
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 81, No. 2, MAY 1994 

Descent Approaches for Quadratic 
Bilevel Programming I 
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Abstract. The bilevel programming problem involves two optimiza- 
tion problems where the data of  the first one is implicitly determined by 
the solution of the second. In this paper, we introduce two descent 
methods for a special instance of bilevel programs where the inner 
problem is strictly convex quadratic. The first algorithm is based on 
pivot steps and may not guarantee local optimality. A modified steepest 
descent algorithm is presented to overcome this drawback. New rules 
for computing exact stepsizes are introduced and a hybrid approach 
that combines both strategies is discussed. It is proved that checking 
local optimality in bilevel programming is a NP-hard problem. 

Key Words. Bilevel programming, nonconvex and nondifferentiable 
optimization, quadratic programming, computational complexity. 

1. Introduction 

The bilevel programming problem can be defined as 

min F(x, y), 
x ,y  

s.t. g(x, y) < O, 

where y is the solution o f  the lower level p rob lem 

min f(x,  y), 
y 

s.t. h(x, y) <0, 
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and x ~ •" and y ~ ~m. Here, X(Y) is called the upper (lower) variable. In the 
same way, F(f) is called the upper (lower) level objective function. 

Bilevel programming is an important area in nondifferentiable and 
nonconvex optimization. Several applications of this problem have ap- 
peared in the literature (Ref. 1). A number of algorithms have been 
designed for finding global minima of bilevel programs when all the 
functions are linear. Among other interesting approaches, the enumerative 
algorithms of Bard and Moore (Ref. 2) and Hansen, Jaumard, and Savard 
(Ref. 3) and a sequential linear complementarity problem (LCP) method 
(Ref. 4) should be distinguished. These procedures can be extended for the 
linear-quadratic case, where the functions F, g, h are linear but the lower 
level function f is strictly convex quadratic. 

Bilevel programs with strictly convex quadratic lower level problems 
and nonlinear upper level functions are much more difficult problems. To 
date, even for specific nonlinear instances of F, only enumerative proce- 
dures have been proposed to find a global minimum (Refs. 5-8). Penalty 
function approaches (Refs. 9-12) and other descent algorithms (Refs. 13 
and 14) have also been developed but only guarantee local minima. 

Some attention has also been focused on defining optimality condi- 
tions for bilevel programming problems. A first attempt is reported in Ref. 
15, which exploits an interesting bilevel reformulation involving an infinite 
and parametric set of constraints. However, this reformulation has a 
difficult structure, and a counterexample pointed out in Ref. 16 shows the 
incorrectness of such conditions. Different necessary optimality conditions 
can be found in Refs. 17-19. 

In this paper, we propose two different descent algorithms for the 
solution of bilevel programs in which the lower level function is strictly 
convex quadratic, the upper level function is quadratic (strictly convex or 
concave), and the constraints of the lower level problem constitute a 
convex polyhedron. A first algorithm is based on modified pivot steps that 
enforce direct movements along the induced region and may not achieve a 
local solution in general. This is not the case of concave upper level 
functions for which it is proved that a local minimum is always reached. A 
modification of the steepest descent algorithm (Ref. 19) is introduced using 
the sequential LCP algorithm (Ref. 20) for an efficient computation of each 
steepest descent direction. The use of the sequential LCP method seems 
appropriate although it may face difficulties when a local solution is at 
hand. In fact, we prove that checking (strict or not) local optimality for 
bilevel programming is a NP-hard problem. An appropriate technique for 
computing exact stepsizes is presented. A hybrid approach is also proposed 
which combines both methods and takes advantage of the particular 
benefits of both strategies. 
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The structure of the paper is as follows. In Section 2, the quadratic 
bilevel program is introduced as well as specific definitions and properties. 
The algorithms are described in Sections 3 and 4, where the particularly 
strictly convex and concave instances of the upper level function are also 
discussed. Complexity issues are addressed in Section 5 and some conclud- 
ing remarks are reported in the last section of this paper. 

2. Problem Definition and Properties 

The quadratic bilevel programming problem can be stated as follows: 

(QBP, min , y, -- , /=[;]l  C JL J 4xl + 
s.t. x _> 0, 

yaargmin{f(x, y) = 1/2yrQy + yrSx + dry: 

Ax+By _< b ,y  _> 0}, 

\ 

c2, d~R m , C1eR "• , Q, C2~R m• , 

A e R  ~ - ,  B e R  :• b e R  ~. 

where 

C 1 ~ R n, 

S, C~eR '~ • n, 

We assume that 

C=c  G 
and Q are both symmetric positive-definite matrices. This implies that both 
the relaxed problem in the variables x and y, 

r ,ml, 
(RP) min 1/2 C r C2JLYJ + x,y L c 2 A L Y A  

s.t. Ax + B y  < b, 

x,y>O, 

and the lower level problem in the variable y, 

(LLP(x)) min 1/2yrQy + yrSx +dry, 
Y 

s.t. By < b - Ax, 

y>_O, 
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are strictly convex quadrati c programming problems. We also assume that 
the constrained set 

D(x) = {y ~ Rm: By <_ b - Ax,  y >_ 0} 

is nonempty for some values of x. As a consequence of this, problem 
LLP(x) has unique solutions for different values of x and the problem QBP 
has a global optimum (Ref. 7). 

The following definitions characterize the feasible set of problem QBP 
as well as its extreme points. 

Definition 2.1. The set { ( x , y ) : x > O , y  is optimal for LLP(x)} is 
called the induced region (IR) of problem QBP. 

Since the lower level is a convex program in the y variable, the induced 
region is defined by the following linear complementarity conditions: 

Qy + Sx  + d + B VT - fl = O, (1) 

Ax  + B y  +~  =b,  (2) 

x , y , ~ , f l ,  7 >_ O, (3) 

=yTp =0, (4) 

where 0r y e ~ and fl ~ R m. This result follows directly by replacing the lower 
level problem LLP(x) by its Karush-Kuhn-Tucker (KKT) conditions, 
which are sufficient by the convexity assumption. 

Definition 2.2. u = (x, y) is an extreme induced region (EIR) point if 
there exist a, fl, 7 such that (x ,y ,  ~, fl, 7) is an extreme point of the 
polyhedral set defined by (1)-(3) and satisfies the complementarity condi- 
tions (4). An EIR point is said to be nondegenerate if the values of the 
basic variables are all positive; otherwise, it is called degenerate. 

We assume throughout this paper that all EIR points are 
nondegenerate. 

As in linear programming, two EIR points are said to be adjacent if 
their bases differ in exactly one column. It follows from these last defini- 
tions that a movement between two adjacent EIR points can be done by 
performing a pivot step that maintains the complementarity conditions. 
This can simply be done by not allowing two complementary variables to 
be simultaneously basic. 

Definition 2.3 establishes a class of directions that plays an important 
role on the development of our approach to deal with quadratic bilevel 
programs. 
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Definition 2.3. d is an extreme induced (EIR) direction if it connects 
two adjacent EIR points. 

In an EIR point is not a local minimum of the QBP problem, then 
there exists at least a descent EIR direction emanating from it. This result 
is stated in the next theorem and is used later to design a descent EIR point 
algorithm. 

Theorem 2.1. Let u be an EIR point. I f  u is not a local minimum of 
problem QBP, then there is at least one descent EIR direction at u. 

Proof. The nonoptimality at u implies the existence of at least one 
feasible descent IR direction d. From the piecewise linear property of the 
induced region (Ref. 6), such direction may be written as 

P 

d= X 
/ = 1  

where 

P 

/~i = 1, /ti > 0, 
i = l  

and d; are EIR directions, i = 1 . . . . .  p. If  all directions d,., i . . . . .  p, satisfy 

then 

rE(u) Td; ___ o, 

P 
VFCu) Ta, >_ O. 

i = 1  

By the convex linear combination of the direction d, this last condition 
implies 

VF(u) rd > O, 

which contradicts the fact that d is a descent direction. Therefore, at least 
one of the EIR directions di . . . . .  dp is a descent direction. [] 

3. Descent Extreme Induced Region Point Algorithm 

If  (92, 37) is a nondegenerate EIR point, then one of the following 
situations may occur: 

(i) (92,)7) is a local minimum for the QBP problem; 
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(ii) (2, 37) is not a local minimum and there exists an EIR direction 
such that the corresponding adjacent EIR point (~, y') satisfies 

< F(e ,  37); 

(iii) (~, 37) is not a local minimum for the QBP problem and 

F(s ~) >_ F(s 37), 

for all adjacent EIR points (~,fi); following the terminology 
used in Ref. 21, we call (~, 37) a local star induced region (LSIR) 
point. 

It is important to note that, if an LSIR point (~, 37) is not a local 
minimum of problem QBP, then by Theorem 2.1 there exists at least a 
descent EIR direction at (~, 37). To illustrate this situation, consider the 
following three-variable QBP problem: 

1/2(x, -- 4/5) 2 + 1/2(x 2 -- 1/5) 2 + 1/2(y -- 1) 2, min 
X I , X 2 ~ .  

s.t. O--<X1,X2~ l,  

y eargmin{(1/2)y 2 - y - x l y  + 2x2y: 0 < y <_ 1}. 

The induced region for this simple QBP problem is the union of  the 
following sets; 

{(Xl ' X2 ' y ) 6 ~ 3 .  Xl < 1, x2 > O, - x l  + 2X2 ~ O, y = 1}, 

{(XI, X2, y)E[~3: --X l "71- 2X 2 + y  = 1, 0 _<y _< 1}, 

{(Xl, X2, y)  61~3: Xl --> 0, X 2 _< 1, --Xl + 2X 2 _> 1, y = 0}. 

The first of these sets is diagrammed in Fig. 1 and consists of  the triangle 
with vertices V~ = (1, 0, 1), V2 = (0, 0, 1), V3 = (1, 1/2, 1). Although at the 

EIR point 111, V~ V2 and V~ Va are descent EIR directions, the values for 
the upper level objective function at the adjacent EIR points V2 and V3 are 
greater than the value at V~. Hence, 111 is an LSIR point. 

It is easy to design an algorithm that finds at least an LSIR point for 
a quadratic bilevel program. The procedure starts by finding an initial EIR 
point. In each iteration, either the current EIR point is a LSIR point, or is 
a local minimum and the algorithm terminates, or an adjacent EIR point 
is obtained with a lower value of  the upper level function. The procedure 
is then repeated. The steps of the algorithm are as follows. 
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Fig. 1. LSIR point with two descent EIR directions. 

Initial Step. Compute an initial EIR point Uo. Set k = 0. 

General Step. Let Dk be the set of descent EIR directions at Uk, 

Dk = {d: VF(u~) rd < 0 and d is an EIR direction}. 

(i) If Dk ~ ~,  select dk~Dk such that 

F(u~ + i) < F(u~), 

where uk+~ is the adjacent EIR point that is 
connected with uk by the direction dk. Set 
k = k + 1, and repeat this step. If such direction 
does not exist, stop: uk is an LSIR point of 
problem QBP. 

(ii) If D k = J ~ ,  stop: uk is a local minimum for 
problem QBP. 

As stated in the previous section, each iteration of the algorithm consists of 
a pivot step that maintains the complementarity condition. Hence, the 
computational effort of the algorithm is not too high. 

The algorithm always terminates with an LSIR point Uk of problem 
QBP, provided all the EIR points are nondegenerate. However, only the 
case Dk = ~ assures that uk is a local minimum for problem QBP. This 
drawback of the algorithm motivates the use of another procedure such as 
the steepest descent method (Ref. 19). This is discussed in the next section. 

Another important issue of the algorithm is the computation of an 
initial EIR point. Since the relaxed problem RP is a convex quadratic 
program and its constraint set is nonempty, then an optimal solution 
(xR, y~) exists and can be found in polynomial time (Ref. 22). 

If (XR, YR) belongs to the induced region, then it is the global mini- 
mum of problem QBP. In general, such a situation does not occur. A first 
point of the induced region can be found by fixing x = xR and solving the 
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lower level quadratic program LLP(xR). Since Q is a symmetric positive- 
definite matrix and D(xR) ~ ~ ,  this program has a unique solution 37R, that 
can be found in polynomial time. 

So, we can find in polynomial time an initial point of the induced 
region. However, such a solution is not in general an EIR point, since it 
does not correspond to a basic solution of the system of linear constraints 
defined by (1), (2), (3). An algorithm described in Ref. 23 can used to 
generate a basic feasible solution for the linear constraints. Such procedure 
has been proved to be polynomial (Ref. 24). Since the number of positive 
variables is reduced in each iteration, then the algorithm only visits points 
of the induced region (complementarity conditions are satisfied). Hence, we 
can find an initial EIR point in polynomial time. 

As stated before, the algorithm terminates with an LSIR point of 
problem QBP provided all the EIR points are nondegenerate. If no such 
assumption is assumed, then checking that a given point is a local star 
minimum is a much more involved problem, since it might require the 
performance of a number of-dual pivot steps toanalyze all the extreme 
directions at the given point. 

4. Modified Steepest-Descent Approach 

In this section, we discuss the use of the steepest descent algorithm 
introduced in Ref. 19 for the solution of problem QBP. As in Ref. 19, we 
assume that the gradients of the active constraints at each point used by the 
algorithm are linearly independent. 

In a given iteration k of this algorithm, the steepest descent direction 
d~ = (Zk, Wk) at an induced region point uk = (xk, y,)  is found by solving 
the following linear quadratic bilevel program (Ref. 19): 

(LQBPk) min (Clxk + C3Yk + Cl) rz + (CrXk + C2yk + c2)rw, 
z , w  

s.t. - 1  < z i < l , i = l  . . . . .  n, 

w ~argmin{wrQw + 2wrSz: 

A'z + B'w <_ O, 

(-c~rA')rz +(QYk + Sxk + d ) r w  = 0, 

w'>_O}, 

where z ~ R n and w ~ •m. The matrices A' and B' contain all the rows of A 
and B corresponding to the active constraints at uk. Similarly, the vector w' 



JOTA: VOL. 81, NO. 2, MAY 1994 387 

is a subvector of w where only the indices i corresponding to zero variables 
(Yk)~ are considered. Furthermore, ~bk are the multipliers associated to the 
active contraints at u~. 

If the optimal value of problem LQBPg is greater than or equal to 
zero, then Uk is a local minimum of problem QBP. Otherwise, the optimal 
solution of problem LQBPk is the steepest descent direction (Zk, Wk) and a 
new induced region point is found by 

(Xk + l, Yk + l) = (XI,, YD + ak(Zk, WD, 

where ak is an appropriate stepsize. 
If just a descent direction is required, there is no need to solve problem 

LQBPk until the end. All the values between zero and the negative optimal 
value of problem LQBPk correspond to descent directions (Ref. 19). This 
property should be exploited in the choice of the algorithm for the solution 
of problem LQBPk. In this section, we show that the sequential LCP (Ref. 
20) is quite suitable for this purpose. We also describe how an exact 
stepsize can be computed in an efficient way. These two procedures make 
the steepest descent algorithm much more attractive. 

4.1. Use of Sequential LCP Method to Solve Problem LQBP k. Since 
the lower level problem of LQBPk is a convex program in w, it can be 
replaced by its KKT conditions. Thus, problem LQBPk is equivalent to the 
following minimum linear complementarity problem: 

min (Ci Xk + C3yk + Cl) rZ + (Crx~ + C2Yk + c2) rw, 
Z,W 

s.t. 2Qw + 2Sz + B'r7 ' - fl' + (OYk + SXk + d) r~ = O, 

A'z  + B'w + ~' = O, 

( -~a~A ' )  Tz +(QYk + Sxk + d ) rw  =0,  

~,rr, = /Ww'  = 0, 

w', cr fl', 7' > O, - 1  <zi_< 1, i = l , . . . , n ,  

where the dimension of the vectors ~' and 7' is equal to the number of rows 
of B', and fl' has the same dimension as w'. 

The sequential LCP method (Ref. 20) looks for a global minimum of 
this last problem by solving a sequence of LCP(2~). Each such problem can 
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be posed as 

(LCP(2i)) (C 1 x k + C3y k --1- c 1 ) 7"2 + ( C T x k  q- C2y ~ + c2) rw < 2i, 

2Qw + 2Sz + B'r7 ' - fl' + (QYk + Sxk + d) r~ = O, 

A'z + B ' w  + ~' = 0, 

( -qbrA ' )  rz +(QYk + Sxk + d) rw =0,  

~,T~, = B,Tw,  = O, 

w' ,~ ' , f l ' , 7 '>O,  - 1  < z i <  1, i = 1  . . . .  ,n, 

where {2t } is a strictly decreasing sequence. 
The method stops when a LCP(2j) without a solution is found. In this 

case, the solution of the previous LCP(2j_ 1) is an E-global solution for 
problem LQBPk. The method works well to achieve the E-global solution, 
but faces difficulties in establishing that such a solution has been found 
(Ref. 20). In fact, showing that a linear complementarity problem has no 
solution is a much harder task than just finding a solution to this problem. 

As stated before, it is not required to find a global optimum for the 
LQBPk. Instead, any solution (z, w) of problem LCP(2~) with 2~ < 0 is a 
descent direction. Since the sequential LCP algorithm solves a sequence of 
LCP(2;) with strictly decreasing values of 2i, then it may terminate 
whenever a solution of problem LCP(2i) is found such that 2i < 0. This 
overcomes the main drawback of the sequential LCP algorithm. 

Now, suppose that a local minimum uk is at hand. Then, there exist no 
descent directions emanating from uk, which means that the optimal value 
of the LQBP~ is nonnegative. So the sequential LCP has to perform its last 
step to assure that the local minimum has effectively been achieved. 

As a final conclusion of this discussion, we can claim that the 
sequential LCP seems to be quite suitable to find a descent direction for the 
modified steepest descent algorithm. However, it is difficult to establish that 
the local minimum has been attained. It is known that checking local 
optimality in nonconvex quadratic programming is NP-hard (Ref. 25). The 
preceding discussion seems to indicate that the same property holds for 
quadratic bilevel programming. In Section 5, we show that checking local 
optimality in linear bilevel programming is NP-hard. Since linear bilevel 
programming is a particular instance of quadratic bilevel programming, the 
latter problem also shares this property. 

4.2. Exact Stepsizes. Given an induced region point u k = (Xk, Yk) 
and a feasible IR direction dk = (zk, wk), an efficient criterion should be 
developed to compute the largest feasible stepsize trma x. For polyhedral sets, 
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such a criterion is usually given in terms of  a minimum quotient rule. In the 
case of  an induced region, the boundaries are only implicitly defined and 
the problem of  finding O'ma x is more complicated. Next, we describe an 
efficient procedure for such purpose. 

Let t/ be the number of  active constraints at Uk + adk, where a is a 
small positive number. If  t / =  0, no multipliers exist in the dual constraints 
of the K K T  conditions at uk + ad~, whence 

Q(Yk + aWk) + S(xk  + azk) + d = O. 

The feasible IR direction dk = (Zk, Wk) should verify these conditions, and 
consequently the stepsize a,,ax is the largest value of a such that 

A(Xk + aZk) + B(yk  + aWk) < b, 

x k + az k > O, Yk + aWk > O. 

Therefore, a minimum quotient rule is sufficient to compute O'ma x when 
r / =  0. Consider now the case r />  0. Let 

rT, x + s t y  = t;, i = 1 . . . . .  r/, (5) 

be the t / lower level active constraints at uk + adk. The dual constraints of  
the K K T  conditions at Uk + adk can be written as follows: 

Q ( y t . + a W k ) + S ( X k + a Z ~ ) + d + f l S l + ' ' ' + b , s , = O .  (6) 

where 6i. i = 1 . . . . .  r/. are the corresponding nonnegative multipliers. Since 
Q is a nonsingular matrix, then this last condition implies 

y~ + awk = - Q - 1S(xk + azk) - Q - id - 61 Q -  I Sl . . . . .  6, Q - Is,. 

Replacing this expression of Yk + awk in the active constraints (5), the 
following linear system in the multipliers 6;, i = 1 . . . . .  t/, is obtained: 

Z 6  = q' + aq", (7) 

where 

- ' ' '  - :  

L I s T Q - I s I  . . . .  S~"~-IsIIJ' 
q l  ~ ~ , 

t. + +  ga-'dJ 

+ ,,a-'Szk] 
q t t  ~ �9 

_--rrzk  + s , Q - ' S z k J  

= 
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By solving the two q x q linear systems 

Zv '  = q', Zv"  = q", 

the following linear relationship among all the q multipliers and the a 
parameter is obtained: 

6 i = v' i + v"a, i = 1 . . . . .  q. 

We can measure the total computational effort to compute the vectors 
v' and v". Indeed we can state the following theorem. 

Theorem 4.1. The total number of systems required to compute the 
largest feasible stepsize O'ma x is r/ q-2, namely, q systems with the matrix Q 
and two systems with the matrix Z = [zij]n • where zij = - s ~ Q - l s j .  

Proofi After solving the ~/ systems Q{ = s;, i = 1 , . . . ,  ~/, only inner 
products are needed to prepare the data for solving the system (7). Then, 
two systems with the matrix Z are required to compute the vectors v' 
and v'. [] 

Since the matrix Q is symmetric positive definite, then its Cholesky 
factorization can be computed, that is, Q = L L  r, where L is a lower 
triangular matrix with positive diagonal elements. It is important to remark 
that this factorization has to be computed only once during the whole 
steepest descent procedure. So in each iteration, it is necessary to solve 2~/ 
triangular systems and two systems with the matrix Z. 

After finding the vectors v' and v", the stepsize 0"ma x is the largest value 
of a such that 

A(Xk + azk) + B(yk  + aWk) < b, 

Xk + aZk > O, y~ + aWk > O, 

V ' i+V'[a>O,  i = 1  . . . . .  r/. 

Hence, O'ma x can be computed by using a minimum quotient rule. 
For computing the exact stepsize ak, we consider the function 

G(a) = 1/2(u~ + adk)rC(uk + adk) + c T(U k + adk), a > O, 

where c r =  (c r, cr).  Since C is a symmetric positive-definite matrix, then G 
is a strictly convex function. Hence, the unconstrained minimizer a~ can be 
computed by solving G'(r = 0. Thus, 

= - ( c %  + d CuO/(d Cak), (8) 
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and the exact stepsize trk is computed as follows: 

f '  i f  0 < r ,< O.max, 0"k, (7 k 
ak = (9) 

kO'max otherwise. 

To illustrate the computation of  the exact stepsize a k, consider the 
following QBP problem: 

min 1/2(xi - 1) 2 + 1/2(x2 - 2/5) 2 + 1/2(y - 4/5) 2, 
x I , x 2 , Y  

s.t. 0 <x l ,x2_< 1, 

y 6 a r g r n i n { l / 2 y  2 - y - x l y  + 3x2y: 0 < y  < 1}. 

The induced region for this simple three-variable QBP problem is the union 
of  the following sets: 

{(Xl, X2, y) ~R3: X 1 _< 1, x2 > 0 ,  --xl + 3X2 <0 ,  y = 1}, 

{ ( x , , x E , y ) s R s :  - x l  + 3x2 + y  = 1 , 0 < y  < 1}, 

{(Xl, X2, y) ~Rs: Xl >-- 0, x 2 < 1, --Xl + 3x2 > 1, y = 0}. 

Figure 2 describes the first of  these sets, the triangle of  vertices 
V, = ( 1 , 0 ,  1), V2=(0 ,0 ,  1), and Vs=(3/2 ,  1/2, 1). If  Uo-  V,, then the 
steepest descent direction do is (0, 1[3, 0) and a new induced region point 
ul - V4 is computed by ul = Uo + aodo, where % = area x = 1/3. In the second 
iteration, dl = ( 0 , ~ 1 5 ,  --1/5) and U E = U l + t h d  1 = ( 1 , 2 / 5 , 4 / 5 ) -  Vs, 
where el = a'~ x/10/15. The point u2 is a local minimum, and the steepest 
descent algorithm terminates. Note that, in the first iteration, the stepsize 

�89 

Fig. 2. Computation of exact stepsizes #m~x and a~. 
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a~ is not feasible and the displacement along the direction do is made by the 
largest feasible stepsize amax. This is not the case of the second iteration, 
where the stepsize o"1 is feasible. 

It is easy to see that computing a~ is a much less involved task than 
finding the value of the stepsize trma x. An alternative procedure can be 
proposed which tries to avoid the computation of trma x at the expense of 
solving a strictly convex program. The steps of this technique are presented 
below 

(i) Compute tr~ as stated in (8) and set ~ = Xk + ~r'kZk. 
(ii) Solve, if possible, the strictly convex quadratic program LLP(g). 

Let 37 be the optimal solution of this problem. If 37 = Yk + a~Wk, 
then consider the new point 

uk+l = (x~+ 1, yk+ 1) = (2, 37). 

(iii) Otherwise a~ is not a local feasible stepsize and amax has to be 
computed. Furthermore, 

Uk + 1 = Uk "-[- O'maxdk" 

Since the quadratic program LLP(s can be solved in polynomial time 
in a quite small number of iterations that do not depend on the number of 
active constraints (Ref. 26), this procedure may be an alternative approach, 
particularly when the number of active constraints ~/is large. However, we 
may be forced to compute O'ma x if a~, is not feasible. 

4.3. Hybrid Approach. In the two previous sections, we have de- 
scribed two algorithms for the solution of the quadratic bilevel program- 
ming problem. The descent EIR point algorithm is quite simple, but cannot 
always assure a local minimum for the QBP problem. On the other hand, 
the steepest descent method is much more involved but always terminates 
with a local minimum of the QBP problem. So a hybrid approach can be 
designed that tries to exploit the advantages of these two procedures. The 
steps of the resulting algorithm are presented below. 

Step 1. 

Step 2. 

Apply the descent EIR point algorithm. If the algorithm 
terminates with a local minimum, stop. Otherwise, let Uk be 
the LSIR point obtained at the end of the procedure. 

Solve problem LQBPk to get a decent direction dk. If the 
optimal value of this problem is greater than or equal to 
zero, stop: u k is a local minimum of problem QBP. Other- 
wise, compute ak as in (9) and set Uk+l =Uk W akdk. Set 
k = k + 1, and repeat Step 2. 
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The possibility of moving from Step 2 to Step 1 after some iterations 
in Step 2 could also be considered. In this case, an initial EIR point can be 
found by using the procedure discussed in Section 3. This strategy could be 
used either to improve the convergence of the steepest descent algorithm or, 
after the termination of the algorithm, to start the process again to look for 
a better local minimum. 

Consider again problem QBP and suppose that the upper level 
function F is concave, that is, C is negative semidefinite. Then, a well- 
known result for concave programming also holds for the concave QBP 
problem. 

Theorem 4.2. If F is a concave (strictly concave) function, then at 
least one (every) local minimum of problem QBP is attained at an extreme 
induced region point. 

Proof. To prove the theorem, we start by showing that all the 
induced region points in a given face form a polyhedral set. In fact, 
suppose that a given face is the set of ~/active constraints of the form (5). 
The dual constraints of the KKT conditions (6) represent a polyhedral set 
in R n+m+". The projection of this polyhedral set onto R n§ is also a 
polyhedral set. The intersection of this last convex set with the given face 
is a polyhedral IR subset of that face. 

Now, let u be a given local minimum for the QBP problem. As we 
have proved before, the induced region of problem QBP is a finite union of 
polyhedral sets, 

K 

IR = U Pi, 
i=0 

where Pi is a polyhedral set, i = 1 . . . . .  K. Thus, there exists at least one 
k~{1 . . . . .  K} such that u~Pk. Since u is a local minimum over Pk, the 
result follows immediately from the theory concerning the minimization of 
concave functions. [] 

Suppose that we apply the descent algorithm described in Section 3 to 
problem QBP when F is a concave function. If the last EIR point is 
nondegenerate, then it is an LSIR point and, by Theorems 2.1 and 4.2, it 
is also a local minimum for problem QBP. So the modified steepest descent 
method is not required in this last case. However, if the last EIR point 
obtained by the descent EIR point algorithm is degenerate, then there is no 
guarantee that such point is a local minimum. 
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5. Checking Local Optimality in Bilevel Programming Is NP-Hard 

In this section, we prove that checking strict local optimality and 
checking local optimality in linear bilevel programming are NP-hard 
problems. To prove these results, we use the same ideas described in 
Pardalos and Schnitger (Ref. 25) for nonconvex quadratic programming, 
where the problem of checking (strict or not) local optimality was proved 
to be equivalent to a 3-satisfiability (3-SAT) problem. A classical survey on 
intractability issues can be found in Ref. 27. 

These last two results have been proved using a special indefinite 
program whose set of constraints, 

A s x  > 3/2 + c, (10a) 

1 / 2 - X o < X i <  1/2 +Xo, i =  1 . . . .  ,n, (10b) 

x i >_ O, i = 0 . . . . .  n, (10c) 

is associated to a given instance S of the 3-SAT problem. 
To prove our complexity results, we start by considering linear bilevel 

programs containing the constraints (10) as upper level constraints. Then 
we show that these problems satisfy some properties, similar to those 
presented in Ref. 25, that enable one to establish the desired conclusions. 

Theorem 5.1. Checking strict local optimality in linear bilevel pro- 
gramming is NP-hard. 

Proof. 

min F(x ,  l, m, z) = ~ zi, 
x , l , m , z  i = I 

s.t. A s x  >_ 3[2 + c, 

1/2 - Xo <- xt  <_ 1/2 + Xo, 

x t >_ O, i = 0 , . . .  ,n, 

Consider the following instance of a linear bilevel program 

i = 1 , . . . , n ,  

l , m , z ~ a r g m a x  z ~ : x ~ - l ~ = l / 2 - X o , x t + m i = l / 2 + X o ,  
~ . i ~  I 

zi <l i ,  z~ < m i ,  i = l . . . . .  n,z >0}.  

Since all the variables z/are forced to be nonnegative, then 

F ( x , l , m , z )  > 0 .  
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Consider now the point x* defined by 

x * = 0 ,  x* = 1/2, i = l , . . . , n .  (11) 

Then, x* satisfies the upper level constraints. Furthermore, l* = 0, m* = 0, 
and z* = 0 is the optimal solution of the lower level problem when x is set 
equal x*. Hence, (x*,/*, m*, z*) = 0, then (x*, I*, m*, z*) is a global 
minimum of the linear bilevel program. 

As in Ref. 25, the theorem is proved by establishing that 
F ( x , / ,  m, z) = 0 if and only if x; ~ { 1/2 - Xo, 1/2 + x0 }, for all i = 1 , . . . ,  n. 
If  this last condition holds, then Ii = 0 or mi = 0 and z; = 0 for all 
i = 1 , . . . ,  n. This implies that F(x ,  l, m, z ) =  0. To show the converse, 
suppose that x~ # 1 /2-Xo and x~ ~ 1/2+Xo for some i. Since the lower 
level program is a maximization problem, then z~ must be positive, which 
implies that F(x ,  I, m,  z) > O. [] 

Theorem 5.2. Checking local optimality in linear bilevel program- 
ming in NP-hard. 

Proof. Consider the following linear bilevel program 

min F ( x , l , m , z , w ) = ~ z i - 1 / 2 n ~ ' w i ,  
x , l , m , z , w  i = 1 i = I 

s.t. A s x  > 3/2 + c, 

1 / 2 - - X o < X t < l / 2 + X o ,  i = 1  . . . . .  n, 

x~_>O, i = 0  . . . . .  n, 

l, m, z, w s argmax z~ - wi: xi - It = 1/2 - Xo, 
I . i = l  l = 1  

xi + mi = 1/2 + x0, 

zi < li, zi < mr, i = 1 . . . . .  n 

wi > xi -- 1/2, 

wi > 1/2 - x i ,  i = 1 . . . . .  n, z, w > 0  t .  

Let IR be the induced region of this program. As before, consider the point 
x* defined by (11). If  we fix x = x* and solve the lower level program, we 
get 

1" = m *  = z *  = w *  =0 ,  i = l , . . . , n .  

Hence, (x*, l*, m*, z*, w*) ciR.  Furthermore, 

F ( x * ,  l*, m* ,  z*,  w*)  = O. 
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Therefore this point (x*, l*,m*, z*, w*) can play the same role as x* in 
Theorem 2 of Ref. 25. So, we can prove our result if we are able to show 
that 

F ( x , l , m , z , m )  > 0 ,  

for all (x,/,  m, z, w) ~IR satisfying Xl > 1/2 - Xo/3 and Xo > 0. 
Since the lower level program is a maximization problem, then 

Hence, 

z i = min{li, m;}, i = 1 , . . . ,  n. 

z ,=  ~ min{li, m,} = ~ m i n { x ; -  1/2 + Xo, - x i  + 1/2 + Xo}. 
i = l  i = l  i = l  

But 

xl > 1 / 2 -  Xo/3, 

and this implies that 

~ z i  > min{xl - 1/2 + Xo, - x l  + 1/2 + Xo} = 2/3Xo. 
i = l  

On the other hand, since 

w i >~ 

and the lower 

W i 

Furthermore, 

I x i -  1/21 <Xo, i = 1 , . . . , n .  

Hence, 

(12) 

x; - 1/2, w; > 1/2 - x;, i = 1 . . . . .  n, 

level program is a maximization problem, then we must have 

I x i -  1/2 l, i =  1 . . . . .  n. 

the upper level constraints imply that 

n n__ 

l/2n Z w; < l/2n Z Xo= Xo]2. (13) 
i = l  i=1 

Therefore by (12) and (13), we get 

F(x, l, m, z, w) > 2/3xo - Xo/2 = xo/6 > O, 

and this proves the theorem. [] 

Since the upper level constraints do not contain the lower level 
variables z,., l;, ms, w;, they can be moved to the lower level problem. Hence, 
the theorems are also valid if the upper level constraints only contain 
bounds for the values of the upper level variables. 
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6. Conclusions 

In this paper, a descent framework for quadratic bilevel programming 
has been discussed. Different strategies depending on the properties of the 
upper level function have been introduced. The rules for computing exact 
stepsizes proposed in Section 4.2 can be used by any descent method as 
long as the lower level problem has a strictly convex quadratic structure. 
We have also dealt with the intractability of quadratic bilevel programs, by 
proving that checking local optimality is a NP-hard problem. 

The case where the upper level function F is strictly convex but not 
quadratic does not bring many changes to the descent approach described 
in the last sections. The sequential LCP method can still be applied and 
only the computation of the stepsize ak requires a different technique, since 
no exact procedures solve the equation G'(o-) =- 0 directly. Theorem 4.2 also 
holds for general concave functions, whence the descent EIR point al- 
gorithm terminates with a local minimum provided all the EIR points are 
nondegenerate. 

In this paper, we have not considered the possible occurrence of 
degeneracy in the descent algorithms. Degeneracy is an important issue and 
deserves some attention in the future. Another important area of future 
research is the extension of the descent techniques described in this paper 
to the solution of bilevel programs with linear or nonlinear upper level 
constraints in both the x and y variables. It is our opinion that the success 
of this research will play a major role in the development of techniques for 
finding global minima of nonlinear bilevel programs in which the lower 
level function is quadratic and strictly convex. 
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