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Some [unctional equations in the space o[ unilorm 
distribution [unctions 

CLAUDI ALSINA 

Abstract. In this paper various functional equations which arise in the study of binary operations on 
the set of uniform probability distribution functions are considered and solved. 

1. Introduction. 

Under certain rather weak restrictions, any binary operation T on the unit 
interval [0, 1] induces one or more corresponding binary operations on the space 
of probability distribution functions. Several such operations and families of 
operations have been studied in recent years (see [5]). Foremost among these are 
the q-T-semigroups which arise naturally in the study of triangle inequalities for 
probabilistic metric spaces [4, 5, 6, 7, 8]. In addition there are the q-T.-semigroups, 
which are in a sense the duals of the q-T-semigroups and are relevant in the study 
of betweenness in probabilistic metric spaces, and the operations Pc which play a 
role in the probabilistic extension of the generalized theory of information of 
Kamp6 de F6riet and Forte [3, 4]. 

The aim of this paper is to solve various functional equations which arise when 
one studies the behavior of the operations q-T, q-T*, and Pc on the subspace of 
uniform probability distribution functions, e.g., to determine the functions T for 
which the q'T-product of two given uniform distributions is a given uniform 
distribution. 

2. Preliminaries. 

Let zl be the set of one-dimensional probability distribution function, i.e., 
non-decreasing functions F from [-0% +o0] into [0, 1], which are left continuous 
on R = ( -~ ,  +oo) and such that F ( - ~ ) =  0, F(+oo)= 1. The set /t is naturally 
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ordered  via F<~G if and only if F(x)<~G(x) for all x in R. Let  I denote  the 
closed unit interval [0, 1] and I ° the open interval (0, 1), and let 12= I x / .  

D E F I N I T I O N  2.1. A t-norm is a two-place function T f rom I x  I into I such 
that, 

(a) T(a, 1) = a, T(a, O) = O, 
(b) T(a, b) >~ T(c, d) for a /> c, b/> d, 
(c) T(a, b)= T(b, a), 
(d) T(a, T(b, c)) = T(T(a, b), c). 

For  example,  the functions Min(a ,  b), P rod (a ,  b)=a .  b, T~(a,b)= 
Max (a + b - 1, 0) and 

t 
a, if b = l ,  

Tw(a,b)= b, if a = l ,  

0, ' o t h e r w i s e ,  

are t -norms.  Moreover ,  under  the usual pointwise ordering of functions, we have 
M i n ~ > P r o d ~  Tm/> T~ and M i n ~  > T ~  > Tw, for any t -norm T. 

I t  has been shown [5, 8] that, if T is a lef t-continuous t -norm,  i.e., if 
lira . . . .  . y~b- T(x, y) = T(a, b) for all (a, b) different f rom (0, 0) in 1×  L then the 
function rT defined by 

":T(F, G)(x)= sup,+~=x T(F(u), G(v)), (2.1) 

for any F, G in ~ and - ~ < x ~ < ~ ,  is an order-preserving binary opera t ion  on A 
and that  (A, ~rT) is a commuta t ive  semigroup with unit e lement  eo, the step 
function defined by 

0, if x~<0, 
eo(X)= 1, if x > 0 .  

We remark  that  the operat ion ~'r is also well-defined when T is nei ther  
associative nor commutat ive .  

D E F I N I T I O N  2.2. A (two-dimensional)  copula is a two-place function C 
f rom I x  I into I satisfying the conditions 

(a) C(a, O) = C(O, a) = O, C(a,  1) = C(1, a) = a, 
(b) C(a, c ) -  C(a, d) - C(b, c) + C(b, d) >I O, for a ~< b, c <~ d. 
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It is easy to show that Min, Prod and T,, are copulas, that copulas are 
continuous and non-decreasing in each place, and that T,, ~<C~<Min, for any 
copula C [7]. 

In the sequel, ~ will denote the set of all two-place functions S from I × I into 
I which are non-decreasing in each place and such that Tw ~<S~<Min. The 
uniform distribution function on the interval [x, y], x, y e R, will be denoted by 
U~y (or U~,y), so that, U~x = ex is the step function given by e~(t)= e o ( t - x ) ,  and 
for x < y, 

U~y(t)= y - x  if x<~t<~y, 

1, if t~>y. 

3. ~T operations and uniform distributions. 

Our chief concern in this section is the functional equation ":T(Uab, Ucd)= Uer, 

where a, b, c, d are given and T is to be found. 

LEMMA 3.1. I f  S 6.Le then we have 

(i) ~'s(e,, /~b) = t~a+b, for  any a, b in R ;  

(ii) -Cs(e,, Ucd)= U~+ . . . .  a, for any a, c, d in R with c < d. 

It is well-known (see, e.g., [2]) that rMi~ admits the representation 

~-Min ( f ,  G) = (F  ̂  + G^) ̂ , 

where for any H in Z~, H ^ is the quasi-inverse of H, given by H ^ ( 0 ) = - ~  and 
H^( t )  = sup {x 1H(x) < t} for t ~ (0, 1]. In particular, U'~b(x) = (b - a ) x  + a for x e 
(0, 1] whence we have: 

LEMMA 3.2. I f  a < b and c < d then ~'Min (U,b, Ucd)= U,+c,b+d. 

T H E O R E M  3.1. Let S ~  and let a < b  and c <d .  I f  "rs(U~, Uca) = Uef, for 

some e <~ f, then f =  b + d and a + c <~ e ~ Min  ( a + d, b + c ), consequently, e < f. 

Proof. Consider the inequalities, 

e b ~  Nab~ea ,  e d ~  Scd<.e c. 
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Since ~'s is non-decreasing,  using L e m m a  3.1 we have 

e b + .  = rs (eb ,  ed)<~ ~'~(Uob, U~d)= U.t <~ ~'~(eo, e~)= e.+., 

whence a + c ~< e ~<f~< b + d. Moreover ,  f rom ~'s ~< q'Min and L e m m a  3.2 we obtain 
Ua~<U~+c,b+ d, so that  f > ~ b + d  and we conclude [ = b + d .  Using T~<~S, 

~'s(U~b, U,d) ( e ) = 0 ,  and rT,(U~b, U~a) ( x ) > 0  whenever  x > M i n ( a + d , b + c ) ,  it 
fur ther  follows that  e ~<Min (a + d, b + c). 

T h e o r e m  3.1 suggests the study of the family of functional equations 

( F E I )  vs(U~b, U.a) = U~+¢.b+d, 
(FE II) vs(U~b, Ucd)= UMi.~+d,b+¢),b+n, 
(FE III)  ~'s(Uab, Uca)= Ua+,+o~Min~o+a.b+c)-a-~),b+a, 

for some given 0 in I °. 

Note  that  (FE I) and FE  II) are the limiting cases 0 = 0 and 0 = 1 of (FE III) ,  
respectively. The  rest of this section is concerned with these equations.  

L E M M A  3.3. I f  S ~ Le then rs(U.b,  Uca)= Ue,b+d is equivalent to the statement 

that, for any  x in L 

sup n~) S(u,  v) = x, (3.1) 

where f~(x) = {(u, v) ~ I x  II(b- a)u  +(d  - c )v  = (b + d - e)x  + e - a - c}. 

Proof. For  any x ~ / ,  the point W ,  = (b + d - e )x  + e is in [e, b + d]. Conse-  
quently,  using (2.1), we have  

x = Ue,b+a(W~) = sup {S(U.b(z ) ,  U~n(t))lz + t = Wx} 

which is equivalent  to (3.1) by the change of variables u = ( z - a ) / ( b - a ) ,  v = 

(t-c)/(d-c). 

T H E O R E M  3.2. (FE I) Let  a < b, c < d and let S be in ~g. Then ~'s(Uab, Uca) = 

U~+~,b÷a if  and only i f  S = Min. 

Proof. Sufficiency follows f rom L e m m a  3.2. To  prove  necessity, assume that  
~'s(U~b, /-/ca)= U~+c,b+a or equivalently,  in view of L e m m a  3.3, that  for any x ~ I °, 
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(3.1) holds with O(x)  = {(u, v) ~ I × I [Au  + Bv  = ( A  + B)x}, where  A = b - a and 

B = d - c. Fo r  any fixed x ~ I°, choose  e > 0 so that  x - e/2 > 0. Then 

sup ~(~-~/2~ S(u, v) = x - e/2. 

Consequen t ly  for  ~ = e / 4 M i n  (A/B,  B / A )  there  exist Uo, Vo such that  (uo, Vo)e 
O(x  - e/2) and 

x - ( e t 2 ) -  S(uo,  Vo) < 8. ( 3 . 2 )  

Since 8 < e/2, we have 

x - e < x - (e/2) - ~ < S(uo, Vo). (3.3) 

Suppose  x < Uo. Then,  since (Uo, v0) e 12(x - e/2), we have Vo < 

x -  ( e / 2 ) - ( A / B ) ( e / 2 ) <  Uo, which toge ther  with (3.3) yields 

x - ( e / 2 ) -  8 < S(uo, Vo) <~ Min (Uo, Vo) = v0 < x - (e/2) - (A/B)(e /2) ,  

i.e., 8 > (A/B)(e /2) ,  which is a contradic t ion.  Ana logous ly  the assumpt ion x < Vo 

yields the cont rad ic t ion  B > (B/A)(e /2) .  Thus uo ~< x, vo ~< x, whence  from (3.3) and  
the fact that  S <~Min, we have 

x -  e < S(uo,  Vo) <~ S(x ,  x )  <~ x. 

It follows that  S(x, x ) =  x for every  x in I °, which in turn  implies  S = Min. 

W e  now turn to the  s tudy of (FE II). To  this end,  for  any A e / ,  let  Tx be  the 

function f rom I × I into I defined by 

Tx(u, v) = M a x  [Min (u, v ) + X  Max (u, v ) - X ,  0]. (3.4) 

Clear ly  Tx ~ ~ ,  is cont inuous,  commuta t ive ,  and  Min = To/> T~ i> T1 = Tin. (See 

Figure 2. The  graph of the surface cor responding  to Tx is the  special  case in which 

P2 = (0, 1, 0), P4 = (1, 0, 0) and  P1 = (M1 + A, M1 + A, 0).) Moreove r ,  s ince A <~ h '  im- 
plies Tx t> Tx,, the  collect ion {Tx lh ~ I} is a decreas ing family of functions on I x / ,  

with m a x i m u m  To = Min and min imum T1 = Tin. 

T H E O R E M  3.3. Tx is associative if and only if h = 0 or A = 1. 

Proof. To = Min and T1 = T,, are associative.  If Tx were  associat ive for some 
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)` e I°, then, with a = b = (4), +3)/(4)` +4)  and c = )`/()` + 1), we would have 

(3)` -)`2)/(4)` +4)  = Tx(Tx (a ,  b),  c) = Tx(a,  Tx(b,  c)) = 2)`/(4)` +4) ,  

i.e., ) ` ( ) ` -  1 )=  0, which is a contradiction. 
A straighforward computat ion shows that all the T, are copulas. For  )` e I°, 

the mass of Tx is concentrated on the three line segments which join the point 
(M(1 +)`), ) ` / ( l+h) )  to the points (0, 1), (1, 0) and (1, 1), respectively. Thus we 
have a family of copulas which are not t-norms. 

T H E O R E M  3.4. (FE II) Le t  a, b, c, d be f ixed  and  such  that  a < b, c < d, and  

let S ~  be commuta t i ve .  Then  r~(U~b,/-/ca) = UMin(~+a.b+c~,b+a i f  and  only  i f  

S <~ T~, where /~  = Min (b - a, d - c)/Max (b - a, d - c). 

Proof. We will assume, without  loss of generality, that  A = b - a  ~ d - c  = B. 
Then /~ = A / B  and Min ( a + d ,  b + c )  = b + c .  

Suppose that zs(Uab, Uca)= Ub+c,b+a. Then by Lemma 3.3 we have, 

sup {S(u,  v)ll~u + v - Ix = x}  = x, (3.5) 

for all x ~ L Since S is commutative,  for any x E I we also have 

sup  {S(u, v)lu + t ~ v -  t~ = x} = x. (3.6) 

Letting x = 0  in (3.5) and (3.6) yields that S(u ,  v ) = 0  = T~(u,  v), whenever  

/xu + v - / ~  ~< 0 or  u +/xv - ~ ~< 0. Next, if Uo, v0 e I ° are such that/~Uo + Vo-/z  and 
Uo+tXVo-lX are both in I °, then f rom (3.5) and (3.6) we have 

sup {S(u, v) l lzu + v - ~ = ttUo + Vo - ~}  = Ixuo + V o -  tx >! S(u0, Vo), 

sup {S(u,  v)[u + ixv - Ix = Uo + t t V o -  Ix} = Uo + IXVo- tx >1 S(uo,  Vo), 

whence S(uo,  Vo) ~ Min (Uo, Vo) + p. Max (Uo, Vo)-/z = T ,  (Uo, v0). Thus S ~< T,. 
Conversely, suppose that S ~< T~ and let x e L Some calculation yields that for 

all (u, v) e I × I which lie on the line A u  + B y  = B x  + A ,  we have T~(u, v) ~< x, so 
that 

S(u, v)<- T,(u, v)~<x = S(1, x), 
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Consequent ly  

sup {S(u, v)ltx u + v - t x  = x} = x, 

whence,  by L e m m a  3.3, rs(Uab, Uca)= Ub+c.b+d. 

C O R O L L A R Y  3.1. Under the hypotheses of Theorem 3.4, ~'s(U,b, Ucd) = 

UMin(a+d,b+c),b.~d , fOF all a < b, c < d, if and only if S <~ Tin. 

C O R O L L A R Y  3.2. If C is a copula then ~'c(U~b,/-/ca) = UMin(a+d,b+c),b+d, for 
all a < b, c < d if, and only if, C = Tin. 

Note that,  for  any fixed a < b  and c < d, (FE I) has the unique solution 
S = Min, while (FE II)  admits  an infinity of  solutions (dependent  on the pa r ame-  
ters a, b, c, d), of which T .  is the strongest.  

To  analyse (FE III)  we need to introduce some additional machinery.  Given  
two paramete rs  a ~ (0, 1] and 0 ~ / ,  let (see Fig. 1), 

L°={(u , v )e I2 ;u+av<.c~O or au+v<.aO},  

M ° = { ( u , v ) e I 2 ; ( 1 - O ) u + O < ~ v  or (1-O)v+O<~u}.  

Let  W~ ° be defined on I x I by 

I M i n ( u , v ) ,  if ( u , v ) ~ M  e , 

W°(u, v) = ~.  [ a  Max (u, v) + Min (u, v) - s0,  0] ,  
l~v'ax [" 1 + a~-a-'-0" if (u, v) f~M °. 

a0 
~'x x / /  

0 v~ / 

aO O 

Figure 1 
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(1,1,1) 

I 

: 

( 0 . o . o ) ~ (  P4 to,o) 

Figure 2 

The graph of the surface corresponding to W°~ is shown in Figure 2, where 

P1 = (ct0/(1 + a),  a .  0/(1 + a),  0), /)2 = (0, 0, 0) and P4 = (0, 0, 0). 

It is not  hard to show that V¢°~ is a commutat ive copula and that 

W1 =Tm ~< W~ = T~ <~ W~ ~< Min = W °, 

where T~ is defined by (3.4). (For a, 0 e I°, the mass of W~ ° is concentrated on the 

line segments PIP2, P2P3, P3P4, P4PI and PIP3, where P1, P2, P4 are as above and 
P3 = (1, 1,0). 

In order  to simplify the notation, if A c 12, then A ^ will denote  the reflection 
of A in the main diagonal of the unit square, i.e., A ^ =  {(u, v)l(v, u)~ A}. 
If A = A ^ we will say that A is symmetric. 

T H E O R E M  3.5. (FE I, II, III)  Let a, b, c, d, 0 be fixed and such that a < b, 
c < d, 0 ~ I, and let S ~ ~ be commutative and continuous. Then ~'s(U.b, Uca) = 
U~+c+Mi.(b-~,a-c)o,b+a, if and only if there exists a subset K°~ of 12, with a = 
Min (b - a, d - c)/Max (b - a, d - c), such that 

(i) S <~ W~ on 12 and S = W°~ on K°~. (See Fig. 1, 2). 

(ii) K~ is symmetric and L°~ ~ K~. 
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(iii) K~ AJ,,,o,x ~ Q ,  for each h e L where J,.o.~ is the segment 

{(u, aO + (1 + a - aO)h - a u ) l ( ( 1  + a - a 0 ) X  + ao) / (1  + a )  <~ u ~< (1 - o)h + 0}. 

Proof. Again ,  wi thout  loss of general i ty  we will consider  the case A = b - a />  

d - c = B  so that  a = B / A e ( 0 , 1 ] .  
Suppose  that  S is a solut ion of (FE III),  i.e., that  

Then,  by L e m m a  3.3 and the commuta t iv i ty  of S, for any x ~ I we have 

supL(x~ S(u, v) = s u p L ( ~  S(u, v) = x, (3.7) 

where  L(x)  = {(u, v) c 12 1 au + v - aO = (1 + a - aO)x}. Taking  x = 0 in (3.7) yields 

S(u, v) = 0 whenever  (u, v) ~ L(0) U L(0)^( = P1P2 U P1P4), whence,  since S is non-  
decreasing,  S(u, v ) = 0 =  WO(u, v) on L~ °. Obvious ly  S(u, v)~<Min (u, v ) =  

W°~(u, v) whenever  (u, v) ~ M °. Now suppose  (u, v) ~ 12- (L~ U M °) and v ~< u. 

Then  there  is a unique x such that  (u, v) ~ L(x) ,  i.e., 

au + v - aO a Max (u, v) + Min (u, v) - a 0  
x = - = W ~ ( u ,  v ) .  

l + a - a O  l + a - a O  

Hence ,  by (3.7), we have S(u, v) <~ x = W~(u, v). Similarly,  if u ~< v, it follows that  
S(u, v) <~ W°~(u, v). Thus S ~< W ° on all of I x I. Next,  since S is cont inuous,  for 

each x ~ (0, 1] there  exists a point  (u~, v~)c L(x)  such that  

x = supL(~) S(u, v) = S(ux, v~)<~ W°~(u,, v.) <~supL(,) W°,(u, v). 

Looking  at the definit ion of W ° and L(x)  it is easily seen that  W ° is constant  and 

equal  to x on the segment  J~ox and strictly less than x at any o the r  poin t  of L(x) .  
Thus (u~, v~)~J~o~ and S(ux, vx) = W~(u~, v~)= x. 

So let  

K~ = {(~, v~), (v~, u~) I x c(o,  1]}u L°.. 

By const ruct ion S satisfies (i) and K°~ satisfies (ii) and  (iii). 

Converse ly ,  suppose  there  exists a set K~ ° satisfying the condi t ions  (i), (ii) and 

(iii). Since L°~ c K ° and since S = W~ ° = 0 on L~ °, it follows that  (3.7) holds for 

x = 0. Next  choose  any x ~ /o .  By (ii), K°fqJ~ ,o .~  Q,  whence there  exists a point  
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(u~, v,)cK°~f-)J,~,o,~ such that  

S(u~, v~)= W°(u~, v~)= ozU x + ~× -- Ct0 

l + a - a O  

and consequent ly  (3.7) holds because  S and W ° are commuta t ive  and K ° is 

symmetr ic .  

Note  that  the conclusions of Theo rems  3.2 and 3.4 are simple consequences  of 

T h e o r e m  3.5. In the  case 0 = 0 we have K ° = { ( x ,  x) lx  e I} and S = W°~=Min;  

and  in the  case 0 = 1 we have K~ = L~ U{(x, 1), (1, x) 1 x e I} and S --< W~ = T,~. But  
note  also that,  whereas  the cont inui ty  of S plays a crucial role  in the  proof  of 
T h e o r e m  3.5, it is not  needed  in the  proofs  of T h e o r e m  3.2 and T h e o r e m  3.4. 

C O R O L L A R Y  3,3 (FE III ,  in global  form). Under the hypotheses of the 
above theorem, for a fixed O e I  °, ~'s(U,b, Ucd) = U,+c+Min(b-~,d-c)o,b~a, for all 
a < b, c < d, if find only if S <-- W ° and S = W ° on K °. 

The  commuta t iv i ty  of S pos tu la ted  in T h e o r e m  3.5 can be r educed  to the 

assumpt ion  that  l"s(U,b, Ucd)= rs(Ucd, U~b). 

4. Dual operations and uniform distributions. 

In the study of probabi l i s t ic  metr ic  spaces and re la ted  topics, cer tain ope ra -  

t ions ~rs*, which are in a sense the duals  of the ~'s, play a vital role. These  are 

def ined by 

~'s*(F, G ) ( x ) =  inf . . . . .  S*(F(u),  G(v)) ,  F, G c  A, - ~ x  < _ +~,  

where  S* is a two-place  function from I × I into I satisfying 

(a') S*(a, 1) = S*(1, a )  = 1, S*(a, 0) = S*(0, a)  = a, 

(b') S*(a, b)<-S*(c, d) if a - < c  and b-<d .  

If S ~ ~ then the funct ion 

S*(a,  b) = 1 - S(1 - a, 1 - b) (4.1) 

satisfies the condi t ions  above  and,  dually,  for any S~ the function 

S(a, b) = 1 - S*(1 - a, 1 - b) 
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is in ~ .  Thus  the behavior  of the opera t ions  ~'s* on uniform dis t r ibut ions  will be 

dual  to that  of the opera t ions  ~'s s tudied in Sect ion 3 and we have at once:  

L E M M A  4.1. Let S ~  and let S* be the dual operation given by (4.1). Then 
1"s*(Uab, U~d)= U 4, if and only if "rs(U.b, U~a)= Ua+b+~+d-f,.+b+~+d-~. 

T H E O R E M  4.1. Let a <b, c < d  and let S* be a commutative function from 
I x I  into I satisfying (a') and (b'). Then 

(i) I f  ~'s*(Uab, Uca) = U.¢ then, necessarily, e = a + c and f >-- 
Max (a  + d ,  b + c ) ;  

(ii) "Cs.(U.b, Ucd)= Uo+c,b+a if and only if S*(u, v ) =  Max (u, v); 

(iii) "Cs*(Uob, Ucd)=Ua+c,Max(a+a,b+c) if and only if S*(u,v)>-S*(u,v)  = 
Min (1, Max (u, v) + a Min (u, v)), where  a = Min (b - a, d - c ) /Max (b - a, 

d - c ) ;  

(iv) I f  S* is continuous and 0 e I ° then 

~-~.(U.~, c~d)= U . . . .  , . ,~, , (b-o. ,~-~o+~x(o+,~.b+c~ 

if and only if there exists a symmetric set K°~, as given in Theorem 3.5, such that 

S * =  (W~°) * on g°~ and S *>- (W°) * on 12. 

In par t icular ,  Theorem 4.1 holds for the opera t ions  ~"r*, where  T is a t -norm 
and T*(x, y) = 1 - T(1 - x, 1 -  y) is its associated t -conorm.  

A second family of b inary  opera t ions  is given ([4]) by the following: 

DEFINITION 4.1. For  any copula  C, Pc is the b inary  ope ra t ion  on A defined 

by 

pc(F, G)(x)= inf . . . . .  (F(u) + G ( v ) - C ( F ( u ) ,  G(v))). 

For  any copula  C the function Tc(x, y) = x + y - 1 + C(1 - x, 1 - y) is cont inu-  

ous and satisfies condi t ions (a)  and (b) of Defini t ion 2.1. It is immedia te  that  
T*(x, y) = x + y - C(x, y) and consequent ly  0c = ~r~- Thus the 0c opera t ions  are  

par t icular  cases of ~'s* opera t ions  and T h e o r e m  4.1 applies  whenever  C is 

commuta t ive .  Since any copula  C is cont inuous  and satisfies C -  > Tin, we can state 

par t  (iii) of Theo rem 4.1 as follows. 

C O R O L L A R Y  4.1. Let C be a commutative copula. Then pc(U.b, U~a) = 

U ...... Ma.(~+a.b+c) if and only if C<--C,. where a = M i n ( b - a , d - c ) /  
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Max (b  - a,  d - c )  a n d  

C~(x, y)= Max [(1-  a)Min (x, y), T , . ( x ,  y)]. 

In particular pc(U~b, Uc+b_a)=Ua+c,b+c, if and only if C=Tm; and 
pc(U~b, /-]ca) = U,+¢,M~x(a+a,b+¢), for all a<b, c<d  if and only if C=Tm. 

Note  that for a ~ / ,  C~ is a commutat ive copula with mass concentrated on the 

line segments Q1Q2, Q2Q3, Q2Q4, where Q1 = (0, 0), Q2 = (1/(1 + ct), 1/(1 + a))  
Q a = ( 0 ,  1) and Q 4 = ( 1 , 0 ) .  It  is easy to see that Co=Min>-C~,>-C~>--T~=C~, 
whenever  a - > a  '. Moreover ,  if ct~I ° and we let x = ( 1 - a ) / ( 2 + 2 a )  and y =  
1/(1 + a )  we have 

C,, (x, Co (x, y)) = (1 - a)x ~ (1 - a)2x = Ca (Ca (x, x), y), 

i.e., C,~ is a t -norm if and only if c~ = 0 or a = 1. 
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