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Matrix Representation and Gradient 
Flows for NP-Hard Problems 
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Abstract. Over the past decade, a number of connections between con- 
tinuous flows and numerical algorithms were established. Recently, 
Brockett and Wong reported a connection between gradient flows on 
the special orthogonal group 6a(~(n) and local search solutions for the 
assignment problem. In this paper, we describe a uniform formulation 
for certain NP-hard combinatorial optimization problems in matrix 
form and examine their connection with gradient flows on 5e(9(n). For 
these problems, there is a correspondence between the so-called 2-opt 
solutions and asymptotically stable critical points of an associated 
gradient flow. 
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1. Introduction 

Over the past decade, a number of connections between continuous 
flows and numerical algorithms were established; see, for example, Bayer 
and Lagarias (Ref. 1), Bloch (Ref. 2), Brockett (Refs .3 and 4), Brockett 
and Wong (Ref. 5), Chu (Ref. 6), Deift, Nanda, and Tomei (Ref. 7), Fay- 
busovich (Refs. 8 and 9), Symes (Refs. 10 and 11), and Watkins and Eisner 
(Ref. 12). Included in this list, among many others, are the classical connec- 
tion between the Toda lattice flow and the QR algorithm, the relation of 
affine and projective trajectories with the Karmarkar algorithm and its vari- 
ants, and the connection between gradient flows on the special orthogonal 
group and the least squares optimization problem. 

These results are of interest to a variety of audiences. From the system 
theory perspective, other than their potential of leading to advances in 
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computation, they provide many novel classes of dynamic systems with 
interesting structures and properties, such as the so-called double bracket 
equations introduced in Ref. 3. 

In this paper, we will describe a uniform formulation for certain NP- 
hard combinatorial optimization problems in matrix form and examine their 
connection with gradient flows on the space 6er0(n) of the special orthogonal 
matrices. 

In Ref 13, Karmarkar proposed using a steepest descent approach to 
solve combinatorial optimization problems; see also Refs. 14-16. Indepen- 
dently in Ref. 5, the gradient flow approach was applied to a class of combi- 
natorial optimization problems known as the assignment problem. One of 
the key results reported in that paper is that, for any given assignment 
problem, there is a simple correspondence between local minima of a certain 
local search algorithm and local minima of an associated gradient flow 
defined on 6e(9(n). 

Since the assignment problem is known to have a polynomial time 
solution (Ref. 17), an algorithm to find a local minimum does not have 
great significance. In this paper, however, we show that the 6e0(n) gradient 
flow approach can be extended easily to a large class of combinatorial opti- 
mization problems that includes the traveling salesman problem and the 
graph partitioning problem. Since these problems are well known to be NP- 
hard, a local search algorithm is commonly used to solve approximately 
these problems. Thus, results connecting local search algorithms for these 
problems with gradient flows may have a more practical significance. More- 
over, the problem of finding a local minimum may be computationally com- 
plex itself. The complexity issue of local search algorithms is an interesting 
topic first raised by Johnson, Papadimitriou, and Yannakakis (Ref. 18). In 
particular, for the graph partitioning problem with the SWAP neighborhood 
(two partitions are neighbors if one can be made identical to the other by 
swapping two vertices), it was shown by Sch/iffer and Yannakakis (Ref. 19) 
that finding the local minimum from an arbitrary initial point is NP-hard. 
One of our theorems here shows that the set of local minima for the graph 
partitioning problem with the SWAP neighborhood has a simple corre- 
spondence with the asymptotically stable critical points of an associated 
gradient flow on 6P(9(n). 

The extension of the gradient flow approach to these NP-hard problems 
is based on the observation that any combinatorial optimization problem is 
representable as an optimization problem on the set of permutation matrices. 
Such a matrix form representation for many of the commonly known combi- 
natorial optimization problems takes on a very simple form, and in the case 
of the traveling salesman problem is probably well known in the folklore. 
In the first part of this paper, we will present a general discussion of the 
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representation of combinatorial optimization problems in this matrix form. 
In Section 3, we describe basic concepts of local search algorithms and 

show how various combinatorial problems can be embedded as continuous 
optimization problems on 6e(9(n). In Section 4, we prove a theorem connect- 
ing local search minima with local minima of associated gradient flows on 
6P(~(n). 

2. Matrix Representation of Combinatorial Optimization Problems 

Let 6an represent the symmetric group on n symbols. By an n-symbol 
combinatorial optimization problem, we mean the problem of finding a 
globally optimal value of an arbitrary function defined on 6e~. Without loss 
of generality, we deal with minimization problems only in this paper. Let 
~n represent the set of n x n permutation matrices; there is a one-to-one, 
onto correspondence between elements in 6~n and ~ .  By viewing ~n as an 
incidence matrix for a graph, one also obtains a one-to-one, onto corre- 
spondence between ~ and fq~, the set of directed graphs with the property 
that every vertex is the source of exactly one directed edge and the sink of 
exactly one directed edge. We use the convention that Pij is equal to 1 if 
and only if there is a directed edge from vertex i to vertex j ;  i is called the 
source and j is the sink of the directed edge. 

Let tr(M) represent the trace of matrix M. If C is the cost matrix 
defining an assignment problem, it is well known that it can be represented 
in the form 

min tr(CrP). (1) 
P e ~ n  

It is possible to extend this representation to other combinatorial optimiza- 
tion problems. In fact, the following result holds. 

Proposition 2.1. Any n-symbol combinatorial optimization problem 
can be represented in the form 

min t r (  ~. D~PD~2P... D~P), (2) 
P e ~ n  \ i I ,i2,...,in 

where the D; are n x n matrices of rank 1. 

Proof. It is sufficient to show that, for any permutation matrix P0, 
there exists a function ~(P) of the form tr(D~ PD2P" �9 �9 DnP) such that 

1, i fP=Po ,  

~(P)= O, otherwise. 
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Denote by ii the column vector with all entries zero, except at the i position, 
where the entry is equal to 1. Define 

f~o~=e0f;. 

It is easy to see that a permutation matrix P is equal to P0 if and only if 
" T  - 1 ~o.)P1; is nonzero and equal to 1 for all 1 <i<n. Since 

-7- - - r  - - r  - - I~o)PI~ 1~(2)P12" �9 �9 l~n)P), l~(l)Pll 1~2)P12" �9 �9 l ~ , ) P 1 , - t r ( i n  - r  ~ - r  - - r  

it follows that, by defining 

Ol = - ~ T  _ _ -  - T  1. l~o) , D~- 1~_~ 1~(;), for i>  1, 

will have the desired property. [] 

Since the matrices Di are of rank 1, it follows that the expression in (2) 
can also be expressed as 

m i n t r (  ~ Di, prDizP...DIP). (3) 
P ~ n  il ,i  , . " , "  tn 

For commonly encountered problems, the expression in Eq. (2) or (3) can 
usually be simplified. We consider three classes of examples. 

Example 2.1. Assignment Problem. It was shown in Ref. 5 that the 
assignment problem can be defined in the form 

min tr X~PrY~P , (4) 
P ~ r  i = 1 / 

where r is the rank of the cost matrix C and where Xi and Y~- are diagonal 
matrices obtained by the following outer-product decomposition of C: 

C= ~ Xi [ 1 , . . . ,  l]Yi. (5) 
i ~ l  

For a detailed study of the relation between the assignment problem and its 
associated gradient flow, see Ref. 5. 

Example 2.2. Traveling Salesman Problem. The traveling salesman 
problem is similar to the assignment problem, except that the optimization 
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is restricted to n-cycles only. In the graphical representation, these permuta- 
tions correspond to directed circuits with n-vertices. Although, strictly speak- 
ing, this is not a problem defined on 6en, we can treat the traveling salesman 
problem as an n-symbol combinatorial optimization problem by making use 
of the observation that the set of permutation matrices corresponding to all 
n-cycles is equal to the set of the matrices of the form PrS:  (n)P, where P 
is a permutation matrix and 

0 1 0 . - .  0" 

S:(n)  = 

0 0 1 . . .  0 

0 0 0  ' ' '  1 

1 0 0 . . .  0 

Hence, the traveling salesman problem can be formulated as 

min tr(C rPrS:(n)P). (6) 
PE,~n 

Notice that, in this formulation, different elements in 6:n may correspond 
to the same directed circuit. 

One can also extend this representation to other variants of the traveling 
salesman problem. As an example, consider a two traveling salesmen prob- 
lem, with the restriction that p cities are toured by one salesman and q cities 
by the other, with n =p + q. We can formulate this problem as 

min tr(CrPrS~j(n)P), (7) 
P~n 

where 

S~:(n)=[  S : ( p )  Oeq l 
L Oqp Soj (q) J '  

and where Opq is the p x q matrix with all zero entries. 

Example 2.3. Graph Partitioning Problem. Let G be a fully connected 
undirected graph with n vertices with weights assigned to its undirected 
edges. Let p and q be two positive integers such that their sum is equal to 
n. The generalized graph partitioning problem is to find a partition of vertices 
into two subsets with p and q elements such that the sum of the weights on 
the cut edges (that is, edges with their endpoints in different subsets of the 
partition) is minimized. The case where p and q are equal defines the classic 
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graph partitioning problem. The graph partitioning problem is known to be 
NP-hard. 

Just like the traveling salesman problem, the graph partitioning problem 
is not defined on 6e,, strictly speaking. However, we can formulate a corre- 
sponding problem on Se~ by first constructing a fully connected directed 
graph with n vertices�9 For any original weight assigned to an undirected 
edge, we assign half of it to each of the two directed edges joining the same 
vertices in the undirected graph. Call the cost matrix corresponding to this 
new set of weights C. Now, define 

S~(n)=IOpP lpq 1 
lqp Oqq_]' (8 )  

where l~j denote the i •  matrix with all entries equal to 1. Then, the graph 
partitioning problem can be represented in the following way: 

min t r ( C T P r S , ( n ) P ) .  (9) 
P~'~n 

It is possible to extend the graph partitioning problem to a problem of 
partitioning into k subsets, where the subsets have cardinalities nl . . . . .  nk, 
forming a partition of the integer n. In this case, the formulation in (9) still 
holds, provided S ~ ( n )  is now replaced by 

lnlnl 

n2nl 

S ~ ( n )  = 1 , , . -  �9 �9 �9 

Or/k,'/I 

nln �9 �9 �9 Onln k" 

1,2,2 " " " 0,2~k 

O~k,,2 . . .  1 nknk 

3. Local Search and 2-Change Neighborhood 

For the rest of this paper, we will consider combinatorial optimization 
problems of the form 

min tr F. X T p r y i p  , (10) 
P~n  \ i = l  

where X~ and Y~ are arbitrary matrices. Thus, this class of problems contains 
all three examples presented in the previous section. 

Local search algorithms are commonly used to solve NP-hard problems. 
All these algorithms require the definition of a neighborhood around an 



JOTA: VOL. 87, NO. 1, OCTOBER 1995 203 

arbitrary element in the search space. The k-change neighborhood is a popu- 
lar concept that is also known to be quite efficient for the traveling salesman 
problem and the graph partit'oning problem. 

For any n-symbol combinatorial optimization problem, we can define 
a k-change neighborhood in the following way. For any matrix ~ in Pn, let 
G be the corresponding directed graph in f~n. The k-change neighborhood 
of G, and hence P, is then defined as the set of elements in fin that can be 
obtained by removing k directed edges from G and then placing k alternative 
directed edges to the remaining graph. For example, the permutation matrix 

[i 1 ~ 00000 
has six neighbors in the 2-change neighborhood: 

El loo o [i ooo 1 [ 1Oo 1 !] 
0 0 ' 1 0 ' 0 0 ' 

0 1 0 0 0 O] 0 0 0 

ii 000 1 i1 El ~176 iJ [i 1~176176176 0 0 ' 0 0 ' 0 1 " 

1 0 0 0 0 0 0 

With this motivation, we define the 2-change neighborhood of P, where P 
is an element in ~n, to consist of the n ( n -  1)/2 permutation matrices of the 
form PNg, where N o. is a permutation matrix that has only two nonzero off 
diagonal entries, at (i , j)  and (j ,  i). With this as motivation, we give formally 
the following definition. 

Definition 3.1. For the combinatorial optimization problem defined 
by (10), the 2-change neighborhood of a permutation matrix P consists of 
P and matrices of the form P N  U, for 1 < i < j < n .  An element of the form 
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PNo, where 

( PN~)rykPN~ Yk, 

for some k, 1 < k < r, is called a distinct neighbor of P. 

Once a neighborhood is chosen, a local search algorithm imitates essen- 
tially a gradient descent algorithm, although the rules may vary if there is 
more than one possible choice to improve the current solution�9 Since these 
details will not affect our discussion, we will simply assume that a fixed local 
search algorithm has been chosen from now on. 

Def in i t ion  3.2. A 2-opt solution for the combinatorial optimization 
problem defined by (10) is defined as a locally minimal solution obtained 
under the chosen local search algorithm using the 2-change neighborhood. 
The solution is called nondegenerate if its value is strictly lower then the 
value at its distinct neighbors. 

Notice that the definition of a 2-change neighborhood is independent 
of the parameters of the problem, but the definition of a distinct neighbor 
is dependent on the Yk. The motivation for this will become clear when we 
study the graph partitioning problem and the traveling salesman problem. 

To illustrate the definition of a 2-change neighborhood, let us apply it 
to a graph partitioning problem with p--q--2.  Recall that the cost function 
for this problem is formulated as tr(CrprS~(n)P), with the state of the 
partition represented by PrS~(n)P. For simplicity, consider the neighbor- 
hood around the identity matrix I,. The matrix 

[~176 irS~(n)[ = 0 0 1 
1 1 0 

1 1 0 

represents the state that divides the graph into two snbgraphs, one consisting 
of vertices 1 and 2, the other consisting of vertices 3 and 4. The matrix 
N~3S~(n)Nl3 is given by 

Ei 10 01il 
0 0 

1 1 
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i F {,f~ j~ k p 
�9 q 

�9 ~ 0 J 
i j k 

Fig. 1. Directed circuit 0. 

This corresponds to the partition that groups vertex 1 with 4 and vertex 2 
with 3. In other words, we have swapped vertex 1 with vertex 3. Since vertex 
1 and vertex 2 are in the same subset in the original partition, swapping the 
two vertices should produce the same partition. This is confirmed by the 
fact that 

N r  S~N12 = S~r 

According to our definition, N~2 is not a distinct neighbor of the identity 
matrix. Generalizing this argument, one can show that this definition of the 
2-change neighborhood coincides with the definition of the SWAP neighbor- 
hood. Moreover, a nondegenerate 2-opt solution defined here is a non- 
degenerate 2-opt solution in the classical sense. 

Applying this neighborhood concept to the traveling salesman problem 
leads to two types of new circuits as illustrated in Figs. 1-3. It is clear that 
this definition of the neighborhood is related but not identical to the classical 

i '  j '  k '  

i j k 

Fig. 2. Directed circuit corresponding to 0Njj, when vertex j and vertex j '  are not  directly 
connected. 
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Fig. 3. 

i' j' k' 
Q 4  Q t  O q  

L_. f - -  
i ~ _  j ____.j/k 

! 

---S 

Directed circuit corresponding to 0~k when there is an edge from vertex j to 
vertex k. 

definition of a 2-opt neighborhood for the traveling salesman problem. The 
difference comes from the fact that the neighborhood defined here is obtained 
by interchanging vertices rather than edges. 

4. Embedding in 6e(9(n) and Equivalence of Optimality 

Since ~n is a subset of go(n), a subgroup in fact, one can embed the 
optimization problem defined by (10) to an optimization problem defined 
in g0(n), namely, 

rain tr X [ | 1 7 4  . (11) 
O ~ '5~8 ' (n)  ' ,  i = 1 

For the case where Xi and Yi are diagonal matrices, this type of optimization 
problem, restricted to the connected component 6ego(n), containing the ident- 
ity matrix, was considered in detail in Ref. 3 and was shown to be related 
to solving geometric matching problems. 

For cases where the Xi and Y~ are not all diagonal, the optimization 
problem defined in (11) has one undesirable feature. Namely, since g0(n) 
contains elements of the form D P  the so-called hyperoctahedral matrices, 
where D is a diagonal matrix with diagonal values 1 or -1 ,  this embedding 
may introduce many spurious local minima. In order to eliminate these 
spurious local minima, one can define a different embedded problem by 
defining a cost function 7/on go(n) by 

O(|  X |174174174 , (12) 
i =  
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where M o N denote the Schur-Hadamard product of two matrices defined 
by (M~Nij). If  we identify elements in ~n with elements in 5~ by the 
following mapping: 

P ,  if det(P) = 1, 

- 1  0 �9 �9 �9 0"] 
/ 

t (P)=,  0 1 . . .  0 [ p ,  i f d e t ( P ) = - l ,  

/ 
0 0 . . .  1A 

then one can show that 

rl(ffP)) = t r  X r P r Y ~ P  . (13) 
i =  

So, 7/preserves the values of the cost function at all permutation matrices, 
and it is sufficient to consider the optimization problem on ~(9(n). From 
now on, we will consider an embedded optimization problem o f  the form 

min tr(tl(| (14) 
|  

Since the inverse of t is given by 

t - l (H) = H o H ,  

we can extend the definition of z -1 to all hyperoctahedral matrices. Notice 
that different local minima of 7/may correspond to the same element in ~n.  

A.lthough the value of the cost function is preserved in this setting, there 
still remains the important question of whether an optimal solution in the 
original combinatorial optimization problem is preserved as a global opti- 
mum for the problem defined in (14). The answer to this question is positive 
for the least square matching problem and the assignment problem. It is not 
known to hold for a problem defined by (10) in general. A more realistic 
requirement is that the local optimality structure be preserved. 

Since 7/can be viewed as a potential function on a compact Riemannian 
manifold, it is natural to consider the gradient flow it induces. It is well 
known that 5e(9(n) is a Lie group and the tangent space at any of its element 
can be identified with the space of antisymmetric matrices o(n). Define an 
inner product on o(n) by 

(H,  ~ )  = tr(1-Irf~ ). 

This inner product defines a Riemannian structure on ~e(9(n). 
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It is natural to study the gradient flow induced by I/under this standard 
Riemannian structure. Moreover, if the embedding defined previously pre- 
serves the local optimality structure, we may expect that there should be a 
correspondence between asymptotically stable critical points of this induced 
gradient flow and 2-opt solutions. The main result of this paper is to prove 
that this correspondence holds for certain combinatorial optimization 
problems. 

Denote the gradient flow induced by 7/by 

dO/dt = -V  r/(| (15) 

Strictly speaking, Eq. (15) should be interpreted as a dynamical equation 
on ~@(n). However, since 6e(fi(n) is embedded in the space of all n x n 
matrices, one can view Eq. (15) as a matrix differential equation with the 
understanding that, if the system starts at a point in 6e(9(n), its trajectory 
for all time remains in 6e(fi(n). As observed by Faybusovich (Refs. 8-9), 
this equation can be integrated numerically without requiring any matrix 
inversion, unlike many other continuous flow algorithms. 

Ideally, for a given combinatorial optimization problem, we would like 
to find an embedding of the problem into a dynamical system so that there 
is a one-to-one, onto correspondence between locally optimal solutions, say 
2-opt solutions, and asymptotically stable critical points of the dynamical 
system. If this is true, then the combinatorial optimization problem is equiva- 
lent to the dynamical system, in the sense that one can develop an equivalent, 
analog approach to find 2-opt solutions. It turns out that, for the 6a(fi(n) 
embedding, it is difficult to guarantee that the correspondence is onto. Hence, 
we introduce a weaker concept of equivalence. 

Definition 4.1. The weak gradient flow equivalence property is said to 
hold for a combinatorial optimization problem defined in (10) if: 

(i) the image of every nondegenerate 2-opt solution under t is an 
asymptotically stable critical point for the gradient flow system 
defined by Eq. (15); 

(ii) for every H, a hyperoctahedral, asymptotically stable critical point 
of the gradient flow system defined by Eq. (15), t-l(H) is a 2-opt 
solution. 

We call this weak equivalence because condition (ii) allows the possibil- 
ity that some asymptotically stable critical points may have no corresponding 
2-opt solutions. Hence, if one uses the embedding dynamical system to find 
2-opt solutions, one may end up with nonmeaningful solutions. As discussed 
in the numerical study section (Section 8), these nonmeaningful solutions 
may yield nevertheless useful heuristic solutions. 
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Our main results in this paper show that, for the graph partitioning 
problem and some cases of the traveling salesman problem, the weak gradi- 
ent flow equivalence property holds. As a consequence, one may be able to 
employ the gradient flow approach to find suboptimal solutions to these 
problems, which are in fact locally optimal if they correspond to meaningful 
solutions. 

5. Conditions for Weak Gradient Equivalence 

For any 1 < i < j < n ,  define the matrices f~(i,j) by 

1, i f i = p , j = q ,  

= -1 ,  if ff'~(i,j)pq i = q , j - p ,  

O, otherwise. 

The matrices ~ ( i , j )  form a basis for o(n). Define 

and 

f 
l, i fp  = q = i, 

A(i,j)pq = 1, if  p = q = j ,  

LO, otherwise, 

1-I(i, j )  = O(i , j )o  O(i , j )  - A(i, j ) .  

So, H(i , j )  is the symmetric matrix with - 1  at entries (i, i) and ( j , j ) ,  +1 
at entries (i , j)  and (j, i), and 0 elsewhere. 

Theorem 5.1. The weak gradient flow equivalence property holds for 
the combinatorial optimization problem defined by (10) if and only if, at 
any hyperoctahedral critical point | of Eq. (15), the following property 
holds for all 1 <_i<j<n: 

if Q/(| - r/(| > 0, 

( )) then rR |174  xr( |174  >0;  (16a) 
= 1  

if  

then (r/(| - q( |  20 .  (16b) 
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The crucial step in proving Theorem 5.1 is to analyze H,(| the 
Hessian of 7/at a hyperoctahedral O. To compute the Hessian, instead of 
using brute force, we will compute it through a series of simple lemmas. 

Lemma 5.1. If | is hyperoctahedral and A is arbitrary, then 

(| (| = (| | 

Proof. The (i,j) entry of (|174 is (~=~ | 2. Since | is 
hyperoctahedral, the sum has only one nonzero term. Hence, 

Oi~ Aks ~ 2 2 = |  
=1 k=l  

which is the (i,j) entry of (|174 oA). [] 

Parametrize a neighborhood of an arbitrary point | in 5P(9(n) by 

| 1 7 4  + ~ + ~ 2 / 2 [ + .  �9 "). (17) 

To compute the gradient of 77 at | it is sufficient to consider the restriction 
of 7/to the n ( n -  1)/2 one-parameter subgroups of the form 

ao.(t , | = 7/(| e tn(i'j)) 

I ) = tr 2 x/T(( | etf~(i'J))o (0  eaa(i'J)))Tyi((| e tn(i';)) o ( 0  etn(i'J))) .(18) 
\ i = 1  

For 1 < k < n, define 

?~(o) = (Go O)TY~(O o O). 

Then by Lemma 5.1, if O is hyperoctahedral, 

ai,j(t, 0)  =t r  2 X/T( etn(i'j)~174176162 �9 (19) 
\ i = l  

Since 

f~ ( i , j )2=-A( i , j )  and f~ ( i , j )3=-~( i , j ) ,  

it follows that 

e ̀nO'j) = In + ( t -  t3/3! + t5/5[ +" �9 ")D0,j) 

-- ( t 2 / 2 ! -  t 4 / 4 [  + t 6 / 6 [  + "  �9 " )A( i , j )  

= iu+ sin(t)D(i,j) + cos(t)A(i,j), 
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where 

" f o = I . - A ( i , j ) .  

Moreover, 

f l ( i , j )  o Tg = A(i, j )  o "10 = flU, J) ~ A(i , j )  = 0. (20) 

Hence, 

e tn(i'j) o e tn(i'j) = "~0 ~ ~ij+ s in2( t )~( i , j )  ~ fl(i, j )  + cos2(t)A(i , j )  o A(i, j )  

= I, + sin2(t)H(i , j )  

and 

au(t, | = tr X~(I~ + sin2(t)H(i , j ))  frk(| + sin2(t)l'I(i,j)) , (21) 
\ k = l  

if | is hyperoctahedral. []  

Lemma 5.2. The set of  critical points of Eq. (15) contains all the 
hyperoctahedral matrices. 

Proof. It follows from (21) that, at a hyperoctahedral | 

dao.(t, |  sin(t) cos(t) tr (X2H( i , j ) f ' k ( |  
=1 

+xr ( In  + sin2(t)II(i , j))  ' [k( |  (22) 

Hence, for any 1 <_i<j<_n, 

d@/dt( t ,  19)1t=o = O. (23) 

So, 19 is a critical point of 77. [] 

Lemma 5.3. Under the basis defined by the matrices f~(i , j ) ,  H~(19) is 
a diagonal matrix if 19 is hyperoctahedral and the diagonal entries are of  
the form 

Hij(19) = 2 tr , (XrII~jYk(19) +XrYk(19)l-Ii.s) , (24) 

for 1 _< i<j<_n. 
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Proof. Fix two distinct basis elements ~ ( i , j )  and f~(l, m). Define 

~(s,  t) =sf~( i , j )  + t~(l ,  m). 

To show that the Hessian is diagonal, it is sufficient to show that the function 

b(s, t) = 77(| e ~(s'O) 

has the property 

OZb/as Ot(s, t)[~=t=o = 0. 

By Lemma 5.1, b(s, t) can be rewritten as 

V T," _ ~ ( s  t) T . b(s, t ) = t r  ~ k t e  ' oe ~(''t)) fZk(|176 
\ k = l  

(25) 

Since, b(s, t) is an analytic function of s and t, the property expressed by 
Eq. (25) is equivalent to the fact that the term st has coefficient zero in the 
power series expansion of b(s, t). To prove the latter statement, we have to 
consider two separate cases. 

I f  i, j, l, m are all distinct, then f~(i , j)  and f~(l, rn) are commuting 
matrices. Hence, 

and 

e ~(~'t) = d n(''J) d n(t'm) (27) 

eta(s,t) o e O(s,t) 

= (e~n (i,.i)eta (l,m)) o (em (i'J)etf~ (l,m)) 

= ((In + sin2(s)IIij)(In + sin2(t)IIlm)) 

o ((I. + sin2(s)l-I~)(I. + sin2(t)lT~m)) 

= (I. + sin2(s)IIu + sin2(t)IIlm) o (I~ + sin2(s)l-Io + sinZ(t)l-Ii,~) 

= I~ + sin4(s)Ho .o YI U + sin4(t)Htm o Htm. (28) 

If  i, j ,  l, m are not distinct, then we may assume without loss of generality 
that l = j  and that i, j ,  m are distinct. In fact, we may assume that the two 

(26) 
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d i s t inc t  basis  e l e m e n t s  a re  f~(1, 2) a n d  f~(2, 3). Hence ,  

0 s 0 0 . . .  0 -  

- s  0 t 0 . . .  0 

0 - t  0 0 . . .  0 
fi(s, t ) =  

0 0 0 0 . . .  0 

0 0 0 0 . . .  O. 

213 

fi2(s, 0 = 

- s  2 0 s t  0 �9 �9 �9 O" 

0 - ( s 2 + t  2) 0 0 . . .  0 

s t  0 - t  2 0 �9 �9 �9 0 

0 0 0 0 . . .  0 

0 0 0 0 . . .  O. 

So,  

w h e r e  

So,  

•3(s, t ) = - - ( s 2 + t 2 ) f i ( s ,  t ) .  

e c~{s'0 = In + u ( s ,  t ) ~ ( s ,  t)  + v (s ,  t )~t2(s ,  t), 

u(s ,  t) = 1 -- (s 2 + t2)/3! + (s 2 + f l ) 2 / 5 !  . . . .  

v ( s ,  t) = ( 1 / 2 )  -- (s 2 + t2)/4! + (s 2 + tz)2/6! . . . .  . 

e fi(s't) o e ~(s't) 

= I ,  + u2(s ,  t)  

o s2 o o . . .  o 

S 2 0 t 2 0 " " " 0 

0 t 2 0 0 " ' "  0 

0 0 0 0 " ' "  0 

0 0 0 0 . . .  0 

(29) 

(30) 

(31) 
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+ v2(s, t) 

S 4 0 s2t 2 0 

0 (S2+ t2) 2 0 0 

s2 t 2 0 t 4 0 

0 0 0 0 

�9 . .  O 

�9 �9 �9 0 

�9 �9 �9 0 

�9 �9 �9 0 

0 0 0 0 . . .  0 

- 2v(s ,  t) 

S 2 0 0 0 � 9 1 4 9  O" 

0 ( s 2 + t  z) 0 0 . . .  0 

0 0 / 2 0 ' ' '  0 

0 0 0 0 - . .  0 

0 0 0 0 . . .  O. 

(32) 

For both cases, it is clear that all the entries of the matrix e ~ ( s ' t )  o e h(~'t) do 
not have the terms s, t, st  in their power series expansion�9 It follows from 
Eq. (26) that the coefficient of the st th term in the power series expansion 
of b(s,  t) is zero. Finally, since the diagonal entries of H, (O)  are given by 

d2aid(t, |  ,=0 = 0, (33) 

it follows from Eq. (22) that they are of the form 

(x;rI  k(Ol+X  k(o)rI )) 2 tr ~,; i,j �9 

k = l  

[] 

We are now in a position to prove Theorem 5.1. 

Proof  of  Theorem 5.1. First of all, observe that 

o ( O N i d ) = t r  X 2 ( I ~ + I I ~ ) f r k ( |  .) 
1 

= I/(| + tr (X21-I,-j :Yk(O) +X2:Y~(O)Ilij 
k = l  

(34) 
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Hence 

rl(ONo) - 7/(0) = (1/2)H U + tr Y~(| (35) 
= 

Now, if P is a nondegenerate 2-opt solution, | = l(P) is a hyperoctahedral 
matrix; hence, it is a critical point of 17. By the assumption of the theorem, 

Hu(| > 0, for all l<_i<j<_n. 

So, | is a nondegenerate local minimum of 17 on ~(9(n). Now, regard 

V(O) = 7(0)  - 7(00) 

as a Liapunov function on 6e(9(n). It follows that, in a small enough neigh- 
borhood around 00, V> 0 except at (90. Moreover, from Eq. (15), it follows 
that dV/dt < O. Hence, using the standard Liapunov stability theorem (Ref. 
20), modified to the 6f(9(n) context, if follows that | is an asymptotically 
stable critical point of the gradient flow. 

Conversely, assume that (90 is a hyperoctahedral, asymptotical stable 
critical point. If the Hessian of 0 at (90 is not nonnegative definite, then by 
the lemma of Morse (Ref. 21), in every small enough 5e(9(n) neighborhood 
of (90, there is a point qJ such that V(qJ)< V((90). Since dV/dt<O, V is 
nonincreasing on any trajectory. So, the trajectory starting from q~ cannot 
converge to (90, a contradiction. Hence, 

Hu(| >0 and ~(| r/((90) >0, for all l<i<j<n. [] 

At first glance, the condition in Theorem 5.1 may be very difficult to 
verify. However, observe that, if 

then the 

Ao(M ) =M~+Mji-M~i-Mjj. 

Then, it is straightforward to check that 

tr(X[H(i,j) ~'~(O)H(i, j )  = A~,j(X~)A,-j(~'k(| 

Moreover, the following result holds. 

) tr XTHij o ) n ; j  = 0, 
k = l  

conditions (16) hold automatically. For any n x n matrix M, define 

(36) 

(37) 

Theorem 5.2. For any 1 <k<r, ifA~(XD =0 for all i,j, or ifAu(YD = 
0 for all i, j, then the weak gradient equivalence property holds for the 
problem defined by (10). 
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Proof. If  | is a hyperoctahedral matrix, define ~b to be the one-to-one 
mapping, from the set { 1 , . . . ,  n} to itself, by the implicit requirement that 
| ~0.  Since | is hyperoctahedral, q~ is well defined and 

au (?~(o)) = ( ~(o)) , j  + ( ~ (o ) ) j , -  ( ~ ( o ) ) . -  ( ?~(o))jj 

= (~),(,)~(j) + (Yk)~u),(~)- (Yk)~(,),(,)- (Yk)~u)~(j) 

= a, ( , )~(j ) ( f 'k( |  (38) 

Hence, if either of the stated conditions hold, then 

tr i, r i, = O, 
k = l  

and the result follows from Theorem 5.1. [] 

Define a matrix M to be locally balanced if A0(M ) =0  for all i,j. It is 
easy to show that a matrix is locally balanced if and only if it is of the form 

M = A + c r, (39) 

where A is antisymmetric and c is an arbitrary n-dimensional row vector. 
In the next section, we will present specific examples where the condi- 

tions of Theorem 5.2 are satisfied. 

6. Weak Gradient Equivalence Property of the Graph Partitioning Problem 

We have discussed previously how to represent the graph partitioning 
problem as a problem on ~ , .  If  we define Se(n) in a slightly different way, 
by adding the identity matrix to the right-hand side of Eq. (8), the new 
cost function tr(Crpr(I, + S~(n))P) differs from the old function by a fixed 
constant, tr(C). The new optimization problem defined on this function is 
clearly equivalent to the original problem. For reasons to be explained later, 
we will use this definition of S~ to represent a graph partitioning problem. 
Hence, from now on, we define 

Se(n)=[Ip lpq]. (40) 
lq,, Iq_l 

We may assume also without loss of generality that all the diagonal elements 
of C are zero and all entries of C are nonnegative. 
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Theorem 6.1. All graph partitioning problems, with the cost matrix 
modified to have nonnegative entries and zero diagonal elements, have the 
weak gradient equivalence property. 

Proof. It is easy to check that, for all 1 < i < j  < n, 

A u ( C ) > 0  and A0-(Se(19))=0 or -2 ,  

if 19 is hyperoctahedral. If  Au(Se(| ) = 0, then 

tr(CrI-l(i,j)S~(19)II(i,j)) = O, 

and the two conditions stated in (16) hold. If  Au(S~,(19))=-2, then 

tr( CrII(i,j)Se(19 )Fl(i,j)) < O, 

and the first condition of (16) clearly holds. Moreover, A,7(Se(19))=-2  
also implies that 

((19o 19 )TS~(19 o 19 ) )• + ((19o 19 ) T s~(19o 19))ji = 0. (41) 

Hence, each of the two terms on the left-hand side of Eq. (41) must vanish, 
and 

((19No.)o (| (| = (19o 19)TS~(19o 19). (42) 

So, 

0(19Nj) = 0 ( e ) ,  

and the second condition stated in (16) also holds. []  

Notice that, although tr(CrPr(I, + M)P)  differs from t r (CrprMp)  by 
a fixed constant, this is not true for the embedded functions 
tr(Cr(19 o 19) r(i ,  + M)(19 o 19)) and tr(Cr(19 o 19) rM(19 o 19)). Thus, choosing 
the new Se is important. We do not expect that this argument for the weak 
equivalence property can be extended to the generalized graph partitioning 
problem. 

7. Flows on One-Parameter Subgroups 

If we restrict the function 77 to a one-parameter subgroup 19 e tn(i'j), 
where 19 is a hyperoctahedral matrix, and define the function to be a U as in 
Eq. (18), it is obvious that ag has a period of  re. Moreover, if 

tr(  1 0 
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then 

dao(t, | 

= 2 sin t(t) cos (t) tr (XrII(i,j) 
k = l  

Hence, its critical points are located at0,  zc/2, 3~r/2, and so on. It follows 
that, if we project the gradient vector field of r 1 onto f~0 and restrict the 
starting point to be on the one-parameter subgroup, then the only critical 
points are | and | Thus, one can mimic the local search procedure by 
projecting cyclically the gradient vector field onto the ~,~ and following the 
flows on the corresponding one-parameter subgroups. 

8. Numerical Studies of TSP 

The condition of Theorem 5.2 does not hold for a traveling salesman 
problem unless the cost matrix is locally balanced. The investigate the 
effectiveness and efficiency of the gradient flow approach for solving the 
Euclidean traveling salesman problem, Wu performed some numerical 
studies in Ref 22. In order to test how restrictive the locally balanced condi- 
tion is, general symmetric cost matrices were used. His study shows that, 
for problems with 10 to 20 cities, a locally optimal tour can be obtained 
routinely quite efficiently, even though the weak gradient equivalence prop- 
erty may not hold. For problems with 30 cities, nonpermutation local solu- 
tions may be obtained. It is relatively easy to obtain permutation matrix 
approximations from these nonpermutation local solutions, and these 
approximations turn out to be nearly locally optimal. While our analysis for 
the traveling salesman problem is limited (providing only a weak equivalence 
result for cost matrices that are locally balanced, our approach leads never- 
theless to an analog, easily parallelizable alternative for solving some small- 
sized problems. 
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