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Differential Riccati Equation for the Active 
Control of a Problem in Structural Acoustics I 

G. AVALOS 1 AND I. LASIECKA 2 

Communicated by F. E. Udwadia 

Abstract. In this paper, we provide results concerning the optimal feed- 
back control of a system of partial differential equations which arises 
within the context of modeling a particular fluid/structure interaction 
seen in structural acoustics, this application being the primary motiva- 
tion for our work. This system consists of two coupled PDEs exhibiting 
hyperbolic and parabolic characteristics, respectively, with the control 
action being modeled by a highly unbounded operator. We rigorously 
justify an optimal control theory for this class of problems and further 
characterize the optimal control through a suitable Riccati equation. 
This is achieved in part by exploiting recent techniques in the area of 
optimization of analytic systems with unbounded inputs, along with a 
local microanalysis of the hyperbolic part of the dynamics, an analysis 
which considers the propagation of singularities and optimal trace 
behavior of the solutions. 

Key Words. Structural acoustics, unbounded control input, coupled 
wave and beam equations, hyperbolic and parabolic-like dynamics, trace 
regularity, optimization, Riccati equations. 

1. Introduction 

1.1. Motivation. Let f~ be a bounded domain in ~2 with Lipschitz 
boundary F, F0 a Lipschitz segment of  F with endpoints a and b, and [s, T] 
some interval with 0__s < T. We consider the problem (see Refs. 1-2) of  
finding functions z( t, x) and v( t, x), corresponding to a fixed u( t) ~ U, U -  R k, 
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which solve the following system consisting of a coupled wave equation and 
elastic beamlike equation: 

zt, = Az, on f~ • (s, T), (1) 

gzldv={ot on F0 x (s, T) 
on F \Fo • (s, T), (2) 

vt, = -A2v-  A2v,- zt + Bu, on F0 x (s, T), (3) 

v(a, t)=v(b, t) -~v(a' t______~)_Ov(b, t ) = 0  ' Vt~(s, T), (4) 
Ox c3x 

z(s, x)  = zo, v(s, x )  = vo, (5a)  

z , (s ,  x )  = Zl, v, (s, x )  = v ; (5b)  

here, B ~ ( U ,  H-a(F0)), where a is specified to be 

a < 7/4, when 12 is rectangular, (6) 

a < 5/3, for f2 an arbitrary smooth domain. (7) 

We are looking for a triplet [z*, v*, u*] r which solves (1)-(5) and which 
minimizes a given performance index. Our main interest, however, is obtain- 
ing a feedback realization of the resulting optimal control via a solution of 
an appropriate Riccati equation. 

In the special case where f2 is rectangular and the operator B is of the 
form 

r 

B =  y~ a~,~'(xi), 
i = 1  

where c~'(xi) are derivatives of delta functions evaluated at xi, the model 
(1)-(5) was considered in Ref. 1. The physical interpretation for this particu- 
lar structure of the control operator is that its control action is realized 
by the strategic placement of piezoelectric ceramic patches on the flexible 
boundary F0; a voltage is subsequently applied through these patches, and 
the resulting bending moments can be interpreted as second derivatives of 
Heaviside functions. Note that the control operator is highly unbounded 
and is defined only through distribution theory. This is in fact the main 
difficulty of the problem, which was fully recognized in Ref. 3, wherein the 
analysis culminated in the existence and uniqueness of the solution [z, v] r 
of (1)-(5), for fixed u, defined only in the sense of distributions. Our main 
goal here is to show the well-posedness of (1)-(5) in this fully unbounded 
case within a given state space; i.e., [z, v] r may be taken as continuous 
functions; moreover, we wish to provide a rigorous theory of feedback 
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control characterized by a solution P to the differential Riccati equation 
(DRE), and in particular to reveal smoothing properties of the resulting 
gain operator B 'P ,  despite the inherent unboundedness of B*. 

To accomplish our goal, we consider a more general version of this 
problem formulated within an abstract differential equation; the result will 
then be derived for a broader class of problems, whereby problem (1)-(5) 
will be deduced as a special case. 

It should be noted that the key elements of our analysis rely on: 

(i) sharp new regularity properties of the traces of the hyperbolic 
part of  the dynamics [Eq. (1)]; 

(ii) the theory of analytic semigroups and associated singular inte- 
grals, which takes advantage of certain smoothing effects associ- 
ated with the analytic part of dynamics [Eq. (3)]; 

(iii) recent results on the characterization of domains of fractional 
powers of the so-called elastic operators, which in turn allows 
for a crucial interplay between functional analytical and partial 
differential equation (PDE) results. 

1.2. Abstract Formulation. We wish to recast (1)-(5) into an appropri- 
ate functional analytical form for which we need the following facts and 
definitions: 

(i) We set the operator A: L2(~) ~ D(A) ~ L2(f~) to be A = - A  + I, 
with 

D(A) = {z~H2(n)~Ou/Ov = O, on F}. (8) 

It is well known that A is self-adjoint and positive definite, so 
fractional powers are well defined. 

(ii) With A as above, we also have from Ref. 4 that 

D(A~)=H2a(~) ,  0 < a < 3 / 4 .  (9) 

(iii) We shall consequently use the identification of D(A1/2), with 
H i ( t )  throughout. In the sequel, we shall also consider A as a 
continuous mapping of D(A 1/2) into its topological dual 
[D(AI/Z)] ', and we denote this new realization by the same 
symbol. 

(iv) Using (iii), we can moreover define the Neumann map N on 
HS(F) by setting Ng=z,  Yg~HS(F) and s_>-  1/2, where z is 
the unique solution of the equation 

<Az, O>[D(AI/2)]'• 
= <g, v>w(r)• Ew(r)r, (10) 
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VDeD(AU2). By elliptic regularity (see Ref. 5), we will then have 
that 

N ~ e ( H S  (F), HS+ 3/2(f~ )). (11) 

(v) 7o: H l ( ~ )  "-} H1/2(F) will denote the usual Sobolev trace map, 
and 7: H1(~'1) --}H~/2(F0) will be defined as the restriction of 
H1/2(F), the range of Yo, to Fo; i.e., 

7(v) = vlro, Vv~Hl(~).  (12) 

Thus, we will have from (10) that VgeL2(Fo) and veD(A1/~), 

<ANg, O)tD(A'/2)], x ~(A'~2) = (g, vl ro)L2(ro>, (13)  

i.e., 

7 = N*A as elements in ~(D(A 1/2), L2(Fo)). (14) 

(vi) We define the operator A: L2(Fo)~D(A) --} L2(Fo) as 

A = a  2, D(A) = n4(ro)  n H~(Fo); (15) 

A is also self-adjoint and positive definite, so fractional powers 
are well defined. By Ref. 4, we have 

D(M)=Ho4~(ro), 0_<a<5/8. (16) 

(vii) Let 

[o 
A~=- - A + I  : D(A~)--,It~, (17) 

D(A,) = {[Zl, 2~I~D(A) • D(,4~/~)}, (18) 

H I _~D(A I/2) • L2(~'~ ) ~ HI(~~) x L2(~'~), (19) 

(viii) Let 

Ao=[_O~ _ ~] : O(Ao) -* Ho, (20) 

D(Ao) = {[~1, ~2] TE[D(A1/2)]2DO1 + v2ED(A)}, (21) 

Ho- D(A ~/2) x L2(Fo) = H~(Fo) x L2(Fo). (22) 

(ix) Let / 

C= ~-W(Ho, [D(A1/2)]' x [D(A1/2)]'). (23) ),* 
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that, from (14), y*=AN. By duality with respect to Note 
HI • Ho, we then have 

C * = [ :  0 ] (24) 

(x) Let 

-[ AI C ] ,  off: HI XHoDD(d)--* H, x H o, (25) 
~ / =  -C* Ao 

D ( ~ )  = { [z, , z:, v, , v21 re [D(A 1/2)12 x [D(A '/2)]u, 

s.t. - zl + Nv2eD(A) and vl + v2~D(A)}. (26) 

(xi) Let 

.~ = [0, 0, 0, B]Te.~(U, Hi  x D(A '/2) x H-~(ro)).  (27) 

From (6)-(7) and (25)-(27), we can proceed to show afortiori that, 
for ~. ~ p ( d ) ,  (3. - ~ ) - l ~  ~ ~o( U, Ht x H0), and consequently, 

~ . W ( U ,  [D(d*)] ') .  (28) 

So setting 

r~-- [z, zt, D, Or] T, Y0 ~---[z0, Zl, Do, 01] T 

we can then use (28) and the operator definitions above to rewrite (1)-(5) 
as the abstract dynamical system 

dY/dt = ~ Y+ ~u in [D(M*)]', (29) 

Y(s) = Yo~H1 x Ho. (30) 

Henceforth, our attention is drawn toward solving (29)-(30). 
Along with the abstract system (29)-(30), we associate a quadratic 

functional, 

Js(Y, u) = (1/2) [[IRY(t)II2+ Itu(t) II 2] dt, (31) 

where Z is some Hilbert space and Re.Z(HI x Ho, Z);  without loss of gen- 
erality, we can take Z to be self-dual. The optimal control problem associated 
to (29)-(30) is then defined as follows: Find 

[s s; Yo), t3*(., s; Yo), u*(.,  s; Yo)] r 

= [Y*(.,  s; Yo), u*(.,  s; Yo)] r~L2(s, T; 1-11 x Ho) x L2(s, T; U), 

which minimize (31) over all [8, t3, u] r =  [y, u] r which solve (29)-(30), where 
the control operator ~ is a continuous linear mapping: U---,HI x 
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D(A m/:) x [D(l~a/4)] ', this boundedness following from the characterization 
(16). 

1.3. Literature. Problems related to feedback control and Riccati 
equations for the case of unbounded control actions have received consider- 
able attention in the past. In fact, control problems described by analytic 
semigroups with fully unbounded control operators B have a most compre- 
hensive treatment in the literature (see Refs. 6-7). Also, in the ease of hyper- 
bolic problems with a trace-type assumption imposed upon the control 
operator B, it has been shown that the algebraic Riccati equation (ARE) is 
solvable with the gain operator usually unbounded, albeit densely defined 
(see Refs. 8-10). The hyperbolicity of the PDE is critical in the analysis of 
the gains, whose boundedness can be achieved under additional smoothing- 
type hypotheses imposed upon the observation R as in Refs. 5, 8 and refer- 
ences therein. Needless to say, our problem here does not fall into any of 
these categories; more importantly, the techniques developed in these cited 
works are not readily adaptable to the present situation. The reasons for 
which we cannot appeal to the earlier theory are threefold: 

(i) Our problem consists of coupled hyperbolic/parabolic-like equa- 
tions with an unbounded control operator; thus, techniques 
developed specifically for parabolic or hyperbolic cases are not 
applicable here. 

(ii) The coupling between the two dynamics is represented by an 
unbounded, trace-type operator. This is a source of major 
difficulties in the treatment of the problem. 

(iii) The observation R is not assumed here to be smoothing; thus, 
there is no benefit of an additional regularity resulting from opti- 
mization, uniike the other treatments noted above. 

In view of the above, new techniques dealing with the novel facets of 
the problem need to be developed. We note that sharp regularity of hyper- 
bolic traces (which was necessarily studied by the authors) plays an absolut- 
ely major role. In fact, our final result, asserting the solvability of the Riccati 
equation with the implementation of a bounded gain operator, clearly indi- 
cates an interplay between the degree of unboundedness of B which can be 
allowed in the problem and the geometry of the domain which dictates via 
the parameter tt the regularity of the traces; see Theorem 1.2(ii). 

1.4. Statement of Main Results. We consider the control system 
described by: 

(i) the abstract evolution equation (29)-(30), with ~r and ~ as given 
by (25)-(27); 

(ii) the associated performance index (31). 
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The following results hold true with a as specified in (6)-(7). 

Theorem 1.1. For all prescribed initial data YoeH~ x Ho, there exists 
a unique optimal control and trajectory 

u*(., s; Yo)eL2(s, T; U), (32) 

Y*(. ,  s; Yo)~C([s, T];/-/1 x Ho). (33) 

Moreover, the following additional regularity holds true: 

u*(. ,s; Yo)EC([s, T]; U), (34) 

Y*(. ,  s; Yo)EC([s, T];/-/1 x H0) 

n L2(s, T; HI x [D(A~/2)]=), (35) 

with continuous dependence on the data Yo (see Remark 2.6). 

Theorem 1.2. 

(i) The operator P(t), defined by having for all YoEH~ x Ho, 

f; P(t) u e ~*(~-~ t; Y.) dr, (36) 

is an element of La(HI • Ho, C([0, T]; H* x H* )), and is more- 
over self-adjoint, positive semidefinite; see Propositions 3.2 and 
3.4(ii). 

(ii) Yt, 0 < t < T, &*P(t) ~.Y(H~ x Ho, U), with norm estimate 

[l~*P(t) ll-~(Hr • < C r ( T -  t)'-~ (37) 

where 0 = a/4; see Proposition 3.3(i). 
(iii) The minimum of the functional Js defined in (31), corresponding 

to the minimizer [Y*(.,  s; Yo), u*( ' ,  s; Yo)] r, is 

J , (Y*( . ,  s; Yo), u*(., s; Iio)) = (P(t) Yo, Yo), (38) 

where ( . , . )  denotes the duality pairing with respect to the 
H~ x Ho topology; see Proposition 3.4(iii). 

(iv) For each YoeH1 x Ho, the optimal control u*(.,  s; Y0) is given 
in feedback form by 

u*(t; s; I1o)= -~*P(t)Y*( t ;  s; Yo) ,  O<s<t< T; (39) 

see Proposition 3.3(ii). 
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(v) For 0 < t < T, P(t) satisfies the following differential Riccati equa- 
tion (DRE), VYo, Y1 ~D(~r 

(P(t)Yo, YI) = - ( R * R Y o ,  Y I ) - ( P ( t ) ~ Y o ,  Y~) 

- (P ( t )  Yo, ~ Y, )  

+ (~*P(t) Yo, &*P(t) YOv; (40) 

see Lemma 3.2(i). 
(vi) The solution is unique within the class of self-adjoint operators 

P ( t ) ~ ( H l  x Ho, H* x H*)  such that, gYoeHl x Ho, 

~, /3( .  )YoeC([0, T]; U); (41) 

see Lemma 3.2(ii). 

Remark 1.1. 

(i) Notice that time regularity of the optimal control given by (34) is 
not intrinsic to PDE optimization problems with an unbounded control 
operator ~ ;  it is an independent regularity result. In fact, typically one does 
not have continuity of the optimal controls. In our particular case, this 
enhanced regularity is a result of a smoothing effect of the analytic part of 
dynamics, which is propagated onto the entire system in some sense to be 
made clear presently. 

(ii) The key result behind the derivation of the Riccati equation, in 
the general case of an unbounded operator ~ ,  is the regularity of the gain 
operator ~*P(t), which appears in the quadratic term of the equation. In 
our present situation, it is shown [Theorem 1.2(ii)] that the gain operator 
~*P(t) is bounded, despite the unboundedness of ~ ,  and consequently ~*. 

(iii) It is well known that in a purely hyperbolic case with unbounded 
~ ,  the gain operators are intrinsically unbounded. What explains the regular- 
ity result [Theorem 1.2(ii)] in our particular case is again some propagation 
of regularity from the analytic part of the dynamics. This is probably the 
most technical part of the proof, which requires an in-depth microlocal 
analysis of traces to hyperbolic operators. 

Remark 1.2. We notice that the problem considered in Ref. 1 is a 
special case of our more general setup where ~ is a rectangle, 

k 
Bu = ~ t$ '(xi)ui, xi ~ F0, ui~ R, Vi. 

i = l  

By the Sobolev imbedding theorem, 

t$ '(xi)~H-3/2-'(Fo), 
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so the value 

a = 3/2 + �9 < 5/3. 

Hence, this particular unbounded input, fits within the framework of our 
problem. 

2. Analysis of Open-Loop Dynamics 

In this section, we shall prove several properties related to the well- 
posedness of the open loop control system. These will be critical for the 
study of feedback control. 

By appealing to Ref. 11, we have the following result regarding the 
dynamics generated by ~r and the consequent well-posedness of (1)-(5) in 
a weak sense. 

Theorem 2.1. The operator ~r given by (25)-(27) with A0, A1, C 
described by (17)-(23) generates a strongly continuous semigroup on the 
Hilbert space HI x H0. 

2.1. Control ~ State Map. The main goal of this section is to establish 
the regularity of the control ~ state map. That is to say, we consider the 
map u ~ Y defined via the dynamical system (29)-(30) as 

f0 ' Y(t)=e~ttyo+ e~C(t- ~)~u(r) dr; (42) 

without loss of generality, we take herein the initial time s = 0. Since d 
generates a C0-semigroup on/-/1 x H0 and ~ :  ~ [~(d*)] ' ,  the map L defined 
by 

f0' Lu(t)= ed( '-~)~u(r) drs~(L2(O, T; U), C([0, T]; [D(d*)]').  (43) 

However, the above a priori regularity is not sufficient for the subsequent 
analysis. We need more information concerning the smoothing properties 
of L. In fact, the main goal of this section, is to prove the following lemma. 

Lemana 2.1. Le~(Lz(O, T; U), C([0, T]; / /1 x Ho)), 

Remark 2.1. The result of Lemma 2.1 should be contrasted with that 
of Ref. 3, which shows that the operator L is defined as a mapping into a 
space of distributions. 
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The proof of Lemma 2.1 follows through a sequence of propositions. 
A critical role is played by the following results. 

Theorem 2.2. 

(i) 

(ii) 

(iii) 

See Refs. 12-13. Let A0 be defined as in (20)-(21). Then: 

A0 generates a C0-semigroup of contractions {e A~ which is 
also analytic on H and 

p(Ao) ~- (X~Re(A.) > 0}. 

Moreover, for 0 < 1/< 1/2, we have the following characterization 
of the fractional powers of (-A0)": 

D((-Ao)") = D(A ~/2) x D(A"). (44) 

The map 

e A~ L2(0, T; [D(AI/2)]2)). (45) 

Remark 2.2. Note that {eA~ has a greater smoothing effect on 
initial data than the standard results given for analytic semigroups; see 
Ref. 14, p. 295. 

The next theorem pertains to the regularity of solutions of the Neumann 
problem with given Dirichlet boundary data (the so-called Neumann- 
Dirichlet map); this result will be used in the work ahead. 

Theorem 2.3. Let z be a weak solution to the following Neumann boun- 
dary-value problem (BVP): 

ztt = Az, in fl x (0, T), 

t~z/t~v =g~L2(0, T; H4~(F)), with ~'_<4fl < 1/2, 

z(0)=z,(0) =0, 

where ~" = 1/4 if f~ is rectangular and ( =  1/3 in the general case of a smooth 
boundary F. Then, we have that 

[z, z,, z,t ] % c([0, 7"]; H1(D)) • C([0, r];  

• L2(0, T; H-4a(F)),  

with continuous dependence on the datum g; viz., Vte[0, T], there exists C 
independent of t, such that 

IIz(t)ll~'(~) + IIz,(t)l122(c~)+ IIz,(s)ll~-'a(r) ds 

< C Ilgllb(o,r; h,'a(r)). 
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Remark 2.3. In the case of rectangular domains, Theorem 2.3 was 
proved in Ref. 15. In the case of smooth boundaries, the result of Theorem 
2.3 follows from techniques used in Ref. 16. 

Remark 2.4. Theorem 2.3 states sharp regularity results for the 
Neumann-Diriehlet map which do not follow from standard PDE theory. 
In fact, the standard estimates (see Ref. 17) require that ge  
H1/2"1/2((0, T) x F)  in order to obtain only that zeC([0, T]; Hl(f~)). Thus, 
our result improves the regularity by a 1 /2 -4 f l  space derivative and a 1/2 
time derivative. More recent and refined PDE estimates, such as those in 
Ref. 18 with initial datum g~L2(0, T;HI/2(F)), produce z~C([0, T]; 
HI(~)) and zt~C([O, T]; L2(F~)). Our result in Ref. 15 still betters that of 
Miyatake by a 1 / 2 - 4 f l  space derivative to obtain the same state regularity 
and, more importantly, by allowing the trace ztlr to be defined in an appro- 
priate negative Sobolev space. These improvements for the Neumann- 
Dirichlet map are indispensable for the following analysis. 

As ~e.~(U, [D(A*)]'), then e'~t~ is well defined as an element of 
[D(M*)]'. Our main task now is to show that, for t > 0, e~t~ may actually 
be taken as an element of ~ (U , / / 1  x Ho). 

Proposition 2.1. 

(i) Let /7 satisfy fl<_rl<_l/2, where fl is in the range (_<f l< l /8 ,  
with 5 = 1/16 if fl is rectangular and ( =  1/12 if F is a smooth 
arbitrary boundary, and define the map Ko by having for every 
t3~L2(0, T; D((-Ao)"), 

fo fo Ko~(t) = e A ~  * eA'(s-OCO(r) dr ds. (46) 

Then, Ko6.s T; D((-Ao)")). 

(ii) I - K o  is boundedly invertible on/,2(0, T; D((-Ao)")). 

Proof of (i). From Theorem 2.2(ii) above, we have that 

D((-A0) ~) = D(A 1/2) x D(A#), (47) 

and from (16), 

D(A')  _= D(A a) = H4~(ro). (48) 
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We then note that, for arbitrary ~5= Iv, vt] TEL2(0, T, D((-24o)0)), the term 

= e ~1(' - ~ ) C ~ ( r )  d~ (49) 

is afortiori (see Ref. 16) the unique weak solution of the following BVP: 

z,, = Az, (50a) 

az/av=~vt on l"0 x (0, T) 
(50b) Lo on F\Fo x (0, T), 

z(O)=z,(O) =o. (5Oc) 

From the given regularity of vt, we deduce from Theorem 2.2(ii), Theorem 
2.3, and the characterization (48) that the map 

2(. )--+ C* e = 
" 0 ZtIFo 

is an element of 

M(L2(0, T; D((-Ao)n), L2(0, T; (D(A 1/2) x H-4/l(]"0) ). (51) 

NOW considering the inner integral of (46), if we define jo as the inclusion 
map from H-4a(Fo) into H-2(Fo)  = [D(/~l/2)] ', and set 

J , /2=  I00 Oo], (52) 

then V~=[v, vt]reL2(O, T; (D(A1/2))xH-40(Fo)) ,  we will have by the 
explicit representation of (-Ao) 1/2, given in Ref. 19, p. 62, that 

--!/2 / - rJ~-3/4( 2Id-Al/2)-l/2j0tTtl 
(-.do) :1/20 = LA_i/4(2I + A1/2)_l/2j ~ v,J" (53) 

As A is self-adjoint, we deduce that 

( - A o ) - l / 2 j l / 2  E ..~((D(~/~ 1/2) x H -4/3, Ho). (54) 

As Ao is an analytic generator [Theorem 2.2(i)], we can consequently make 
use of the well-developed theory for analytic semigroups (see Ref. 7), after 
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agreeing to identify jo as simply the identity, to establish that the map 

Io ~(. )--, e ~~ -~)O(r) drs~(L2(0,  r ;  {0} 

x H-4'(ro)), L2(0, T; D((-Ao)I/2))). (55) 

As D((-Ao) '/2) ___D((-Ao)~), upon combining (51) and (55) we have that 

Ko~.Lp(L2(0, T; D((-Ao)r (56) 

and (i) is proved. 

Proof of (ii). We have further that the operator norm of Ko is 
bounded by a constant dependent upon time. To wit, VTo, 0<  To_< T, and 
O~L2(0, To ; D((-Ao)")), 

[[Kofi [IL2r ro;Dr < Co IIKo~llL2r To;or (57a) 

Ifo I _<Cro C* eA'(-~)CO(r)dr (57b) 
L2(O, To; H-4P(Fo)) 

_< fro II 0 II L2~o, r0; o~-A0)~)). (57c) 

Note that (57a) yields (57b) by the norm estimate given in Ref. 7, p. 455 
and Theorem 2.3; also note that (57b) yields (57c) because of (51), where 
Cro < 1 for To small enough. Then, for integer N, we can define the maps 
Ko: for 1 <_J_<N by having, V O~L2(((J - 1)/N)T, (J/N)T; D((-Ao)~)), 

f:' I: Ko,j~(" )=  e A~ -s)C* e A'(s- ~)C~(~') dr ds. (58) 
J -  I)T/N J -  1)T/N 

For N large enough, we will have from (57) that IIKo,A[ < 1, v J, and we can 
use repeated iteration with the maps Ko,j to show the bijectivity of l -  Ko on 
L2(0, T; D((-Ao)~)), and the bounded invertibility o f I - K o  will follow from 
the open mapping theorem. [] 

We now use Proposition 2.1 to establish the crucial norm estimate which 
will ultimately validate the input operator L given in (43). 

Proposition 2.2. Let a be as specified in (6)-(7). Then: 

(i) u u~ U, the function eAe)Y~u is an element in 

c([o, T]; H,) 

x L2(0, T; D((-Ao)l/2-a/4)) c~,~/4 C([0, T]; Ho), (59) 
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(ii) 

where, Vr/~ R, ,C([0, T]; Ho) is the Banach space 

{~C((O' T]; H~176176 sup t~llfJ(t)ll~~ < m} 

u t< T, ed'~e~q'(U,/-/1 x Ho), and there exists a .constant 0, 
0 < 0 < 1/2, such that the following norm estimate is satisfied: 

I I ed'~ull ~'(v,~, • Ho) <- Co/t ~ (60) 

where Co is some positive constant, and in fact 0-= a/4. 

Proof of (i). If we consider, for fixed u, the quantity 

F 1 
(6') 

I v(t) / L~(t)J 
Lv,(t)_l 

then a formal differentiation yields that ~(. ) and ~(. ) satisfy the coupled 
system 

zt, = Az, (62a) 

Oz/Ov={~t ~ F~ x (s' T)' (62b) 
on F\Fo x (s, T), 

z(0) = z, (0) = 0, (62c) 

oft + Av + Avr = -z t ,  (62d) 

v(0) =0, (62e) 

v, (0) = Bu. (62f) 

By the uniqueness theory for ordinary differential equations, finding the 
solution of the above coupled system will be tantamount to solving the 
following pair of coupled integral equations in L2(0, T;/-/1 x Ho): 

~(. ) = e A'('- ~)C~(r) dr, (63) 

~(.)=eAOe)[ 0 ] Io ~) Bu - e a~ - ~163 dz. (64) 
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Formally then, solving the coupled system (63)-(64) is equivalent to finding 
t5 which satisfies 

~+ K0~(" ) = e~a) [ ; u ] ,  (65) 

where Ko is as defined in (46). 

Now, considering the right-hand side of (65), we have by the definition 
of B that 

[0, B]TE,sfl(U, D(A 1/2) x n-~(F0)), (66) 

and from (16), H~(Fo)= D(A~/4). So we can deduce from Theorem 2.200- 
(iii) that 

eAO() [ ; ]  = (-A0) ~/4 eaO()(-Ao)-a/4[ O] 

~ ~( U, L2(O, T; O( (-Ao)I/z-a/4) ) ). (67) 

As 1 / 2 -  a /4  > ~, with ~ = 1 / 16 if fl is a rectangle and ~ = 1/12 if boundary 
F is smooth, we can apply to (65) the inverse (I+K0) -1, whose existence is 
ensured by Proposition 2.1 (ii), to obtain 

v,(.)J- ") 

=(I+Ko)-'eA~ T;D((-Ao)I/2-a/4)). (68) 

Going back to the variable s defining (with the newly found ~(. )) 

z( .) l  ~'(> 
) J = i ( ' ) =  J. e A'('-OC~(r) dr (69) 

zt(" 

will yield a fortiori via Theorem 2.3, which again is directly applicable here, 
as 1 / 3 < 2 - a < 1 / 2  in the case of a general smooth domain and 
1 / 4 < 2 - a  < 1/2 if f~ is a rectangle, the unique (weak) solution of (63). 
Consequently, we have that 

ir T];/-/1). (70) 

In addition, using the properties of Ao, as spelled out in Theorem 2.2, we 
can show, in a manner akin to that which was used in establishing Proposi- 
tion 2.2(i), that 

K0e.oq'(L2(0, T; D((-Ao)I/2-a/4)), C([0, T]; Ho)); (71) 
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hence, we deduce from the integral representation of fi(. ) in (64) that 

~(" )ca/, C([0, T]; H0), (72) 

where the singularity at 0 is of course due to the presence of the unbounded 
operator B. So, defining 

e~e)~ 'u-  [:~(" ))] ' =k~(" (73) 

where [s ~] solves (63)-(64), will yield the result in (i) via the regularity 
properties (68), (70), and (72). 

Proof of (ii). With [~, tT] as defined by (73), we use the a posteriori 
estimates given from both the regularity result of Theorem 2.3 and the 
inversion of the operator I+  Ko to majorize I1~11 c~to,rl;m), where s is as given 
in (69); namely, we have 

II ~11C~tO,T1,M,) <-- C~ II v, 11L2r ~- ~ (74a) 

___ C= II ( I +  Ko) -1 II-L~'(L2(O,T;D((- A0) 1/2- a/4))) 

�9 [ea~ (74b) 

~C31 (--AO)-a/4[~] H ~ (74C) 

_< c4 Ilullv. (74d) 

Note that (74c) arises from (74b) in light of Theorem 2.2(iii). Moreover, 
using the representation for ~(. ) in (65) and the continuity of K0 as spelled 
out in (71), upon taking norms we obtain the pointwise estimate, valid on 
(0, T] because of the regularity given in (72), 

Ilr~(t)llno <_ leA~ [ ~ Ho+ CIIOIIL=cO,r,O<C-Ao)I/=-~ (75) 

After considering the boundedness of I+Ko given in Proposition 2.1(ii), 
along with that of 

eA~176 1 
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posted in (67), we have 

(75)< ea~ [ 0_] +CI, ullu. (76) 
LDuJ Ho 

In addition, from the analyticity of Ao we have again 

 77) 

Coupling (74) and (75)-(77), we indeed obtain the desired estimate, 

lie "~`~r x ~,o <_ ( C/t  ~ (78) 

where 0 = a/4, and Proposition 2.2(ii) is proved. [] 

Proof of Lemma 2.1. This is a simple consequence of Proposition 2.2. 
Indeed from (43), Vu~L2(O, T; U), we have 

fo IILu(t)llHlxMo<-- Ile~'"-S)~u(s)lln,• 

fo [ 1 ] <_ (t_s)a/s Ilu(s)lluds 

_< Cr IlulIL2r ~, (79) 

after using the estimate (60) of Proposition 2.2(ii), which implies that 

IlLu(t) IIL~(o,r;x, • I,o)< Cr Ilulla<o,r;u). 
The usual density argument, together with the completeness of 
C([0, T]; U) proves continuity in time as asserted. [] 

In the sequel, we shall need the properties of the map 
Ls: L2(s, T; U) --. L2(s, T; 1-11 x Ho), defined as 

f/ (L,u)(t) = e d(t- ~ dr, (80) 

where s < t < T. 
It is now a straightforward result, via Lemma 2.1, that the continuity 

of the map L,: L2(s, T; U)--, C([s, T];/-/1 x Ho) is preserved uniformly in 
the parameter s. In fact, we have the following corollary. 
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Corollary 2.1. 

(i) 

(ii) 

(iii) 

The operator L, defined on U, V 0 < s < T, given by 

fs ") 
L~u(" )=- e ~(" -~ dr, (81) 

is an element of s T; U), C([s, T];/-/1 x HoD with a norm 
estimate uniform with respect to s. 
The unique solution to (29)-(30), for fixed uEL2(s, T; U), is given 
by 

~(') - Y ( . ) - e  -S)Yo+L~u(.)eC([s, rl;HlXHo). (82) 

The adjoint operator 

L~* s~(L2(s, T; H i  x H;'), L2(s, r ;  U)) 

is given by 

L?/ ' (-  ) = ~* e ~ ' ' " -  )/'(r) dr 
-) 

= ~ *  &"*(~-')Y'(r) dr.  (83) 
.) 

Proof. Given the norm estimate (60), the proofs of (i)-(iii) are 
straightforward and may be omitted. Moreover, it can readily be shown 
that, YY'cff(s, T; D(~'*)), 

L* ~ ' (-)=:~* e ~''(~- ) ~'(r) dr, (84) 
.) 

so L*, as given by the first equality of (83), can be considered as the unique 
extension of the map 

Y(" ) -* &* e ~'(~- ")Y'(r) dr, 
-) 

vi '(-)eL:(s,  Z'; D(d*)) ;  (85) 

hence, the second equality in (83) is entirely justified. [] 



JOTA: VOL. 91, NO. 3, DECEMBER 1996 713 

2.2. Associated Optimal Control Problem: Proof of Theorem 1.1 

Given the existence and uniqueness established in Section 2.1 for the 
solution [~, t3] r =  Y of (29)-(30), we can proceed to consider the following 
optimal control problem for 0 < s < T: 

rain J,(Y, u) =(1/2)  [IIRY(t)I[~.+ Ilu(t)ll ~,] dt, (86) 

where Js is as defined in (31), over all [ Y, u] re L2(s, T; HI x 1to) x L2(s, T; U) 
which satisfy 

y( .  )=e~CC -S)Yo + Lsu(. ), 

where 110 is denoted to be the initial data [Zo, z l ,  Vo, v l ]r6Ht  x Ho. 

Lemma 2.2. There exists a unique optimal pair 

[~*(', s; Yo), v*( ' ,  s; Yo), u*( ' ,  s; Yo)] r 

= [Y*( ' ,  s; Yo), u*( ' ,  s; Yo)] r 

C([s, T];/ /1 x Ho) x LZ(s, T; U), (87) 

which solves (86) and which is given explicitly by 

where 
L2(0, T; U). 

u*(. , s; Yo) = -(Is+ L*R*RL~)-lL*R*R e ~(" -S) Yo, (88) 

e*(- , s ;  Yoll= y,("  s; Yo)=e~CC-~)Yo+L,u*(',s; Yol, (89/ 
~*(., s; Y0)] 

(I,+L*R*RLs)-ls~e(L2(O, T; U); here, I~ is the identity map on 

Proof. Let us define VE.oCp(L2(s, T;/-/1 • Ho) • T; U), L2(s, T; 
Hi x Ho)) by having V [Y, u]rEL2(s, T; H1 • Ho) • L2(s, T; U), 

V(Y, u) -- Y(-) - e  ~(' -s~ Y0 - e ~(" - ~ u ( r )  dr (90) 

(see Lemma 2.1 and Corollary 2.1). Then, we have that (86) is equal to the 
following optimization problem: 

min Js(Y, u)= (1/2) [llRY(t)llZz+ Ilu(t)llv 2] dr, 

over [Y, u]r eL:(s, T; Hi x 1to) x L2(s, T; U), s.t. V(Y, u)=0. (911 
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Subsequently, by the standard theory of convex optimization (see Ref. 
20, p. 35), there exists a unique pair 

[Y*( ' ,  s; Yo), u*(' ,  s; ro)] r 

=[~*(' ,  s; Yo), v*(' ,  s; Yo), u*( ' ,  s; Yo)] 

~L2(s, T; H1 x Ho) x L2(s, T; U), (92) 

which solves (91), and from Corollary 2.1(ii), Y*( ' , s ;  Yo)~C([s, T]; 
/-/1 x Ho). Moreover, the Frech6t derivative of V can easily be computed at 
every [Y, u]T~L2(s, T; HI x Ho) x L2(s, T; U) as the constant V', where V' 
is defined by having, for every [Y, u] r, 

v,r,1 o 1Fq; (93) 
kuJ=LO -LALuJ 

here, I, denotes the identity on L2(s, T; HI • Ho). V' is evidently surjective; 
to wit, VY~L2(s, T; HI x Ho), 

so by the Liustemik Lagrange multiplier theorem (see Ref. 21, p. 243), there 
exists a 2~ * EL2(s, T; H* x H'~) such that 

where ( . , . )  denotes the duality pairing between L2(s, 7'; 111 x Ho) and its 
dual; i.e., V [u ulreL2(s, 7';//1 x Ho) x L2(s, 7"; U), 

O={R*RY*( . ,  s; Yo), Y )  

+ (~,*, Y - L , u )  + (u*(., s; Yo), u)L2~,.r;to. (95) 

We thus deduce from (95) that 

R*RY*( . ,  s; Yo) = -~,*, (96) 

u*(., s; Yo) = L*g* = -L*R*RY*( . ,  s; Yo), (97) 

Y*(. , s; Yo) =e ~'(" -~)Yo + L,u*(" , s; Yo). (98) 

Thus, (96)-(98) yield 

u*(., s; Yo) = -L*R*R e d(" -S)Yo-L*R*RLsu*(., s; Yo), (99) 
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o r  

u*(., s; Yo) = - ( L  + L*R*RLs)-IL*R*R e ~'(-s) Yo, (100) 

after using the fact that Is+L*R*RL~ is invertible on L2(s, T; U) by the 
Lax-Milgram theorem, together with the regularity results of Corollary 2.1 ; 
of course, this time I, is the identity on L2(s, T; U). [] 

2.3. Additional Regularity Properties of the Optimal Solution. In this 
section, we show that the optimal control u*( ' ,  s; Y0), as given in Lemma 
2.2, is actually continuous in time, and that ~*(-, s; Yo) of (89) has greater 
regularity in the spatial variable than previously stated. These properties are 
critical for derivation of the Riccati equation. 

Proposition 2.3. Let z3(. ) be as in (82). Then, f~L2(s, T; [D(/~1/2)]2). 

Proof. Without loss of generality, we can take s =0. Finding the 
solution 

P()l r ( "  ) = L~(. )J 

of (29)-(30) is formally tantamount to solving the coupled system of integral 
equations 

F ~(t) =eAltgo + e"ll(t-r)CO(r) dr, (101) 
~ 0  

L O(t) = eA~ e A~ ~ dr 

L + eaO(t_O[ 0 ] d r ,  (102) 
LBu(r)] 

which in turn is formally equivalent to solving 

r' 
~(t) +I~O(t)=eA~ - eA'(t- ~  * eA'~Zo dr 

~ 0  

L [~ + eA~176 Bu(r) dr, (103) 
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where Ko is as defined in (46). Now by Ref. 18, 

C* eA~()zo~L2(O, T; D(A 1/2) x H-I/2(F0)), (104) 

so we can use this fact along with the same argument used in establishing 
(56) of Proposition 2. l(i) to have that 

RHS of (103)~L2(0, T; D((-Ao)I/2)), (105) 

where RHS stands for right-hand side. Consequently by Proposition 2.1 (ii), 
we can apply the inverse (I+Ko) -~ to both sides of (103) to obtain 

[ f0' v =v(')=(I+K~ ~ eAO(.)Vo_ eAO(._~)C, eA,~zodr 
IJt 

+f/')ea~ 0 ldrlLBu('Q1 

EL2(0, T; [D(AI/2)]2), (106) 

after using Theorem 2.2(ii). We can subsequently derive the solution ~(. ) 
of (101) by setting 

El fo' z =~(.)_eA,(.)Zo+ eA,(._~)C[(i+Ko)_ , eAO(.)Vo]~d r 
Zt 

- e A'( -~ )C  ( I + K o )  -~ e A~ -<')C* e~'<'Zo do" dr 
f 

;o [ ;o (') - * ) C  ( I +  Ko) -1 LBu(a)d = + e A~( e A~ de  dr. (107) 

Note that ~ is in C([0, T];//1) by Theorem 2.3, which is directly applicable, 
as we can readily compute that the solution of (101), which we have obtained 
here, satisfies 

z.  = Az (108a) 

t3z/tgv=~Vt on Fox (0, T) (108b) 
to on F \Fox (0, T), 

[z(0), z, (0)] r =  [z0, z, l reH'( f~)  x L2(f~). (108c) 

Afortiori  then, the solution [;~, ~]r defined in (106)-(107) solves the ODE 
(29)-(30), and a uniqueness argument concludes the proof. [] 
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Remark 2.5. As we have just shown in Proposition 2.3 that every ~(. ) 
of (82), corresponding to some fixed u~L2(0, T; U), is in L2(s, T; 
[D(A~/2)]2), then in particular the optimal ~*(., s; Y0) given by (89) has 

the stated regularity. 

Proposition 2.4. Let L* be as^given in (83). Then, L* e~(C( [ s ,  
T];H*xH*),  C([s, T]; U)), and u T]; H*xH*),  we have the 
estimate 

IJZ*~ ~'11 c(t,,rl;v) < Cr 11 ~'[I C<[~,T1; ~ • ~) ,  (109) 

where CT is independent of s, 0 < s < T. 

Proof. L* ~" is easily seen to be in C([s, T]; U), V~" in C([s, T]; 
H* x H*); hence, we need only show that there is no singularity at the 
endpoint T. So V t, s < t < T, we have by (60), 

IlL* ~'(t)llv< liB* e~'*(~-~ 

= [ C o / ( r - t ) ~  ~ ' ( 0  II-; • m dr 

<[Co(T-s)l-~215 (110) 

where 0 is as in (60), and we have the result. [] 

Proposition 2.5. L,6Le(C([s, T]; U), C([s, T]; / /1XHo))  and Vu~C 
([s, T]; U) we have the estimate 

IIZ, ullc<t,.rl,n, ,, no)< Cr [lUlIca,,TI;V), (111) 

where Cr is independent of s, 0 < s < T. 

Proof. This is similar to that of Proposition 2.4. [] 

Lenuna 2.3. The operator I,+L* R*RL, is boundedly invertible on 
C([s, T]; U) with the following norm estimate: 

II (1, + L*R*RL, )-1 II ~,<c<t~.Tj ;u)) < CT, ( I 12) 

where Cr is independent of s, 0 < s < T. 
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Proof. We make use here of a bootstrap argument. For an arbitrary 
geC([s, T]; U), we wish to show that there exists a uniquefeC([s, T]; U), 
such that 

f+L*R*RL, f=g,  in C([s, T]; U). (113) 

As I~ + L*R*RLs is invertible in L2(s, T; U) by the Lax-Milgram theorem, 
then certainly there exists a unique heL2(s, T; U) such that 

h+L*R*RL~h=L*R*RL~g in L2(s, T; U). (114) 

Thus, by Propositions 2.4-2.5, 

h=L*R*RLsg-L*R*RL, h in C([s, T]; U), (115) 

and it is easy to see that 

f=g-h~C([s ,  T]; U) 

will be the unique solution to (113). The result then follows upon application 
of the open mapping theorem. The norm estimate (112) is a consequence 
of the estimates given in (109) and (111). [] 

Corollary 2.2. u*(. ,s;  Y0) given by (88) is in C([s, T]; U). 

Proof. By Proposition 2.4, L*R*Re~)Yo~C([s, T]; U), and the 
result follows from Lemma 2.3. [] 

Corollary 2.3. We have the following estimates for the optimal pair: 

II ~*( ' ,  s, Y0)IIL2(~,r;to(~'/2)12)--< Cr II Yolln, • H0, (116) 

Ilu*(" , s; Yo) tlc~t~.r];v) < Crl] Yoiln, • (117) 

II Y *  ( ", s; Yo ) ll c<t.~,~.] ,ii, ,, i~o) <_ CT ll Y011n, • (118) 

Proof. Estimates (117), (118) follow from (97)-(98), (100), and the 
results of Propositions 2.4-2.5 and Lemma 2.3. For the component 
r3*(., s; Yo), we have from (106) that 

[ f" tT*(-, s; Yo) = ( I+ Ko) -I e a~ - % o -  e A~ -r)C* eAl(r-S)Zo dr 

I_Bu*(r, s; u ' 



JOTA: VOL. 91, NO. 3, DECEMBER 1996 719 

where equality can be taken in L2(s, T; [D(AI/2)]2). Now, for the right-hand 
side of (119). 

II (I+ Ko) -1 e a~ -S)VoliL2(s.r ;to(X ~/512) <_ Cr IIe a~ -S)Vollz2(s,r;(o(- ao)ln)) 

< Crllvollno, (120) 

after making use of the continuity of the map (I+Ko) -1 and Theorem 
2.2(ii)-(iii). 

Again from Ref. 18, 

C* e ~'< - ')E~(HI, L2(s, T; D(A ~/2) • H-1/2(Fo))), 

so the boundedness of this map and that of ( I+  Ko) -~, in conjunction with 
the unbounded control theory derived for analytic semigroups (detailed in 
Ref. 7), yield 

I (I + Ko)-l l f S ) eaO( -*)C* eAt(*-')zo d*: ] L2(,,r;tD(A,/2)r ) 

< Cr H fS)  eA~ eA'(r-S)zodz []12(~,r;[o(A,/2)]2) 

-< II C* e A'(" --S)ZoIiLZ(~,T;D(A '/2) • H-'/Z(ro)) 
<_ Cr Ilzoll,,, �9 (121)  

Likewise, by the boundedness of ( I+ K0) -~ and the aforementioned theory 
for analytic semigroups, we obtain the estimate 

(I+ Ko)-'[ f() ea~ yo)] dr ]  L2(s,T;[D(At/2)r 

<_ Crliu*(" , s; Yo)IIL~(~,r;v). (122) 

Using the characterization of u*( ' ,  s; Yo) in (100), we consequently have 
from Proposition 2.5 and (122) that 

_ Cr II Yo I1,,, x no- (123) 

Thus, combining (119)-(121) and (123), we arrive at 

I[ v*(" , s; I1o)[Iz2(s.r;to(A'/~)l 2) < Cr II YollM, ~ no, (124) 

and the estimate (116) is hence established. [] 
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Remark 2.6. The proof of Theorem 1.1 follows from Lemma 2.2, 
Proposition 2.3, and Corollaries 2.2-2.3. 

3. Riccati Operator 

3.1. Definition of the Operator O(. , . ) .  
evolution operator tl)(t, s) defined by 

~(t,s)Yo= Y*(t,s; Yo),  YoeHl X Ho, 

and one can readily establish that 

@(t, t)Y0 = Y0, 

@(t, r)@(r,s)=~(t,s), O<s<r <t<T. 

Furthermore, one has the following proposition. 

At this point, we introduce the 

O<s<t<_T, (125) 

(126) 

(127) 

p(.  ) eL~a(H, x H0, L~(0, T; H* x H*)). (129) 

Indeed, in a standard way, we can show that the following proposition holds. 

and 

Proposition 3.1. With @(. , .  ) as defined in (125), the following proper- 
ties hold: 

(i) for fixed s,O<s<T, the map t--,@(t,s)Yo is continuous in 
HI X Ho, s<t<T; 

(ii) for fixed t, s < t < T and Yo e H~ x Ho, the map s-o @(t, s) Yo is con- 
tinuous in/-/1 x Ho. 

Proof. Having established the regularity properties of Corollary 2.3, 
the proof is the same as in Ref. 9, and hence is omitted. [] 

With ~ ( . ,  .) defined as in (125), we subsequently define 

f; P(t) Yo = e~*(~-t)R*Rd~(v, t) Yo dr, (128) 

and afortiori 

P(t)e~(H~•215 Vt, O<t<T, 
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Proposition 3.2. P ( . ) e ~ ( H ~  • C([0, T]; H* xH*)) .  

The key result in this section is the following regularity property of the 
gain ~*P.  

Proposition 3.3. 

(i) Vt, 0 < t <  T, ~*P(t)~-~(Hl x Ho, U) with the pointwise norm 
estimate 

]l~*e(t) I I . ~  • Uo,~ <- Cr( T -  01-~ (130) 

where 0 is as given in (60). 
(ii) For each YoeH1 x Ho, the optimal control u*(.,  s; Yo) is given in 

feedback form by 

u*(t, s; Yo) = -~*P( t )Y*( t ,  s; Yo), O<s< t< T. (131) 

Proof of (i). VYo~H1 XHo, we have Vt, O<t<T,  

f/ t[~*P(t) YoilH; • H;< I[~* e~*('-')R*R~(r, t) Yol[n7 • ~ dr(132a) 

f) _< [C0/(r - 0~ II Foil H, • dr, (132b) 

=[Co(T--Ol-~165215 . (132c) 

Note that (!32c) ensues from (132b) in light of Proposition 2.2(ii), duality, 
and (118). 

Proof of (ii). Using the characterization of u*(.,  s; Y0) given by (97), 
we have 

f7 u*(t, s; Yo) = - ~* e~*(~-~165 s; Y0)(r)] dr (133a) 

= - I .  r ~* e~*(~-t)R*R~(r, s) Yo dr (133b) 

f/ = - ~ *  e~*(~-~ t)~(t, s) Yo dr (133c) 

= -~*P( t )  Y*(t, s; Yo). (133d) 

Note that (133d) ensues from (133c) after using property (127). VI' 
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Proposition 3.4. 

(i) ForO<t<TandVYo,  Yl~HlXHo, wehave 

f; (P(t)Yo, Y,)= (R~(r ,  t)Yo, Rff)(r, t)Yl)zdr 

+ (N*P(r)q~(~, t) Yo, ~*P(O~(r ,  t))v dr. (134) 

(ii) P(t) e~(I I l  x Ho, II* x H*) is self-adjoint and positive 
semidefinite. 

(iii) With art as defined in (31), we have that the constrained mini- 
mum of Jr, corresponding to the minimizer [Y*(-, t; Y0), 
u*( ' ,  t; Yo)] r, is 

Jr(Y*(' ,  Yo), u*(', t; Yo)) = <e(t) Yo, Yo), (135) 

where the duality product is taken between HI X Ho and 
H* x n * .  

Proof of (i). Using the definition of P(t) in (128), we have for Yo, 
Y1~ H1 XHo, 

(P(t)Yo, Y,) = (R~(r, t)Yo, R e~(~-~ 

Now, using (125) and (82), we have that VY~H1 • Ho 

R~(r ,  t) Y= R e~(~-t)y+ RL, u*( ., t; Y)(r). 

Applying (137) to (136) then yields 
T 

(P(t)Yo, Y1) = (R~(r ,  t)Yo, R~(r ,  t)Y~)zdr 

T 

- (R~(r ,  t)Yo, RLtu*(., t; YO(r))zdr 

T 

= (R~(r ,  t)Yo, R~(r ,  t)Y~) dr 

T 

(u*(r, t; Yo), u*(r, t; Y1))vdr, 

(136) 

(137) 

+ (138) 

after taking the adjoints of R and Lt and using the characterization of 
u*(. ,  t; Y0) in (97). The result follows upon applying Proposition 3.3(ii). 
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Proof  of (ii) and (iii). This follows immediately from (i). []  

Lemma 3.1. Let ~ ( - ,  .)  be as defined in (125). Then Yr, 0 < r < T  
and YoeD(~) ,  we have that ( d / d r ) ~ ( . ,  r)Yo exists as an element of  
oC([r, T]; H1 x Ho), where 0 is as given in (60) ; moreover, 

(dldz)tb(. ,  r) Yo 

= (It + L~L*R*R) -~ [e ~ ' ( -  3)~L*R*R~( ", r ) (z)  - e ~ ' ( -  ~)~r Yo]. (139) 

Proof. Using the definition of  Y*(., r ;  Yo) in (89) and the represen- 
tation of  u*(., r ;  Yo) in (97), we have that for Yo~H1 x Ho, 

�9 (. ,  r)  Yo = (It + L3L*R*R)-'e ~ ( -  3) Yo, (140) 

after using the fact that It +L,L*R*R is invertible on L2(r, T; Hx x Ho) by 
the Lax-Milgram theorem. Thus for fixed t, z < t <  T, and YoeD(d) ,  

(d/dr)~(t ,  r) + (d/dr)(L3L*R*R~( " , r) Yo(t)) 

= - eo~'(t- ~)~r Yo, inHl  XHo, (141) 

where each term on the left-hand side of  (141) is well defined initially in 
the variable r at least in the sense of  distributions, i.e., as elements of  
~ ' (0 ,  t; H~ x H0); see Ref. 22, p. 101. Now, for fixed t, the distributional 
derivative of  L3L*R*Rc~(., r)(t)  can be computed straightforwardly as 

(d/dr)(L~L*R*R~(. ,  r) Yo(t)) 

= - e  ~'('- ~162 r) ro)(Z) 

+ (L~L*R*R(d/dr)~(. ,  r) Yo)(t) (142) 

in ~ '(0,  t; H~ • Ho). Thus, using (141) and (142) we have that for fixed t, 
r<t<_T, 

[(13 + L~L*R*R)(d/dr)r r) Y01(t) 

= e d(t- r)~[(L*R*R~(., r) Y0)(r)] - e ~(t- 3)~r Yo (143) 

in ~ '(0,  t ; / / i  x H0), given that YoeD(d) .  But for fixed r, the function 

e ~r ~162 r) Yo)(r)] - e ~ ' ( -  ~)~r Yo (144) 

is an element of  oC([r, T] ; / /1  x H0), and, furthermore, we can use Proposi- 
tions 2.4 and 2.5 and the same bootstrap argument employed in the proof  
of  Lemma 2.3 to find that I~+L~L*R*R is botmdedly invertible on 
oC([r, T];/-/1 x Ho). We thus deduce that (d /dr)~( . ,  r) Yo can be taken as 
an element of  oC([r, T]; HI x Ho) with the representation in (139) being 
valid. [] 
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Lemma 3.2. 
(i) P(t) as defined in (128) satisfies the following differential Riccati 

equation (DRE): VYo, YleD(~]) and Vte(0, T), 

(P(t) Yo, Y1=-(R*RYo, YI) 

- ( e ( t ) d  Yo, Yx) - (P( t )  Yo, d YI ) 

+ (~*P(t) Yo, ~*P(t) Y,), (145) 

where the duality pairing ( - , . )  is taken between H~ • Ho and 
• HZ. 

(ii) The solution P(t) is unique within the class of self-adjoint opera- 
tors P(t)eSe(Hl x Ho, H* x H*) which satisfy VYoeHl x Ho, 

~*/3(. )Y0eC([0, T]; U). (146) 

Proof of (i). YY0, Y~ e D ( d )  and Vt, 0 < t < T, we have by the definition 
of P(t), 

f: (P(t)Yo, I11) = (R*Rr t)Yo, e~(~-')Yl) dr, (147) 

and differentiating both sides yields 

(d/dt)(P(t)Yo, Y , )=-(R*RYo,  YI) 

f: + (d/dt)(R*RdP(r, t) ]To, e~(~-~)Yx) dr. (148) 

Now, using Lemma 3.1 to move the differentiation on the right-hand side 
above inside the brackets yields 

LHS of (148) = - (R*R  Yo, Y1) 

- (R*R[(L+LtL*R*R)-le~C(-Odyo](r),e~(~-t)y~)dr 

+ (R*R[(It+L,L*R*R) -~ e~( '-~ e ~ - ~  dr 

- (R 'Re ( r ,  t)Yo, e~(~-~ dr 
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= - (R*RYo,  Y , ) -  ( e ( t ) ~ Y o ,  Y& 

+ (~*P(t)Yo, f r~*e ~'(~-o 

• [(/, + LtL*R*R)-*R*R e ~( -o Y~](r) dr  / 

- (e( t )  Yo, ~YI) ,  (149) 

where LHS stands for left-hand side. Now, from Proposition 3.4(ii), 

P(t) = P*(t), 

and from (140), 

r ", t) Yo = (It + LtL*R*R)-I e~,(. - t) Yo. (150) 

So by directly computing the adjoint P*(t) to handle the third term on the 
right-hand side of  (149), we have that indeed 

LHS of (149 )= - (R*RYo,  Y~)-(P(t)~CYo, Y~) 

+ (~*P(t) Y0, ~*P(t) Y1) - (P(t) Yo, dYe).  (151) 

Proof of (ii). It suffices to prove the uniqueness of  the solution in the 
given class (146) to the following Riccati integral equation: 

(P(t)Yo, YI) = (Re~(~-t)yo, Re~(~-~ 

- ( ~ * P ( r )  e~(~-~ N*P(r) e~(~-~ (152) 

VYo, Y~H~ x Ho. To this end, if P1(" ) and Pz(" ) both solve the DRE for 
0 < t < T and are of  the class (146), then setting Q(. ) = PI(" ) - P2(" ), one 
has necessarily that VYo, YI~H~ x Ho, 

~t T (Q(t)Yo, Y1) = (~*P2(z) e~(~-t)yo, ~*Q(r) e~(~-~ 

- ( ~*Q( r )  e~'(~-~ .~*Pl(r)  e~(~-~165 (153) 
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~t T Q(t) Yo = e~*(~-~  e~(~-t) yo dr 

- e~*(~-t)(~*P~(r))*N*Q(r)  e~(~-') Yo dr. (154) 

Then, setting V( t) = N* Q( t), we have, after applying N* to both sides of 
(154), the equation 

V(t) Yo = ~ *  e ~*(~-t) V*(r)~*P2(r) ed(~-t)yo dr (155) 

- ~ *  ed*(~-~  e~(~-~ Yo dr. (156) 

As Pl(t),  P2(t) are in the specified class (146), then by the Banach-Steinhaus 
theorem one has the following estimate V Yo e/-/~ x Ho, 0 < t <_ ~ <_ T, 

II~*Pi(r)Yollv<CrlJYIIMl• i=1,2 .  (157) 

Using the above estimate and taking the norm of both sides of Eq. (155) 
yields 

II g(t) Yoll--- [Cr/(r-t)~ II g(r)II II Yo I]~rl • (158a) 

< [ C r / ( r - t ) ~  sup Ilm(r)ll IIY0lln,• (158b) 
I t<z<_T 

Note that (158b) ensues from (158a) with 0< 0 < 1/2, after using the norm 
estimate (60). Thus, for to < t < T, we obtain 

sup II V(t)II-< C r ( Z -  to) 1-~ I sup II I1(O Ill, (159) 
t<z<_T IJ<_z<_T J 

and for T - t o  small enough, we have that C r ( T - t o )  1-~ is less than 
one, and uniqueness can be deduced within the class of all self-adjoint 
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P(t)~.o~(H1 x Ho, H* x H*)  such that 

r]; u), 
u x Ho and te(t0, T). (160) 

Iterating this argument and establishing uniqueness within each specified 
class will yield uniqueness for the entire interval after a finite number of 
steps. [] 
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