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On Vector Variational Inequalities 

A. H. SIDDIQI, I Q. H. ANSARI, 2 AND A. KHALIQ 3 

Communicated by F. Giannessi 

Abstract. In this paper, we introduce a general form of a vectOr 
variational inequality and prove the existence of its solutions with and 
without convexity assumptions. 
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1. Introduction 

Recently, the vector variational inequality (in short, VVI) has been 
introduced in a finite-dimensional Euclidean space, and some applications 
have been shown (see Ref. 1). Later, in a general setting, Chen and Yang 
(Refs. 2-4)  have derived an equivalence between the VVI and the vector 
extremum problem, an equivalence between the VVI and the vector com- 
plementarityproblem, and proved the existence of the solution of the VVI. 
Isac (Ref. 5) and Noor (Ref. 6) have introduced and studied separately a 
more general form of variational inequality, called general variational 
inequality (in short, GVI) by Noor (Ref. 6). 

Inspired and motivated by the applications of the VVI, we introduce in 
this paper a more general form of the VVI corresponding to a general 
variational inequality, which includes the VVI sttldied by Chen (Ref. 4) as 
a special case. Moreover, we prove the existence of the solution of this 
VVI, which may be seen as an extension of the Isac theorems (see Ref. 5) 
on the existence of solutions for a general (special) variational inequality. 

Let X be a Hausdorff topological vector space, and let Y be an ordered 
Hausdorf f  topological vector space. L e t  K be a nonempty, closed, and 
convex subset of X; let T: K ~ L(X, Y) be a mapping, L(X, Y) being the 
space of all linear continuous operators from X into Y; a n d  let 
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{C(x): xeK} be a family of closed, pointed, and convex cones in Y such 
that int C(x) # ~ ,  Vx EK, where int denotes interior of a set. 

Consider the general vector variational inequality (in short, GVVI) 
problem: 

(GVVI) find xo~K such that 

<T(xo), x - g(x0)>~-int  C(xo), Vx~K, (1) 

where g: K --* K is a mapping and < T(x), y > denotes the evaluation of the 
linear operator T(x) at y. Hence, (T(x),.  > ~ Y. 

Special Cases. 

(i) Note that, for g(x) = x~K, (1) is equivalent to finding Xo~K, such 
that 

( W I )  (T(xo), x --Xo)~ - i n t  C(xo), VxsK, (2) 

which is known as the VVI problem; see Ref. 4. 
(ii) If Y =  R, L(X, Y) = X*, C(x)= •+, Vx~K, then (1) reduces to 

finding xo~K, such that 

(GVI) (T(x0), x -g(xo))  >_ O, Vx~K. (3) 

The inequality (3) is known as the GVI problem; see Ref. 6. Such a type 
of variational inequality has been introduced and studied separately by Isac 
(Ref. 5) and Noor (Ref. 6). 

(iii) If Y = R, X = R n, L(X, Y) = X*, C(x) = R§ Vx ~K, and g is the 
identity mapping, then (1) becomes the usual variatioinal inequality, con- 
sidered and studied by Hartman and Stampacchia; see Ref. 7. 

The special cases (i)-(iii) Show that (1) is a general and unifying 
setting, whose analysis is one of the main motivations of this paper. 

2. Existence of Solution for GVVI 

In this section, we introduce some existence results for (1). To this end, 
the following known result (Refs. 8 and 9) will be used. 

Lemma 2.1. Let E be a nonempty compact convex set of a Hausdorff 
topological vector space. Let A be a subset of E x E having the following 
properties: 

(i) (x, x) cA, Vx ~E; 
(ii) VxeE, Ax:={yeE: (x,y)eA} is closed in E; 
(iii) VyeE, the set Ay~={x~E: (x,y)q~A} is convex. 

Then, 3yoeE such that E x {Y0} ~ A. 
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Let D c K be a nonempty compact convex set. T h e  bilinear form 
( . , . )  is supposed to be continuous. 

Theorem 2,1. If  T: K-}L(X,  Y) and g: K---}K are continuous, if the 
multivalued map W(x) = Y \ { - i n t  C(x)} is upper semicontinuous on K, 
and if <T(x), x - g ( x ) ) r  - i n t  C(x), VxeD, then 3xo~D c K such that 

(T(xo), x -g(xo)  )r  - i n t  C(xo), Vx~D c K. 

Proof. Let 

A -- {(x, y) ~D x D: (T(y) ,  x - g(y)>r - int C(y)}i 

The thesis is proved if we show that (i)-(iii) of Lemma 2.1 are satisfied. 
From the definition of A, we deduce that 

Vx~D, (x, x)~A ~ (T(x), x - g ( x )  ) ~ - i n t  C(x). 

Now, we will show that 

A,,'.= {y~D: (x, y)eA},  x~D, 

is closed. Let {y, } be a sequence in Ax such that y,  :~y.  Since y,  ~Ax, we 
have 

(,T(y.), x - g ( y , )  )~ W(y,)..= Y \ [ - i n t  C(y,)]. 

Since T, g and ( . , - ) a r e  continuous, we have 

(T(y,) ,  x - g ( y , )  ) -} (T(y), x - g ( y ) ) .  

The upper semicontinuity of  the multifunction W(y) implies that 

( T(y), x - g(y) ) e W(y) = r \ [  - int C(y)], 

and thus y~A~. Hence, A x is closed. It remains to show that, Vy~D, 

Ay,={xeD: (x ,y)r  

is convex. Indeed, ifx~, x2eAy and ~, t ieR+ such that ~ + fl = 1, then since 
C(y) is cone, we have . 

(T(y), ~x, -- ~tg(y) ) e  --int C(y), 

�9 (T(y),  [3x2 - pg(y))  ~ - i n t  C(y), 

which imply that 

(T(y),  ~Xl + flx2 -- (~t + fl)g(y) ) e  - i n t  C(y) 

(,T(y), ~tx, + f i x 2 - g ( y ) , ) e - i n t  C(y) 

OtX 1 Jr flX2ff Ay.  
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Hence, Ay is convex. Now, Lemma 2.1 gives the existence of xoeD such 
that D x {x0} c A. This implies that 

xo~D: (T(xo), x - g ( x o ) } r  C(xo), VxED. [] 

Remark 2.1. If  Y = ~, L(X, Y) = X*; and C(x) = ~+, Vx eK, then 
Theorem 2.1 collapses to Proposition 2 of  Ref. 5. 

A multivalued map F: D c X --, X is called a K K M  map if 

conv{xl, x2 . . . . .  }~ 0 r ( x i ) ,  
i=1 

for each finite subset {xl, x 2 , . . . ,  xn } of D; cony denotes the convex hull. 
We need the following results for the proof of the next theorem. 

Lemma 2.2. See Ref. 8. Let D be an arbitrary nonempty set in a 
Hausdorff topological vector space iV. Let F: D ~ X be a K K M  map, If  all 
the sets F(x) are closed in X and if one is compact, then 

F(x) ~ ~ .  
x~tD 

Lemma 2.3. See Ref. 4. Let (X, P) be an ordered topological vector 
space equipped with a closed, pointed, and convex cone P such that 
int P r ~ .  Then, Yy, zeX,  we have: 

(i) y - z ~ i n t  P and yr  P ~ z$int  P; 
(ii) y - z E P  and y ~ i n t P  =~z r  
(iii) y - z e - i n t P a n d y r 1 6 2  
(iv) y - z e - P  and y C - i n t P  ~ z $ - i n t P .  

Theorem 2.2. Assume that: 

(a) the mappings g: K ~ K  and T: K ~ L ( X ,  Y) are continuous; 
(b) C: K ~ Y is a multivalued mapping such that, Vx ~K, C(x) is a 

closed, pointed, and convex cone with int C(x) # ~ ;  
(c) W: K ~  Y is an upper semicontinuous multivalued mapping 

defined by W(x).-= Y \ { - i n t  C(x)}; 
(d) there exists a function h: K • K ~  Y such that: 

(i) h(x,y) - (T(x) ,y  - g ( x ) } ~ - i n t  C(x); 
(ii) the set {y e K: h(x, y) ~ - int C(x) } is convex, Vx e K; 
(iii) h(x, x)r - i n t  C(x), VxeK; 
(iv) there exists a nonempty, compact and convex subset 

D c K, such that, VxeK\D,  ~y~D such tha t  (T(x), y - 
g(x) ) ~ - int C(x). 
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Then, 3xoeD such that 

(T(xo),y - g ( x 0 ) ) r  C(xo), Vy~K. 

Proof. Vy~K, 

D(y) ,= {x~D: (T(x), y - g ( x )  )r  - i n t  C(x)). 

From assumptions (a) and (c), we have that D(y) is closed in D. Since 
every element 

xo~ (~ O(y), 
yeK 

is a solution of (1), we have to prove that 

0 D ( y ) r  
yeK 

Because of the compactness of D, it is sufficient to show that the family 
{D(y)}y~r has the finite intersection property. Indeed, let y~, yz . . . . .  Ym e K  
be given; we see that 

A ".= conv(D u {y,, Y 2 , . . . ,  Ym }) 

is a compact and convex subset of K. We consider the following multi- 
valued mappings: 

F~(y) = {xeA: (T(x), y - g ( x )  )r  - i n t  C(x)}, 

Fz(y ) = {x~A: h(x, y ) r  C(x)}, Vy~K. 

Because of the continuity of the bilinear form ( . , - )  and because of 
assumptions (a) and (c), we have that F~(y) is compact, since it is a closed 
subset of the compact (convex) set A. From assumption (d)(i) and (d)(iii), 
we have 

h(x, x) - ( T(x), x - g(x) ) ~ - int C(x), 

h(x, x) r - int C(x). 

Then, by Lemma 2.3 we have 

(T(x), x - g ( x )  )r  - int C(x). 

Hence, F~(y)~;~ .  Now, we prove that F2 is a K K M  map. Indeed, 
if we suppose that 3v~, v2 . . . . .  v, eA and 3~i > 0, i = 1, 2 . . . . .  n, with 
~ '=  l ~, = 1, such that 

o~iDi~ 0 F2(I)J), 
i=1 j = l  
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then we have that 

h(i~= 10~iVi, v j ) e - i n t  C(i~, ~vt). 

By assumption (d)(ii), we have 

h o~ivi, o~ivi ~ - i n t  C ~ivi , 
i i ~ l  i 

which contradicts assumption (d)(iii). Therefore, F2 is a KKM map. Since 
from assumption (d)(i) we have F2(y) c FI(y), VysK, we obtain that also 
F~(y) is a KKM map. Applying Lemma 2.2 to F~, we get 

n F~(y) #;,?j, 
y~A 

or the existence of a point xosA, such that 

(T(xo), x -g(Xo))~ - i n t  C(xo), Vx~A. 

By assumption (d)(iv), we have that xoeD; moreover, xosD(yi), for every 
1 < i <m.  Hence, {D(y)}y~K has  the finite intersection property. This 
completes the proof. [] 

Remark 2.2. If Y = R, L(X, Y)= X*, and C(x) = R+, Vx~K, then 
Theorem 2.2 becomes Theorem 8 of Ref. 5 .  

3. Existence Result without Convexity 

In this section, by using the technique of Chen (Ref. 4), we prove an 
existence theorem for a special case of (1) by replacing the convexity 
assumption with merely topological properties, The following definitions can 
be found in Ref. 10. 

Definition 3.1. Let X be a topological space, and let {FA } be a given 
family of nonempty contractible subsets of X, indexed by finite subsets of 
X. 

(i) A pair (X, {FA }) is said to be a H-space, if A c B implies 
FA c Fs. A subset D ~ X is called H-convex, if for every finite 
subset A ~ D, it follows that FA c D. 

(ii) A subset D c X  is called weakly H-convex, if FAcaD is 
nonempty and contractible for every finite subset A ~ D. This is 
equivalent to saying that the pair (D, {FA caD}) is an H-space. 
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(iii) A subset K c X is called H-compact,  if there exists a compact 
and weakly H-convex set D c X, such that K u A c D for every 
finite subset A c X. 

(iv) A multivalued mapping F:X.-- ,X is called H-KKM,  if 
F A c Ux~A F(x), for every finite subset A ~ X. 

Lemma 3.1. See Ref. 10. Let (X, {F A}) be an H-space, and let 
F: X ~  X be an H - K K M  multivalued mapping, such that: 

(a) Yx ~X, F(x) is compactly closed, that is, B n F(x) is dosed in B 
for every compact set B c X; 

(b) there exist a compact set L ~ X and an H-compact  set K c X 
such that, for each weakly H-convex set D with K c D c X, we 
have (-]x~D (F(x) c~ D) c L. 

Then, 

0 V(x)~ .  
x E X  

We now consider a special case of  (1), but in a more general context, 

Xo~X, (T(xo), x - g ( xo ) ) r  - i n t  P, Vx~X, (4) 

where (Y,P) is an ordered Banach space with i n t P ~  and 
T: X ~ L(X, Y), g: X ~ X are mappings. 

Theorem 3.1. Let (X, {FA }) be an H-space, and let (Y, P) be an 
ordered topological vector space equipped with a dosed, pointed, and 
convex cone P such that int P # ~ .  Assume that: 

(a) the mappings T: X ~ L ( X ,  Y) and g: X ~ X  are continuous; 
(b) ( T ( y ) , y - g ( y ) ) r  Yy~X; 
(c) YyeX, By . '={xEX: (T(y), x - g ( y ) ) ~ i n t  P} is either H-convex 

or empty; 
(d) there exist a compact set L c X and an H-compact  set K c X 

such that, for every weakly H-compact set D with K c D c X, we 
have 

{y~D: (T(y),  x -- g(y) )q~ - i n t  P, Vx~D} ~ L. 

Then, (4) is solvable. 

Proof. Let 

F(x),={y~X: (T(y) ,x - -g(y ) )q~- - in tP) ,  x~X.  
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We will prove the inequality 

N F(x) v ~ ~j. 
x ~ X  

Then, the thesis will be a consequence of the fact that every element 

Xo e ~ F(x) 
x ~ X  

is a solution of (4). The inequality follows from Lemma 3.1, if we prove 
that F is an H-KKM mapping and the conditions (a) and (b) of Lemma 
3.1 hold. Suppose that F is not an H-KKM mapping. Then, there exists a 
finite subset A = X, such that 

FA r ~ F(x). 
x~.X 

Thus, 3zsF~ such that 

zCF(x), V x e A  ~ (T(z),  x - g ( z ) ) e  - i n t  P, VxeA.  

By assumption (e) and since B~ is H-convex, we have 

FA = Fn, for A c Bz. 

Therefore, 

zeB~ ~ (T(z),  z - g ( z ) ) e - i n t  P, 

wfiich contradicts assumption (b). Thus, 

F A c ~ F(x), 
XE]( 

for every finite subset A c X, so that F is an H - K K M  mapping. 
Now, we will prove that, VxeX,  F(x) is closed. Indeed, suppose that 

{y,, } ~ F(x), x ~ X, such that y,  ~ y. As T, g and ( .  ,- ) are continuous, we 
have 

(T(y,,) ,  x - g(y,,) ) ~ (T(y) ,  x -- g(y) ), 

since 

i.e., 

(T(y,,) ,  x -g(y, , ) )(E - i n t  P, Vn, 

( T ( y , ) ,  x - g ( y , ) ) e  W = Y \ { - i n t  P}. 

But W = Y \ ( - i n t  P) is closed. Thus, we have 

(T(y) ,  x - g(y) ) e W, 
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i,e., 

(T(y),  x - g ( y )  )r  - i n t  P. 

Hence, y~F(x). Therefore, F(x) is closed, VxeX; i.e., the condition (a) of 
Lemma 3.1 holds. It is easy to see that the present assumption (d) is the 
same as assumption (b) of Lemma 3.1. Thus, by Lemma 3.1, 

A F(x) r ~ ;  
x ~ X  

i.e., 3xoeX such that 

(T(xo), x -g(Xo) )r  - i n t  P, Vx~X. F2 

Remark 3.1. If  g is an identity mapping, then Theorem 3.1 collapses 
to Theorem 3 of Ref. 4. 
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