
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vo[. 81, No. 1, APRIL 1994 

Geometry of Optimal Value Functions with 
Applications to Redundancy in Linear Programming 

J. H. DUL,~ 2 

Communicated by E. Polak 

Abstract. In 1967, Wets and Witzgall (Ref. 1) made, in passing, a 
connection between frames of polyhedral cones and redundancy in 
linear programming. The present work elaborates and formalizes the 
theoretical details needed to establish this relation. We study the 
properties of optimal value functions in order to derive the correspon- 
dence between problems in redundancy and the frame of a polyhedral 
cone. The insights obtained lead to schemes to improve the efficiency of 
procedures to detect redundancy in the areas of linear programming, 
stochastic programming, and computational geometry. 
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1. Introduction 

Redundancy is a condition indicating excess information. Redundancy 
in this broad sense appears in different areas. In optimization theory, the 
concept of  redundancy plays a role in classical linear programming and in 
stochastic programming. In linear programming, a constraint is redundant 
if it can be omitted from the model without affecting the feasible set. 
Redundant  constraints in linear programming are a common occurrence. 
These constraints may make problems larger than necessary; reducing 
model size improves the efficiency of  the solution. Also, redundant con- 
straints may be manifestations of  modeling inefficiencies and inconsisten- 
cies. An additional reason to detect redundancy is that it may lead to 
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numerical instability in the simplex method (Ref. 2). Finally, redundancy 
and degeneracy are dually linked. In stochastic programming, redundancy 
in the decision variables is an indication of the role of uncertainty in the 
problem. 

Redundancy is also a topic in the study of computational geometry. 
The convex hull of a finite collection of points reduces to the convex hull 
of only those points which result in extreme points and all the other points 
are superfluous. Identifying these extreme points of the convex hull from a 
finite list makes it more efficient to solve certain problems in computational 
geometry such as finding the facial decomposition of a polytope and 
Voronoi diagrams (Ref. 3). 

The problems of detecting redundancy in linear programming, 
stochastic programming, and computational geometry, as presented above, 
are all equivalent. They are connected by duality relations and can be 
reduced to two problems: locating unnecessary constraints in a system of 
linear inequalities and identifying the extreme points of the convex hull of 
a finite collection of points. Our focus is on redundancy in classical linear 
programming although our discussion includes results in stochastic pro- 
gramming and computational geometry. 

In Ref. 1, it is observed that removing redundant constraints in the 
system 

Afn<_cj, j = l  . . . . .  n, 

amounts to finding a frame for the cone spanned by vectors 

One objective of our paper is to elaborate on the theoretical details which 
lead to this observation. Another objective is to apply the insights gained 
from this analysis to design efficient schemes to identify some elements of 
the frame. We believe that this is the first work that formally unifies the 
correspondence between the problem of redundancy in optimization theory 
(and other areas) and the problem of identifying the frame of a polyhedral 
optimal value function. 

2. Notation and Assumptions 

The purpose of this section is to introduce the relevant forms for the 
problem we propose to study and to present and discuss the assumptions. 

Let A be a matrix with m rows and n columns, with n > m, let c be a 
nonzero vector in ~n, and let b, ~ be vectors in 9~". The vector A 4 
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correspondstothejthcolumnofthematrixA;AjandIAJ]arepointsin 

91" and 91m+ 1, respectively. This last vector will sometimes appear as 
[A T ~]. 

J ,  
Consider the following linear program: 

(P) min ~ ejxj, 
j = l  

s.t. ~ Ajxj = b, xj > O. 
j = l  

The dual to this linear program is defined as follows: 

(D) max ~, njbi, 
i= l  

s.t. zcrAv<cj, j = l  . . . .  ,n.  

The feasible region of (P) is denoted by P and that of (D) by D. Therefore, 

P = {x 91"lAx = b, x >_ 0},  (1) 

D = {~91mI~TA <C}. (2) 

Consider the function ~b: 91m~ 9t defined as 

(F*) 0(3) = m i n  ~ cjxj, 
j = l  

s.t. ~ Ajxj = 4, xj >_ O. 
j = l  

The function ~k is an optimal value (or extremal value, or perturbation, or 
marginal) function, since for any point ~ in 91m, we obtain the function 
value by solving a linear program where the right-hand side is the argument 
4. When ~ is defined on a probability space (E,/3, 2), the optimal value 
function (F*) can be seen as a general statement of the second-stage 
problem of a stochastic program with fixed recourse (Ref. 4). 

We present our two working assumptions followed by a discussion: 

Assumption 2.1. The vectors A1 . . . . .  An positively span 91", i.e., any 
point in 91m can be expressed as a nonnegative linear combination of these 
vectors. 

Assumption 2.2. The dual linear program (D) is feasible. 

An obvious consequence of the first assumption is that the rank of the 
m • n matrix A is m. This assumption also implies that the linear program 
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(P) is feasible for any right-hand side in ~m. If the condition in this 
assumption holds, the set P is unbounded, while the set D is bounded or 
infeasible (apply Farkas'  lemma). We may anticipate that this condition 
may be satisfied if the linear program (P) has many more columns than 
rows or in the case where a stochastic linear program has fixed and 
complete recourse (Ref. 4). In any event, this assumption is not as 
restrictive as it may appear at first. In Section 4, we discuss how to modify 
the problem and make the matrix A satisfy this condition without affecting 
the task of  identifying redundancies. 

Assumption 2.2 implies that thebounded  dual feasible region D is not 
empty. Therefore, by weak duality, the primal problem (P) is never - 
for any fight-hand side. This translates to the condition that the function 
~k is proper; that is, ~0(r is always bounded below for any ~ in 91 m (see Ref. 
5, p. 24). It is not always possible to tell in advance when D is not empty. 
However, this is the case if all objective cost coefficients are positive, or if 
there are relatively few negative costs. 

3. Polyhedral Cones and Optimal Value Functions 

In this section, we introduce the definitions and the important results 
regarding the geometry of  the optimal value function ~k. 

A finite or polyhedral cone cg is defined as the positive hull of  a finite 
set of  vectors v' . . . . .  v~r i.e., 

~ = { t s91" I t = ~ vJ2j, 2j > O}'=pos(vJ, . . . , vN). (3) 
j = l  

The vectors v j, j = 1 , . . . ,  N, are the generators of  cg. The flame of a finite 
cone cr is composed of  a subset of  its generators such that their positive 
hull is the cone cg itself, but excluding any element in the frame will result 
in a finite cone ~ such that cg # ~. The epigraph of  a function in 9t m is the 
set of  points in 9t m +1 situated on or above the graph of  the function. The 
epigraph of  the function r denoted by epi ~k, is the set 

{(4, ~ ) ~ m + '  I ~ - r 

Obviously, the point (4, r162 is always on the boundary of  epi ~. The 
function ~ is convex and positively homogeneous [see Proposition 2.1 in 
Birge and Wets (Ref0 6)] and hence it is called sublinear. The function with 
an epigraph composed of  the directions of recession of  epi ~, is called the 
recession function and it is denoted by ~~176 
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A level set of  the function ~O for a given value 7, denoted by lev ~,, is 
defined as follows: 

lev~b = {~ e91m ] 0(r ) _<~}. (4) 
Y 

Since the epigraph of  0 is polyhedral, its level sets are polyhedra in 91m 
(Ref. 5, p. 174). 

The following are standard definitions and results from convex analy- 
sis (see, e.g., Ref. 5). 

Definition 3.1. A cone is pointed if its lineality space is zero. This is 
equivalent to saying that it contains no linear subspaces except the origin. 
Therefore, a pointed cone contains no lines. 

Definition 3.2. A half-line v belonging to the cone C is an extreme ray 
of  C if it cannot be expressed as a positive linear combination of two 
distinct rays in C. 

We now proceed to state results regarding the optimal value function 
and its epigraph. The following results will add insights into the 

geometry and properties of the level sets and the data in the linear program 
which define the optimal value function @. 

Theorem 3.1. The polyhedron lev ff in 9t" is bounded if and only if 
cj > O, Vj. 

Proof. Consider the following result due to Wets (Ref. 7): Suppose 
that ~k: C e 9 1 m ~ ( - o %  ~ ]  is convex and lower semicontinuous. Then 
has compact level sets (i.e., ~ is inf-compact) if and only if its recession 
function, ~, o~ > 0, for all ~ ~ 0. 

Observe that ~,o~ = ~k (see Corollary 8.5.2, Ref. 5) and recall that ~ is 
actually continuous. Now, since cj > 0 if and only if r > 0, ~ ~ 0, the 
result follows directly. [] 

Due to Theorem 3.1, we know that the level sets of ~, are, in fact, 
convex polytopes when all the costs in (F*) are strictly positive and that 
they are unbounded polyhedral convex sets if at least one of  the costs is 
zero or negative. 

The following lemma is of  independent interest and will be important 
to our development. 

Lemma 3.1. The system n r A  < - c  has at most one solution. It has 
exactly one solution if and only if the system n r A  < c also has exactly one 
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solution. These two solutions solve the systems rcA = - c  and r~A = c, 
respectively. 

Proofi By our assumptions, the rank of A is m and D is nonempty. 
Suppose that the set {re I~A _< - c }  is nonempty containing the point 7~. 
Select the point ~ eD. Then, 

z2A < c, r~A < - c .  (5) 

This means that z~ + ~ is a homogeneous solution to the system rcA _< c. 
Our assumptions on the matrix A imply that D is bounded, which in turn 
implies that only the trivial homogeneous solution exists; i.e., ~ = -zL This 
establishes that ~A > c, implying that 72A = c, which is unique when the 
rank of A is m. The converse follows immediately. [] 

Theorem 3.2. The lineality of 0: ~R m "-'} ~ is the difference between m 
and the dimension of D. 

Proof. Let d be the smallest affine set containing D; then 
dim d = dim D. Consider the case where dim d < m. In this event, there 
exists a vector, ~, belonging to the ( m -  dim d)-dimensional  orthogonal 
complement of d ,  such that 

max ~ = - max re( - ~). 
D D 

This is true since ~ is perpendicular to all feasible directions anywhere in D. 
Therefore, by strong duality, 

= 

Since ~ is sublinear, this implies that ~ is linear in all directions ~ belonging 
to the orthogonal complement of d .  In the case where dim d = m, it is 
clear that 

- -  

is never possible. [] 

As a corollary to Lemma 3.1 and Theorem 3.2 above, the cone epi ~k 
is pointed only when D has dimension m. Notice that, if cj > 0 for all j ,  
then 

~'(4) + ~ ( - 4 )  > 0, for any 4, 

and epi ~k is necessarily pointed. The presence of a linearlity space is a 
particularly serious complication when it is of full dimension; that is, when 
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the lineality of ~ is m, or equivalently when ~ is linear. Another conse- 
quence of Lemma 3.1 and Theorem 3.2 above is that the function ~, is 
linear only when the vector c e 0t" belongs to the row space of A. We may 
verify this by checking if the least squares projection of the vector c onto 
the row space of A is e itself. This is an unusual occurrence, since it requires 
that the dual feasible region be a single degenerate extreme point. We will 
refer to sets of this sort as degenerate. 

Theorem 3.3. Assume that the set D is not degenerate. Then, 

epi~p = pos([A~jl , j  = 1 . . . . .  n) .  

Proof. First we demonstrate that 

epi  pos(? 'l,=l ..... 4 
Suppose that it is not true. Then, for an arbitrary point (~, ~)sepi 0, the 
system 

has no solution. This implies by Farkas' lemma that there exists a vector 
n e9t m and a scalar a such that the two relations 

have a solution. If  this is true, then the first part implies that n rA < -crc 
is feasible. But by Lemma 3.1, since the region D is not degenerate, 
necessarily a < 0. From the second part we know that n r~ > _ o'~ or that 
n'r~ > 0~ if we let n ' =  - (1 /a )n .  Now recall that 0(~) = ~r~, where ~ solves 
the linear program max nr~ and ~(~) _< 0~, since (3, o2)~epi 0. Positioning 
these relations, we obtain that 

which is the contradiction we seek, since ~ r ~ <  n,r~'is impossible when 7~ 
solves the dual max n rff. 

D ~Aj12j belongs to Next, we demonstrate the reverse inclusion. ~}'= 1 [_ cj _] 

epi O for 2j > 0, j = 1 . . . . .  n, if cj > O(Aj). This inequality follows since a 
feasible solution to the linear program (P) when b = Aj is xj = 1. At this 
solution, the objective function value is precisely cj, which may or may not 
be optimal. [] 
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As we have seen, if the set D is degenerate, then the function ff is 
linear. In this event, 

pos (~A~] , j= l  . . . . .  n )  ~ e p i ~ ,  (8) 
\ L q  J 

with the converse not being true at all. Essentially, the convex hull of the 
graph of r does not contain the epigraph. However, if the vector 
[0 T, 1] ~9t "~+ 1 is added to the list, then the inclusion goes the other way and 
the epigraph will be the convex hull of the graph. 

Theorem 3.4. The vector [~*, ~,(r ~ ~R "+ 1 is an extreme ray of epi ~k 
if and only if the point ~* e 9W is an extreme point of some level set lev ~k 
provided that ~(~*) # 0. ~*) 

Proofi Suppose that [~*, ~,(~*)] is not an extreme ray of epi ~. Since 
$(r :# O, we can select two distinct vectors, 

v I = [~1, 7t]~epi ~0 , v2 = [~2, y2] ~epi ~0, 

such that the last components 71 # 0 and 72 :~ 0 have the same sign as ~(r 
and 

[r r162 = pos[v', v2]. 

Multiply v I and v 2 by al > 0 and a. > 0 respectively, where 

~, = ~ ( r  ~ = ~(r 

This way, 

[r r = pos[~', 92], 

where 

/.~1 ~ 0~1/.31 92 ~ 0~2/.)2. 

However, since the (m + 1)th components of the three vectors are all equal, 
the positive multipliers necessary to express [~*, ~,(~*)] as the positive hull 
of ~1 and ~2 must also add to one. This establishes that a convex 
combination of the points ~1 ~1 and ~2r 2 in lev ~, contain r arriving at 

~0(~*) 
the desired result. To prove the converse, suppose that r is not extreme. 
Recall that ~0(~*) ~ 0. Then, there exist two points ~ ', ~2 both belonging to 
lev q; such that 
0(4*) 

�9 ~' + (1  _ ~)~2 = ~.,  for some ~e(0, 1). 
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Then the ray in ~fl '~ +1 

O(~*) = ~  0(4*) + ( 1 - - ~ )  0(4*) ' (9) 

and [~*, ~O(~*)] is not extreme. [] 

Theorem 3.4 can be extended to extreme points of the convex poly- 
hedra which result from intersecting epiO with a hyperplane in 
9t "+~. That is, extreme points of any such polyhedra correspond to 
extreme rays of epi ~, and extreme rays of epi ~k that intersect the hyper- 
plane at a single point are extreme points of the intersection set. Note that, 
if epi ~ is pointed, there exists a hyperplane that intersects all the extreme 
rays, creating an intersection set which is a bounded polyhedron. The 
approach for identifying these extreme rays of epi ~ for the case where it is 
pointed is as follows. Consider a hyperplane that supports the cone epi 
at the origin only. This hyperplane exists when the cone is pointed. The 
defining normal for this hyperplane belongs to the interior of the polar 
cone. That means that we must find a solution to the system of inequalities 
that describe the polar, 

~TAj'+fCj<_O, j = l  . . . .  ,n,  (10) 

o r  

lrrAj< --acj, j = l  . . . . .  n. (11) 

Recall though that, from the proof of Theorem 3.3, necessarily o-< 0, 
implying that the problem reduces to finding a point in the interior of the 
set D. This is immediate if ~ is inf-compact (see proof of Theorem 3.1), 
since ~ = 0 is strictly interior to D; otherwise, we may apply efficient 
iterative techniques such as the one proposed in Ref. 8. So, if 
(r~ r, - 1 ) eg~  "+1 belongs to the interior of the polar of epi ~ whenever ~ is 
in the interior of D, then the hyperplane defined as the solutions to the 
equation 

~i4t--~m+l =a 
i=1 

intersects with epi ~ whenever a < 0. The multipliers, ~1 . . . . .  ~,, that scale 
each of the vectors (A jr., ej), j = 1 . . . .  , n, to the point of intersection with 
the hyperplane at a given value, say a = - 1 ,  are given by 

ej = - 1/(~rAj --cj), j = 1 . . . . .  n. (12) 

Observe that, since ~ is strictly interior to D, the denominator never 
vanishes and the values of all c 9 are always positive. Now, the convex hull 
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of the points in ~m + 1 

(13) 

define a bounded polytope. Its extreme points correspond to the extreme 
rays of epi 0. In Section 4, we apply ideas from this scheme to identify 
nonredundant constraints. 

The scheme proposed in the previous paragraph will identify the 
extreme rays of epi 0 when it is pointed, and this gives us the frame of the 
cone. If epi ~ is not pointed, we face other complications. Lineality spaces 
imply the possibility that the frame is not unique. It also means that the 
frame may contain nonextreme rays of epi ~, and that there may be a 
choice of frames with different cardinalities. In this situation, we may 
proceed as follows. Begin by finding a point in the relative interior of D; 
denote this by r~. All columns in A such that ffrAj =cj belong to the 
lineality space. Collect these columns into a matrix called A*; then, the 
lineality space is given by pos A *. Suppose that the rank of A * is r; then, 
the dimension of pos A* is r. A frame for the subspace pos A* may be 
composed of as few as r + 1 columns and as many as 2r columns of A*. A 
frame for epi ~ is composed of the union of the columns in the frame of the 
subspace pos A * along with the extreme rays of epi ~. 

4. Applications 

We will use the detection of redundancy in linear programming as an 
example of the applications of the results, ideas, and developments pre- 
sented in Section 3. We start by defining the terms used in this topic along 
with some background. Note that the discussion in this section assumes 
that ~k is not a linear function. 

Definition 4.1. A constraint in the linear program (D) is redundant if 
it may be removed without affecting the feasible set. 

There are two types of redundant constraints: those which can never 
be active or necessary, since the intersection of the defining hyperplane and 
the feasible region is empty; and those which could be numerically per- 
ceived as active although unnecessary in the definition of the feasible set. In 
this ease, the intersection between the hyperplane defining the constraint 
and the feasible region is not empty. This is, of course, a cause for 
degeneracy. We refer to the first type of redundancy as strong and the 
second as weak. Note that a weakly redundant constraint may be removed, 
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but in so doing it may happen that another weakly redundant constraint 
may become necessary to the description of the feasible region. For 
example, consider D c ~R 2 as follows: 

g l :x l>-0 ,  g 2 : x 2 ~ l ,  g3:xl+x2<_l ,  g4:xl+x2>_l ,  gs:xl--x2<_l .  

Individually, constraints g~ and g2 act as weakly redundant in the sense that 
either may be removed. However, once one is removed, the other becomes 
necessary. Constraints gl and g2 are therefore relatively weakly redundant. 

Definition 4.2. A variable xj in the linear program (P) is extraneous 
if it is not necessary as a basic variable in the definition of an optimal 
solution, for any right-hand side. 

If  a variable in (P) is extraneous, the corresponding dual constraint is 
redundant. Since an extraneous variable is never in the optimal basis of the 
linear program (P), independently of the right-hand side elements, the 
corresponding column may be removed without affecting the solution to 
the problem. There are variables that may appear as basic at optimality for 
some right-hand sides but for which there is always an alternate optimal 
basis where this variable is nonbasic. This is the case of weakly extraneous 
variables, and it corresponds to a weakly redundant constraint in the dual. 
The status of a weakly extraneous variable may depend on the presence of 
other weakly extraneous variables, and the removal of a weakly extraneous 
variable may change the status of other weakly extraneous variables. This 
category of variables will be termed relatively weakly extraneous. 

We will now apply the results on the properties of polyhedral optimal 
value functions to the detection of nonextraneous variables and necessary 
constraints. But first we present the following results. 

Theorem 4.1. The vector [A r, ~k(A.~)] is an extreme ray of epi ~O if and 
only if ~(Ar) = c,. and x~ = 1 is the unique solution to the corresponding 
linear program. 

Proof. An extreme ray of a polyhedral cone is a one-dimensional 
edge. A point on an extreme ray can only be expressed as the positive 
multiple of that specific generating element. If  the point (A.~, ~(A.r) ) is on 
an extreme ray, then the unique solution to the linear program (P), with A r 
as the right-hand side element, is xr = 1 with all other xj zero, and the 
optimal value of the linear program is cr. 

To show the converse, consider the linear program (P) with right-hand 
side A.r, and let x~ = 1 be an optimal solution. Then, the point 
(A.r, Cr)~R m*l is on the boundary of epi ~. If  in addition this solution is 
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unique, the point (A.~, Cr) is necessarily on an extreme ray, since otherwise 
there would exist an alternate representation with other variables having 
nonzero multipliers. [] 

An important corollary to this result is that, if the vector [A.~, ~b(A r)] 
is an extreme ray of epi ~, then the variable x, in the linear program (P) is 
nonextraneous. These results permit us to make the following statements 
about the column corresponding to the variable x, in (P): 

(i) If c, = ~k(A.r) and x, = 1 is the unique solution to the corre- 
sponding linear program, then the variable x, is nonextraneous 
and the rth dual constraint in (D) is necessary. 

(ii) If c, = ~(A.,), but x, = 1 is not the unique solution to the 
corresponding linear program, then the variable x, is weakly 
extraneous and the rth dual constraint in (D) is weakly redun- 
dant. If the vector [A r, c,] belongs to a lineality space of epi ~k, 
then it is relatively weakly redundant. 

(iii) If c, > ~k(A.r), then the variable x, is strongly extraneous and the 
rth dual constraint in (D) is redundant. 

A frame of epi q/ is composed of the columns of A. When the cone 
epi ~k is pointed, the frame is unique and it is composed of the columns of 
A which correspond to extreme rays of epi ~. When the cone epi ~ is not 
pointed, it may be possible to have more than one frame and frames may 
contain vectors of the cone which are not extreme rays. The elements of the 
frame correspond, by definition, to necessary variables of the linear pro- 
gram (P), which correspond to necessary constraints in the dual linear 
program (D). All other variables of the linear program can be removed 
without affecting the problem. The multiplicity of frames for the cone epi ~O 
is a result of lineality spaces in the cone. It is the presence of columns in the 
matrix A corresponding to relatively weakly extraneous variables in the 
lineality space that account for the multiplicity of frames. With this, we 
approach the problem of redundancy in linear program as one of identify- 
ing a frame or, if not possible, some elements of a frame. This means that 
our task is to identify extreme rays ofJepi ~,. 

There are several works in the area of redundancy in linear program- 
ming. Most notable among these is the monograph by Karwan, Lofti, 
Telgen, and Zionts (Ref. 9). In this work, several procedures are analyzed 
for identifying redundant constraints in linear programs such as (D). The 
most general of these and the one most commonly known requires the 
partial or complete solutions to several linear programs, possibly as many 
as there are constraints in the program. Each linear program is formulated 
to measure the distance (via the slack) between the constraint being tested 
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and the feasible region. It will be established that the constraint is not 
redundant in the course of the solution using the simplex method before it 
achieves optimality. If the simplex terminates in an optimal solution and 
the distance is greater than (or equal) to zero, then this establishes that the 
constraint is strongly (weakly) redundant. 

The dually equivalent approach for the methods described by Karwan 
e t  a l .  is to identify extraneous variables in (P) by finding the columns in A 
where ~O(Aj.) = ci, for j = 1 to n, such that x j  = 1 is a solution. Any gain 
from knowing a p r i o r i  what the optimal solution should be is offset by the 
fact that this optimal solution is highly degenerate. However, the geometry 
of the optimal value function can be exploited to reveal, in advance, several 
of the extreme rays of its epigraph, identifying thus some nonexraneous 
variables and avoiding having to solve linear programs for some of the 
columns. This way, a linear program of the form (P) may be preprocessed, 
and consequently the task of searching for extraneous variables may be 
reduced. 

Before we proceed, we will resolve the difficulty resulting from As- 
sumption 2.1. This assumption requires that pos A = 91m; that is, that the 
columns of the matrix A positively span the space, or equivalently that the 
dual feasible region D is never unbounded. This may appear to be a 
restrictive assumption. However, the matrix A can be modified to satisfy 
this condition without affecting the task at hand of identifying redundan- 
cies as long as it has full rank. First, we must ascertain whether the 
columns of A positively span the space. To do this, generate a vector ~-in 
the interior of pos A, for example 

~-= (l/n) ~ Aj. 
j = l  

Next, we check if the linear system 

A x  = - ~, x >_ O, 

has a solution. If affirmative, we may conclude pos A = 91"; otherwise, 
obviously, pos A r 91m. This is because both systems 

A x = ~ ,  x_>0, 

and 

A x  = - ~, x >_ 0, 

have a feasible solution only when pos A = 91m. If the columns of the 
matrix A do not positively span the space and the region D is not empty, 
it is unbounded and the condition in Assumption 2.1 is violated. Note 
though that, by adding a single column to A, we can remedy this. This 
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column should be the negative of any vector in int(pos A), for example 
- ( l / n )  ~]=~ Aj. Selecting the corresponding cost coefficient to be large 
enough will guarantee that the dual feasible region will be bounded and 
furthermore, it will contain all of its previous extreme points. 

Next, we present a list of schemes for detecting extreme rays of epi ~,. 
Extreme rays correspond to nonextraneous variables in the linear pro- 
gram (P) and these, in turn, are associated with necessary constraints in the 
dual. 

(i) This idea was proposed by Wets and Witzgall (Ref. 1). It consists 

of observing that, if the ith row of the matrix ]Aj [ ,  J = 1 , . . . ,  n, contains 
I- 7 

LC j l  
exactly one negative entry, then the corresponding column vector belongs 
to the frame and the associated variable is nonextraneous. This is so 
because the column where the unique negative entry occurs cannot be 
expressed as a positive linear combination of the remaining columns, since 
these do not have negative values in their ith row. Therefore, this column 
corresponds to an extreme ray of epi ~,. 

(ii) This approach is based on the following result. The list of m 
basic variables in a unique optimal solution for an arbitrary right-hand side 
is, necessarily, nonextraneous. If one proceeds to evaluate the linear 
program using the negative of this right-hand side vector, the solution, if 
unique, will yield another list of m basic variables revealing the status of as 
many as 2m variables. Changing the right-hand sides using Monte Carlo 
approaches may lead to interesting hit-and-run algorithms of the type in 
Berbee et al. (Ref. 10). 

The schemes that follow are based on identifying the frame of epi ~, by 
intersecting the cone with a suitable hyperplane defined by a vector in the 
interior of the dual feasible region. This is the procedure discussed at the 
end of Section 3. Initially, we assume no lineality spaces in epi ~. 

Generate a list of points p l . . . . .  p" in 9{" +~ as follows: 

Y=~JLgJ j = l  . . . . .  n, (14) 

where 

, j  = - 1/(~TA~ --cj) 

is as in expression (12) and where ~ belongs to the interior of the set D. 
Since no lineality spaces are present in epi ~,, and since ~ is strictly interior 
to D, the denominator of ~j is always strictly negative. I f  all cj are positive, 
then the vector (O r, - 1 ) a ~  m+' is in the interior of D and the conditions 
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above reduce to 

l 1 
This means that we need only look at the convex hull of  the points (1/cj)Aj, 
j = 1 , . . .  ,n,  in 9t m. 

A consequence of Theorems 3.3 and 4.1 is that the extreme points of 
the polytope defined as the convex hull ofpJ, j = 1 , . . . ,  n, denoted as cov ~ ,  
j = 1 . . . . .  n, correspond directly to the extreme rays of epi ~, when no 
lineality space is present. The following schemes work on identifying these 
extreme points. 

(iii) Some of the extreme points of cov/~, j = 1 . . . . .  n, can be readily 
identified. Select one of the points from the list and call it pC. Calculate the 
Euclidean distance between eachpJ, j --- 1 . . . . .  n, andp k. The point or points 
farthest away from pk are extreme points of covp j, j = 1 , . . . ,  n. Note that, 
if there are ties for the maximum distance, then all points participating in 
the tie are extreme. This procedure may be executed over all points in the 
level set, possibly identifying other extreme points. 

(iv) Given a direction of optimization v, the point p/, j = 1 . . . .  , n, 
that maximizes or minimizes the inner product (p  J, v), if unique, is an 
extreme point of the set. I f  exactly two points are involved in a tie, both are 
extreme. If three or more tie, not all may be extreme. Identifying extreme 
points using this principle does not require the solution of a linear program, 
only the evaluation of inner products. One approach is to select the direction 
of optimization to be a direction along an axis. This corresponds to finding 
the maximum or minimum component of a row of the matrix composed of 
the points / ; ,  j = 1 , . . . ,  n, as columns. Note that this generalizes procedure 
(i) above. This way, searching for the maximum and minimum component 
of each row of the matrix may reveal the status of as many as 2m points 
in the polytope, with an effort equivalent to sorting each row. 

The presence of lineality spaces complicates these last two procedures. 
A lineality space will cause an equality in the denominator of ~j in expression 
(14) for any value of r? in the relative interior of D. To properly treat this 
complication requires maneuvers that detract from the simplicity of the 
scheme. However, we may still gain knowledge about the extreme rays of 
epi 0 by considering only the points that remain after removing those 
associated with the columns in A for which z?rAj - cj is zero. The convex 
hull of the points in (14) that correspond to columns of A such that 
~rAj - cj < 0 correspond to extreme rays of epi 0. Note, however, that 
some extreme rays of this cone will avoid detection if they belong to the 
linearity space. 
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We close this section by discussing other related applications of the 
results above. 

The problem of identifying redundancies in linear programming re- 
duces by dual relations to the identification of vertices of the convex hull of 
a finite set of this points. This is one version of the convex hull problem in 
computational geometry; see Ref. 11, Section 2. The procedures presented 
in this paper can be used in this problem directly. Consider a finite set of 
points in 9W, v ' , . . . ,  v". One version of the convex hull problem consists 
of identifying the extreme point of the convex hull of the vectors v j, 
j = 1 . . . . .  n. Constructing the matrix A by making the v j, j = 1 . . . . .  n, its 
columns and setting the cost vector to be all l's, the extreme points of the 
level set lev of the resultant (proper) optimal value function are the extreme 

I 

points of the convex hull of the points p J, j = 1 . . . . .  n,  as given in 
expression (15). We may use the schemes presented above as preprocessors 
to identify some, and possibly many, of these extreme rays. 

The convex hull problem described above has important applications. 
The problem appears directly in computer graphics, design automation, 
and pattern recognition. It is a subproblem in the solution of other 
problems such as the construction of Voronoi diagrams (Ref. 3) and the 
facial decomposition of polytopes. The convex hull problem aJ~o appears in 
applied statistics. Observations from a multivariate statistical sample are 
points in multidimensional space, and extreme points are, in effect, outliers. 
The so-called Gastwirth estimators (Ref. 12) can be used to discount 
the effect of the outliers by discarding the extreme points of the convex 
hull of the sample. This approach may be implemented recursively remov- 
ing several layers Of extreme points to a specified depth. Identifying 
each layer is a convex hull problem. Also, the problem of identifying the 
extreme points of the convex hull is connected directly to the methodology 
for measuring the comparative efficiency among many economic firms 
known as data envelopment analysis or DEA. Finally, determining the 
importance of randomness in the second-stage problem of a stochastic 
linear program with recourse requires the identification of the generating 
elements of the frame of an optimal value function of the form of (F*); see 
Ref. 13. 

5. Conclusions 

The analysis of polyhedral cones defined as the epigraph of an optimal 
value function with a linear program as the underlying optimization 
problem provides insight into the geometry of linear programs. This, in 
turn, results in ideas for preprocessors that may be applied to the task of 
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identifying extreme points in bounded polytopes and redundant constraints 
in linear inequalities systems. 

The generating elements in the frame of the epigraph of an optimal 
value function correspond to nonextraneous variables in the underlying 
linear program. The number of generating elements is at most the number 
of columns in the coefficient matrix of the linear program, and not in any 
way combinatorially as large as the number of extreme points in the dual 
feasible region D. By preprocessing, it is possible to identify efficiently a 
subset from the complete list of generators of the frame reducing the 
numerical requirements of standard procedures used for detecting redun- 
dancies. 

We have seen that detecting redundancies and identifying the frame of 
an optimal value function reduce to the convex hull problem of finding the 
extreme points of a finite set of points. Finding the extreme points of the 
convex hull of a finite set of points is equivalent to identifying the frame of 
a specific optimal value function. This last problem is not fully explored in 
multiple dimensions. Results here have direct applications in computational 
geometry, e.g., pattern recognition and artificial vision and in stochastic 
programming. In the sequel to this paper (Ref. 14), we present ideas and 
implementation results on preprocessing and resolving the problem of 
identifying the extreme points of the convex hull of a finite set of points. 
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