matrices K and M. In most if not all cases, we know only the ends of 
intervals in which the elements of the matrices are confined. 

By means of interval matrix notation (Refs. 9-11), Inequalities (2) and 
(3) can be written as 

K ~ K  I, M e M  I, (4) 

in which K I= [_K,/(] is a positive-semidefinite interval matrix (Ref. 13) and 
M I= [_M, ~r] is a positive-definite interval matrix (Refs. 13-14). 

In terms of Eq. (4), the relations (1)-(3) can be simply written as 

K~u = s (5) 

Equation (5) is called a generalized interval eigenvalue problem. Because K I 
and M I are defined as interval matrices, the associated eigenvalues of K I 
and M ~ similarly constitute the interval variables, 

Z'= [_Z, A,] = (~/'). 

It should be stressed that the set-theoretic representation of uncertainty 
or unknown but bounded models in parametric space is motivated by the 
lack of detailed probabifistic information on the possible distributions of the 
parameters. Nonprobabilistic, set-theoretical representations of uncertainty 
have been employed in a wide range of engineering applications (Refs. 15- 
21). Several topics in the eigenvalue problem pertaining to an interval matrix 
were reviewed in Ref. 10. Based on the invariance properties of the character- 
istic vector entries, Deif (Ref. 11) presented a method of computing interval 
eigenvalues for the standard interval eigenvalue problem. Reference 25 
extended the Deif results to the generalized interval eigenvalue problem. 
Because there exists no efficient criterion for judging the invariance proper- 
ties of the signs of the components of the eigenvector under interval matrix 
operations before computing the interval eigenvalues, application of the Deif 
results is restricted. In this paper, we present an alternative method for 
computing the interval eigenvalues of the generalized interval eigenvalue 
problem. 
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3. Analysis 

In this section, we present a solution of the eigenvalue problem (5), 
which serves a wide range of applications. The basic problem to be solved 
herein is as follows: Given the central matrices 

K~=(R+ K_ )/2, M~= (~r+ _M)/2 

of K z and M z, and given the deviation amplitude matrices 

AK= ( K -  _K)/2, AM= ( ~ r -  _M)/2 

of K* and M *, find a multidimensional rectangle 
eigenvalues, 

containing all the 

with 

z ' =  = (z, '),  

where 

_~;= min ~,,-(<K, M> ), (8) 
KuKI, M ~ M  I 

~,~= max A,;(<K, M> ), (9) 
KEKt, M ~ M  I 

ZI(<K, M> )=  min max (urKu/urMu). (10) 
u r  

Under the constraint conditions (2) and (3), let us consider the Rayleigh 
quotient for the structural vibration, 

2~ = min m a x  (urKu/uTMu), i = 1, 2 . . . . .  n .  (11) 
4,~e R" ue4'i 

u ~ 0  

F = {3.: 2sR, Ku= )~Mu, u#O, KeK l, MeMI}, (6) 

for the interval matrices 

KI=[K_, KI = {K: IK-KCl <AK}, 

MI=[M_, )~r]= {M: IM-MCl <AM}. 

In other words, we seek the upper and lower bounds, or interval eigenvalues, 
on the set (6); i.e., 

El= [_~i, ,~,1, i= 1, 2 . . . . .  n, (7) 
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Clearly, the eigenvalue ).~ is considered a function of the elements k~ and 
mo.. Then, by means of the natural interval extension (Refs. 9-11), from 
Eq. (11) we obtain 

l [=  min max (urKIu/urM~u), i= 1, 2 . . . . .  n, (12) 
4 , : h  ~ uer 

ur  

where 

K'  = [_K, K] = [K c - AK, K c + AK], 

M 1 = [M, ~f] = [M ~ - AM, M ~ + AM]. 

To find the upper and lower bounds of each eigenvalue %i, we shall 
assume that the deviation amplitude matrices 

AK= (K- _K)/2, AM=(M-M)/2 

are positive semidefinite. Thus, for u e r and K-_K= 2AK, we have 

ur ( R--  _K)u = 2uT AKu > O, (13) 

which implies 

urKu>>_urK_u. (14) 

Analogously, we have 

urMu> urM_u. (15) 

In terms of the Inequalities (14) and (15) and interval operations (Refs. 
9-11), Eq. (12) can be written as follows: 

%,I.= min max [uTK_u, urKu]/[urMu, urlVlu]. (16) 
~ieR n uer 

u#O 

By the interval division (Refs. 9-11), we obtain 

A,i = min max [uTK_u/ur~lu, uTKu/uTM_u]. (17) 
~ R "  ue4~e 

u#O 

Further, bearing in mind that 

_K= K -  2AK, _M=.M- 2AM, (18) 

and that 

urAKu>_ O, urAMu>O, (19) 
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we arrive at 

min max (urK_u/urjflu) 
ur 

= min max [ (u rKu-  2urAKu)/(urM_u + 2urAMu)] 
4 , :g '  u~4,i 

ur 

< min max (urKu/urM_u). 
ur 

(20) 

Thus, from Eq. (17), we have 

2,.r= [min  max (uTKu/uTI~Iu), min max (ur~2u/urM_u)]. 

L 
4~i~R n u~4,~ 4~ER" u~4~i 

u#0 u~0 

(21) 

According to the necessary and sufficient conditions of equality of inter- 
val variables (Refs. 9-11), we obtain 

_~i = min max (urK_u/urlQu), (22) 
~ieR n u~bi  

u~O 

,~,. = min max (urKu/urM_u). (23) 
~ie~  uE4,i 

ur 

The stationarity condition of the Rayleigh quotient is equivalent to the 
algebraic eigenvalue problem (Refs. 26-28). Thus, the eigenvalue problem 
corresponding to the lower bound of Eq. (22) is 

/~u_i = _X i2~r_ui, (24) 

where u_i is the eigenvector associated with _~,-. Similarly, the eigenvalue prob- 
lem corresponding to the upper bound of Eq. (23) is 

g~; = ,~ _Ma,, (25) 

where ~i~ is the eigenvector associated with ~,,-. 
Thus, we arrive at the following theorem. 

Theorem 3.1. If K x= [_K,/(] = [K c -  AK, K ~ + AK] is a positive-semi- 
definite interval matrix and if MY=[M_,ff-I]=[MC-AM, M e + A M ]  is a 
positive-definite interval matrix, AK and AM are also positive-semidefinite 
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real matrices, then the eigenvalues Ai, i=  1, 2 , . . . ,  n, of KEK* and M e M *  
range over the interval, i.e., 

A.~ = [_~,, ~.,], i = 1, 2 . . . .  , n, (26) 

where the lower bounds _~, satisfy 

K_u_i=~_iff/Iu__i, i=  1, 2 . . . .  , n, (27) 

and the upper bounds ~.~ satisfy 

Rfii = ~{, _Mfii, i=  1, 2 . . . . .  n. (28) 

4. Numerical Example 

The undamped free vibrations of a multidegree-of-freedom linear sys- 
tem is governed by the mass matrix M and the stiffness matrix K, where M 
is positive definite and K is positive semidefinite. If  the central (nominal) 
stiffness matrix K c= (k~) is given and its deviation amplitude matrix AK= 
(AK,j) is obtained, the stiffness interval matrix 

K ' =  [K_ , 7K] = [K ~ -  AK, K c + AK] 

can be formulated. In the same way, the interval mass matrix 

M ' =  [M_ , if4] = [M c -  A M ,  M~ + AM] 

can also be obtained. In reality, the systems are continuous and their param- 
eters are distributed. However, in many cases, it is possible to simplify the 
analysis by replacing the distributed characteristics of the system by discrete 
ones. This is accomplished by a suitable lumping of the continuous system. 
These systems have a special property, i.e., the uncertainties of the interval 
stiffness matrix and the interval mass matrix are positive semidefinite. To 
illustrate this, let us consider the example of a frame shown in Fig. 1. The 
deviation matrix associated with the interval stiffness matrix is 

Akl  + Ak2 

Ak2 

AK= 0 

0 

0 

Ak2 0 0 0 

Ak2 + Ak3 Ak3 0 0 

Ak3 Ak3 + Ak4 Ak4 0 

0 Ak4 Ak4 + Ak5 Ak5 

0 0 Ak5 Ak5 

(29) 

Obviously, AK is diagonally dominant. According to the Gershgorin disk 
theorem (Ref. 28), a diagonally dominant matrix is positive semidefinite. 
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/ / /  

m s + A m s  

m 4 +  A m  4 

m s + A m  3 

me + A m 2  

ml + A m 1  

Fig. 1. 

k s + A k s  

k4 + A k4 

k s + A k 3  

k 2 + m k 2 

k l  
/ / / r / /  

Frame of a multistory structure. 

+ A k l  

For comparison purposes, let us study the example considered in Ref. 
25. The five-story frame is shown in Fig. I. The interval stiffness matrix of 
the frame with interval parameters reads as follows: 

I [3800,3870] -[1800,1850] 0 0 0 ] 
/-[1800, 18501 [3400, 3480] -[1600, 16301 0 0 

KZ= l i -[1600,1630] [3000,3050] -[1400,1420] . 
0 -[1400,1420] [2600,2630] -[1200,1210] 
0 0 -[1200,12101 [1200,1210]J 

(30) 
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The interval mass matrix, which is diagonal, is given by 

'[29, 3Ol 

o 
M I= 0 

0 

0 

0 0 0 0 

[26, 28] 0 0 0 

0 [26, 281 0 0 

0 0 [24, 26] 0 

0 0 0 [17, 191 

677 

(31) 

The stiffness deviation amplitude matrix reads 

m 

35 

25 

AK= 0 

0 

0 

25 0 0 0 

40 15 0 0 

15 25 10 0 

0 10 15 5 

0 0 5 5 

(32) 

The mass deviation 

1 

0 

AM= 0 

0 

0 

amplitude matrix reads 

u 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

(33) 

Obviously, the matrices AK and AM are positive semidefinite; AK and AM 
satisfy the conditions of the present method. 

The interval eigenvalues of the frame are summarized in Table 1. To 
facilitate comparison, the interval eigenvalues and the basic quantities which 

Table 1. Interval eigenvalues obtained by the present method. 

a,.' _z, ~., z,., az, r,=az,/z~, 
2~ 4.6215 7.8303 6.2259 1.6044 0.2577 
~ 4 1 . 0 0 9 1  47.7025 44.3558 3.3467 0.0755 
Z~ 99.5956 108 .9858 104.2907 4.6951 0.0450 
2~ 106.1150 172 ,8947 166.5048 6.3898 0.0384 
&~ 211.5044 227 ,9488  219.7266 8.2222 0.0374 
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Table 2. Interval eigenvalues obtained by the Deif method (Ref. 22). 

~[ 4.6166 7.8303 6.2234 1.6069 0.2582 
~ 40.6428 47.8200 44.2314 3.5886 0.0811 
~ 98.1800 109.3993 103.7897 5.6096 0.0540 
2~ 157.8433 174.0029 165.9231 8.0798 0.0487 
&~ 209.5148 230.0845 219.7997 10.2849 0.0468 

are calculated by the Deif method (Ref. 25) are listed in Table 2. It is seen 
that the present method yields tighter bounds; namely, the lower bounds 
within the present method are larger than those predicted by the Deif 
method. Likewise, the upper bounds furnished by the present technique are 
smaller than those yielded by the Deif approach. The tables also list the 
ratio 9'i = A2~/2c~, which characterizes the magnitude of the variation. As is 
seen, as predicted by the present theory, this coefficient is smaller for each 
natural frequency than that predicted by the Deif method. This feature 
demonstrates clearly that the present method is advantageous over that of 
Deif. 

5. Conclusions 

It is often desirable in a variety of dynamic structural problems to 
obtain frequencies of the dynamic system Ku = A, M u  in which both K and 
M are affected by uncertainties. One becomes therefore concerned with deter- 
mining the tolerances in the eigenvalues ~i, knowing the tolerances inherent 
in the elements k~ and/or  mo.. Such a problem pertains usually to a mathe- 
matical model whose data are gathered from field or experimental observa- 
tions which are too limited to justify a probabilistic analysis. In this paper, 
a method was proposed for computing interval eigenvalues of structures 
with interval parameters. 

6. Appendix: Mathematical Background 

In order to treat the eigenvalue problem of structures with interval 
parameters, we need to introduce the basics of interval analysis (Refs. 9- 
14). In interval mathematics, a subset of real numbers R of the form 

[al, a2] = {t: al < t < a 2 ,  a l ,  a2~R} (34) 
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is called a closed real interval or an interval. Here, we denote the closed real 
interval as X I= [x_, g], where x and ~ are the lower and upper bounds. The 
set of  all closed real intervals is denoted by I (R) .  

The center and deviation amplitude of  an interval X I= [_x, if] are defined 
as  

X ~ = (~ + _x)/2, (35) 

APt" = (ff - _x)/2. (36) 

Two intervals X / = [_Xl, if1] and X / = [_x2, x2] are called equal, if their corre- 
sponding endpoints are equal. Thus, X~ =X~,  if x_l = x_2 and $~ = x2. 

By an n-dimensional interval vector, we mean an ordered n-tuple of 
intervals 

X ' = ( X ~ , X ~ , . . . , X ~ )  r. (37) 

The set of  all interval vectors is denoted by I(R") .  We define the midvector 
and deviation amplitude vector of  an interval vector, 

X ~= (X~, X~ . . . . .  X~) r, (38) 

AX = (AX1, zLY2 . . . . .  AXn) r, (39) 

where X~ and AXi are given by (2) and (3). 
A matrix whose elements are intervals is called an interval matrix and 

is denoted by A z= [d,-~]. The set of all interval matrices is denoted by 
I ( R  m • n). 

Similarly, we can define the central and deviation amplitude matrices 
associated with an interval matrix A ~ as 

A ~ = ( A + d ) / 2  or a~=(~tu+qo.)/2 , (40) 

A A = ( - A - d ) / 2  or Aa~j=(gto-q~s)/2 , (41) 

where 

A c = (a,~) and AA = (Aa0-). 

An arbitrary interval X % I ( R )  can be written as the sum of a real 
number X c and an interval AX 1= [-AX, AX] ; i.e., 

X1--XC + zLX ~. (42) 

Similar expressions exist for an interval vector and interval matrix. For  the 
matrix A % I ( R  m • we have 

A ~ = A ~ + I~A I, (43) 
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where 

AA I= [-AA, AA]. 

A t is called a symmetric interval matrix (Refs. 10, 13), if A is symmetric for 
every real matrix A eAZ; A z is called a positive-semidefinite interval matrix 
(Refs. 10, 13), if A is positive-semidefinite for every real matrix A e A  1. A 
similar definition holds for a positive-definite interval matrix. A I is called a 
nonsingular interval matrix, if A is nonsingular for every real matrix A ~A z. 

L e t f b e  a real-valued function of n real variables x l ,  x 2 , . . . ,  x,,. By an 
extension off ,  we mean an interval-valued function F of n interval variables 
X1 ~, X/ ,  . . . ,  X~ for all x i e X [ ,  i= 1, 2 . . . . .  n, with the property that 

F([Xl, 211, [x_2, s . . . . .  [_Xn, s : f ( x , ,  X2 . . . .  , Xn). (44) 

Thus, an interval extension of f is an interval-valued function which has real 
values when the arguments are all real and coincides with f in this case. 

For many applications, it is important to perform a computation of an 
interval extension. We say that an interval-valued function F of the interval 
variables X / , X ~ , . . . ,  XZ, is inclusion monotonic, if 

yZ__~X~, i=  1, 2 . . . . .  n, (45) 

implies 

F ( Y ~ ,  y I , . . . ,  y i )  ~_F(X( ,  X~ . . . . .  Xln). (46) 

Real rational functions of n real variables have natural interval exten- 
sions. Given a rational expression in real variables, we can replace the real 
variables by corresponding interval variables and replace the real arithmetic 
operations by the corresponding interval arithmetic operations to obtain a 
rational interval function which is a natural extension of the real rational 
function. 

The following theorem holds: If  F is an inclusion monotonic interval 
extension o f f ,  then 

{ f ( x ) : x i e X Z i ,  i = l , 2 , . ,  n} x i . ,  c _ F ( X I , X z ,  . . . , X I ) .  (47) 

In other words, an interval value of F contains the range of values of the 
corresponding real function f ,  when the real arguments o f f  lie in the intervals 
shown. Thus, rational interval functions are inclusion monotonic, as are 
natural interval extension of  all the standard functions used in computing; 
rounded interval arithmetic operations are also inclusion monotonic. 
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This theorem provides us with a means for the evaluation of upper and 
lower bounds on the ranges of values of real rational functions over a 
dimensional space. For example, consider the function 

f ( x l ,  x2, x3) = [(xl + x2) / (x l  - x2)lx3. (48) 

Suppose that we wish to calculate the range of values off(x~, x2, x3) when 
x l ,  xz ,  x3 are any numbers in the intervals [1, 2], [5, 10], [2, 3], respectively. 
A natural interval extension o f f  is the interval function 

X 1 ~IXI (49) F ( X I , X t , X ~ 3 ) = [ ( X ~ + X I ) / ( X ~ -  2jj 3. 

Computing F([1, 2], [5, 10], [2, 3]), we obtain 

F([1, 21, [5, 10112, 3]) = ([1, 2] + [5, 10])/([1, 21 - [5, 10])[2, 31 

= [ -12 ,  - 1 2 / 9 ] .  (50) 

We can also rewrite f ( x l ,  x2, x3) in the following form: 

f ( x l ,  x2, x3) = x3[1 + 2 / ( x ~ / x z -  1)], (51) 

which is equivalent in real arithmetic to the original form. A natural interval 
extension off(x~, x2, x3), written in this form, reads 

V([1, 2], [5, 101, [2, 31)=[2, 3][1 +2/([1, 2]/[5, 10l-  1)] 

= [-12, -22/9]. (52) 

The exact range of values for the above functionf(xl,  x2, x3) for xl e[1, 2], 
xze[5 ,  10], x3s[2, 3] is [-12, -22/9], which is a tighter bound than that 
given in Eq. (50). 

In the example above, for polynomials, the nested form 

Ac + X ' (A1  + X ' ( A 2  + ' ' '  + X ' ( A , )  . . . ) (53) 

is never worse (and is usually better) than the sum of powers 

A c W  A 1 X I  + A 2 X  I" X I't-" �9 �9 + A n X  I" X 1 , " " X I, (54) 

because of subdistributivity. 
The following theorem is instrumental for interval computations: Any 

natural interval extension of a rational function in which each variable 
occurs only once (if at all) and to the first power only will compute the 
exact range of value providing that no division by an interval containing 
zero occurs (Ref. 14). 
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