
Aequationes Mathematicae 20 (1980) 51-58 
University of Waterloo 

Birkh/iuser Verlag, Basel 

On a functional inequality arising in the construction of the product 
of several metric spaces 
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Suppose that (X1, dl) and (X 2, d2) are two metric spaces. Then it is well 
known that there are several ways one can induce a metric on the product space 
which induces a topology equivalent to the Tychonoff topology, the usual product 
topology. In particular, one can require that such a metric be a function of the two 
metrics d~ and d2, i.e., that there be a function H from R + × R  +, the first 
quadrant, into R +, the non-negative reals, such that for every xl, Yl in X1 and 
every x2, Y2 in X 2, we have: 

d((xl, x2), (Yl, Y2)) = H(d~(x~, y,), d2(x2, Y2))- (1) 

It is then natural to impose the following conditions on H:  

H(a,O) = H(O, a) = a, for every aeR+;  (2) 

H ( a + b , c + d ) < ~ H ( a , c ) + H ( b , d )  for all a,b,c ,  d in R+; (3) 

H(a,b)<~H(c,d)  whenever a<.c and b<~d; (4) 

H is continuous; (5) 

H(H(a,  b), c) = H(a, H(b, c)) for all a, b, c in R +. (6) 

Conditions (2) and (3) then guarantee that the function defined by (1) actually is a 
metric on Xt x X2; conditions (2)-(5), that this metric induces a topology on the 
product space which is equivalent to the Tychonoff topology; and the addition of 
condition (6) allows us to extend the definition of the product to three or more 
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metric spaces without ambiguity. It should be emphasized that conditions (2)-(6) 
are sufficient, but not necessary, for these results; in particular, to obtain the 
Tychonoff topology on X~ × X2, one only needs the continuity of H at (0, 0). 
Now if (4) is replaced by the stronger condition 

H(a, b) < H(c, b), H(a, b) < H(a, d) whenever a < c, b < d; (7) 

then, as is well-known (cf. [1], p. 256), H admits the representation 

H(a, b)= h-l(h(a)+ h(b)) (8) 

where h: R +---} R + is a continuous, strictly increasing function with inverse h -~ 
such that h (0 )=0 .  Furthermore, from (3) it follows that h must satisfy the 
inequality: 

h-l(h(a + b) + h(c + d)) <<. h-l(h(a) + h(c)) + h-l(h(b) + h(d)) (9) 

for all a, b, c, d in R ÷. Conversely, if h: R+---~R ÷ is a continuous, strictly 
increasing function with h(0)=  0 satisfying (9), and if H is then defined by (8), 
then it follows without difficulty that H satisfies (2)-(7), and in addition, the 
symmetry condition 

H(a, b) = H(b, a) for all a, b in R ÷. (10) 

Condition (10), when applied in (1), insures that the metric induced on XI × X2 is 
isometric to that induced on X2 x X1. 

Inequality (9) is the subject of this paper. Henceforth we shall assume that h: 
R + ~  R + is a continuous strictly increasing function with h(0)= 0. It is easily 
shown that such functions h exist; for example, h(x) = x p, for any ia i> 1. In this 
case (9) is the Minkowski inequality. Another family of functions is exhibited in 
Example 2. 

Such functions h were considered in [4] by Th. Motzkin. There he stated, 
without proof, that if h (0 )=0 ,  h'>~0, h">~0 and h'h"-2(h")2~O, then h satisfies 
(9). It will be shown in Theorem 1 that the only functions h which satisfy all of 
Motzkin's conditions simultaneously must be of the form h(x)= otx for some 
a/> 0. Thus, Motzkin's assertion is correct, but far too restrictive, and in particu- 
lar, cannot be used to obtain the usual Minkowski inequality. In Theorem 2 a 
different set of sufficient conditions will be presented in order for a function h to 
satisfy (9). These conditions will be strong enough to allow a proof of the 
Minkowski inequality. 
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L E M M A  1. Let a be a fixed real number, and g be a non-decreasing, convex 
[unction defined on [ a, oo). Then either g is unbounded from above, or g is constant. 

Proof. For fixed positive a, consider the ray P, = { ( t , g ( a ) + o t ( t - a ) ) / t > a }  
issuing f rom (a, g(a)).  If  there is an a > 0  such that  the graph of g intersects P~, 
then by the convexity of g, the graph of g cannot  fall below P~ in the half-plane to 
the right of the point of intersection, whence g is unbounded f rom above. If, on 
the other  hand, the graph of g fails to intersect P~, for any ot > 0, then for any t > 
a we have g ( t ) ~  < g(a) ,  whence g, being non-decreasing, is constant. 

T H E O R E M  1. Suppose h: R+--~ R ÷ is such that h ( 0 ) = 0 ,  h'~>0, h"~O, and 
h 'h" ' -2(h")2~O. Then h ( x ) = a x  [or some a>~O. 

Proof. Either h'(t)= 0 for all t >~ 0, in which case h(t)= 0 for all t>~ 0, or there 
is an a>~0 such that h ' ( a ) > 0 .  In the latter case, we have h ' ( t ) > 0  for all t>~a 
(since h " > 0 ,  h'  is non-decreasing), thus g, defined by 

1 
g( t )=  h'(t) "t>~a' 

is a well-defined function on [a, ~). Direct calculation yields g' ~ 0, g"/> 0, so that 
g is non-decreasing and convex, and Lemma  1 applies. Since g is bounded above 
(by 0), g is constant, and there is a number  o~ > 0 such that h'(t) = a for all t i> a. 

We now show that we can take a = 0. For if not, then there is a number  b/> 0 such 
that h'(t)= 0 for 0<~ t ~  b, h'(t)> 0 for t >  b. But the argument  above shows that 
there is a fixed a > 0 such that h'(t) = ot for t > b, whence h '  is discontinuous at b. 
Since this is impossible, it follows that we can take a = 0, and the theorem is 

proved. 
We now turn our attention to providing necessary conditions for the function h 

to satisfy (9). We  begin with: 

L E M M A  2. If (9) holds, then h is convex and superadditive. 

Proof. Let  x and y be non-negative real numbers,  and assume without loss of 

generality, that x ~< y. Let  a = h-l(x) ,  b = h-~((x + y ) / 2 ) -  h-~(x), c = h-~((y - x)/2), 
and d = 0. Substituting these values into (9) yields: 
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whence h -~ is concave and thus h is convex. Since h(0)= 0, it follows (cf. [3] 
p. 239) that h is superadditive. 

If h satisfies (9), then by Lemma 2, h -~ is subadditive, and by assumption 
h- l (0)  = 0 ;  therefore h -1 is a gauge [2, p. 63]. 

The converse of Lemma 2 is false; i.e. a continuous increasing convex 
function h with h(0)= 0 need not satisfy (9). 

x 2, for 0 ~ < x ~ < l ;  
E X A M P L E  1. Let  h(x )= 2 x - 1  for x / > l .  

It is clear that h is a continuous, strictly increasing convex function with h(0) = 0. 
But  if a = c = d = 1 and b = ½, then (9) fails. 

Although h being convex does not imply (9), it does imply the special case of 
(9) with a = 0. 

L E M M A  3. I f  h is convex, then h - l (h (b )  + h(c + d)) <<- c + h- l (h(b)  + h(d)). 

Proof. Fix b and d and consider the function 

F(x) = h-~(h(b) + h(x  + d ) ) -  x -  h-~(h(b) + h(d)). 

If 0 ~< x < y, then 

F(x) - F(y) = h- ' ( h (b )  + h(x + d ) ) -  h-~(h(b) + h(y + d)) + y - x 

Since h is increasing and h -1 is concave, it follows from [5; Lemma 15, p. 108] 
that  F(x) - F(y)/> 0. Thus F is decreasing. Since F(0) = 0, the result now follows. 

L E M M A  4. Let f be a function from R + into R + that is positive for positive 
arguments. Let g be the function defined on the entire real line by 

g(x) = log (f(e*)) (11) 

Then the following statements are equivalent: 
(a) The function g is convex; i.e. f (e  ~) is log convex; 
(b) For all x > 0 ,  y, z >10 we have: 

f(x+y)'f(x+z) ~f((x+y~x+z)) 
f(x) (12) 

Moreover, (assuming h continuous), equality holds in (12) for all x > 0 ,  y, z >t0 if 
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and only if g is linear, i.e., i f  and only if f(x)  = cx p for some positive c and fixed real 
p. 

(N.B. The requirement that g be convex does not imply the convexity of f 
(take f (x )= x/x). Hence this requirement is weaker than the requirement that f 
itself be log-convex.) 

Proof. Letting a = log (x + y), b = log (x), and c = log (x + z) yields that 

f (x  + y)" f(x + z) <-<. ~ ( x  + y)(x + z) )  if and only if 
f ( x )  x 

g ( a ) + g ( c ) < ~ g ( a + c - b ) + g ( b )  for -oo<b<_Min(a ,c ) .  (13) 

First, assume that (13) holds. Then let u, v ~ R. Let  a = c = ((u + v)/2), and let 
b = M i n  (u, v). Note that b~<Min (a, c). Substituting these values for a, b, and c 
into (13) yields: 

u + v  
2 g(---2---) ~< g(v) + g(u ) . (14) 

Thus g is convex. 
In the other direction, suppose that g is convex. Consider the function 

F(b) = g(a) + g ( c ) -  g(a + c - b ) -  g(b), for -oo < b ~< Min (a, c). 

Since F(Min(a ,c ) )=O,  it suffices to show that F is non-decreasing on 
( - ~ ,  Min (a, c)). Let  bl < b2 < Min (a, c). Then  bl < b2 < ((a + c)/2), whence there is 
an a ~ (0, 1) such that b2 = (1 - o~)bl + a ( ( a  + c)/2). From this it follows that a + c - 
b2 = (1 - a)(a + c - bl) + o~ ((a + c)/2). Since g is convex, 

g(b2) <~ e~g (~ - s l  + ( 1 -  a)g(b,); 

g ( a + c - b 2 ) ~ c ~ g - - ~ - -  + ( 1 - a ) g ( a + c - b O ;  and 

g(a + c~_<g(bl)+ g(a + C--bl) 
- T - / -  2 

Adding the first two inequalities and then using the third yields 

g( b2) + g( a + c - b:) <~ g( a + c - bl) + g( bO. 

from which it follows that F(bO <.F(b2), for b~ ~< b2. 
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Finally, if f(x)= cx p for some fixed positive c and fixed real p, then it is clear 
that equality holds in (12). On the other hand, if equality holds in (12) then (14) is 
the Jensen Equation, and the continuous solutions of (14) are of the form 

ax +'13 [1, p. 43]. 

T H E O R E M  2. Let h: R +--* R + be a continuous, strictly increasing, every- 
where-differentiable, convex function with h(0) = 0. Suppose further that if f(x) = 
h '(x ), then the function g defined by (11) is convex. Then (9) holds for all a, b, c, d, in 
R + if it holds asymptotically, i.e., if for all fixed c, d in R +, we have 

h-~(h(a + b) + h(c + d)) 
lim sup .  -1 . . . .  + ~< 1. 
,~+b--,~ n tara) h(c))+h-l(h(b)+h(d)) 

(15) 

Proof. Let  A = h-l(h(a)+h(c)), B = h-~(h(b)+h(d)), and C = h-~(h(a+b)+ 
h(c + d)). Then if either c or d is zero, the conclusion of the theorem follows from 
Lemma 3. Therefore,  we may assume that both c and d are not zero. If this is the 
case, then both A and B are not zero, and thus, for any fixed c, d > 0, the two 

place function 

G(a, b) = C](A + B) 

is continuous and well defined on R + × R  +. It is clear that the conclusion of the 
Theorem will follow if we can show that G(a, b ) ~  < 1 for all pairs (a, b)e  R ÷ × R  +. 

By Lemma 3, G(0,  b)<~ 1 and G(a, 0 ) ~  < 1. Since lim sup~+b~® G(a, b)<~ 1, it 
follows that if there is a point (x, y ) e R + × R  ÷ such that G(x, y ) >  1, then supa,b 
G(a, b) exists and is attained at an interior point, (x0, Y0), of R ÷ × R  +, and 

G(xo, yo)> 1. 
Since both A and B are not 0, and since h is increasing on (0, ~), both h'(A) 

and h'(B) are not 0. Therefore  at (Xo, Y0), 

0 0 G  1 ( h'(xo+Y0) C:h'(xo)~. 
=O---~=(A+B)------~ ( A + B ) .  h'(C) h'(A) f '  

and 

0 = O--b = (A + B) - - - - - - ~  (A + B) 
h'(xo+ yo) C-h'(yo)  

h'(C) h'(B) l" 
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Since the function g defined by (11) is convex, it follows from Lemma 4 that 

C h'(A)'h'(x_,o+Yo)< ,1 . ,((Xo+Yo)A~ 
A + B = h;(-'t~)': h-;(x--~ ~h ' - - -~  h ,  ~o " (16) 

C =h'(B)" h'(xo+Yo)< 1 . h,((xo+Yo)B) (17) 
A + B h'(C), h'(y0) h'(C) - Yo " 

If either of the quantities on the right hand side of (16) or (17) is less than or 
equal to one, then G(xo, Y0) = (C/(A + B)) ~< 1, and this is a contradiction. Thus 

h'((x°+y-o)A~>h'(C);xo ! and h'((x°+y°)B~>, "~o / h'(C). 

Since h is convex, h' is increasing. Therefore  

( x °+y° )A>c>A+B;  and (x°+y°)B>c>A+B.  (18) 
Xo Yo 

But these inequalities imply Ay o > Bxo and Bxo > Ayo which is again a contradic- 
tion. Therefore  G(a,b)~<l for all a and b. 

C O R O L L A R Y  1. (Minkowski Inequality) I[ h(x) = x p, p >I 1, then h satisfies 
the hypotheses o[ Theorem 2. 

Proof. It is clear that if p >t 1 then h(x) and g(x) = log (h'(e~)) = log p + ( p -  1)x 
are both convex. Next (15) follows from the fact that for any fixed c, d; 

((a + b) p + (c + d)P) I/p ~< ((a + b) p + (c + d)P) ':P 
G ( a' b ) = ( a-Y-+ c U~ ff "~ "+"-~ / P ~ a + b 

EXAMPLE 2. We conclude by exhibiting another family of functions satisfy- 

ing (9). Let h(x)=exp(x")-1, n>-I. Then h"(x)>-O so that h is convex, and 

log (h'(eX))=log n+e ~ +(n-1)x  is also convex. Therefore  it remains only to 
show that lim supa+b--,oo G(a, b ) ~  < 1. To see this note that log (x+  1) is subaddi- 

tive. 
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There fo re ,  

G ( a ,  b) = 

ROBERT M, TARDIFF 

(log (exp ((a  + b) ") - 1 + exp ((c + d) ~) - 1 + 1)) TM 

AEQ. MATH. 

(log (exp (a n) + exp (c n ) - 1)) TM + (log (exp (b n ) + exp (d")  - 1)) TM 

<~ (log (exp ((a + b) n) + exp (c + d) n) - 1)) TM 

a + b  

~< [log exp ((a + b) n) + log exp ((c + dn))] / 

1 c + d  ~ TM 

f rom which (15) follows. 
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