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Convergence Analysis of Gradient Descent 
Stochastic Algorithms 

A.  SHAPIRO 1 AND Y.  W ARDI  2 

Cornmunicated by W. B. Gong 

Abstract. This paper proves convergence of a sample-path based 
stochastic gradient-descent algorithm for optimizing expected-value 
performance measures in discrete event systems. The algorithm uses 
increasing precision at successive iterations, and it moves against the 
direction of a generalized gradient of the computed sample perfor- 
mance function. Two convergence results are established: one, for the 
case where the expected-value function is continuously differentiable; 
and the other, when that function is nondifferentiable but the sample 
performance functions are convex. The proofs are based on a version 
of the uniform law of large numbers which is provable for many 
discrete event systems where infinitesimal perturbation analysis is 
known to be strongly consistent. 

Key Words. Gradient descent, subdifferentials, uniform laws of large 
numbers, infinitesimal perturbation analysis, discrete event dynamic 
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I. Introduction 

With the advent of  sample-path gradient estimation techniques in 
discrete event dynamic systems, like infinitesimal perturbation analysis 
(IPA, Ref. 1) and likelihood ratio/score functions (Ref. 2), the question of 
simulation-based continuous-parameter optimization of  steady-state per- 
formance functions has come to the fore. One of the main theoretical 
aspects of  this question has been how to prove convergence of an iterate 
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sequence computed by an algorithm to an optimal (or suboptimal, station- 
ary, etc.) point with probability one (w.p.1). Besides variants of the 
stochastic approximation (SA) method, a number of gradient descent 
algorithms employing increasing precision have been considered. This 
paper concerns a class of such algorithms where the product of the stepsize 
at the kth iteration and the gradient of the performance criterion at the kth 
iterate, converges to 0 as k--, oe. 

To set the stage, let fk(O)=fk(O, co) ,k= 1 . . . . .  be a sequence of 
real-valued random functions defined on a common probability space 
(f~, ~ N), with the parameter vector 0 being confined to a set | = Nd. 
Suppose that, for any fixed 0cO,.  

lim fk(0)=f(O) ,  w.p.1, (1) 

where f (0)  is a deterministic function of 0. We refer to the function f(0)  as 
the limiting function, and to fk(O), k = 1 . . . . .  as a sequence of approxi- 
mating functions. In a simulation-based optimization, the approximating 
functions fk often are obtained by averaging a generated (simulated) 
sequence of sample performance functions. In that case, Eq. (1) means that 
the strong law of large numbers hold pointwise with the limiting function 
f typically being the expected value of the corresponding steady-state 
distribution. 

We first assume that the approximating functions fk are locally Lips- 
chitz continuous and that the limiting function f is continuously differen- 
tiable. Such situations happen quite often in Monte Carlo simulations of 
discrete-event systems where the expectation operator smooths piecewise- 
differentiable sample performance functions (Ref. 1). Later, we will also 
consider nondifferentiable limiting functions, and focus our attention on 
the case where the approximating functions are convex. This situation can 
occur in queueing networks where, in fact, the limiting function lacks a 
derivative (gradient) at a dense subset of the parameter space (Ref. 3). 

Recall that the generalized gradient ~h(O), in the sense of Clarke (Ref. 
4), of a locally Lipschitz function h is the convext hull of all limits of the 
form lira . . . .  Vh(O,,), where { 0, } can be any sequence converging to 0 and 
such that h is differentiable at every point of that sequence and the above 
limit exists. Note that by Rademacher's theorem, the set of points where a 
locally Lipschitz function fails to be differentiable has Lebesgue measure 
zero. If the function h is convex, then the generalized gradient coincides 
with the subdifferential in the sense of convex analysis (Ref. 5). 

Consider the optimization problem of minimizing f(O) over O. Sup- 
pose that the limiting function f(O) lacks a closed-form analytic expression, 
and consequently is estimated by the approximating functions f ,  (0). These 
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functions and their derivatives can be considered as a simulation output 
that is used to optimize the limiting function f .  The class of algorithm that 
we analyze in this paper has the following form: 

Ok + 1 = Ok -- akgk, (2) 

where {0~. }~=~ is the iterate sequence computed by the algorithm, ak > 0 is 
the kth stepsize, and gk is an element of the generalized gradient Ofk(Ok). 

To ease the exposition of the analysis, we implicitly assume that the 
constraint set | is compact and convex, and that the sequence {0k}~=l 
stays in the interior of | Note that gk = Vfk(Ok) if the function f k  is 
continuously differentiable at Ok, and that the algorithm imposes no 
restriction on the way gke~fk(Ok) is chosen if the generalized gradient 
~fk(Ok) is not a singleton. Note also that the size n k of the sample used to 
generate the approximating function fk can be determined a priori or can 
be random and correlated with the iterate sequence Ok. It only has to 
satisfy the condition limA._~ ~ nk = 0% w.p. 1, in order to ensure the law of 
large numbers (1). 

The stepsizes ak can be determined a priori or can be computed in an 
adaptive manner, but they have to be subjected to the following two 
conditions w.p. 1: 

(i) lim ak Ilgk 11 = 0, (ii) ~ Ok = ~ .  
k ~ z c  k = l  

In case gk are bounded, the above assumption (i) is ensured by the 
condition limA._~ ~ ak = 0. If ak are determined a priori, this last condition is 
almost the same as the assumption (i). However, if ak are calculated in an 
adaptive manner, condition (i) means that we can have ak bounded from 
below by a positive constant if gk tend to zero. 

When the limiting function f ( -  ) is differentiable, an important techni- 
cal condition under which convergence w.p. 1 of the iterate sequence will be 
established is that the generalized gradients Qfk(O) converge Vf(0) w.p.1 
uniformly on O. Although this condition appears to be strong, we will 
argue that it is satisfied in many cases of interest, including just about every 
case where convergence of IPA-based gradient methods was proved. In 
particular, if the functions f k  are convex, then such uniform convergence of 
the subgradients follows from the pointwise convergence (1) and the 
assumed differentiability of the limiting function f (cf. Ref. 6). An extensive 
discussion of this and related results can be found in Ref. 7, and further 
developments will be made below. When f is not differentiable, some 

3The latter assumption can be relaxed by extending the forthcoming analysis to constrained 
algorithms. 
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analysis is still possible in the case where the approximating functions are 
convex. In this case, although it is not true that ~fk (")  ~ ~f(" ) uniformly 
w.p. 1, we do have a uniform convergence of {fk } to f over compact sets; 
this, together with the special properties of convex functions and the 
analysis of deterministic algorithms (see, e.g., Refs. 8 and 9), will give us 
the desired convergence proof. 

We would like to summarize some known results and place our work 
in the context of the recently published articles concerning sample-path 
optimization of discrete-event dynamic systems (DEDS). Shortly after the 
emergence of IPA, attention has been focused on proving convergence of 
gradient-descent algorithms for optimizing performance of GI/G/1 queues. 
Typically, the performance measures considered involved the average cus- 
tomer-delay as a function of a parameter of the service times' distributions. 
Most of the early works concerned variants of the stochastic approxima- 
tion (SA) technique; see Ref. 10 and the references therein for a survey. In 
particular, we mention the pioneering works in Refs. 11 and 12, and 
extensions of the former reference to regenerative systems (Ref. 13), in 
which, a.s. convergence of SA algorithms to minima has been proved. We 
point out that, regarding this problem, the delays are convex functions of 
the parameter 0 as long as the service times are convex, and this happens 
in most if not all of the specific situations that have arisen in the context 
of the works in Refs. 11 and 13. Moreover, extensions to serial queueing 
networks with or without blocking also give convex system times as long as 
the service times are convex (Ref. 14); hence, our algorithm is probably 
convergent. 

Regarding algorithms close in spirit to the one discussed here, Bar- 
tusek and Makowski (Ref. 15) have proved convergence w.p. 1 of a similar 
algorithm by using the large deviation theory. They impose the conditions 
that the state space of the underlying DEDS be a finite-state Markov chain, 
that the stepsize sequence be determined a priori, and that the sample size 
nk grow to infinity at least as fast as log k. These restrictions are not made 
here; but the assumption of uniform convergence of the subdifferentials is 
not made in Ref. 15. 

Large deviation theory also has been used by Dupuis and Simha (Ref. 
16) to prove convergence of a steepest decent method with constant 
stepsizes. As in Ref. 15, they require nk to grow to infinity faster than log k. 
The premises in this paper permit n~ to converge to o0 at an arbitrarily 
slow rate, and our assumption that limk_~ ~ ak IIgk I] = 0 does not preclude 
the use of constant stepsizes as long as limk~ ~ gk = 0. 

Convergence of descent algorithms that compute the stepsize by line 
minimization was proved in Ref. 7. That reference also contains a discus- 
sion on and a justification of some of the assumptions that are made here. 
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Earlier related works (Refs. 17-19) concern steepest descent algorithms 
with Armijo stepsizes, where a convergence concept slightly weaker tha a.s. 
convergence is proved. 

Section 2 presents the main results, namely convergence proof of the 
basic algorithm (2). First, we treat the case where the limiting function is 
continuously differentiable [in the convex case differentiability suffices, as it 
implies continuity of the gradients (Ref. 5)]. We then discuss the convex 
case, where the limiting function is not necessarily differentiable. This case 
can be quite important in many situations in light of the results derived 
in Ref. 3, ascertaining that (convex) limiting functions could lack gradients 
at dense sets in the parameter space. Section 3 concerns the case where 
f is differentiable and it discusses the crucial assumption of uniform 
convergence of the generalized gradients of the approximating functions 
to the gradient of the limiting function. Finally, Section 4 concludes the 
paper. 

2. Convergence Results 

We discuss in this section convergence properties of the considered 
algorithm for two cases. First, when the approximating functions are 
Lipschitz continuous (not necessarily differentiable or convex) and the 
limiting function is continuously differentiable; second, when the approxi- 
mating functions are convex and the limiting function is convex but not 
necessarily differentiable. The arguments which we use in this section 
basically are deterministic. The obtained results can be easily translated 
into the statistical language by adding, in the assumptions as well as in the 
conclusions, the words "with probability one." That is, we view the 
assumptions and the derived implications in this section as holding for 
0Z-almost every realization o)~fl. 

To begin with, we will use the following assumptions. 

Assumption 2.1. The approximating functionsfk are Lipschitz contin- 
uous and the limiting function f is continuously differentiable on (9; the set 
(9 is convex, compact, and has a nonempty interior; and the calculated 
iterate points Ok, k = 1 , . . . ,  stay in the interior of 19. 

Assumption 2.2. The generalized gradients Ofk(O) converge to Vf(0) 
uniformly on | that is, 

lim sup sup II - Vf(O)ll = O. (3) 
k ~ o o  0 6 0  v~fk(O) 
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Note that, by the definition of the generalized gradients, condition (3) 
is equivalent to 

lim sup IIvA.(o)- Vf(O)][ = O, (4) 
k ~  0~ O\E~- 

with E~. being the set of those 0~O where Vfk(0) fails to exist; in the 
stochastic case where f~ (0 )=fk (0 ,  co), Ek = Ek(co) is generally a function 
of o.  Moreover, by the theory of generalized gradients (see Ref. 4), the set 
E k in Eq. (4) can be enlarged to any set of Lebesgue measure zero. 

As we mentioned in the introduction, the stepsizes ak can be defined a 
priori or can be calculated in an adaptive manner as a function of the 
generated sample. We make the following assumptions about the stepsizes. 

Assumption 2.3. l imk_ :~ a,  IIg* I[ = 0. 

Assumption 2.4. ~-~--1 ak = or. 

Let S denote the set of stationary points o f f  over O, i.e., 

S =  {0~O: Vf(0)=0}.  

The next assumption concerns the structure of the set S. We believe that it 
can be relaxed, but at the expense of greater complexity of the arguments 
involved with the proof. 

Assumption 2.5. There exists a finite number of closed sets S i c  | 
i =  1, 2 . . . . .  q, such that S =  S1 w " . .  WSq, and such that f (0)  is constant 
on every set S~, i = 1 . . . .  , q; i.e., there are numbers ~i such that f (O)  = o~ 
for any O~Si, i =  1 , . . . ,  q. 

Note that we can assume that all of the numbers e~i, i = 1 , . . . ,  q are 
different from each other. 

Theorem 2.1. Suppose that Assumptions 2.1-2.5 hold. Then, there 
exists an l~ { 1 , . . . ,  q } such that every accumulation point of the sequence 
{0, } belongs to St. 

Proof. By the mean-value theorem and (2), we have that 

f (O ,+  ~) - f ( O , )  = (0,+~ - O,)zVf(Ok)  = - -akg~Vf(Ok) ,  (5) 

for some point 0k on the segment joining Ok and 0k+~. Since Vf(0) is 
continuous, it is uniformly continuous on the compact set | By Eq. (2) 
and Assumption 2.3, we have then that 
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IIVf(gk)--Vf(Ok)]l~O, as k ~  oo, 

and by Assumption 2.2, 

I]gk- Vf(Ok)[I ~0 .  

Consequently and by (5), for every fi > 0 there exists K such that, for every 
k >_ K, if I[Vf(Ok)l[ > fi, then 

f(Ok + i) --f(Ok ) --< -- ak c~ 2/2. (6) 

Let U be an open neighborhood of the set S. Clearly, the set O \  U does 
not contain any stationary points of f ;  hence, 

Vf(0) r 0, for all Oe| 

Moreover, the set O \ U  is compact; hence, there exists a constant c~ > 0 
such that 

Ilvf(0)[L >__ ~, for all OeO\U. 

It follows then from (6) that the sequence {Ok } must have an infinite 
number of points inside the neighborhood U; for if not, by (6) and 
Assumption 2.4, f(Ok)---' --0% contradicting the assumption that the iterate 
sequence stays in O and f is continuous, and hence bounded on O. Since 
U is an arbitrary neighborhood of S, we obtain that at least one accumula- 
tion point of {Ok } belongs to the set S. 

Let us arrange the sets Si in such a way that 0~ 1 ) " ' " ) O{q, where 
ei=f(Si),  i= 1 , . . . ,  q. Denote by A the set of accumulation points of 
{Ok }, and consider 

l = max{i: S~c~A ~ ;~, 1 <_ i <_ q}. 

Such an I exists since S n  A r ~ .  We next show that every accumulation 
point of the iterate sequence must be in St. We argue by contradiction. 
Suppose that there exists an accumulation point 0*cA such that 0"4St. We 
consider three different cases, namely when f(O*) is smaller, larger, or 
equal to et. Consider the sets 

R = S l w  ""  uS t_ t  and T = S l + l w  ""  wSq. 

Note that, by the construction, T n A  = ~ .  Let U~, U2, U3 be open neigh- 
borhoods of the sets R, $/, T, respectively, such that 

f(01) >f(Oz)>f(03), for any 01~U~, 02~U2, 03~U3, 

and let U = Ul w U2 ~ U3. 
Suppose that f(O*)< el. We choose the neighborhoods U~, U 2, U3 in 

such a way that O*(s U, that f(O*)+ e < f ( 0 )  for all 0e U2 and some e > 0, 
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and that, for some K and all k > K, Ok r U3. By (6), we can choose K large 
enough such that, if k > K and Oge| then f(0~+ 1) <f(0~). Moreover, 
since O*~A, there exists an n > K  such that f ( 0 n ) < f ( O * ) + � 9  It follows 
then by induction that f(0m) <f(0*)  + e; hence, OmCU2 for all m > n. This, 
of course, contradicts the existence of an accumulation point in St. 

Suppose that f(O*)> at. Let us choose �9 > 0 and the neighborhoods 
UI, U2, U3 in such a way that 0"r U2, that at + �9 <f(0*),  that f ( 0 ) <  ~l + 
�9 /2 for all 0e U2, and that at + �9 < f (0 )  for all 0e U~. By Assumption 2.3 
and Eq. (6), we can choose K large enough that, if k > K, then ]f(0k+ 1 ) -  
f(0k)[ < �9 and if k > K  and Oke| then f(Ok+l) <f(0~). Moreover, 
since StriA # ~5, there exists an n _> K such that 0,e U2. It follows then by 
induction that f(0, ,)  < ez + �9 for all m > n; hence, 0* cannot be an accumu- 
lation point, a contradiction. 

Suppose that f ( 0 * ) =  cq. We show then that there exists an accumula- 
tion point O'EA such that f(O')<f(0*). This will bring us to the case 
already considered, and the proof will be completed. Denote by B(O, r) the 
open ball of radius r > 0 and centered at 0. Since Vf(0*)# 0, we can 
choose numbers 7 > 0, 6 > 0, and K such that B(O*, 37) c~ S = ~ ,  and the 
inequality g~Vf(O) > c~ Ilgk 11 holds for any O~B(O*, 37) and k _ Ksuch that 
OkeB(O*, 3~). Also, let n _> K be such that O, eB(O*, ~), and let s(n) be a 
positive integer such that O,+s(,) first time leaves the neighborhood 
B(O*,2~); i.e., On+i~B(O*,2y ) for all i = 1 , . . . , s ( n ) - l ,  and 0,+~(,)~ 
B(O*, 27). Note that such an s(n) does exist because A ~ S # ~ .  We obtain 
then that 

n + s ( n )  - I 

E a, �9 
i = t t  

By (5), it follows that, for n large enough, if O,~B(O*, 7), then 

n + s ( n )  - -  1 

f(O,+~(,))-f(O,) < - g  E aillgil] <- --(~" 

By compactness arguments, this implies the existence of an accumulation 
point O'~A such that f(O') <f(O*) - ~.  The proof is complete. [] 

Remark 2.1. It follows that, if in addition to the assumptions of 
Theorem 2.1, the set S is finite, then the sequence { Ok } converges to a point 
O*ES. 

Consider now the situation where the approximating functions are 
convex. Recall that the e-subdifferential, �9 > 0, of a convex function 
f :  R d o  ~ at a point 0o is defined by 
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aJ(Oo)  = { re  ~ :  f (O)  - f ( O o )  >_ v ~(0 - 0o) - ~, pOe Rd}. 

For e = 0, the corresponding e-subdifferential becomes the subdifferential 
of f at 00; see Refs. 9, 20, and 21 for a discussion of �9 

Suppose that the functions fk(O) are convex on Nd, and consider the 
iteration procedure (2) with gket?~kfk(Ok), where �9 $ 0 and g~ can be any 
point in the above �9 We need the following technical result 
from convex analysis. 

Lemma 2.1. Let fk: Nd__, ~ be a sequence of convex functions con- 
verging pointwise to a function f :  Nd_~ ~; i.e., limk~ ~ fk(O) =f(0) ,  for any 
0E R d. Suppose that the set S = arg min0~Raf(0) is nonempty and bounded. 
Then, for any neighborhood U of S, there exist positive constants �9 and K 
such that fk(O)-fk(O*)>_ �9 for any k > K, o ~ d \ u ,  and O*ES. 

Proof. Note that the limiting function f is convex and hence conti- 
nous. Therefore, the set S is convex and compact. Let us fix a point O*~S. 
Since S is bounded there exists a number r such that I I0-  0* II < r for all 
0 ~ S. Consider 

B(O*,r)= {0: II0-0"11 
Since fk are convex and converge pointwise to f ,  we have that fk converge 
to f uniformly on the compact set B(O*, r); see Ref. 5. It follows then by 
the standard arguments of compactness that there is an �9 > 0 such that 
fk(0) - f k ( 0 * )  > e, for all OeB(O*, r)\U and all k large enough. Also, we 
can choose e in a such way thatfk(O)--fk(O*)> �9 for all 0 on the sphere 
{0: I[0-  0* 1[ = r} and all k large enough. By convexity offk ,  this implies 
that 

fk(O) --fk(O*) >_ �9 for all oE~d\B(O *, r); 

hence, the proof is complete. [] 

The following theorem and its proof are an immediate extension of the 
corresponding deterministic result; see, e.g., Ref. 9, Chapter 3, Section 4. 

Theorem 2.2. Suppose that: 

(i) lim~_~ ~a~ Igk [ 2 = 0 and the sequence {ak } is bounded from above; 
(ii) ~ = 1  ak=  ~ ;  
(iii) the functions fk are convex on ~d and converge pointwise to a 

function f :  ~d-o ~; 
(iv) the set S = arg mino~a~f(0) is nonempty and bounded; 
(v) Ek ~ O. 
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Then, 

lim dist(0k, S) = o. (7) 

Proof. By the assumption of convexity and since gke3~kfk(Ok), for 
all k = 1, 2 . . . . .  we have the following inequality (e.g. Lemma 1.1 in Ref. 
8): for all 0*eS,  

t ie ,+,-  0* II=_< 1[O,-O*ll2+a,(a, Ipg, rlz+2[f,(O*)-L(Ok)+~k]). (8) 
It follows from this inequality that the sequence {Ok} has at least one 
accumulation point in the set S. Indeed, suppose that the above statement 
is not true. Then, there is a neighborhood U of S such that Oh r U for k 
large enough. Let us fix a point O*~S. Because of  the assumptions (i) and 
(v) and by the result of  Lemma 2.1, it follows then that there exists e > 0 
such that 

ak ][gk I] 2 + 2[fk (0") --fk(Ok) + ek] < -- 4, (9) 

for all sufficiently large k. By summing up both sides of  Inequality (8) and 
using the assumption (ii) and Inequality (9), we obtain that eventually, for 
n large enough, ]10,,- O* ][2 should become negative, which.of  course is a 
contradiction. 

Let us show now that (7) holds. For a given a > 0, consider the 
neighborhoods 

U~= {O: dist(O,S)<a}, U2= {O: dist(O,S)<2c~} 

of S, and let O*~S. Suppose that 0ke U2\U~. Then, for k large enough and 
for any O*eS, Inequality (9) holds. Together with (8), this implies that 

II0k+,-0*N 2 - I f 0 k -  0* [I 2. (10) 

Note also that it follows from the assumption (i) that limk ~ ~ ak IIgk II = 0. 
It follows then by induction that if OkeU2, then Oh+ l eU2 for all k large 
enough. Since {Ok } has an accumulation point in S, we obtain that 0ke U2 
for all sufficiently large k. Since ~ is arbitrary, this completes the 
proof. [] 

3.. Uniform Convergence of the Generalized Gradients 

We now return to the case where f is differentiable and discuss 
Assumption 2.2, which was crucial for deriving the first convergence result. 
The above assumption is satisfied whenever the approximating functions 
are convex and the limiting function is differentiable; see Refs. 5 and 6. We 
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further establish this assumption for regenerative processes, where the 
functions involved are not necessarily convex. 

An immediate extension of  the convex case is to consider the com- 
posite functions fk(O)=hk(A(O)), where A: E a ~ R  '' is a continuously 
differentiable deterministic mapping and hk: R ' " ~  ~ are random functions 
that are convex w.p.1. If  hk( " ) converge pointwise w.p.1 to a differentiable 
function h ( ' ) ,  and hence fk (O)~f(O)= h(A(O)) w.p.1, then the uniform 
convergence (3) follows by the chain rule from the uniform convergence 
w.p.1 of the subdifferentials Ohk(') to V h ( ' )  

We next consider a general setup of  regenerative processes. Let 
X~(O) = Xi(O, co), i =  1, 2 . . . .  , be a sequence of random functions defined 
on a common probability space ( f l , ~  P). For every cosf~, we view 
X t ( ' ,  co), i =  1, 2 . . . . .  as sample paths of  the considered process. The 
approximating functions are defined then by averaging 

k 

f k ( 0 ) = k  -~ ~ X,(O). (11) 
i = l  

It is possible to define the approximating functions fk by averaging with 
respect to a sequence of sample sizes nk tending to infinity as k ~ ~ ,  as this 
will not change the subsequent convergence analysis. Let us make the 
following assumptions. 

Assumption 3.1. For any fixed 0cO,  the process XI(O), X2(O), . . . ,  is 
regenerative, with regenerative cycles of generic length y/(0) and finite 
expectations I:{l~7(__~ X~(0)]} and E{r/(0)}. 

Assumption 3.2. For P-almost every co, the functions X~(., co), i =  
1 . . . . .  are Lipschitz continuous on | 

Assumption 3.3. For any fixed 0 e |  and for P-ahnost every co, the 
functions X~( ' ,  co), i =  1 , . . . ,  are continuously differentiable at 0. 

By Assumption 3.3, the gradients Gi(O)= VXi(0) exist w.p.1; hence, 
we can consider the vector-valued process Gj (0), G2(O) . . . . .  

Assumption 3.4. For any fixed 0e |  the process Gl(O), G2(0)  . . . .  is 
regenerative with regenerative cycles of length r(0) = r(0, co). 

Assumption 3.5. The expectation ~:{supo~o z(0)} is finite, and for any 
fixed 0~ |  and for P-almost every co, the function z( �9 co) is continuous at 
0; i.e., there is a neighborhood of 0, depending on co, in which z ( ' ,  co) is 
constant. 



450 JOTA: VOL. 91, NO. 2, NOVEMBER 1996 

Assumption 3.6. The expectation ~:{supo~o 1[~,~(__o)Gi(O)[I} is finite. 

By the well-known law of large numbers for regenerative processes, it 
follows from Assumption 3.1 that the average functions fk(O) converge 
pointwise w.p.1 as k ~  oo to a deterministic function f(O). We show now 
that, under the above assumptions, the function f(O) is continuously 
differentiable, and the gradients Vfk(O) converge w.p.1 to Vf(O) uniformly 
on 19. This will extend a similar result for the iid case considered in 
Proposition 2.2 of Ref. 22, and a result concerning uniform strong consis- 
tency of IPA for the waiting times in GI/G/1 queues (Ref. 23), to the 
present regenerative setting. 

Theorem 3.1. Suppose that | c R d is a convex, compact set with 
nonempty interior, and that Assumptions 3.1-3.6 hold. Then; the function 
f (0)  is continuously differentiable on O, and the gradients Vfk (0) converge 
w.p.1, as k ~  0% to Vf(O) uniformly on | i.e., Eq. (3) and its equivalent 
(4) hold. 

Remark 3.1. The above assumptions, or variants thereof, have be- 
come common in the literature on perturbation analysis for proving the 
strong consistency of the IPA estimators, i.e., that Vfk(O) ---, Vf(O) as k---, oo 
w.p.1; see, e.g., Refs. 1 and 24, and references therein. What is new in the 
present result are the proofs of uniform convergence and continuity of the 
gradient Vf. 

The proof will make use of the following auxiliary result. 

Lemma 3.1. Let | c ~d be a convex set with nonempty interior, and 
let {fk(O)} be a sequence of real-valued, Lipschitz-continuous (determinis- 
tic) functions converging pointwise on | to a function f(O). Suppose that 
there exists a continuous vector-valued function Z(O) such that 

lim sup IlVf~(O)- Z(O)[[ = O, (12) 
k-..* oo O e O \ E  k 

where Ek is the set of those points of O where Vf~(O) fails to exist. Then, 
f (0)  is differentiable on | and Vf(O)= Z(O) for all 0e|  

Proof. Fix 0 in the interior of | and consider another point 0-~| 
By the mean-value theorem for Lipschitz continuous functions (Ref. 4), we 
have 

fk(tT) -fk(O) = g~(tT- 0), (13) 
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where gk~Ofk(Ok) for some point Ok on the segment joining 0 and ft. By 
passing to the limit as k ~  oo and exploiting the uniform convergence 
condition (12), we obtain 

where 

f(O) - f ( o )  = Z(O)T(F- O) + r(8), (14) 

Ir(OI < lifT- 01l sup IIZ(O~) - Z(0)I I. 
0~[o,o] 

Since Z( .  ) is continuous at 0, it follows that r(0-)= o(110-0 It). Together 
with (14), this implies that f is differentiable at 0 and Vf(O)= Z(O). [] 

Proof of Theorem 3.1. Consider the process 

k 
zk(o) =k  -l ~ c,(o). 

i=1 

By the renewal theory of regenerative processes (e.g., Ref. 25), it follows 
from Assumptions 3.4-3.6 that Zk(O) converge pointwise w.p.1 as k ~  
to a deterministic vector-valued function Z(O), which can be written in the 
form 

Z(O) = IF_ Gi(O) /E{r(0)}. (15) 
t . i= l  

Let us observe that both functions 

gl(0)=~t't'~-~)[./~ 1 ai(o)} and g2(O)=~_{r(O)}, 

and hence the function Z(O), are continuous functions of 0. Indeed, by the 
Lebesgue dominated convergence theorem, it follows from Assumption 3.6 
that 

lim E Gi(O') = ~_ 2 Gi(O') . 
0'~0 ( i = l  i= l  

Because of the almost sure continuity of v(- ) and G;(" ) (Assumptions 3.3 
and 3.5), the limit inside the expectation on the right-hand side of the 
above equation is equal to ~ ) ~  G~(O) w.p.1; hence, the corresponding 
expectation is equal to gl(O). This shows that g l ( ' )  is continuous at 0. 
Similarly, continuity of g2(" ) follows from Assumption 3.5. 

Let vl(0), v2(0) . . . .  be the lengths of the regenerative cycles of the 
process Gi(O), and let 

o- , , , (0 )  = ~-1(0)  + - - -  + ~ , , , ( 0 ) .  
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By a uniform version of the law of large numbers for iid processes (e.g., 
Ref. 2, pp. 67-69), Assumptions 3.3-3.6 imply that m -~ ~,~,,,~1 ~ Gi(O) 
converge w.p.1, as m ~ ,  to g~(O) uniformly on | Similarly, it follows 
from Assumption 3.5 that m-lain(O) converge w.p.1, as m-~ ~ ,  to g2(0) 
uniformly on | Consequently, a,,,(O) -~ ~,~,,__,~o)Gi(O) converge w.p.1 to 
Z(O) uniformly on 0.  By standard arguments of the renewal theory, it 
follows that Z,,(O) converge w.p.1, as n ~ ~ ,  to Z(O) uniformly on | 

Finally, by noting that Z~(O)= Vfk(0) whenever the latter derivative 
exists, it follows directly from Lemma 3.1 that Vf(0) exists and is equal to 
Z(O). [] 

4. Conclusions 

This paper has presented a convergence analysis for a stochastic, 
simulation-based algorithm for optimization of expected-value perfor- 
mance measures in discrete event systems. The algorithm is of the gradient- 
descent type, and it requires that the distance between two consecutive 
iteration points converge to zero as the iterate count goes to infinity. 

In the case where the limiting function is differentiable, convergence of 
the iterate sequence to stationary points has been established by fairly 
simple arguments, based on the assumed uniform law of large numbers 
concerning the functions and their generalized gradients. This assumption 
was shown to hold when the approximating functions are convex, and 
otherwise, in many systems where IPA had been known to be strongly 
consistent. In the case where the limiting function is nondifferentiable but 
the approximating functions are convex, the algorithm's convergence di- 
rectly follows from the established theory of deterministic optimization. 
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