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Nonmonotone Stabilization Methods 
for Nonlinear Equations 1 
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Abstract. We are concerned with defining new globalization criteria 
for solution methods of nonlinear equations. The current criteria used 
in these methods require a sufficient decrease of a particular merit 
function at each iteration of the algorithm. As was observed in the field 
of smooth unconstrained optimization, this descent requirement can 
considerably slow the rate of convergence of the sequence of points 
produced and, in some cases, can heavily deteriorate the performance 
of algorithms. The aim of this paper is to show that the global 
convergence of most methods proposed in the literature for solving 
systems of nonlinear equations can be obtained using less restrictive 
criteria that do not enforce a monotonic decrease of the chosen merit 
function. In particular, we show that a general stabilization scheme, 
recently proposed for the unconstrained minimization of continuously 
differentiable functions, can be extended to methods for the solution of 
nonlinear (nonsmooth) equations. This scheme includes different kinds 
of relaxation of  the descent requirement and opens up the possibility of 
describing new classes of algorithms where the old monotone linesearch 
techniques are replaced with more flexible nonmonotone stabilization 
procedures. As in the case of smooth unconstrained optimization, this 
should be the basis for defining more efficient algorithms with very 
good practical rates of convergence. 
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1. Introduction 

In this paper, we shall be concerned with enforcing global convergence 
of Newton-type algorithms to solve systems of nonlinear equations where 
the underlying equations are not necessarily smooth. Since much of this 
work was motivated by a desire to solve nonlinear complementarity 
problems, we are particularly interested in the case of nonsmooth equa- 
tions. In fact, many of the approaches for solving the nonlinear comple- 
mentarity problem consider a reformulation of the problem as a system of 
nonsmooth equations. 

Many of the globally convergent Newton-type methods for nonlinear 
equations proposed in the literature (see, for example, Refs. 1-6) present 
the following form: 

x k  + l = x~  + ~kdl , ,  

where dk is the search direction and ek is the stepsize along this direction. 
Usually, the search direction is computed by considering the particular 

structure of the original problem. Typically, the direction solves a linear 
approximation of the system of nonlinear equations. This endows the 
search direction with good theoretical properties. In fact, if the unit stepsize 
is used, these algorithms produce sequences of points which are locally 
superlinearly convergent. 

As for the stepsize e~, it is chosen to satisfy stabilization criteria that 
guarantee the global convergence of the algorithm. The criteria are based 
on the requirement of sufficient decrease of a particular merit function at 
each step of the algorithm. These merit functions are scalar functions with 
the property that their global minima correspond to solutions of the given 
system of equations. The original problem of solving the system of equa- 
tions is considered equivalent to the unconstrained minimization of the 
merit function and, hence, it appears natural to use classical globalization 
techniques from unconstrained optimization to determine the stepsize e~. 
The search direction (obtained by solving a linearization of the system of 
equations) may need to be modified to ensure descent for the merit 
function, and the steplength may have to be reduced in order to enforce 
sufficient decrease of the merit function. These modifications may destroy 
some of the good properties of the original Newton-type directions. This is 
well known in the field of smooth unconstrained optimization (see, for 
example, Refs. 7-8), where it has been observed that imposing strong 
descent requirements considerably slows the rate of convergence and, in 
certain cases, heavily deteriorates the performance of Newton-type al- 
gorithms. In our opinion, the descent requirements could be even more 
detrimental to solution methods for systems of nonlinear equations as there 
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is no longer a strong connection between the merit function and the 
original problem (in particular, there is no general relation between the 
critical points of the merit function and the solutions of the system of 
equations). Since it appears very reasonable to use the structure of the 
original problem as much as possible (see also Ref. 9), the ideal algorithm 
should use the unit stepsize along the original Newton-type direction as 
frequently as possible without losing global convergence. 

Recently in smooth unconstrained optimization, some results (see, for 
example, Refs. 7-8) have been proposed based on the preceding consider- 
ations. In fact, new more tolerant stabilization criteria have been proposed 
for the unconstrained minimization of continuously differentiable func- 
tions. These criteria ensure the global convergence without imposing, at 
each step, a sufficient reduction of the objective function. A first attempt at 
using these new results in the field of nonlinear equations has been made in 
Ref. 6, where the nonmonotone linesearch technique of Ref. 7 was pro- 
posed to minimize locally Lipschitzian functions. 

In this paper, we draw our inspiration from the stabilization scheme 
described in Ref. 8. This scheme includes different strategies for enforcing 
global convergence without requiring a monotonic reduction of the merit 
function. The numerical results reported in Ref. 8 show that computation- 
ally this scheme can be very effective especially in the minimization of 
ill-conditioned functions. In particular, numerical examples were given to 
show that the scheme avoids problems associated with the Maratos effect. 
This behavior is very attractive if we want to solve a system of nonlinear 
equations. In fact, all the merit functions used to globalize the Newton-type 
methods proposed in the field of nonlinear equations are often either 
ill-conditioned smooth functions or nonsmooth functions that may be 
considered similar, from a numerical point of view, to ill-conditioned 
functions (see Refs. 10-11). Therefore, extending the stabilization scheme 
of Ref. 8 to nonlinear equations and combining it with an efficient 
Newton-type method should be the basis of efficient algorithms for solving 
systems of nonlinear equations. Unfortunately, this extension is not imme- 
diate because all the results described in Ref. 8 are based strongly on the 
following points: 

(i) the merit function is continuously differentiable; 
(ii) in some circumstances, the search direction must be uniformly 

related (see Ref. 12) to the gradient of the merit function; 
(iii) in other circumstances, the search direction must be a forcing 

function of the gradient of the merit function; 
(iv) the linesearch procedure requires exact knowledge (in addition 

to continuity) of the directional derivative of the merit function 
along the search direction. 
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Certainly, the preceding points are not satisfied by the solution methods for 
systems of nonsmooth equations; frequently, they are not even satisfied by 
the solution methods for nonlinear smooth equations. 

The aim of this paper is to define a stabilization scheme similar to the 
one proposed in Ref. 8 that can be combined with the wide class of 
Newton-type methods proposed in the literature to solve systems of non- 
linear (smooth or nonsmooth) equations. In order to do this, we describe 
our scheme in a very general framework. This framework is characterized 
by a merit function, an auxiliary function (which resembles a forcing 
function), and the search directions determined by the algorithm in ques- 
tion. We state minimal conditions to impose on the merit function, the 
auxiliary function, and the search directions in order to guarantee the 
global convergence of the stabilization scheme. Most of the efficient 
Newton-type methods proposed for nonlinear equations satisfy these con- 
ditions. Therefore, the results reported open the possibility of describing 
new classes of algorithms where the old monotone linesearch techniques are 
substituted by more flexible stabilization procedures. However, the defini- 
tion of a particular algorithm is beyond the scope of this paper and will be 
the subject of future work. 

2. Stabilization Strategies for Nonlinear Equations 

In this section, we define general stabilization schemes for the solution 
of 

(NE) H(x) = O, 

where H: R " ~  ~" is a given function. 
We assume that there exists a locally Lipschitzian merit function M 

with the property that 

M(x) >_ O, for all x E •", 

M(x) = O, if and only if H(x) = O. 

We apply techniques from unconstrained optimization to effect the mini- 
mization of this merit function. 

The algorithm that we consider has the form 

Xk+l=xl,+o~kd1,, k = 0 , 1  . . . . .  

where Xo~"  is a given starting point, dk ~s 0 is a search direction, and ~k 
is a stepsize. Our formulation also relies on an auxiliary function, 
A: R" +" + ~ --* R, which is a generalization of the familiar notion of a forcing 
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function (Ref. 13). The relationship between these constructs will be 
described in the sequel. 

In order to obtain a method for the solution of (NE), we define a 
general stabilization scheme that includes different strategies for enforcing 
global convergence without requiring a monotonic reduction of the merit 
function. This scheme is based on the following observations. As we have 
said in the introduction, a Newton-type direction conveys a lot of informa- 
tion about the system of equations under consideration (certainly much 
more than the merit function). In particular, if the sequence {lld~ II} goes to 
zero, then the corresponding sequence of points {xk } converges to a 
solution of the system of equations. Therefore, an effective criterion to 
control if we are in a region where the unit stepsize produces a super- 
linearly convergent sequence is to check whether the norm of the Newton- 
type direction is decreasing. Thus the normal step of the algorithm is to 
check whether the norm of the direction has sufficiently decreased. If it has, 
the algorithm accepts the unit stepsize without computing the merit func- 
tion. Otherwise, after a check of the merit function and a possible back- 
track, the algorithm again tries to accept the unit stepsize by using a 
nonmonotone Armijo-type linesearch procedure (see Ref. 7). In the de- 
scription of the algorithm that follows, l denotes the iteration index where 
the merit function was evaluated and the corresponding iterate was last 
accepted to modify the reference value. The actual linesearch procedure is 
given below. 

Linesearch. Find the smallest integer from i = 0, 1 , . . .  such that 

M(xk + 2-Sdk) < ,.@ -- 72-;A~,(xk, dk); 

then, set ctk = 2 -~, I = k + 1, and update ~. 

In order to prevent the sequence of points leaving the region of interest 
(with possible occurrence of overflows) the merit function is computed and 
its value is compared with an adjustable reference value at least every Jffth 
iteration. If the value of the merit function is smaller than the reference 
value, the algorithm proceeds with a normal step, as above. Otherwise, the 
algorithm backtracks by restoring the vector of variables to the last point 
where the reference value test had been satisfied and performs a non- 
monotone linesearch from that point. The precise form of the backtracking 
procedure is given below. 

Backtrack. Replace xk by x/, set k =/ ,  and recalculate dk. 

Formally, our complete algorithm model is the following. 
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Algorithm NMS. Nonmonotone Stabilization Algorithm. 
Data. Choose x0, 6o>0 ,  fl~(0, 1), 7~(0, 1), and Y >  1. 
Initialization. Set k = 0, l = 0, 6 = 6o. 

Compute M(xo) and set ~ = M(xo). 
Iteration. If  k r l + Y ,  perform a d-step to calculate ag; other- 

wise, perform an m-step to calculate a~. 
Set xk + ~ = xk + ~kd~, k = k + 1, and repeat the itera- 
tion. 

d-Step. Compute dk and stop if [Id~ II = 0. 
If  IId  II _<3, perform (a); otherwise, perform (b) be- 
low. 

(a) Set ~k = 1, 6 =f16. 
(b) Compute M(xk). If M(xk)>_~,  perform a 

backtrack and linesearch; otherwise, set l = k, 
update ~ ,  and linesearch. 

m-Step. Compute M(xk) and stop if M(xk) = O. 
If M ( x k ) > ~ ,  perform (c); otherwise, perform (d) 
below. 

(c) Perform a backtrack and a linesearch. 
(d) Set l = k  and update ~ .  If  lid, l[ <6 ,  set 

~k = 1, 6 =/13; otherwise, perform a line- 
search. 

For later reference, we introduce a new index j which is set initially at 
j = 0 and incremented each time we define / =  k. Then, we indicate by 
{x/~;) } the sequence of  points where the merit function is evaluated and by 
{~; } the sequence of  reference values. Furthermore, we also need the index 
q(k) defined by 

q(k) ~=max[j [ l ( j )  < k]. (1) 

Thus, l(q(k)) is the largest iteration index not exceeding k where the merit 
function was evaluated. For example, 

k = 0  1 2 . . -  10 

j = O  1 

/ ( j )  = 0 10 

q(k) = 0 �9 �9 0 1 

11 

�9 " " 1 

7 . . . . . .  

, , . 

57 . . .  

2 2 . . .  

In order to complete the description of  the algorithm, we must specify 
the criterion employed for updating ~j ,  the reference value for the merit 
function. This is initially set to M(xo). Whenever a point xt~;) is generated 
such that M(xt(;))< ~;,  the reference value is updated by taking into 
account the memory [that is, a fixed number m(j )  < ffz of previous values] 
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of the merit function. To be precise, we require the updating rule for ~j+ 
to satisfy the following condition. 

Reference Updating Rule. Given n~ > 0, let m(j  + 1) be such that 

m(j  + 1) < min[m(j) + 1, n~]. 

Let 

,,r i ,= max M(xl(j+ 1 -i)), (2) 
O<_i<_m(j+ l) 

and choose the value ~j+l  to satisfy 

M(xt(j+ 1)) -~ "~j+ I ~ "/~j+ 1 " (3) 

These conditions on the reference values include several ways of 
determining the sequence {~tj. } in an implementation of the algorithm. For 
example, any of the following updating rules can be used: 

~ :+ ,  = 9 J l j + ,  = m a x  M(xI(j+, _i)), 
O<.i<_m(j+ l) 

~j+ I = max[M(xt(j+ i)), ( 1][m(j + 1) + 1]) 

~ j+l  = min[./#j+., (1/2)(~j + M(x,(j+ ,))]. 

(4) 

(6) 

We note that (4) is the easiest to satisfy, while (5) and (6) define conditions 
which guarantee mean descent. See Fig. 1 for an example. 

We now describe the conditions which will ensure the global conver- 
gence of the aforementioned method. We will make frequent use of the 
following compactness assumption on the level set of the merit function: 

(C) f~o:={xlM(x)  < M(x0) } is bounded. 

The auxiliary function A, the merit function M, and the search direction d 
must satisfy the following properties: 

(A1) Ak(Xk, dk) --*0 implies M(xk) ~ 0 ;  

(A2) 0 > --A~(xk, dk) > M~ d~); 

(A3) [~q,~,l"lldk II = <__ ~A~(x~, >_ 1, a > o, 2 > o, [Idk ]l < #. 

Here, MD(x; v) is the Dini upper directional derivative of M at x in the 
direction v, defined as 

M~ v) = lira sup [M(x + 2v) - M(x)]/2, 
a$o 

and q(k) and ~/[q(k) a r e  defined in (1) and (2), respectively. 

re(j+ 1) 1 
M(x,(j+,_i)) , (5/ 

i=0 
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i values of merit function 

i range for reference value 

i ,  
j 1 2 4 5 7 
m(j) 1 2 3 3 3 3 3 

Fig. ], Reference value (~ = 3). 

It is easy to show that, assuming (C) and (A2), the following assump- 
tion implies (A3): 

(A4) [[dk II t _   Ak(x , �9 > 2, 2 > o. 

Assumptions (A1)-(A3) appear to be minimal assumptions on the 
auxiliary function, the merit function, and the search direction. In particu- 
lar, roughly speaking, Assumption (A1) implies that forcing the auxiliary 
function A to zero forces the current point to a solution of the system of 
equations. Assumption (A2) is needed to ensure, as we will see, that there 
exist values of the stepsize ~ which satisfy the sufficient decrease test of the 
linesearch procedure. Assumption (A3) requires that the sequence of search 
directions be bounded and that the sequence of values of the auxiliary 
function can go to zero only if either the norms of the directions go to zero 
or there exist, again roughly speaking, a subsequence of points that 
converges to a solution of the problem. 

A further technical assumption is required to hold when the algorithm 
produces a sequence of stepsizes {ct k } which converge to zero. This is as 
follows: 
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For every sequence {xk } converging to 2, every convergent sequence 
{dk }, and every sequence {2k } of positive scalars converging to zero, 

(A5) lira - Ae(x ~, de) > lim sup [M(xk + 2kdk) -- M(Xk)]/2k, 
k--* ov k ~ a o  

whenever the limit in the left-hand side exists. 
This assumption is a strengthening of (A2). In fact, we note that, if M 

is subdifferentially regular (Ref. 14), then both (A2) and (A5) are equiva- 
lent to 

0 >_ -- Ak(xk, dk) >_ M'(Xk ; dk). 

In order to prove the convergence of our model algorithm, we must 
first prove that the stepsize rule can be satisfied. The ensuing lemma 
establishes the existence of a step satisfying the linesearch criterion of 
Algorithm NMS. 

Lemma 2.1. Let M be locally Lipschitzian, and let rE(0, 1) be 
arbitrary. Suppose that Assumptions (A1), (A2), (A3) hold. Then, there 
exists a scalar ~ > 0 such that, for all ~ [ 0 ,  ~], 

M(x~ + ~dk) <- ~q(~) -- 7c~&(x~, dD; 

that is, the linesearch criterion of Algorithm NMS can be satisfied. 

Proof. If the linesearch procedure is carried out, either M(xk) > 0 or 
Ildgl[ > 3  >0.  In the first case, Assumption (A1) guarafltees that 
Ak(Xk, dk) # 0; hence, Assumption (A2) implies that M~ < 0, re- 
sulting in d k # 0. Assume therefore that dk # 0, but that the conclusion of 
the lemma is false. Then, there exists a sequence {~l} converging to zero 
such that 

M(xk + ~d~) > ~qtk~ - 7c~lA~(xk, dk). 

Using the definition of ~q(k), it can be seen that 

M(xk + ~ldk) -- M(xk) > --Tcqnk(xk, dk). 

Dividing both sides by ~t and passing to the limit, we see that 

MD(xk; dk) > --TAk(Xk, dk). 

Assumption (A2) gives 

--Ak(Xk, dk) >-- --TAk(xk, dk), 

which implies that Ak(Xk, dk) = 0, which is a contradiction to either (A1) or 
(A3). [] 
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We shall need the following technical lemma in order to prove the 
convergence of the model algorithm. 

Lemma 2.2. Suppose that M is locally Lipschitzian and that M, A, d~ 
satisfy Assumption (A2) for all k. Then: 

(a) if {x~} converges to 2 and Assumption (A3) holds, then 
{Ak(Xk, dk)} is bounded; 

(b) if {x~ } is bounded and limk_. ~ I[dk [[ = 0, then 
limk~ ~oAk(xk, dk) = O. 

Proof. 
(a) Since M is locally Lipschitzian and {xk } converges, it follows 

that there exists a constant p > 0 such that, for all k, 

IM~ d~)l _< ~ IId~ II 

By Assumption (A2), we see that 

114 [I - IM~ a~)l --- A~(x~, 4). 

The boundedness of {Ak(xk, dk)} now follows from (A3). 
(b) If the conclusion of (b) is false, then 

lim sup Ak(x~, d~) = .4 > O. 
k ~ o o  

Since {xe } is bounded, we can find a subsequence k ~ K  such that 

lim Ak(xk, dk) = 2 > 0, (7) 
k ~ K  

lim x~ = ~, lim [[dk 1[ = 0. (8) 
k e K  k e K  

Then, repeating the reasoning of part (a), we obtain 

/~ [[dk [[ >_[MD(xk;dk)[>--Ak(xk, d~), k e K ,  (9) 

and by using (8) and (9), we have 

lim Ak(xk, dk) = O, 
k E K  

which contradicts (7). [] 

The next lemma shows some properties of the sequence {xk } produced 
by Algorithm NMS. 
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Lemma 2.3. Suppose the Assumption (C) holds and that Algorithm 
NMS produces an infinite sequence {xk }. Then: 

(a) {xk } remains in a compact set; 
(b) the sequence {~/j} is nonincreasing and has a limit Jr 
(c) let s(j)  be an index in the set { l ( j ) , l ( j - 1 )  . . . . .  l ( j - r n ( j ) ) }  

such that 

M ( x s ( j ) ) = d l j =  m a x  M(Xl(j_i)); (10) 
O<_i<_m(j) 

then, for any integer k, there exist indices hk and Jk such that 

0 < hk -- k < sl/'(th + 1), hk = s(A), 

M[jk = M(xhk) < M[q(k). 

ProoL The proof of the lemma follows with minor modification from 
the proofs of Lemma 1 and Lemma 2 of Ref. 8. [] 

The following result is central to our development. We show that the 
merit function converges to a limit and also the product of the stepsize and 
the auxiliary function tends to zero. Note that these conclusions are trivial 
in the case of a monotone linesearch procedure. Unfortunately, in our case, 
the proof is more involved. 

Proposition 2.1. Let {xk} be a sequence produced by the algor- 
ithm. Suppose that Assumptions (A1), (A2), (A3), and (C) hold and 
that M is locally Lipschitzian. Then, limk_.~M(x~) exists and 
l imk_. ~ O~kAk(Xk, dk) = O. 

Proof. We can split the iteration sequence {k } into two parts, Lr and 
q/, namely those iterations where a linesearch of the merit function is 
carried out and those where the unit stepsize is accepted without perform- 
ing a linesearch. Let {Xk }k~',~ denote the set (possibly empty) of points 
where the unit stepsize is accepted without a linesearch. Then, 

IId  II --- 6o ', ak =1  , keq/, (11) 

where the integer t increases with k ~q/. It follows from (11) that, if q/is an 
infinite set, []dk II- ,0 ,  for k ~ ~ ,  keq/. Also in this case, by Lemma 2.2(b) 
and Lemma 2.3(a), we have 

lim ~kAk(Xk, dk) = 0. (12) 
k ~ o o  
k~41 

Kq 
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Claim 2.1. For  any i > 1, we have 

lim ~s(i) - iAs(s) - i ( x s ( j )  - i ,  ds(j) - i) = 0, (13) 

lira M ( x s ( j )  _ i) = lim M(xs ( s ) )  = lira J//s = J//*, (14) 
j - ~  j ~  j - ~  

where s ( j )  is defined by (10) and (1). 

Proof. We proceed by induction. Assume first that  i =  1. If  
s ( j ) -  leqg, (13) is evident f rom (12) with k = s ( j ) - 1 .  Otherwise, if 
s ( j ) -  1 ~ ,  recalling the acceptance criterion of  the nonmonotone  line 
search, we can write 

-r = M ( x s ( j ) )  = M ( x s ( j ) -  l + ~s(j) - I ds(j) - I ) 

~-~ ~ [ q ( s ( j )  -- 1) - -  ~ s ( j )  - 1 A s ( j )  - l ( x s ( j )  - 1,  ds(s)-  1 ). 

It follows that  

~ /~q ( s ( j )  -- 1) - -  J ~ j  ~-~ ~O~s ( j ) -  l A s ( j ) -  l ( X s ( j ) -  1, ds(j) - 1). (15)  

Therefore, if s ( j )  -- 1 eLP for an infinite subsequence, f rom Lemma 2.3(b) 
and (15) we get 

lim ~s(j)- 1 As(b) - 1 (xs(j)_ 1, ds(j)_ ~) ~ 0, (16) 
j~oo  

so that  (13) holds for i = 1. 
I f  follows f rom (A3) and (16) that  

lim c~s(j)_, ~r lid,(b)-, II = 0, 
j+oo  

and since {~, }, {J//, }, {d, } are bounded from above and z _> 1, a > O, it 
follows that  

lim a~<j)_1 J//q(s(j)- 1 ) l i d s < j ) - ,  II = 0. 
j ~  

We consider two cases. Suppose first that  

lim sup r162 11d~(s)-, II > 0. 
j~oo  

Then, since limj_. ~ ~/s exists, it follows that  l imj .  o~ dc'j = 0. However, by 
recalling that,  by the definition o f  #//s and the description of  the algorithm, 
we have that  

M ( x , ( j ) _  1) -< ~ / [ q ( s ( j ) -  1), 

hence it is immediate that  

lira M ( x s ( i ) - 1 )  = lira ~gj = 0. 
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Then, (14) clearly holds for i = 1. Otherwise, 

li m sup ~.(j)_. [Id,(j)_ 1 II = 0, 
j ~ o o  

which implies that 

lim c~(:)_1 ][d.~:)_. ]1 = 0. 
j~oo  

This in turn shows that 

IIx,<:,- xs ( j ) - i  II 
so that (14) holds for i --- 1 by the nrfiform continuity of  M on the compact 
set containing {Xk }; see Lemma 2.3(a). 

Assume now that (13) and (14) hold for a given i and consider the 
point x~(j)_(i+l). Reasoning as before, we can again distinguish the case 
s ( j )  - (i + 1)~q/, when (12) holds with k = s ( j )  - (i + 1), and the case 
s ( j )  - (i + 1) < ~ ,  in which we have 

M(x .<: )_~)  ~ ~/~ q(s(j)--(i + 1)) -- ~O~s(j)--(i + I)As(j)-( i  + l) (Xs(j)-(i+ l), d.(j)-,+l)). 

and hence, 

~/[q(s(j)-(i+ 1)) - m ( x s ( j ) -  i) ~ ]/~ l)As(j)-( i+ l)(Xs(j)-(i+ 1), ds(j)-(i+ 1)). 

(17) 

Then, using (12), (14), (17), we can assert the Eq. (13) holds with i replaced 
by i + l .  

Invoking (A3) and using a similar argument to that above, we see that 

lim c~,,:)_,i+ l)J~q(s(j)_(i+ I))l[d,,:')-(i+ ,)11 = O. 
j---~ oo 

Again, we must consider two cases. Suppose first that 

li m sup ~s~j)-, + ~)[Id~j)-, + 1)I[ > 0. 

Then, since lim:_.oo Jg: exists, it follows t h a t  limj~oo d//j = 0, and using 
again that 

M(xs ( j ) - ( i+  1)) ~-~ ~/~q(s(j)-(i+ 1)), 

we have 

lira M ( x s ~ j ) _ ( i +  I)) -- lim Jg: = 0. 

Thus, in this case, (14) holds f o r j  + 1. In the other case, 

li m sup ~ , : ) - u  + ,)[Id~j)-u + 1)I[ = O, 
j - -*~  
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which implies that 

lim as(j)_tt+ ,)I[ds(j)_(i+ 1)II =0. 
j--* oo 

This implies, moreover, that 

so that by (14) and the uniform continuity of M on the compact set 
containing {xk }, 

lim M(xs(j)_(g+ 1)) = lira M(x~(j)_i) = lim ,A/~. 

Thus, (14) is satisfied with i replaced by i +  1, which completes the 
induction. [] 

We now complete the proof of Proposition 2.1. We first show the 
l i m k ~  M(xk) exists. Note that (13) and Assumption (A3) imply that, for 
every i _> 1, 

lim O~s(j)_iJ~q(s(j)_i)l[ds(y,_i l[ = 0. 
j--* o0 

Again, there are two cases. The first one is that there exists an index ~-such 
that 

lim sup ~s(j)_zl[ds(j)_ rH > 0. 
j ~ c o  

Then, since l i m j ~  J / j  exists, it follows that limj~o~ ~ j  = 0; and since 
O<M(xk) <~lr we have l i m j ~  M(xk)=0. Now consider the case 
where, for every i, we have 

lim ~s<j)-i [[ds</)_i [I = 0, (18) 
j---~ oo 

and let xk be any given point produced by the algorithm. By Lemma 2.3(c), 
there is a point Xhk such that 

Xhk6{Xs(j) } and O<h  k - k  < Y ( r h  + 1). (19) 

We can write 
h~-k  

xk=Xh~-- Y, %-idh~-i, 
i = 1  

and this implies, by (18) [with hk =s( j ) ]  and (19), that 

lim [Ixk - Xhk l[ = 0. (20) 
k--* oo 

From the uniform continuity of M, it follows that 

lim M(xk) = lira M(xhk) = lira ~'j,  (21) 
k ~ o o  k ~  j - - * ~  

proving that lim~_.~ M(xk) exists. 
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If  k ~ LP, we obtain 

M(Xk + ,) <_ J/Iq(k} - ~CtkAk(Xk, dk), 

and hence, 

~/[q(k) - -  M ( X k  + 1) ~ ) )o~kAk (Xk ,  d k ) .  

Therefore, by (12), (21), (22), we conclude that 

lim ctkAk(Xk, dk) = O, 
k --* m 

as required. 

(22) 

[] 

We are now able to prove our convergence result. Note that Assump- 
tion (AS) is only needed when lim SUpk ~ 0o ~ k  = 0. 

Theorem 2.1. Let M be a locally Lipschitzian merit function, and 
suppose that (A1), (A2), (A3), and (C) hold. Then: 

(a) if lira s u p k ~  ~k > 0, then lim~_.o~ M(xk) = 0; 
(b) if lira supk_~ o~ ~k = 0 and if 2 is an accumulation point of {xk }, 

where (A5) holds, then M(~) = 0. 

Proof. Suppose that 

lim sup ~k = ~ > O. 
k~c,o 

Since {Xk} is bounded, we can find a subsequence k ~ K  such that 

l i m ~ k = ~  and l i m x k = ~ .  
k ~ K  k ~ K  

By Lemma 2.2, it follows that {Ak(Xk, dk) lk sK} is bounded. By taking 
further subsequences if necessary, we may assume that limk~r ~k = ~ and 
limkEKAk(X~, dk) exists. However, from Proposition 2.1 we have 

lira ~kA~(xk, dk) = O. 
kEK 

Since ~ > 0, it follows that 

lim Ak(Xk, dk) = O. 
kEK 

Assumption (A1) gives limk~KM(xk)= 0, hence l i m k ~  M(Xk)= 0, since 
from Proposition 2.1 the s e q u e n c e  {M(Xk) } converges. 

Otherwise, lim SUpk ~ ~ ~ k  = 0 ,  implying that limk_~ ~ ~k = 0. Let ff be 
an accumulation point of {xk} where (AS) holds, and let {xk l k~K } 
converge to 2. Using Lemma 2.2, we may assume that {Xk I keK},  
{dk I k sK} ,  {r I k sK} ,  and {Ak(Xk, dk) I keK}  converge for some subse- 
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quence k e K .  Now for sufficiently large values o f k  and k e K ,  we have that 
~k < 1 and hence that o~k, k e K ,  is eventually produced by procedure 
linesearch. The definition of the linesearch in Algorithm NMS gives 

m(xk + (o:k [v)dk) -- ~q<~) > --?(~k/v)Ag(x~, d~), 

and the definition of ~qCk) implies 

M(x~ + (~k/v)dk) - M(x~) > -~,(~/v)Ak(x~, d~). 

Using Assumption (A5) we have 

- l i ra  Ak(xk, dk) > lim sup [[M(xk + (~k/v)dk) -- M(xl,)]/(~/v)] 
k ~ K  k ~ K  

> - ?  lira Ak(x~, dk), 
kEK 

which shows that limko:Ak(Xk, d~)=O. It follows from (A1) that 
M(2) = O. [] 

3. Examples of Applications of the New Stabilization Strategies 

In the preceding section, we have described a nonmonotone stabiliza- 
tion algorithm and we have given general conditions which are required 
for such a technique to give global convergence. These conditions are 
formulated in terms of a merit function, an auxiliary function, and the 
directions determined by a particular algorithm. We prove the general 
convergence result under these assumptions, without specifying the partic- 
ular merit function, the auxiliary function, or the direction, but only the 
conditions which they must satisfy. The described conditions are so weak 
that almost all the merit functions, auxiliary functions, and search direc- 
tions used by the Newton-type methods proposed in the literature satisfy 
our conditions. Therefore, it is possible to combine our stabilization 
technique with these algorithms. In this section, we report on some 
examples of these methods. 

As a first example, we consider the approach proposed in the work of 
Burdakov (Ref. 1). In this work, a system of smooth equations is consid- 
ered, and it is assumed that the Jacobian of the system of equations is 
invertible everywhere and its inverse is uniformly bounded. The proposed 
merit function is given by 

M x) := IIH x)II, 

the auxiliary function is given by 

Ak(xk, dk) = M(xk), 
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and the search direction is the Newton direction, namely, 

dk = -VH(xk) - 'H(x~) .  

Finally Assumption (C) is required. It is very easy to show that Assump- 
tions (A1)-(A5) hold. In fact, Assumption (A1) is immediate by the 
definition of A. Assumptions (A2) and (A5) follow from the fact that the 
author of Ref. 1 shows that 

MD(x; dk) = -- M(x). 

Finally, Assumption (C) and the assumption that the inverse of the 
Jacobian is uniformly bounded imply Assumption (A3). 

An interesting extension to the work of Pshenichny and Danilin (Ref. 
15) on minimax problems can be seen by using our formulation. In this 
case, the merit function is given by 

M(x) = max In,(x)l, 
I <<_i<n 

where Hi are assumed to be continuously differentiable functions whose 
gradients satisfy a Lipschitz condition. By defining the set 

d~  :={i l ln,(x)[ > M(x)  - ,~}, 

the linearization method of Pshenichny and Danilin has been shown to 
converge under Assumption (C) and the following assumptions: 

(B1) 36 > 0 such that, for all x with M(x) > O, M(x) <_ M(xo) , the 
linearized system 

VHi(xk)d + Ht(xk) = 0, i e d ~  (23) 

is solvable 
(B2) Let d(x) denote the minimum norm solution of (23). Then, 

3c > 0 such that, for all x with M(x) > 0, we have 

lid(x) II -< cM(x). 

It can be shown that these assumptions imply our assumptions. Let 
Ak(xk, dk) =eM(xk), for ee(0, 1). Assumption (A1) is then immediate. 
Assumption (A2) follows from Ref. 15, Theorem 6.1, since it is shown that 
there exists an ~ > 0  such that, for all ae(0,  0qk), 

M(x~ + ~&) - M(xk) <_ --e~M(xk), 

for any �9 < 1. Assumption (A3) follows immediately from (B2). For 
Assumption (A5), it is proven in Ref. 16 that M is subdifferentially regular, 
and hence (A5) is equivalent to (A2). 
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Finally, we consider the results proposed in Ref. 4. In this paper, the 
following method is described. Let 

M(x) = (1/2)Ilmx  II 2, 

and choose the search direction to satisfy 

H(xk) + G(xk, dk) = 0 

at each iteration. It is not assumed that H is a smooth function, but that 
G(xk, d) is an appropriate approximation of the directional derivative of H 
in the direction d at xk. The motivation behind this analysis comes from 
nonlinear complementarity problems, and the difficulties associated with 
the inequalities present in these problems are replaced by the nonsmooth- 
ness of H. The assumptions made in Ref. 4 are essentially equivalent to the 
ones we make in Section 2. This can be seen by defining 

Ak(x~, ak) := 2M(x~). 

In the same paper (Ref. 4), a Gauss-Newton method is also proposed. 
The same merit function is used. In this case, the direction is calculated by 
solving 

min [H(xk)rG(xk, d) + (1/2)Rk(d)]. 
d e R  n 

The assumptions made to prove convergence are essentially equivalent 
to (A1), (A2), (A4), and (C). Particular instances of functions R~ which are 
considered are: 

(i) Rk(d) = drB, d, where Bk is a symmetric positive definite n x n 
matrix; 

(ii) Rk(d) = Ila(xk, d)If2+ ~k I[dll 2, where Ek is a nonnegative scalar. 

In Ref. 4, the conditions on Rk require in the first case that the sequence 
{Bk } have eigenvalues which are bounded away from zero and in the 
second case that {Ek } be bounded away from zero. In the model that we 
propose, we can relax these conditions by essentially using the following 
forms: 

(i) Rk(d)= drB, d +  e,~/[k I[dll 2, where Bk is a symmetric positive 
semidefinite n x n matrix; 

(ii) Rk(d) = HG(xk, d)II 2 + c, J lk ]ld[I 2. 

This example shows that our analysis can lead to weaker requirements than 
those already cited in the literature. 

Three further examples of the use of the framework presented in this 
paper are described in Ref. 17. In particular, these examples exploit the full 
generality of the auxiliary function depending on k, xk, dk. 
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