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Truss Topology Optimization 
Including Unilateral Contact I 

A .  K L A R B R I N G ,  2 J .  P E T E R S S O N ,  3 A N D  M .  R O N N Q V I S T  4 

Communicated by K. K. Choi 

Abstract.  This work extends the ground structure approach of truss 
topology optimization to include unilateral contact conditions. The tra- 
ditional design objective of finding the stiffest truss among those of equal 
volume is combined with a second objective of achie~,ing a uniform 
contact force distribution. Design variables are the volume of bars and 
the gaps between potential contact nodes and rigid obstacles. The prob- 
lem can be viewed as that of finding a saddle point of the equilibrium 
potential energy function (a convex problem) or as that of minimizing 
the external work among all trusses that exhibit a uniform contact force 
distribution (a nonconvex problem). These two formulations are related, 
although not completely equivalent: they give the same design, but con- 
cerning the associated displacement states, the solutions of the first for- 
mulation are included among those of the second but the opposite does 
not necessarily hold. 

In the classical noncontact single-load case problem, it is known 
that an optimal truss can be found by solving a linear programming 
(LP) limit design problem, where compatibility conditions are not taken 
into account. This result is extended to include unilateral contact and 
the second objective of obtaining a uniform contact force distribution. 
The LP formulation is our vehicle for proving existence of an optimal 
design: by standard LP theory, we need only to show primal and dual 
feasibility; the primal one is obvious, and the dual one is shown by the 
Farkas lemma to be equivalent to a condition on the direction of the 
external load. This method of proof extends results in the classical non- 
contact case to structures that have a singular stiffness matrix for all 
designs, including a case with no prescribed nodal displacements. 
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Numerical solutions are also obtained by using the LP formulation. 
It is applied to two bridge-type structures, and trusses that are optimal 
in the above sense are obtained. 

Key Words. Unilateral contact, structural optimization, truss topology 
design, maximum stiffness, constant contact force distribution. 

I. Introduction 

A general structural optimization problem may consist in the finding 
of the mechanical structure which transmits given forces to given supports 
in a specified optimal way. The structures allowed to compete in the optimi- 
zation process can be of different types. The present work deals with truss 
structures, i.e., structures consisting of one-dimensional bars that are con- 
nected, without transmitting moments at nodal points. To achieve a large 
number of competing trusses the ground structure approach is used, in which 
a large number of nodal points (up to 231 in this work) and a large number 
of potential bars (up to 12,800 in this work) are given at the outset, i.e., a 
ground structure or a structural universe is specified. The optimization pro- 
cess then chooses the magnitude of bar cross-sectional areas and allows for 
zero bar areas, so that a topology optimization is accomplished. 

The ground structure approach was first used by Dorn, Gomory, and 
Greenberg (Ref. 1) in 1964. They treated essentially the so-called limit design 
problem, where the weight of the structure is minimized subject to equilib- 
rium constraints. Since compatibility conditions are not taken into account, 
this is an optimization of a plastic structure and its meaning relies on the 
theorems of limit analysis; see, for instance, Haftka, Gtirdal, and Kamat 
(Ref. 2). However, Dorn et al. also showed that at least one of the optimal 
structures is statically determinate, and even if such an optimum structure 
is assumed to be elastic, it satisfies the stress constraints. The mathematical 
problem of Ref. 1 is a linear programming (LP) problem and therefore 
numerically appealing. 

There has been recently a revived interest in the ground structure 
approach to truss topology optimization. Rozvany and coworkers [see, for 
instance, Zhou and Rozvany (Ref. 3)] have used so-called continuum-based 
optimality criteria methods to solve large truss topology optimization prob- 
lems. A mathematically oriented approach has been taken in Ben-Tal and 
Bendsoe (Ref. 4), Achtziger, Bends~e, Ben-Tal, and Zowe (Ref. 5), Ben- 
Tal, Ko~vara, and Zowe (Ref. 6), Achtziger (Ref. 7), and Ben-Tal and 
Nemirovskii (Ref. 8). These works treat the minimum compliance problem, 
which is a nonconvex problem. However, a main result of Ben-Tal and 
BendsOe (Ref. 4) is that the minimum compliance problem can be solved 
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by solving another problem that is convex, although nondifferentiable. It is 
a byproduct of the main development of the present work that the physical 
meaning of this second problem is somewhat explained. A result of Acht- 
ziger, Bends0e, Ben-Tal, and Zowe (Ref. 5) is that, in the special case of a 
single-load case, the convex nondifferentiable problem can be solved by 
solving an LP problem; in fact, it is seen that this problem has the same 
mathematical structure as the limit design problem of Dorn, Gomory, and 
Greenberg (Ref. 1). Consequently, by solving the limit design LP problem, 
the solution of the nonconvex minimum compliance problem is obtained by 
a simple rescaling. This result was given also in Hemp (Ref. 9) and it is 
there attributed to Cox. It is also shown in a slightly different setting in Ref. 
3 by Zhou and Rozvany. 

The present work extends the ground structure approach to include 
unilateral contact conditions. Recently, shape optimization for contact prob- 
lems, where the equilibrium potential energy is minimized, has been studied; 
see Haslinger and Neittaanm~iki (Ref. 10), Klarbring (Ref. 11), and Klarbr- 
ing and Haslinger (Ref. 12). In Ref. 11, a discrete problem, which includes 
the present truss problem, was considered. It was shown that minimizing 
the equilibrium potential energy by varying the gaps between the potential 
contact nodes and the rigid obstacles results in a uniform distribution of 
contact forces, which is favorable from the point of view of wear reduction 
and stress concentration. Here, we like to extend the ground structure 
approach to include not only the traditional objective of stiffness but also 
the goal of achieving a uniform contact force distribution. Two formulations 
that reflect these physical objectives are given. The first one, denoted by (cr 
is a direct extension of the minimum compliance problem of Ben-Tal and 
Bends0e (Ref. 4): the work of the external forces is minimized over all 
admissible equilibrium configurations. As a second problem formulation of 
the same physical objectives, we give a saddle point problem, denoted by 
( S ~ ) ,  where the potential energy function is maximized with respect to t and 
minimized with respect to u and g. These two formulations are equivalent in 
the sense that they generate the same optimal bar volumes, but a displace- 
ment solution of the former need not be a solution of the latter. 

We pose also an extension of the limit design problem to the case 
of unilateral contact. As with previous problems, a uniform contact force 
distribution is imposed. This turns out to be an LP problem, denoted by 
(LP)L. 

Some theoretical results in connection with the above-mentioned prob- 
lems are: 

(i) provided the external forces are not applied at potential contact 
nodes only (this condition is precisely stated), optimal solutions 
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(ii) 

(iii) 

can be constructed from the set of  solutions of a dual pair of LP 
problems; 
under a quite intuitive condition on the direction of external 
loads, it is shown that there exist solutions of  the dual pair of  
LP problems;consequently,  problems ( S W ) a n d  (cd) also have 
solutions; 
one of  the problems of the dual pair of LP problems is shown to 
be completely equivalent to problem (LP)L, extending the result 
of Achtziger, Bends0e, Ben-Tal, and Zowe (Ref. 5) to contact 
problems. 

2. Equations of State Problems 

A truss structure which may come into contact with rigid obstacles is 
considered. Let there be N nodal points. Between each such two points, 
there may be a bar. The number of bars is rn _< ( 1 / 2 ) N ( N -  1). In the ground 
structure approach, we assume a large number of bars and the optimization 
process then removes bars to produce an optimum set of bars. The mechan- 
ical behavior of  the bars is expressed through a vector of bar forces s = 
{&} ~ ~m (generalized stresses) and a vector of  bar elongations e = {ei} s ~'~ 
(generalized strains). The deformed configuration of the truss structure is 
represented by a displacement vector uE~  n. Here n=d N-p ,  where d is 2 
for planar trusses and 3 for spatial ones and p is the number of  prescribed 
zero displacement directions. For  simplicity, nonzero prescribed displace- 
ments are not considered. The forces, work-conjugate to u, are similarly 
given by a force vector F~ R ~. The basic static and kinematic relations of a 
truss in the case of  small displacements are then 

F = ~ ~,isi<~F=BTs, (1) 
i=1 

el= 7ru, i = 1 , . . . ,  rn ~=~ e = Bu, (2) 

where 7~ is a vector of  direction cosines, B is a kinematic transformation 
matrix, the rows of  which are yT  and the upper index T means the transpose 
of  a vector or matrix. 

Further, the bars are assumed to be made of the same material which 
in the stiffness maximization problems is a linear elastic one with Young 
modulus E >  0, i.e., 

si=(Ai/li)Eei, i=1  . . . . .  m<~s=De, (3) 

where D=diag{AiE/l~}, and Ai>0,  l~>0, i = 1 , . . . ,  m, are cross-sectional 
areas and lengths of bars, respectively. From (1)-(3), we obtain the 
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structural equation 

F=K(t)u, K(t):=BrDB = ~ tiKi, K~:=(E/I~)~i~ "r, (4) 
i = 1  

where ti=Aile is the volume of a bar and t=  {ti}sN m. It is easy to see that 
K(t) is symmetric and positive semidefinite, since D is a diagonal matrix 
with nonnegative entries. 

In limit design problems, the relevant material property is the constraint 
that the absolute magnitude of the stress in each bar cannot exceed a limit 
or0 > 0, i.e., 

-Ai~o~_~si~AiEro, i = 1 , . . . ,  m. (5) 

A node which may come into frictionless unilateral contact with a rigid 
obstacle is depicted in Fig. 1. Let r < n be the number of  such directions of 
unilateral contact. The kinematic conditions that nodes cannot penetrate 
rigid obstacles are expressed as 

vru<gi, i = 1 , . . . , r e * , C u < g ,  (6) 

where vi is a vector of direction cosines of normals of  the obstacle surfaces, 
C is the kinematic transformation matrix formed from these vectors, g = 

/ ::,,  iiiiiiiii!iiiiiiii!iiiiiiiiiiiiiiii  ,, .... 
iii!i!i!i!i!ii!i!iiii'  : 

.... ~iiiililiiiiiiii!iiiiiiiiiiiiiiililiiiiii~ .... ================================= 

Fig. 1. Node that may come into frictionless unilateral contact. 
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{gi} e R r is a vector of initial distances between nodes and rigid obstacles. 
Note that several directions of unilateral contact can be prescribed at each 
node. The total force F is assumed to be made up from the prescribed forces 
f a n d  forces due to contact Fc, i.e., F = f +  Fc. The frictionless condition that 
the forces due to contact are directed normally to the obstacles is expressed 
as  

F~ = F - f =  ~ vipl <:~ Fc = F - f  = C rp, (7) 
i - - 1  

wherep = {pi} ~ W is a vector of contact forces, work-conjugate to the vector 
Cu of contact displacements. Further, adhesionless contact requires that 

pi<_ O, i= 1, . . . , r ,r (8) 

finally, ruling out action at a distance gives 

P~(vT u --gi) = O, i = 1 , . . . ,  r r C u - g )  = O. (9) 

3. Maximizing Stiffness with Constant Force Distribution 

Assume linear elastic bars with no stress constraints. The state problem 
of finding a displacement u ~  n and a contact force p ~ r  for given cross- 
sectional areas and contact distances is obtained from (4) and (6) (9), 

K(t)u = / +  Crp, (10) 

Cu<_g, p _ 0 ,  p r ( C u - g ) = O .  (11) 

It can be seen (Ref. 13) that these conditions are the KKT conditions of 
the quadratic programming problem of minimizing the potential energy 

l'I,(u) = (1/2)urK( t ) u -  f ru (12) 

over the set 

~ge = {ue ~"l Cu <g} 

of kinematically admissible displacements. 
We note also an extension of the Clapeyron theorem to problems involv- 

ing unilateral contact, 

(1 /2)urK(t )u  = ( 1 / 2 ) f r u +  (1/2)prg, (13) 

which follows directly from (10) and (11). Clearly, the familiar statement 
that "the external work equals the strain energy" does not hold in general 
unless g = O. 
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As design variables we take the volume of bars t={t~}~[~ m and the 
contact distances g = {gi} ~ ~r. Design constraints are 

f m } t e J - =  t ~  m ~' t i -- lrmt=V,O<_t , 
\ I i = 1  

(14) 

g~(~= e l~r i~=lgi=l fg=O �9 (15) 

Here, la=(1 . . . .  ,1) r is a vector of length a and V>0 is the given total 
volume of the bars. It may be noted that (14) defines a compact subset of 
Nm, while the subset of R r defined by (15) is unbounded. The constraint on 
g represents a constant volume of the gap, which is in fact taken to be zero. 

Our goal in this section is to formulate the problem of finding t e J  
and g ~  such that the structure represented by (10) and (11), or by the 
equivalent minimization problem, is as stiff as possible among all structures 
that have a constant contact force distribution. An elementary basic lemma 
is then given below. 

Lemma 3.1. The following sets contain exactly the same elements: 

A = { u ~ [ R " [ ~ g ~  r such that Cu<_g, l f g = 0 } ,  

q / = { u e  n T < Ilr CU__0}. 

Proof. 
(i) A c q/. This follows directly from lYCu < lYg = 0. 
(ii) q / c A .  For arbitrary u~q/, we will find some g such that C u < g  

and lYg = 0. If  lYCu  = O, we can simply take g:= Cu. Suppose that 

lrcu = ~ (Cu)i<0. 
i = 1  

Define the two disjoint index sets 

J =  {i~{1 . . . .  , r}l(Cu)i<O}, (16) 

K = { i e { 1 , . . . ,  r}l(Cu),>_O}. (17) 

Clearly, J r  ~ .  Denote the number of elements of J by M, M >  0, and define 

a: :=- -M-11 f  Cu>O. (18) 
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Now, g~ ~r is constructed as 

I(Cu)i + ~c, if i6J, 
gi:= (( Cu)i, if ieK. 

It is easy to see that g e ~  and Cu<g. [] 

An element ge  .9 corresponding to u e q / a s  in the 1emma will be denoted 
by gu. 

Remark 3.1. For  future use, we note that the sets ~', ~'g, J -  all satisfy 
some constraint qualification (for the K K T  conditions), since the functions 
in the inequalities defining the sets are all affine. 

It turns out that there are several different formulations of the intuitive 
goal of maximizing stiffness while having a constant force distribution. 
Below we present two such formulations. 

3.1. Minimizing External Work. We give a theorem that characterizes 
all instances of  (10) and (11) that correspond to a constant contact force 
distribution. 

Theorem 3.1. 

K(t)u = f +  Crp, 

Cu<g, p<_O, 

p = - A I , ,  A > 0 ;  

For  fixed t E g ,  let (u,p, g, A)ER ~ x Nr x fr ~ satisfy 

(19) 

pr(Cu - g) = 0, (20) 

(21) 

i.e., the structure is in an equilibrium state with constant contact force 
distribution. Then, (u, A) e Nn x R satisfy 

K(t)u=f-  WA, W:= C r l r ,  (22) 

W r u < 0 ,  A>_0, A W r u = 0 .  (23) 

Conversely, let (u, A)~ Nn x ~ satisfy (22) and (23). Then, there exist p~ Rr 
and g e ~  such that (u,p, g, A)eN"  x ~" x ~ x ~ satisfy (19)-(21). 

Proof. The first claim follows since g e ~ satisfies 1Tg = 0. The converse 
follows from the definition p : = - A l r  and Lemma 3.1. []  

We note that (22) and (23) are sufficient and necessary K K T  conditions 
for u to minimize the potential energy in (12) over the set q/. 
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If we take the external work as a measure of flexibility, the following 
problem of minimum compliance can be stated: 

(cg) min (1 /2 ) f  ru, 
( u , A , t ) ~ 5  ~ 

where 

5 ~  {(u, A, t )sN" x N x RmlK(t)u+AW=f, A>O, 

A W r u = 0 ,  WTu<_O, lmrt = V, t>0}.  

The interpretation of problem (cg) is that, among the whole class of admis- 
sible designs with constant contact forces, we pick one that yields the stiffest 
structure; a posteriori, one can then pick an admissible gap g from u as 
described above in congruence with the optimal triplet (u, A, t). 

There are several reasons for making this choice of objective functional. 
The resulting optimal structures will exhibit features such as uniform stress 
and contact pressure distributions, small displacements, and constant strain 
energy density. Furthermore, it will be possible to perform meaningful quali- 
tative analysis; e.g., necessary and sufficient optimality criteria and existence 
proofs can be obtained. 

3.2. Saddle-Point Formulation. The physical objectives represented by 
problem cg, i.e., maximum stiffness and uniform contact force distribution, 
are given an alternative formulation in this subsection. 

Consider the following extended potential energy function: 

(u, g, t) ~-~ ~(u,  g, t) = Hi(u) + I~r + Iyz(u, g) - Ig-(t), 

where for a general set C, 

0, if xeC, 
Ic(x)= +0% if xq~C, 

is the indicator function of C and 

x = {(u, g ) ~ ~  x ~r I Cu<_g}. 

It can be realized, with the aid of, e.g., Corollary 34.2.4 in Ref. 15, that 
is a closed property convex-concave function. It is of no concern whether 
we set + oo - oo equal to + oo or -oo.  

As was shown in Ref. l 1, minimizing the equilibrium potential energy 
over • results in a uniform distribution of contact forces. As indicated 
previously, the equilibrium potential energy is found by minimizing H,(u) 
over ueqlg. Performing these two minimizations simultaneously gives the 
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following problem for fixed t e3 - :  

Find (~, ~) e Nn x ~r such that 

qJ(tT, ~, t) < W(u, g, t), V(u, g) e ~n >( ~r. 

Indeed, 

inf qJ(u, g, t) = inf {IIt(u)[ (u, g) e s f ,  g ~ }  = inf{Ha(u)l u E~//}, 
u ,g  u ,g  u 

with the aid of Lemma 3.1. The minimization problem given by the last 
infimum has (22) and (23) as K K T  conditions. Thus, this problem charac- 
terizes completely a structure with uniform contact force distribution. 

Traditionally, maximum stiffness problems are formulated as maximiza- 
tion of  equilibrium potential energy. The motivation for this is the Clapeyron 
theorem, which gives the equivalence between the potential energy and the 
negative of  external work. As shown previously in Eq. (13), this equivalence 
generally does not hold for contact problems, due to the contact nonlinearity. 
Nevertheless, the next lemma shows that it actually holds for the subclass 
of  structures characterized by (22) and (23). 

Lemma 3.2. For any (u, A, t ) e5  ~, it holds that 

Hi(u) = inf H t ( v ) - - - ( 1 / 2 ) f  ru. 
o ~ q /  

Proof. The fact that 
Tucker conditions for 

II,(u) = min H,(v) 
v ~ag  

are satisfied. Moreover, 

IIt(u) = (1/2)urK(t)u - f  ru -- (1/2) u r ( f  - A W) - f  ru 

= - ( 1 / 2 ) f r u  - ( 1 / 2 ) A W r u  = - ( 1 / 2 ) f  ru, 

from the definition of  5 e. 

(u, A, t ) e 5  e means that the sufficient Kuhn-  

[] 

Thus, besides selecting g to get a structure of uniform force distribution, 
we want to maximize the potential energy to get a stiff structure. This objec- 
tive results in the following saddle-point problem: 

(Sq  ~) Find (~7, ~, t ) e ~ "  x ~r X ~"  such that 

qJ(~, g, t) _< q'(~7, g, t') < ~(u,  g, t), V(u, g, t) e N" x Nr x N". 

Similarly to the fact that g does not appear explicitly in problem (cg), it is 
possible to reduce problem ( S ~ )  to a problem not containing g. 
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Theorem 3.2. Let (/~, g, i)  e R n X  Rrx Rm be a solution of problem 
(SW). Then, (g, ?)eq/x J solves the following problem: 

(SH) Find (~, i ) eq /x  ~ such that 

rI,(a) < I]7(a) < rl~(u), V(u, t) e ~, x j .  

Conversely, if (~, i ) eq /x  J is a solution of problem (SI-I), then there exists 
gel# such that 07, g, i) eR~x ~ x  ~m solves problem (Sty). 

Proof. Let (g, g, i) solve problem (STY). Such a solution belongs, by, 
e.g., Corollary 36.3.1 in Ref. 15, to the effective domain of ty; by Lemma 
3.1, geq/. Therefore, 

Also, 

ty(~, ,~, t) = 1-[t(~), VteY. 

qJ(u, gu, i) = r/flu),  V u e ~ ;  

so, by choosing g=gu in problem (Sty), the first claim follows. 
If (~, 1) solves problem (STI), it can be seen that (~, g, 1) solves problem 

(StF) by taking ~:=g~ and observing that 

H~(u)=ty(u, gu, i)<ty(u,g, t'), V(u,g)eq/x ~r, [] 

For any pair (~, ?) solving problem (SI-I), it is understood that ~ is the 
equilibrium state for i; furthermore, for any t with equilibrium displacement 
u,, we have 

n,(u,) <_ n,(a) _< n~(~). 

Hence, the equilibrium potential energy is maximized, and this saddle point 
represents the maximum stiffness also. 

Remark 3.2. Associated with any saddle-point problem, there are two 
dual optimization problems; see Rockafellar (Ref. 15). In the case of prob- 
lem (SI-I), the objective functions of these dual problems are 

Y ~ t  ~ Ip(t) = inf [ I t (u )  e ~  t..) {--00}, 
uE~' 

(24) 

q/9  u ~ ~(u) = sup I-It(u) e E. (25) 
t~ -  
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The first one [see (24)] will be utilized in Section 8. Concerning the second 
one [see (25)], note that the sup is actually attained (hence, no + oe to the 
right), and it can be shown that 

~t(u)= V max {(1/2)urKiu}-- fru,  (26) 
i ~ 1 , . . . , m  

which turns out to be the convex nondifferentiable problem defined and 
used extensively by Ben-Tal and Bends0e (Ref. 5). 

3,3. Assumptions, Subsequently, we will show some existence and 
equivalence results. To that end, the following assumptions will be needed: 

(A1) for every A>0 ,  it holds that C r l r A e f ;  
(A2) for all ueq/such that Bu=O, it holds t h a t f r u < 0 .  

Loosely speaking, Assumption (A2) says that any kinematically permis- 
sible rigid body displacement u and the applied forcefform an obtuse angle 
(see Fig. 2) ; Assumption (A1) says tha t f i s  not entirely applied at potential 
contact nodes. Whenever any of these assumptions is used, it will be men- 
tioned explicitly. 

4. Limit Design Problem 

For given cross-sectional areas and contact distances, the statically 
admissible vectors of bar forces and contact forces satisfy 

-A:ro<_Si<_Aiffo, i = 1 . . . . .  m, (27) 

BTs=f+ CTp, p<_O. (28) 

The lower-bound theorem of limit analysis can be extended to unilateral 
contact [see Telega (Ref. 14)]; thus, any load f~  ~m for which an element 
(s, p)e  ~'~• It~ r that satisfies (27) and (28) exists is a safe load. 

In the case where g ~ r  is a design variable, we may expect intuitively 
that this vector can be adjusted so that the contact force vector becomes a 
constant vector, i.e., 

p =  -IRA, 0 _ < A ~ .  (29) 

Equation (28) is then replaced by 

Brs = f -  WA, 0 _ A. (30) 
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Fig. 2. 

( )  

( u 

f 
Directions of kinematically admissible displacements and applied force. 

A limit design problem where the objective function is the volume of 
the structure can now be stated: 

(LP)L min ~ ti, 
(t,s,A) i =  1 

s.t. (t, s, A) ~ ~"  x ~"  x ~+, 

-ti(7o<_sili<_ti~o, i = 1 , . . .  ,m, 

Brs =f-  WA. 

In the next section, we will see how problems (cg) and (STI) relate 
to problem (LP)L. Note that the nonnegativity constraints for the ti are 
superfluous, because of the inequality constraints in (LP)L; note that we 
have supposed a0 > O. 

5. Optimality Conditions 

In this section, we study the optimality conditions for problems (~) 
and (SI-I). We start with the second problem. 

Theorem 5.1. Problem (SYI) has a solution (fi, ? ) sq /x  ~-- if and only 
if there exists A E R such that: 

(j) (~7, 5,, ?)eAr; 
(jj) t i=  0, whenever (1/2)~rKi5 < maxi= 1 ..... (1/2)~TKi~. 
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Proof. The function 

(u, t) w-, rb(u, t) = I-It(u) + Lu(u)  - I j - (  t) 

has a saddle point at (~7, ?) if and only if the convex function ~ ( . ,  ?) achieves 
its minimum at ~ and the concave function O(~, �9 ) achieves its maximum 
at t. Such a saddle point necessarily belongs to the effective domain, and 
the saddle value is finite; see, e.g., Corollary 36.3.1 in Ref. 15. Therefore, 
(ti, ?) is a solution of problem (SI-I) if and only if 

0e~O(~ ,  ?), (31) 

0~20(z7, ?), (32) 

where d l*  is the convex subgradient of  * with respect to the first argument 
and 02q) is the concave subgradient of  (I) with respect to the second argument. 
Since Fl,(u) is strictly differentiable, (31) is equivalent to 

0 ~ {K~7-f } + N~(zT), (33) 

where N~u is the normal cone of q/. It necessarily holds that ?~Y-; therefore 
(33) is exactly condition (j). Analogously, (32) means that, for some A.~ 
and ~i~ ~, i=  1 . . . .  , m, it holds that 

~tTKiu = ~ -  ~i, i =  1 . . . . .  rn, 

~,.t~= 0, ~,.>0, t i>0,  i=  1 . . . . .  m, 

l r ?  = V; 

by taking 

A,= max (~rK~), 
i = 1 , . . . , m  

this is easily seen to be equivalent to condition (jj) and t~ - - .  [] 

Theorem 5.2. If (~, ~ ,  ?) satisfy conditions (j) and (jj) in Theorem 
5.1, then (~, ~,, ?) is a solution to problem (g). 

From the above theorem, in order for a triplet (u, A, t) to solve the 
maximum stiffness problem ((g), it suffices to check that: (j) (u, A, t) is 
feasible in (~f) ; and (jj) a bar is removed (its volume is zero), as soon as its 
strain energy density is not on the maximum level. 

Proof. Let (u, A, t )e5  ~. Then from Lemma 3.2, it holds that 

_> n,(u). 
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Moreover, we can write 

n,(~) = n~(~) + ~ ( t , -  ?,)(1/2)UK~7. 
i = 1  

It will be shown that the last term is nonpositive; then, the theorem follows 
from Lemma 3.2. Let /~  be the subset of  { 1 , . . . ,  m} such that ?i#O; let/~ 
be its complement; and let 

/.:= m a x  ((1/2)~tTKi~l). 
i - -  l , . . . , I n  

Then, from l~rt = V and condition (jj), one finds that 
m 

Y, (t,-'{i)(1/2) ~trK,fft=-v2+ E t,Z+ E t,(1/Z)?tTK, a 
i = 1 i ~ R  i ~ R  

= E ti((1/2)arKa-;O, 

and the last term is clearly nonpositive. []  

That the converse [i.e., that (~, A-, ?) solves problem fig) implies that 
(~, t) solves (SH)] does not hold can be understood from the following 
example. 

Let to := (V/m)lm represent a sufficiently large ground structure, and 
suppose that (g, ~ ,  ?) solves problem fig). It is more than likely that ? 
contains many zero components, so that 

dim X(K(? ) )  > dim Y(K(to))  ; 

here, dim jlr(A) means the dimension of the null space of  A. Let u~ be such 
that u~JV'(K(~)), but us-LJV(K(to)). Then, us can be a displacement at a 
node that is such that any bar connected to the node has zero stiffness; see 
Fig. 3. The node is neither a potential contact node, nor is such that it is 
on the boundary where forces are prescribed. Now, 

u*:=~+u~,  

together with/~ and ?, will still solve problem ~g, since 

(u*, A, [ )~5  r and Hffu*)=I-Iff~). 

If  (u*, ?) solves problem (ST/), then 

I-It(u*) < Hffu*), Vt ~ J ' .  (34) 

Picking t = to, realizing that I-It0(. ) is coercive for our choices of  u*, and 
letting lull ~ + ~ ,  one obtains a contradiction to (34). Note that this u* also 
fails to satisfy condition (jj) of  Theorem 5.1. 
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Fig. 3. Illustration of example showing that the converse of Theorem 5.2 does not hold. 

In the above sense, the solutions of  problem (SI-I) are finer than those 
of  problem (<g). 

6. Linear Programming Problems 

The last section made clear that problems ((g) and (STI) are both solved 
if we can find a triplet (tT, ~ ,  ~') that satisfies conditions (j) and (jj). In this 
section, we will see that this quest can actually be achieved by solving a 
linear programming (LP) problem. 

For fixed matrix B, vectors W and v = k ( l l , . . .  ,lm) r, and scalar 
k=4~2~VE, we state the following conditions for (tER n, p+={p+}~R m, 
p - =  {pi-} e R  m, and A e R :  

WA + BT(p + -- p- )  =f ,  (35) 

wT~<o, (36) 

Bt7 < v, - B ~  < v, (37) 

A_>0, p + _ 0 ,  p - > 0 ,  (38) 

WrftA = 0, (39) 

(B~-  v)rp + = 0, (40) 

(B~ + v)Tp - = 0. (41) 



JOTA: VOL. 87, NO. 1, OCTOBER 1995 17 

Standard LP theory shows that these conditions are the necessary and 
sufficient optimality conditions of the following LP problem and its dual: 

(LP) max f r ~ ,  
t T ~  n 

s.t. wT~_<0, 

B~ < V, 

- B f t < _ v ;  

(LP)d min v r ( p  + + p-), 
(p+ ,p- ,A)  

s.t. (p+, p-, A) e Rm x ~m X ~, 

W A  + B r ( p  + -- p - )  = f ,  

A>0,  p+>0, p ->0 .  

The next two theorems show that these LP problems are somewhat 
equivalent to conditions (j) and (jj); as a consequence of Theorem 5.1, they 
are also equivalent to problem (STI). 

Theorem 6.1. Suppose that ~e~" solves problem (LP) and tl~at 
(p+, p-, ~.)e ~mx ~mx ~ solves problem (LP)d, or equivalently that they 
satisfy (35) through (41). Define ~e~  n and ?e~  m as 

~:=p~, ?:= p-1(o9+ + o9-), 

where 

and 

o9+ = o r - -  

o9 + = p + x / V / 2 E l i ,  o9~- = p ; x / ~ / 2 E l i ,  i =  1 . . . .  , m,  

]./:= V-I lmT((0+ + O9-). 

Then, provided Assumption (A1) holds, p > 0; so, ? is well defined and the 
triplet (~, ,g,, ?) satisfies conditions (j) and (jj). 

ProoL First, we show that p > 0. Clearly, p > 0 since all of the follow- 
ing quantities are nonnegative: V, l;, p+, p[. Suppose that/a = 0. Then, (35) 
gives 

AW=f,  (42) 
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since necessarily 

p+=pF=O, i fg  =0;  

note that l;> 0, V> 0. Now, (42) is impossible because of Assumption (A 1). 
(Claim that K(?)5 + ,~  W=f). From (LP)d, we know that 

W+ BT(p + -- p-) =f, 

so it is sufficient to show that 

Br(p + - p - )  = K(?)~. (43) 

From (40) and (41), we have 

(~,TS-kl~)p[=O, Vi, (44) 

(T,Tft+kl~)p?=O, Vi. (45) 

Now from (4), 

K(t)5= ~ [,K,5 = ~ (o97+o97)E/@,rf~, 
i = l  i ~ l  

= E (p? + p;)(1/kt,)r,rTa. (46) 
i = 1  

Taking (44) and (45) into account, (46) yields (43). In fact, 

r(i)a = Z (r,lkt,)(kt, p ; -  kl,p;) 
i = 1  

= ~. (p+  - p F ) r , =  B"(P  + - P - ) .  (47) 
i = 1  

(Claim that l r ?  = V, ?>0).  For any i, clearly 09[20, o9720, and/1 >0, 
so necessarily i" > 0. Moreover, 

~ [ i  =**-' 1~(o9 + + co-) = v, 

by the definition of/ t .  
(Claim that A_>0, ~WTa=O, WT~<_O). From (36), we get 

wT~=~W~<_O, 

and from (LP)d, 

A_>O, .g, Wr5= 0 
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follow from (38) and (39). Now, condition (j) is established and condition 
(jj) remains. Suppose that 

(1/2)~rKia< max ((1/2)~TKe~), 
i =  l , . . . , m  

for some particular i. We have to show that ?i=0. Note first that, for 
any i, 

" r-'2<k212 2l~/VE. (48) - v < B S < v  ~ tYi u) _ i = 

Since p > 0, what we have supposed implies that 

~rKi~< max (~rK~). 
i= l,...,m 

By (4), this means that 

(E/12)ftrTz~?Tf~= (E/12)(~'ffO 2 < max {(E/l~)(T/rf4)2), (49) 
i = l , . . . , m  

and by (48), 

(E//~)(Tf~) 2 < 2 /v .  (50) 

Now, if either p{ r  or p,--r it follows from (44) and (45) that 

(~,fS) 2 = k2l~ .~ (E/l~) (r~a): = 2 /v .  

This contradicts (50), and hence p,+ = p~-= 0, and necessarily ti = 0. [] 

Corollary 6.1. Suppose that ~ solves (LP) and that Assumption (A1) 
holds. Then, problem (cg) has a solution; between the optimal values of 
problems (cg) and (LP), the following relation holds: 

opt (c~) = (1/4)[opt(LP)] 2. (51 ) 

Proof. Suppose that ti solves problem (LP); cf. Theorem 5.1. Then, 

opt(Cg) = (1/2)fT~ = (p /2 ) f  TS. (52) 

By the definition of p, we have 
m 

/ t= (1 /V)  ~ x / - V ~ ( p +  + pT)l, .=(l/k 2x/~E--v) ~ kl~(p+ + pT) 
i = 1  i = l  

= (1/2)vT(p + + p-) = (1/2) opt(LP)~. (53) 

It is well known that, if problem (LP)d has a solution, then so does problem 
(LP) and the optimum objective values coincide. Hence, (52) and (53) 
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together imply that 

opt(Cg) = (1/2)f  ~ (  1/2) opt(LP) = (1/4) [opt(LP)]2. (54) 
[] 

Theorem 6.2. Let the triplet (~, ~, ?) satisfy conditions (j) and (jj). 
Then, provided Assumption (A1) holds, 

p2:=(V/2) max (~rKi~t)>O. 
i =  l , . . . ,m  

Furthermore, define 

and, for i= 1 . . . . .  m, 

:= ~ P ~ ( t ' i / l , - ) ,  if 7T~t=klip, p,.+ / 

(0, otherwise, 

p~. :={~, 2~( i i / l i ) ,  if Tf~=-kl~P'otherwise. 

Then, fi solves problem (LP) and (p+, p-, .g,) solves problem (LP)d, or 
equivalently they satisfy (35) through (41). 

Proof. We will first show the strict positiveness of p2 and then verify 
(37), (40), (41), (36), (38), (39), and finally (35). 

Condition (jj) can equivalently be written as 

(jj) there exists p >0 such that 

(V/2)aTKift<_p 2, i = 1 , . . . ,  m, 
ti((V/2)ftrK~ft-p2)=O, i= 1 , . . . ,  rn. 

Furthermore, 

(1/2)arK(t)~ = ~ ?g(1/2)aVK~t = ]A 2, 
i = l  

so p2 equals the strain energy. Assumption (A1) and condition (j) imply 
that 

K(?)ar 

In order to show that/~2> 0, it now suffices to come to the conclusion that 

(U2)aTK6)a= o implies K(7)a = 0. 
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Since 

we have 

K(?) = O ~ D S ,  

a~I,:(?)c, = 0 ~ (B~7)~D(8~7) = 0, 

and from the definitions of  B and D, this means that 

i=1 

Hence, 

Vi. 

co;_ := Ip?i,  if y r~=  ~2/EVI~, 
(0, otherwise, 

coi-:=I p?i '  if 7r~=-x /2 /EVl i ,  
(0, otherwise. 

•TK(?)• = 0 implies K(?)n = 0. 

In fact, by (4), 

K ( ? ) a :  ~ tiKi~ = ~ (E/l~)7i(~,T?i6)=O. 
i ~ l  i = l  

Therefore, 

K(?)~#O ~ //2>0. 

We use this in condition (jj) and introduce the vector ~ as in the theorem. 
Equivalently to condition (jj), we then have the following condition: 

(jj) ftTK~f~<2/V, i = 1 . . . .  , m, 

?~(ftrK~ft-Z/V)=O, i = 1 , . . .  ,m. 

We now take into account the structure of  K ,  i.e., 

If,.= (E/12)7~7 y. 

Then, for i=  1 , . . . ,  m, 

(tTKiu <_ 2 / V  ~ (TT~)2(E/l~) < 2 / V . ~  (-),~'~t < l, 2x/f~V , 

which are conditions (37). The second condition in (jj) now implies 

p~(TTgt--I,x/Cf/EV)(TT~+lex/~/EV) =0, V/. (55) 

Define the vectors co+ = {co, .+ } and co- = {co;} according to, for i=  1 , . . . ,  m, 
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By (55), it can be verified that these vectors possess the following properties: 

(O;(~/T~l-- l i2~) = 0 ,  (56)  

(Oi- ( ~lTu'~ li ~ )  =0, (57)  

(58) 

09->0, 09+_>0. 

The vectors p-  and p+ are now related to 09 + and 09- as in Theorem 6.1; 
therefore, (56) and (57) imply (40) and (41). It is also immediate that condi- 
tion (j), with a rescaling by p > 0, implies (36), (38), and (39). 

What is now left to show is that the second term in (35) equals K([)~. 
Using (56) through (58) and the definition of ~, one finds that 

K(i)~/= ~ i, Kiz/= ~ (09+ + 09~)(E/12)TiYT~ 
i=1 i=1 
m 

= E 
i=1 

from which 

K(?)F~ = BT(p + -- p-)  

follows, by taking the relation between the p's and the 09's into account. 
[] 

Theorem 6.3. Suppose that (i, g, A) solves problem (LP)L. Define 

p/~ := max{0, 3i}, p~-:= max{0, -~.). 

Then, the triplet (/5+,/5-,/k) solves problem (LP)d. Conversely, suppose that 
the triplet (/5+,/5-, A,) solves problem (LP)d. Define 

3:=/5+ - /5- ,  1, := (l , /oo)(p +, +/5;-). 

Then, the triplet (i, g,/~) solves problem (LP)L. 

Proof. Suppose that the triplet (7, 3, ~) solves problem (LP)L. Set 

/57 := max{O, 3,}, pj-:= max{O, -3,}. 

Now, the triplet (/5+,/5-, ~)  is feasible in problem (LP)d ,  since 3=/5 +-/5-.  
Take any feasible triplet (p§ p-, A) in (LP)d and 

ti:=Cxo~li(p~-+ pT), s i = p ~ - p ; .  
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By inspection, 

BTs = Br(p + - p-)  = f -  W; 

since p[  and P7 are nonnegative, we have 

-- (70 ti <~ -- pT li <-- Sili <~ p~-li < (70 ti, 

so the triplet (t, s, A) constructed this way is feasible in problem (LP)L. 
Therefore, 

t i <  ~ (7o' l i (p  + + p : ) .  (59) 
i = 1  i = 1  

Since the ti's are minimized in problem (LP)L, it follows that the upper or 
lower bounds in the inequality constraints are attained for ?. Hence, 

(7ol/e1~1 = ?i, i= 1 , . . . ,  m. (60) 

Since 

I~,l = P ? + P F ,  

(60) in (59) yields that the triplet (p+, p-, /~) solves problem (LP)a. 
The converse will be shown in a very similar way: Suppose that the 

triplet (/5 +,/3-, .~) solves problem (LP)d. As above, it is realized that the 
triplet (i, g, ~)  is feasible in problem (LP)L, 

?i:=(7o~l,(p+ +p-), ~ : = p + - p - .  

For arbitrary (t, s, A) feasible in problem (LP)L, the triplet (p§ p-,  A) 
defined by 

P7 := max{0, si}, p~-:= max{0, -si} 

is feasible in problem (LP)a, and hence 

i = 1  i = 1  

:::> ~ k(7oti ~-~- ~ k[iIsil ~ ~ kti(7o 
i = 1  i = l  l = l  

i=l i=l 

Corollary 6.2. Between the optimal values of problems (LP) and 
(LP)L, the following relation holds: 

opt(LP) = k(7o opt(LP)c. (61) 
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Proof. Let/5 +, 15-, ?,- be solutions as described in Theorem 6.3. Then, 

opt(LP)a = ~ k/,(/37+/37)= ~ kao"[~ 
i = 1  i = l  

= kao ~ t~= kao opt(LP)L. 
i = 1  

Indeed, 

opt(LP) = opt(LP)a, 

and (61) follows. [] 

Apparently, the solutions ? obtained from problem (LP)L give the opti- 
mal topology of the truss for both the plastic limit design problem and the 
maximum stiffness problem fig). Identifying the matrices B and C from the 
structure under study and f, it is only a question of using an LP solver, 
capable of determining dual variables/multipliers, to solve problem (LP)a, 
or (LP)L if preferable, and by a simple rescaling obtain solutions to problems 
(c.g) and (LP)L. This will be done in Section 9. 

7. Existence of Solutions 

The details about the relations between the major formulations are dealt 
with at this stage, and we will turn to the question of existence of solutions. 
Assumption (A2) will ensure the nonemptiness of the feasible sets, and this 
in turn will be sufficient for the existence. 

First, Assumption (A2) is brought into a more practicable form. 

Lemma 7.1. Assumption (A2) holds if and only if there exists a triplet 
(p+, p-, A) ~ ~m X R '~ • ~ such that 

AW+ Br(p + - p-)  =f, (62) 

with A>0,  p+>0, p ->0 .  

Proof. 
(If)  Take arbitrarily u such that w r u  < 0 and Bu = 0. Multiplying the 

transpose of (62) with this u gives 

A Wru + (p+ - p-)rBu = f  ru, 

and hence f r u < O. 
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(Only If)  By the Farkas lemma (cf. Ref. 15), we have that either 

E  li +l B T p =f~  p + ~ O ,  

- B  p- p->O 

(63) 

has a solution, or 

- B  _1 

fru>O (64) 

does. Given Assumption (A2), we can see that (64) cannot hold for any 
u e Nn; therefore, (63) necessarily holds for some triplet (A, p+, p-). Indeed, 
(63) is (62). [] 

Now, we are ready to show the existence of solutions of problems (LP) 
and (LP)a', after that, we will obtain the existence of solutions to all of 
the interesting optimization problems stated so far, in a rather immediate 
corollary. 

Theorem 7.1. There exist solutions to problems (LP) and (LP)d pro- 
vided Assumption (A2) holds. 

Proof. By duality theory for LP problems, it is sufficient to show that 
the feasible sets for problems (LP) and (LP)d are both nonempty. Clearly, 
0eN" belongs to the feasible set in problem (LP); problem (LP)a has a 
nonempty feasible set due to Assumption (A2) and Lemma 7.1. [] 

Corollary 7.1. Problems (~g) and (SH) both have solutions whenever 
Assumptions (A1) and (A2) hold. 

Proofi By Theorem 7.1, there are solutions to problems (LP) and 
(LP)d, and hence also to conditions (j) and (jj) according to Theorem 6.1. 
Now, the statement follows from Theorem 5.1 and 5.2. [] 

Remark 7.1. One might suggest to show the existence of solutions to 
problem (SI-I) above by the general theory, e.g., from Ekeland and Temam 
(Ref. 16), but because of the rather weak Assumption (A2), the potential 
energy function does not in general have the required coercivity in u. 
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8. Further Equivalence 

Theorems 5.1 and 5.2 show that a vector ? of volumes that is part of 
a solution of problem (SH) is also part of a solution of problem (~g). Once 
we have the existence results of the previous section, it is possible to show 
the converse of this result. To that end, define the function q~ as 

J -~ t  ~ (0(t)= inf H l ( u ) ~  • {-oo}, (65) 
u e q /  

and consider the following related problem: 

(q~) Find ?z J-  such that 

q~(t) > ~p (t), WE~.  

From some simple properties of saddle points, we have the following 
lemma. 

Lemma 8.1. Suppose that Assumptions (A1) and (A2) are satisfied. 
Then, any ? ~ g-" that solves problem (~p) is part of a saddle point of problem 
(SH). Conversely, given any saddlepoint (g, ?)Er215 Y, we have that ? solves 
problem (~p). Furthermore, the optimum value of problem (~) coincides 
with the saddle-point value. 

Theorem 8.1. Suppose that Assumptions (A1) and (A2) hold. If 
(g, ~, ~)e5 p solves problem (cg), then ? e Y  is part of a solution of problem 
(sn). 

Proofl By the first statement of Lemma 8.1, what we have to conclude 
is that 

opt(~p) = ~o(t). 

From Lemma 3.2, we have 

opt(Cg) = (1 /2) f  rt~ = - H i  (fi) = - q~ (?): (66) 

Moreover, by Corollary 7.1, there exists (Us, ts) that solves problem (SH);  
recalling the definition of problem (SH), the last assertion of Lemma 8.1 
yields 

opt(q0 = ~p (t~) = I-Its(u~ ). (67) 
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Theorems 5.1 and 5.2 give the existence of some As > 0 such that the triplet 
(us, As, ts) solves problem (c~), and hence 

opt(Cg) = (1/2)frUs. (68) 

Rewriting (68) according to Lemma 3.2 yields 

(1 /2 ) f  ru~ = -Flts(u~). (69) 

Comparison between (67) through (69) results in 

opt(~o) = -opt(Cg), 

and hence by (66), 

opt((o) = ~0 (?). [] 

9. Numerical Results 

In this section, we will obtain structures of maximum stiffness and 
constant contact force distribution by solving linear programming problems, 
as indicated in Theorem 6.1. It will be shown how the condition of constant 
contact forces influences the topology. 

The implementation was done in FORTRAN 77 and executed on a SUN 
SVARC-ELC workstation. As solution procedure for the linear programming 
problem, we have used the SIMVI~EX code in the XMP library; see Marsten 
(Ref. 17). The LP models are typically sparse: the number of nonzero ele- 
ments in the constraint matrix is limited between 0.43% and 1.90%. 

We mention that it is possible to generalize to cases where the truss 
structure has z disjoint regions of potential contact nodes, in each of which 
the distribution of contact forces is constant. For details, see Ref. 18. Instead 
of solving problems (LP) and (LP)a in the previous form, one solves problem 
(LP) with W replaced by W,.=CTlni, corresponding to the ith contact 

Z region, and solves problem (LP)a with WA replaced by ~i= 1 W,-A;. As a 
special case of the generalization, namely when r = z, one can obtain the 
optimal topology in the case where the initial gap is not a design variable 
but fixed to zero at all potential contact nodes, This is done in test example 
B2. 

We have chosen two bridge-type plane structures; see Table 1. The 
structure is unilaterally supported from below at the two ends; between 
these, there are downward forces acting on the lower part. The definition 
of the forces is as follows: black arrows are external loads; white arrows 
are contact forces. 
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Table  1. D a t a  for the test examples. 

Number of regions 
Test Number of Number of Total number of of constant 

example nodes bars contact nodes contact forces 

B1 231 12806 14 1 
B2 231 12806 14 14 

Table  2. Compu ta t i ona l  results. 

Test Computing 
example time (s) Compliance 

B1 6144 2,55-10 -+ 
B2 8763 1.72-10 -6 

The structures do not have any prescribed displacements; in fact, both 
test examples B1 and B2 have singular stiffness matrices, whereas 
Assumptions (A1) and (A2) are satisfied. 

In Fig. 4, the structure of the test examples are shown. Here, we include 
only a subset of the number of bars in the ground structure. To include all 
bars will, due to the great number, just give a black box. In order to reduce 
the number of bars in the ground structure, longer bars that overlap shorter 
ones are removed. This does not have any consequence concerning loss in 
topology information. 

In Table 2, we give the computing time and the compliance value of 
the optimal topology for the test examples. Recall that the value of the 

1+ .: :o:i 

L 
�9 . ~  + + o . . t ~ . . . . ~  " 

). , ,  5 * '  

+ *~ " " + ~ k. '~.s.~"~. 

Fig. 4. Test example B with 2162 bars. 
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Fig. 5. Optimal topology for test example B1. 

compliance is related to the obtained objective value of the LP problem, by 
the simple expression given in Corollary 6.1. 

The optimal solution for test example B1, which is depicted in Fig. 5, 
has 48% higher compliance than for test example B2, which is depicted in 
Fig. 6, but the maximum contact force is seven times larger in test example 
B2. 

In test example B2, the contact forces are not zero (A C0); since 
A Wru = 0, this means that Wru = 0; hence, we can take g:= Cu as pointed 
out in the proof of Lemma 3.1. In Fig. 7, we give on the y-axis the initial 
gaps and on the x-axis the nodes where contact forces act for test example 
B 1. The curve describing the initial gaps is slightly concave. 

A special feature of the test examples is that they can be very degenerate 
i.e., many basic variables are zero. As an example, we mention a particular 
one (among several additional ones in Ref. 18 not present here) where the 
number of nonzero variables in problem (LP)d is 14, which means that the 
remaining 228 basic variables are zero. 

0 0 O 0 0 0 0  �9 @ �9 @ @ 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0  0 0 �9 �9 0 0 0 O G O 0 0 0 0  
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Fig. 6. Optimal topology for test example B2. 
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initial gaps 
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m x-coord 
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Fig. 7. Initial gaps for the left-end contact nodes for test example B1. 

Due to the degeneracy, it is necessary to use high accuracy in the solu- 
tion procedure. Another feature is that many Phase I iterations (i.e., finding 
a feasible solution) of  the SIMPLEX method are required. This amounts to 
about one-third of the overall number of  iterations. 

We tested a larger Michell-type structure with 225 nodal points, which 
give 450 equalities, and it took much more time to solve the overall LP 
problem. Therefore, it would be interesting to see how another method for 
linear programming works, e.g., an interior-point method. This is because 
such methods are regarded to work more efficiently for degenerate problems. 
In Ref. 8, an interior-point algorithm was considered, but applied to much 
smaller problems. 
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