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Some functional equations in the space of uniform
distribution functions

CLaub! ALSINA

Abstract. In this paper various functional equations which arise in the study of binary operations on
the set of uniform probability distribution functions are considered and solved.

1. Introduction.

Under certain rather weak restrictions, any binary operation T on the unit
interval [0, 1] induces one or more corresponding binary operations on the space
of probability distribution functions. Several such operations and families of
operations have been studied in recent years (see [5]). Foremost among these are
the 7, -semigroups which arise naturally in the study of triangle inequalities for
probabilistic metric spaces [4, 5, 6, 7, 8). In addition there are the 7r--semigroups,
which are in a sense the duals of the 7-semigroups and are relevant in the study
of betweenness in probabilistic metric spaces, and the operations p which play a
role in the probabilistic extension of the generalized theory of information of
Kampé de Fériet and Forte [3, 4].

The aim of this paper is to solve various functional equations which arise when
one studies the behavior of the operations 7, 7+, and p. on the subspace of
uniform probability distribution functions, e.g., to determine the functions T for
which the rp-product of two given uniform distributions is a given uniform
distribution.

2. Preliminaries.

Let A be the set of one-dimensional probability distribution function, i.e.,
non-decreasing functions F from [—o, +®] into [0, 1], which are left continuous
on R=(—w,+x} and such that F(—«)=0, F(+w)=1. The set 4 is naturally
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ordered via F< G if and only if F(x)<G(x) for all x in R. Let I denote the
closed unit interval {0, 1] and I° the open interval (0, 1), and let I*’=IxL

DEFINITION 2.1. A t-norm is a two-place function T from Ix ] into I such
that,

(a) T(a,)=a, T(a,0)=0,

(b) T(a, b)=T(c,d) for az=c, b=d,
(c) T(a, b)=T(b, a),

(d) T(a, T(b, ¢))=T(T(a, b), ¢).

For example, the functions Min(a,b), Prod(a,b)=a-b, T,(a b)=
Max (a+b—1, 0) and

a, if b=1,
T.(a,b)=<b, if a=1,
0, otherwise,

are t-norms. Moreover, under the usual pointwise ordering of functions, we have
MinzProd= T, =T, and Min=T=T,, for any t-norm T.

It has been shown [5,8] that, if T is a left-continuous t-norm, i.e., if
lim, .,y T(x, y) = T(a, b) for all (q, b) different from (0, 0) in IX I, then the
function 7 defined by

TT(F; G)(x) = supu+u=x T(F(u)’ G(U))y (21)

for any F, G in A and ~o<x <, is an order-preserving binary operation on 4
and that (4, 7;) is a commutative semigroup with unit element g, the step
function defined by

0, i x=¢,
1, if x>0.

go(x) = {

We remark that the operation 7 is also well-defined when T is neither
associative nor commutative.

DEFINITION 2.2. A (two-dimensional) copula is a two-place function C
from Ix I into I satisfying the conditions

(@) C(a,0)=C0,a)=0,Cla, )=C(1,a)=aq,
(b) Cla, ¢)—C(a, d)— C(b, ¢)+ C(b,d)=0, for a<bh,c<d.
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It is easy to show that Min, Prod and T, are copulas, that copulas are
continuous and non-decreasing in each place, and that T, <C=Min, for any
copula C [7].

In the sequel, ¥ will denote the set of all two-place functions S from I X I into
I which are non-decreasing in each place and such that T,=S=<Min. The
uniform distribution function on the interval [x, y], x, ye R, will be denoted by
U,, (or U,,), so that, U,, = ¢, is the step function given by &,(t) = g,(t— x), and
for x<y,

0, if t=x,
t—Xx
U, (t)y=¢——, if x=st=<y,
e (1) y—x y

1, if t=y.

3. 71 operations and uniform distributions.

Our chief concern in this section is the functional equation t(U,;, Un) = Uy,
where a, b, ¢, d are given and T is to be found.

LEMMA 3.1. If S €<% then we have

(i) 7s(eq &)= €445, for any a, b in R;
(i) 7s(€a Ued) = Ujsycaras for any a, ¢, d in R with c<d.

It is well-known (see, e.g., [2]) that 7, admits the representation

TMin (Fa G) = (FA + GA)A>
where for any H in 4, H”" is the quasi-inverse of H, given by H"(0)= —c and
HMNy=sup {x | H(x)<t} for te(0, 1]. In particular, U, (x)={(b—a)x+a for xe
(0, 1] whence we have:

LEMMA 3.2. If a <b and C<d then TMin (Ualn Ucd)= Ua+c,b+d‘

THEOREM 3.1. Let S¢ ¥ and let a<b and ¢ <d. If 15(U,,, U4} = Uy, for
some e<f, then f=b+d and a+c<e<Min(a+d, b+c), consequently, e <f.

Proof. Consider the inequalities,

8b$ absea’ eds‘* cdsgc'
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Since 75 is non-decreasing, using Lemma 3.1 we have
Eprd = TS(eb’ ed)s" TS(Uab’ Ucd) = Ue STS(Ea, Sc) T &0

whence a+c=e=<f=<b+d. Moreover, from 74 <., and Lemma 3.2 we obtain
Us;=<U,icp+as 50 that f=b+d and we conclude f=b+d. Using T,<S§
Ts(Upp, Usa) (€)=0, and 7 (U, U.,) (x)>0 whenever x>Min(a+d, b+c), it
further follows that e<Min{a+d, b+¢).

Theorem 3.1 suggests the study of the family of functional equations

(FE I) TS(Uabs Ucd) = Ua+c,b+d7
(FE 1) 75(U,, Uy) = UMin(a+d,b+c).b+d>

(FE 1) 75(U,,, Uy) = Ua+c+8(Min(a+d,b+c)-—a—c),b+d:
for some given 6 in I°.

Note that (FE I) and FE II) are the limiting cases 6 =0 and 6 =1 of (FE III),
respectively. The rest of this section is concerned with these equations.

LEMMA 3.3. If Se &£ then 15(U,,, U.4) = U, , .4 is equivalent to the statement
that, for any x in I,

Sup o S, v)=1x, 3.1)
where Q(x)={(u, v)e IXI|(b—a)u+(d—c)v=(b+d—e)x+e—a—c}.

Proof. For any xel, the point W, =(b-+d—e)x+e is in [e, b+d]. Conse-
quently, using (2.1), we have

x=U,pra(W,) =sup {S(U,(2), U(D)|z +t= W}
{55 (2 )

which is equivalent to (3.1) by the change of variables u=(z~a)/(b—a), v=

(t=c)(d~c).

THEOREM 3.2. (FE 1) Let a<b, c<d and let S be in &. Then 1,(U,,, U,;) =
U,iepsa if and only if S=Min.

Proof. Sufficiency follows from Lemma 3.2. To prove necessity, assume that
Ts(Ups Uca) = Ui pra OF equivalently, in view of Lemma 3.3, that for any x € I°,
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(3.1) holds with Q(x)={(u, v)e IXI|Au+ Bv=(A +B)x}, where A=b—a and
B =d—c. For any fixed x € I°, choose £>0 so that x—¢/2>0. Then

SUP gx—sr2y S(U, V) = X — /2.

Consequently for &= &/4 Min (A/B, B/A) there exist u,, v, such that (ug, vy) €
2(x—¢€/2) and

x—(&/2)— S{ug, vo) < 8. 3.2)
Since 8 <{&/2, we have
x—&<x—(&/2)— 8 <S(uy, vo). (3.3)

Suppose  x<u,. Then, since  (ug, vo)ER(x—£f2), we have p,<
x —(e/2) — (A/B)(&/2) < u,, which together with (3.3) yields

x —(&/2) = 8 < S(ug, vo) <Min (uy, vo) = v <x —(&/2) — (A/B)(¢/2),
i.e., 8> (A/B)(g/2), which is a contradiction. Analogously the assumption x < v,

yields the contradiction 8 > (BfA)(¢/2). Thus uy < x, vy<x, whence from (3.3) and
the fact that S<Min, we have

x— & <S{u,, vo) = Sx, x)=x.
It follows that S(x, x)=x for every x in I°, which in turn implies S= Min.

We now turn to the study of (FE II). To this end, for any A €I, let T, be the
function from I'xX I into I defined by

T, (u, v) = Max [Min (u, v)+ A Max (u, v)— A, 0]. 3.9
Clearly T, € %, is continuous, commutative, and Min=T,=T,=T,=T,,. (See
Figure 2. The graph of the surface corresponding to T, is the special case in which
P,=(0,1,0),P,=(1,0,0)and P; =(A1+A, A/1+ A, 0).) Moreover, since A <A’ im-
plies T, = T,., the collection {T,|A € I} is a decreasing family of functions on I'X I,
with maximum T, =Min and minimum T,=T,,.

THEOREM 3.3. T, is associative if and only if A=0 or A =1.

Proof. Ty=Min and T, = T,, are associative. If T, were associative for some
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A eI’ then, with a=b=(4A+3)/(4x+4) and ¢ = A/(A +1)}, we would have

(BA=A%)/(4r +4) = T,(T,(a, b), ¢) = T, (a, T, (b, ¢)) = 2A/(4A +4),

i.e., A(A—1)=0, which is a contradiction.

A straighforward computation shows that all the T, are copulas. For A€ I°,
the mass of T, is concentrated on the three line segments which join the point
(M(1+A), A/(1+A)) to the points (0,1), (1,0) and (1, 1), respectively. Thus we
have a family of copulas which are not ¢t-norms.

THEOREM 3.4. (FE II) Let a, b, ¢, d be fixed and such that a <b, ¢ <d, and
let Se & be commutative. Then 7,(Uy, Uy) = Ussinard. b+or.p+a if and only if

S=T,, where o =Min(b~a,d~c)/Max(b—a,d—c).

Proof. We will assume, without loss of generality, that A=b—-a=<d-c¢=B.
Then p=A/B and Min(a+d,b+c)=b+c.

Suppose that 15(U,,, U..)= U,,cpra- Then by Lemma 3.3 we have,
sup {S(u, v)|juu+v—p=x}=1x, (3.9)
for all xe I Since § is commutative, for any x eI we also have

sup {S(u, v)|u+pv—p=x}=x 3.6

Letting x=0 in (3.5) and (3.6) yields that S(u, v)=0=T,(u, v), whenever
put+v—u=<0or ut+pv—u=<0. Next, if uy, vo€ I° are such that pu,-+v,— p and
Ug+ pvg— w are both in I°, then from (3.5) and (3.6) we have

sup {S(u, v)|pu+ v — p = pig+vo— p} = g+ vy — p = S(uy, v),
sup {S(u, v)|u + o — = Uug+ pVo— p} = g+ o — g = S(ug, vy),
whence S(uo, vo) <Min (Uy, vo) +  Max (ug, vo)— = T, (uy, vy). Thus S<T,.
Conversely, suppose that S= T, and let x € I. Some calculation yields that for
all (u, v)e I'X I which lie on the line Au+ Bv=Bx+A, we have T,(u, v)<x, so

that

S(u, v)<T,(u,v)<x=8(1,x),
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Consequently
sup{S(w, v)|pu+v—p=x}=x,

whence, by Lemma 3.3, 75(U,,, Ug) = Upicpiar

COROLLARY 3.1. Under the hypotheses of Theorem 3.4, 75(U,, Uy,)=
UMin(a+d,b+c),b+d9 fOr alla <b, 4 <d7 lf and only lf S= Tm'

COROLLARY 3.2. If Cis a copula then 1c(Ugp, Ut} = Umina+d,p+e)p+a, fOT
all a<b,c<dif, and only if, C=T,,.

Note that, for any fixed a<<b and ¢<d, (FE I) has the unigue solution
S = Min, while (FE II) admits an infinity of solutions (dependent on the parame-
ters a, b, ¢, d), of which T, is the strongest.

To analyse (FE 111} we need to introduce some additional machinery. Given
two parameters a €(0, 1] and 61, let (see Fig. 1),

Lé={(u,v)el*;u+av<ad or au+v<ab},
Me={(u,v)el’;(1-0u+6<v or (1-@v+o=<u}.
Let W2 be defined on IX1 by

Min (4, v), if (u, v)e M

Wiu, v) = M +Mi -
Max [a ax (u, v) in (u, v) aB’ 0]’ ”
1+a—af

(u, v)¢ M°.

Figure 1
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(110)=Py

Figure 2

The graph of the surface corresponding to W? is shown in Figure 2, where
P =(ab/(1+a),a-0/(1+a),0), P,=(0,0,0) and P,=(6,0,0).

It is not hard to show that W is a commutative copula and that
Wi=T,<W!=T, <W’< Min= W,

where T, is defined by (3.4). (For e, 8 € I°, the mass of W¢ is concentrated on the
line segments P, P,, P,P;, P,P,, P,P; and P,P;, where P,, P,, P, arc as above and
P,={1,1,0).

In order to simplify the notation, if A < I, then A" will denote the reflection
of A in the main diagonal of the unit square, i.e., A~ ={(u, v)|(v, u)e A}.
If A= A" we will say that A is symmetric.

THEOREM 3.5. (FE L, I1, IIl) Let a, b, c, d, 0 be fixed and such that a <b,
c<d, 8cl, and let S€ ¥ be commutative and continuous. Then 15(U,, U,)=
U,gicomint—a d-cyop+as if and only if there exists a subset K5 of I, with a=
Min (b—a, d —c)/Max (b—a, d —¢), such that

(i) S=WlonI?and S=W?¢ on K%. (See Fig. 1,2).
(i} K¢ is symmetric and L% < K?.
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(iif) KENJ, eaF D, for each Aecl, where J,,, is the segment
{(u, a0+ (1+a—ad®)r —aw)l((1+a—ad)r +ad)/(1+a)<u<(1-0)r+6}.

Proof. Again, without loss of generality we will consider the case A=b—a=
d—c=B so that « = BlA€(0, 1].
Suppose that S is a solution of (FE III), i.e., that

Ts(Uaps Uca) = Uascrpo, bra-
Then, by Lemma 3.3 and the commutativity of S, for any x € I we have
SUPL (xy S(U, ) =8Upy - Slu, v} =x, 3.7)

where L(x)={(u, v)€ I’ | au+v—af =(1+a—ab)x}. Taking x =0 in (3.7) yields
S(u, v) = 0 whenever (u, v)e L(O)U LW (=P,P,U P, P,), whence, since § is non-
decreasing, S{u,v)=0=W%u,v) on L? Obviously S(u, v)sMin{u, v)=
W% u, v) whenever (u, v)e M® Now suppose (u,v)eI*- (LSUM®) and v=u
Then there is a unique x such that (u, v)e L(x), i.e.,

_au+tv—al o Max (4, v)+Min (4, v)—ab
x 1+a—ab 1+a—ab

= Wilu, v).

Hence, by (3.7), we have S(u, v)<x = Wi(u, v). Similarly, if u <u, it follows that
S(u, v)<W8u, v). Thus S< W? on all of IxI. Next, since S is continuous, for
each x €(0, 1] there exists a point (w,, v,)€ L(x) such that

X =SUpy ) S(4, v) = S(u,, v,)< Wilu,, v,) Ssup,,, Wiy, v).

Looking at the definition of W2 and L(x) it is easily seen that W¢ is constant and
equal to x on the segment J .. and strictly less than x at any other point of L(x).
Thus (u,, v,) € Joe and S(u,, v,)= Wou,, v,)=x.

So let

Kg = {(ux5 vx)’ (vm ux) I xe (07 1]}ULZ

By construction S satisfies (i) and K satisfies (i} and (iii).

Conversely, suppose there exists a set K satisfying the conditions (i), (ii) and
(iii). Since L2« K? and since §=W’?=0 on L2, it follows that (3.7) holds for
x =0. Next choose any x € I°. By (i), K.NJ, ,.# &, whence there exists a point
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(4, v,) € K2NT, o, such that

au, + v, —ab
S 0,) = Wolug v) == ——==x,

and consequently (3.7) holds because S and W? are commutative and K? is
symmetric.

Note that the conclusions of Theorems 3.2 and 3.4 are simple consequences of
Theorem 3.5. In the case § =0 we have K. ={(x,x)|xeI} and S = WS =Min;
and in the case 6 =1 we have KL =L1U{(x, 1), (1,x)| xe I} and S=<W.=T,. But
note also that, whereas the continuity of S plays a crucial role in the proof of
Theorem 3.5, it is not needed in the proofs of Theorem 3.2 and Theorem 3.4.

COROLLARY 3.3 (FE III, in global form). Under the hypotheses of the
above theorem, for a fixed 0€1I°, 15(U.p, Uit) = Usscomtino-a, a—cro,b+ar fOr ail

a<b, c<d, if and only if S= W} and S= W} on K%.

The commutativity of § postulated in Theorem 3.5 can be reduced to the
assumption that 75(U,,, U,) = 7,(U, U,).

4. Dual operations and uniform distributions.

In the study of probabilistic metric spaces and related topics, certain opera-
tions 7g«, which are in a sense the duals of the 7g, play a vital role. These are
defined by

1e+(F, GY{x)=inf,,_ S*(F(u), G(v)), F, Ge A, ~o=x=< +x,

where $* is a two-place function from I X I into I satisfying

(@) $*(a,1)=S*(1,a)=1, S*(a,0)=$*0, a) = q,
(b)) S*a,b)=8*c, d) if a=c and b=d

If S€ ¥ then the function
$*(a,b)=1-S(1~a,1-b) 4.1
satisfies the conditions above and, dually, for any $* the function

S(a,b)=1-S*(1-a,1-b)
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is in &. Thus the behavior of the operations 74« on uniform distributions will be
dual to that of the operations 7g studied in Section 3 and we have at once:

LEMMA 4.1. Let S€ ¥ and let S* be the dual operation given by (4.1). Then
TS"‘((Jab? Ucd)z Uef’ lf and Onfy if TS(UaEH Ucd)= Ua+b+c+d-f,a+b+c+d—e'

THEOREM 4.1. Let a<b, c<d and let §* be a commutative function from
IxX I into I satisfying (a’) and (b'). Then

) If 76Uu Ug)=Uy  then,  necessarilyy, e=a+c and f=
Max (a+d, b+¢);
(i) 7sx(Uupy Ueg) = Uaiepsa if and only if S*(u, v) = Max (u, v);

(iii) T+ (Usp, Ueg) = UsteMax@rapre) if and only if S*(u,v)= S:(ua v)=
Min (1, Max {4, v)+a Min (y, v)), where a=Min(b—a,d—c)/Max(b—a,
d—c);

(iv) If S* is continuous and 0 € I° then

75*(Uab7 Ucd) = Ua+c,Min(bva,d—c)9+Max(a+d,b+c)

if and only if there exists a symmetric set K2, as given in Theorem 3.5, such that
S*=(W&* on K and S*=(W* on I>.

In particular, Theorem 4.1 holds for the operations 7+, where T is a f-norm
and T*(x, y)=1-T(1-x, 1—y) is its associated t-conorm.
A second family of binary operations is given {[4]) by the following:

DEFINITION 4.1. For any copula C, p is the binary operation on A defined
by

pc(F, G)(x) = inf, ., (F(u) + G(v) — C(F(u), G(v))).

For any copula C the function To(x, y)=x+y-1+C(1-x, 1—y) is continu-
ous and satisfies conditions (a) and (b) of Definition 2.1. It is immediate that
T&x, y)=x+y—C(x, y) and consequently pc = 7. Thus the p. operations are
particular cases of 7« operations and Theorem 4.1 applies whenever C is
commutative. Since any copula C is continuous and satisfies C=T,,, we can state
part (iii) of Theorem 4.1 as follows.

COROLLARY 4.1. Let C be a commutative copula. Then pA{U,, U.,)=
Uiicmaxarassey if and only if C=C, where a=Min(b—a,d—c)
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Max (b—a,d—c¢) and

C.(x, yy=Max[(1—a)Min (x, y), T,.(x, y)].

In particular pc(Uu, Usyp—o) = Usicpses if and only if C=T,; and
2c{UL, Uld) = U, s cMmaxarasrcy fOr 8l a<<bhb,c<d if and only if C=T,.

Note that for a € I, C, is a commutative copula with mass concentrated on the
line segments Q,Q,, Q,Q;, Q,Q,, where Q,=(0,0), Q,=1/(1+aj}, 1/(1+a))
Q;=(0,1) and Q,=(1,0). It is easy to see that Co=Min=C, =C, =T, =C,,
whenever a=a’. Moreover, if acI’° and we let x=(1—a)/(2+2a) and y=
1/(1+ a) we have

C.(x, Colx, y)=(1—a)x# (1-a)*x = C,(C,(x, x), y),
i.e., C, is a t-norm if and only if « =0 or a =1.
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