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Convergence Properties of Ordinal Comparison in the 
Simulation of Discrete Event Dynamic Systems I 

L. DAI 2 

Communicated by D. Q. Mayne 

Abstract. Recent research has demonstrated that ordinal comparison 
has fast convergence despite the possible presence of large estimation 
noise in the design of discrete event dynamic systems. In this paper, we 
address the fundamental problem of characterizing the convergence of 
ordinal comparison. To achieve this goal, an indicator process is 
formulated and its properties are examined. For several performance 
measures frequently used in simulation, the rate of convergence for the 
indicator process is proven to be exponential for regenerative simula- 
tions. Therefore, the fast convergence of ordinal comparison is sup- 
ported and explained in a rigorous framework. Many performance 
measures of averaging type have asymptotic normal distributions. The 
results of this paper show that ordinal comparison converges monoton- 
ically in the case of averaging normal random variables. Such 
monotonicity is useful in simulation planning. 

Key Words. Stochastic optimization, simulation, discrete event dy- 
namic systems. 

1. Introduction 

In this paper, we address a fundamental  design problem: Characteriz- 
ing convergence of  ordinal comparison in the simulation of discrete event 
dynamic systems (DEDS). By DEDS,  we mean systems where changes in 
states are triggered by occurrences of  events at some discrete (often random) 
time instants. Such systems include queueing systems, computer  networks, 
manufacturing systems, communicat ion networks, transportation systems. 
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DEDS form an important class of man-made systems that are being 
intensively investigated. By ordinal comparison, we mean comparing the 
relative goodness (rank) of different designs without knowing the exact 
values of corresponding performance measures. 

Difficulties arise in the design of DEDS from several sources. First, 
most DEDS are very complex in nature. For example, analytical solutions 
are available only for some special cases of queueing systems. It is difficult 
to evaluate the performance of a design. As a result, computer simulation 
is often used for the analysis and design of DEDS. Second, it is costly and 
time consuming to obtain an accurate estimate of a performance measure. 
To see this point, consider estimating E[X] of a random X e R  using 
S, = ( l / t ) ~ =  1X i, where {Xi, i_> 1} is a sequence of i.i.d, samples of X. If 
E[X] < 0% Var[X] < oo, the strong law of large numbers guarantees that 
l i m , ~ S , =  E[X], a.s. However, it is also well known that the preceding 
limit converges with rate O(1/x/~), in the sense that 

(E[ (S , -  E[X])2]) m = ((1/t)Var[X]) m = 0 ( 1 / ~ ) .  

Such rate is unsatisfactorily slow. In order to see that the dynamics may 
not accelerate the convergence, consider an irreducible and aperiodic 
finite-state discrete-time Markov chain {Zi, i>_0} with a performance 
measure of additive type, ( l / t ) ~ =  l f(Xi), where f (x)ER.  Markov chains 
are special DEDS. It has been proven that such additive performance 
measures converge with rate O(1/x//t) in time t; see Ref. 1, p. 228. Finally, 
search spaces in the design of DEDS are usually very large. Consider the 
problem of arranging 10 machines and 50 buffer spaces to form a serial 
production line. A buffer (possibly of zero size) is required in front of every 
machine. Then, the total number of different combinations is 

10!(59)~1.26x101~.  

It is difficult to find the best design in such a large (discrete) search space. 
Therefore, an important problem in the design of DEDS is to allocate 
quickly a good satisficing design (Ref. 2, p. 69). 

Optimization is a natural approach to design. Since randomness is 
involved in evaluating performances of DEDS, stochastic optimization is a 
conventional method for allocating the best design (the best parameter 
value) when different designs can be represented by a continuous parame- 
ter OeR. This is usually done via stochastic approximation algorithms of 
the following generic form: 

0,+ 1 =O,--a,h,, (1) 
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where Ot is the parameter value at the tth iteration, a, > 0 is a stepsize, and 
ht~R is a noisy estimate of the gradient of the performance measure at 0,. 
Algorithms of the form (1) have been extensively studied (Ref. 3-4). Once 
again, the best possible rate of convergence for (1) is O(1/x/~ ) in time t in 
the sense of (E[(0,-0")2])1/2= O(1/x/~), where 0* is the true optimum 
(Refs. 3-4). For discrete search space, the situation is no better. In 
addition to the previously mentioned difficulties, we have to overcome the 
curse of the discrete nature of parameter values where no gradient informa- 
tion is available. 

In reality, we often face a decision-making problem of choosing one 
relatively better design from all possible alternatives. As long as we can 
single out the good and satisficing designs, the accuracy of the performance 
measure is of secondary importance (Ref. 2, p. 69). Such goal relaxation 
can bring great saving of effort. For example, it is known that (1) 
converges exponentially to a fixed neighborhood of the optimum (Ref. 5). 
In the context of recently proposed ordinal optimization methods, ordinal 
comparison of different designs by their relative ranks is very efficient, as 
observed in many experiments. Ordinal comparison is able to discern 
quickly the good designs (Refs. 6-11). Recent research has revealed a more 
interesting phenomenon: Ordinal comparison is beneficial when used in 
conjunction with conventional methods such as stochastic approximation 
and simulated annealing as reported in Refs. 12-15. 

To further clarify the issue involved here, consider the problem of 
finding the best or a good design among all N possibilities. Let | = 
{0~, 02 . . . .  ON} denote the set of all designs, and let J(O)~R denote the 
performance measure of a particular design 0~| In general DEDS, the 
exact form of J(O) is not available. We can only use the noisy estimate of 
J(O) in our decision making. Let us consider the dynamics of the following 
experiment. We simultaneously simulate N parallel DEDS with designs 
0,-, i = 1, 2 . . . .  , N. This can be done, for example, using the standard clock 
(Ref. 16), or the augmented system analysis (Refs. 17-18), or some other 
techniques (Ref. 19). As the simulation continuous, we collect data and 
output an estimate of J(O), denoted by L(O, t), for every 0~| Conver- 
gence of L(O, t) to J(O) is generally slow with rate at most O(1/x/~) 
according to the law of large numbers (assuming the validity of conver- 
gence). However, it has been observed that the observed order of perfor- 
mance measures L(Oi, t), i=  1, 2 . . . . .  N, can quickly converge to an order 
very close to the true order of performance measures J(O~), i = 1, 2 . . . . .  N, 
despite the possible presence of large noises (Refs. 6-8 and 10-11). 

Therefore, there naturally arise questions of what is the meaning of the 
convergence of ordinal comparison and why ordinal comparison converges 
fast. To answer these questions, it is necessary to provide the theoretical 
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framework of characterizing the mechanism of ordinal comparison. As the 
first step, in this paper we formulate an indicator process to characterize 
the dynamical behavior of ordinal comparison, enabling us to provide a 
rigorous investigation of its convergence properties. By examining the 
indicator process, we prove that, in several important situations, ordinal 
comparison indeed converges very fas t - -a t  an exponential rate. It should 
be emphasized that we are studying the time-varying behavior of ordinal 
comparison as opposed to the conventional (static with possible replicas) 
order statistics; see, for example, Ref. 20. Correlation in time is often 
present in the dynamics of DEDS. Transient behavior also affects the 
estimation of  steady-state performance measures. 

The rest of this paper is arranged as follows. The problem of ordinal 
comparison is stated in Section 2. An indicator process is defined to 
characterize the ordinal comparison in parallel simulation. General proper- 
ties of the indicator process and a lower bound on its rate of convergence 
are provided in Section 3. Many important DEDS are regenerative. For 
regenerative simulations, Section 4 proves the exponential convergence rate 
for the indicator process, thus providing an explanation for the fast 
convergence of ordinal comparison. Some results on averaging a sequence 
of i.i.d, random variables are presented in Section 5. A detailed formula for 
the rate of convergence for random variables with normal distributions is 
given. Monotonicity of the indicator process in the simulation time is 
proven. Finally, Section 6 contains several concluding remarks. 

2. Problem Statement 

Throughout the paper, the DEDS under simulation is described by a 
right-continuous, piecewise-constant state process {X(O, ~, t)6X, t > 0}, 
parameterized by 0e |  and defined on a common probability space. Here, 
X c R is the state space, 0 is used simply to indicate a design, and 
represents all the randomness involved. For each design 0e|  let 
L(O, t )eR be an estimate of a performance measure J(O)eR based on a 
particular sample trajectory of {X(O, ~, t)} over [0, t]. In DEDS, J(O) is 
often a steady-state performance and L(O, t) is a sample performance over 
[0, t]. We assume that: 

(A1) the DEDS under simulation is ergodic, in the sense that 

lim L(O, t) = J(O), a.s. (2) 

This assumption guarantees that J(O) can be estimated with arbitrary 
accuracy by increasing the simulation duration of any one sample trajec- 
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tory. Note that, because of the law of large numbers, L(O, t) converges 
slowly with rate at most 0(1/x/~ ). Long and time-consuming simulation 
has to be performed in order to have a good estimate of the (steady-state) 
performance measure J(O). 

Now, consider the problem of comparing performance measures corre- 
sponding to a set | of N, 1 _ N < o% designs. We say that design 01 is 
better than 0j if J(Oi) > J(Oj). Without loss of generality, we assume that 
the N designs are indexed in such a way that 

oo > J(01) > J(02) > J ( 0 3 )  > �9 �9 �9 > J(ON) > -- 0(3. 

Particularly, we are interested in finding a design that is one of the 
M, 1 < M < N, true best designs in 19. For convenience, let us define 

19g = {Oi, i = 1, 2 . . . . .  M},  

lob= {0~, i =  M +  1, M + 2 , . . . ,  N}, 

the sets of good and bad designs, respectively. For the problem of finding 
one of the M best designs based on the simulation over [0, t], we choose the 
design with the largest sample performance, i.e., 

0* = arg max L(O, t). (3) 

Experimental results have shown that (3) can quickly find the true desired 
design (Refs. 7-8, 10). Intuitively, this implies that the relative order of 
performance measures converges very fast. 

In order to characterize the rate of convergence for ordinal compari- 
son, we define the following indicator process: 

1, if max~og L(~r, t) > max0~o~ L(O, t), 
I M ' u ( t ) =  O, o t h e r w i s e .  (4) 

Then, IM.N(t) is equal to 1 if the observed best design is among the true 
good designs and equal to 0 otherwise. Since max,~o~ L(a, t) is the 
maximum of the observed true good designs and max0~ob L(O, t) is the 
maximum of the observed true bad designs, IM,N(t ) is a function of t 
indicating when the observed best design determined by (3) is one of the M 
true best designs. 

The main goal of this paper is to examine the behavior of 

Prob[IM, u(t) = 1] and Prob[I~.u(t ) =0] 

as functions of simulation time t. The convergence rate of Im.u(t ) will be 
taken as that of 

Prob[IM.N(t) = 1] or Prob[IM.u(t)=0]. 
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3. General Cases 

3.1. Basic Properties. In this section, we list several simple properties 
of  the indicator process. 

Proposition 3.1. 

(a) Prob[IM.N(t) = 1] is nondecreasing in M and nonincreasing in N. 
(b) Prob[Ig.N(t) = 0] is nonincreasing in M a n d  nondecreasing in N. 

Proof. This proof  was suggested by a reviewer. Denote 

|  = {0;, i =  1, 2 , . . . ,  M} ,  

Oh(M)=  {0,, i =  M +  1, M + 2  . . . .  , N}. 

For MI > M2, we have |  | and Oh(M1)c | Thus, 

max L(tr, t)> max L(O,t)} 
o'~Og(M 2) O~Ob( M 2 ) 

c ~  max L(a,t)> max L(O,t)~, (5) 
~ a ~ ) g ( M  I ) O~O~,(M I ) J 

which shows that Prob[Ig.N(t)= 1] is nondecreasing in M. A similar 
argument shows that it also is nonincreasing in N. [] 

Proposition 3.2. If Assumption (A1) is satisfied, 

lim Prob[Ig,N(t) = 1] = 1, lim Prob[Ig.N(t) = 0] = 0, 

for any M, N. 

Proof. Under Assumption (AI), Ig.N(t) converges to 1, a.s., implying 
convergence in probability. The proposition is another statement of  conver- 
gence in probability, since IM.~(t) takes only 1 or 0. [] 

Based on simulation observation over [0, t], Proposition 3.1 states that 
a larger design space with M fixed reduces the probability of  finding the 
correct design and that a looser design requirement with larger M increases 
this possibility. Proposition 3.2 simply says that we can eventually find the 
correct design if the DEDS is ergodic in the sense of  (A1). 

Proposition 3.3. The following inequality always holds: 
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{ t Prob[1gjv(t) = 11 >_ max 1 - ~ (1 - Prob[L(o-, t) > L(O, t)l) , 
a~Og O~Ob 

where {x} + =max{x,  0}. 
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(6) 

Proof. First, the following inequality is true: 

Prob[tg.N(t) = 1] = Prob lmax  L(a, t) >_ max L(O, t) / 
LaeOg OeOh J 

>max(1-Prob[L(a,t)~o~ 

On the other hand, 

P rob IL(a ,  t ) <  maxo~oh L(O, t)l 

:probl U 1 
LOeOh 

<max0~oh L(O, t)l ). 

< ~ Prob[L( a, t) < L(O, t)] 
0EO h 

= ~ (1 - Prob[L(o-, t) > L(O, t)]). 
0~0  h 

Therefore, a lower bound of Prob[IM.u(t) = 1] is 

{ }+ max 1 -  ~ ( 1 - P r o b [ L O ,  t ) > L ( O , t ) ] )  , 
a~6)g O~| 

which is exactly Inequality (6). [] 

The validity of  (6) does not require the independence of  {X(0, ~, t)} 
for different designs. It will be used repeatedly later. 

3.2. Lower Bound. In many cases, such as finite-state Markov chains 
and averaging i.i.d, random variables, the variance of  an estimate L(O, t) 
decays to zero with rate O(1/t). Such delay rate of  the variance can be used 
to derive a lower bound on the rate of  convergence for the indicator 
process, which is precisely stated in the following theorem. 

Theorem 3.1. Assume that (A1) holds, that lim,~ ~ E[L(O, t)] = J(O) 
for any 0 s |  and that the variance of  the estimate L(O, t) decays to zero 
with rate O(1/t) for all 0E| i.e., 
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Var[L(0, t)] = O(1/t). (7) 

Prob[IM.N(t) = 1] = 1 - O(1/t), 

Prob[IM.N(t) = 0] = O(1/t). 

In other words, the indicator process 1M, N(t ) converges to 1 with rate at 
least O(1/t). 

Proof. Note that we do not assume the independence of  simulations 
for different designs. For  any at |  0~| b, define 

e~.o(t) = L(a, t) - L(O, t). 

Since 

we have 

lim E[L(O, t)] = J(O), 

lim E[e..o(t)] = lim (E[L(a, t ) ] -  E[L(O, t)]) 

= J ( a )  - J ( O )  > O. 

Choose to sufficiently large so that E[e~.e(t)] >_ c for some constant c > O, 
for any at |  O~| and for all t _> to. Then, when t _> to, 

Prob[L(a,  t) >>_ L(O, t)] 

>_ 1 - Prob[]e.,0 (t) - E[e~,o (t)] I _> E[e.,o (t)]]. 

Using the Chebyshev inequality, we can further bound the previous in- 
equality as 

Prob[L(a,  t) >_ L(O, t)] 

> 1 - (E[e~, o (t)])-ZVar[e~,o (t)] 

> 1 - 2c-2(Var[L(O, t)] + Var[L(0, t)]) (8) 

= 1 - O ( 1 / t ) .  

The claim of  the theorem follows from combining the previous inequality 
with (6). [] 

Remark 3.1. Choice of  Metric. We cannot conclude from Theorem 
3.1 that IM, N(t ) converges faster than O(1/w/t). We use Prob[IM.u(t)= 1] 
to characterize the convergence of  IM, N(t ). If  we change the criterion to the 
square root of  the mean square error, then the rate would be O(1/w/t), 
since 
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(E[(IM.N(t) -- 1)2]) '/z = (Prob[IM.N(t) = 0]) '/2 = 0(t-1/2). (9) 

However, what Theorem 3.1 gives is a general lower bound. It demon- 
strates that convergence of the indicator process is not slower than that of 
the performance measure. 

We prefer to use Prob[IM.u(t)= 1], rather than (9), to measure the 
convergence of the indicator process, since it is intuitive and convenient. 
When we observe that IM, N(t ) takes the value 1 much more often than 0 in 
the simulation process, we are pretty sure that IM.u(t ) should be 1. If  
we want to find the true good design with 95% confidence, we simply 
terminate the simulation when Prob[IM.N(t)= 1] reaches and stays within 
[0.95, 1]. This is often easily done. 

Tightness of  the Bound. The rate cannot be improved in general. To 
see this point, consider two independent random variables X(Oi, ~, t) = Oi, 
with probability 1 - l/t, and X(Og, ~, t) = 0, with probability 1/t, i = 1, 2. 
Assume that 01 > 0 2 > 0  and M =  1. Define L(O, t )=X(O,  ~, t). Then 
| = {0~ }, Oh = {02}. Direct computation confirms that the assumptions 
of Theorem 3.1 are satisfied. For this problem, we have 

Prob[IM.u(t) = 0] = (l/t)(1 -- 1It) = O(1/t). 

The lower bound is achieved. 
Effect of Variance Reduction. It is possible to reduce the variance of 

e~,o(t) by introducing a positive correlation between L(a, t) and L(O, t). 
Inequality (8) shows that such variance reduction increases the lower 
bound on Prob[I~.N(t ) = 1]. It is reasonable to expect that positive correla- 
tion between L(G, t) and L(O, t) should accelerate the convergence of the 
indicator process, since the variance of e~,o(t) is reduced. Unfortunately, 
this may not be necessarily true. Smaller variance of e,.o(t) does not 
automatically imply a better discrimination between two designs. To 
illustrate this point, consider the following two pairs of random variables: 

3, w.p.0.9, 
X(01)= 0, w.p.0.1, 

I (3, 5), 

1), 

( ( o ,  1), 

5, w.p.O.2, 
X(02)= 1, w.p.0.8, 

w.p.0.2, 

w.p.0.7, 

w.p.0.0, 

w.p.0.1, 

where X(O~) and X(02) are independent. Then, )?(0j) has the marginal 
distribution of X(O,), i = 1, 2, 

E[X(O1 ) ]= E[J?(01)] = 2.7 > E[X(02) ] = E[)7(02) ] = 1.8. 
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Let 

Then, 

eo,.o~ = X(Oi )  - X(Oz),  ~o,.o_~ = -~(01) - s 

Var[eo ,.o,_] = 3.37 > Var[~o ,.o2] = 2.89. 

However, 

Prob[X(Ol) > X(02)] = 0.72 > Prob[,~(01) > )7(02)] = 0.7; 

in other words, smaller variance of  eo,,02 may not increase the accuracy of 
the comparison. 

Nevertheless, there exist cases where smaller variance (or positive 
correlation) does increase the accuracy of ordinal comparison. In the case 
of averaging a sequence of i.i.d random variables with normal distribu- 
tions, Ho, Deng, and Hu show in Ref. 21 that positive correlation is always 
helpful for ordinal comparison. In fact, they prove that the probability of 
correct selection is monotone increasing in correlation coefficient. The 
random variables X~, )(2 . . . . .  X,, are said to be associated if 

Cov[f(Xl, )(2 . . . . .  iV,,), g ( X , ,  )(2 . . . . .  X , ) ]  > 0, 

for any nondecreasing functions f (  �9 ), g( �9 ): R"--* R. It is clear that associa- 
tion is stronger than positive correlation. In the case of comparing two 
designs of a finite-state Markov chain with additive performance measures, 
Glasserman and Vakili show in Ref. 22 that association increases the rate 
of  convergence of Prob[L(01, t )  >_ L(O2,/)] as t goes to infinity. 

4. Regenerative Simulation 

Theorem 3.1 gives a very conservative bound for general cases. In 
many situations, we know much more about the structure and distribution 
of {X(0, ~, t)}. Quite often, the rate of convergence can be proven faster 
than that in Theorem 3.1. For finite-state Markov chains with additive 
performance measures, Glasserman and Vakili show in Ref. 22 that the 
convergence of ordinal comparison of  two designs is exponential. In this 
section, we consider the case of simulating a general regenerative DEDS. 

Definition 4.1. See Ref. 23, p. 25. A nonnegative random variable 
r > 0 is said to be periodic with period rp > 0 if re  {0, rp, 2rp . . . .  } a.s. and 
r~, is the largest such number. If there is no such zp, then ~ is said to be 
aperiodic. 
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Definition 4.2. See Ref. 24, p. 19. A DEDS {X(0, (, t)} is said to be 
regenerative in a classic sense if there is an increasing sequence of  nonneg- 
ative finite random times {r;(0), i >_ 0} such that, for each i _> 0, 

(i) { X ( O , ~ , z , ( O ) + t ) , z k ( O ) - z , ( O ) , t > O , k > i }  are identically dis- 
tributed; 

(ii) {X(O, ~, r~(O) + t), Zk(O) -- r~(O), t > O, k > i} does not depend on 
{X(O, ~, t), ~/(0), t < % 0 < j  < i}. 

The 
consider 

and 

sequence {r~(O), i >  1} is a sequence of regenerative points. We 
two kinds of  performance measures, 

L~(O, t) = ( l / t )  l(X(O, ~, u)) du (10) 

where 

I(x)~R, Ti(O) = ~(0) - ri_ l(O), 

is the length of  the ith regeneration cycle, 

K(t, O) = max {i: r~(O) _< t, i > O} 
i 

i_>1, 

is the number of  regeneration cycles on [0, t], and then 

K(t, O) = K(t, O) + 1 

is the first passage time process. For convenience, we define To(O) = zo(O). 
Note that 

kdr  i_ j 10) 

is a sequence of  i.i.d, random variables. Performance measures of  the form 
(10) and (11) frequently appear in simulation. The performance measures 
L~ (0, t) and L2(O, t) are essentially identical except for tail terms. However, 
these tail terms typically converge at the rate of  O(1/t), slower than the rate 
of  ordinal comparison as we shall show. Therefore, such tail terms have to 
be taken into account. 

For every OeO and i = O, 1, we make the following assumptions in this 
section. 

K(t,O) fri(O) /K(t,O) 
L2(O, t) = ~. I(X(O, ~, u)) du ~= Ti(O 1, (111 

i= I dri_ i(O) i 1 
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(A2) the cycle time Ti(O) has finite, continuous moment generating 
function E[e ''ri~~ in a neighborhood of s = 0, s > 0; 

(A3) the cycle time 7"1(0) is not degenerate in the sense of  
lim,_.0 Prob[T~(0) _< t] < 1; 

(A4) the function l(x)eR is bounded and [l(x)[ < B, 0 < B < oo. 

Assumptions (A2) and (A4) are technical and will be needed in the 
proof of a number of results. As we shall explain later, they are satisfied in 
many cases. Assumption (A3) is very mild. Note that (A2) and (A3) imply 
0 < E[TI (0)] < oo. Assumption (A2) guarantees that the neighborhood can 
be chosen small enough such that E[T~(O)e ~r'w)] is finite and continuous 
in it. 

For both the performance measures L~ (0, t) and L2(O, t), the follow- 
ing lemma gives an expression of the limit of the sample performance 
measures; see Ref. 23, pp. 25-26, and Ref. 24, p. 54. 

Lemma 4.1. If  Tt(O) is aperiodic and Assumptions (A2)-(A4) are 
satisfied, then 

lim LI(O, t ) =  lim L2(0, t)=J(O), a.s., 

where the steady-state performance measure J(O)eR exists, is finite, and 

J(O)= E[~III, I~ ) l(X(O, ~, u)) dul/E[T,(O) ]. 

The following is a result on the existence of the moment generating 
function of K(t, 0); see Ref. 24, pp. 34-41. 

Lemma 4.2. If  Assumption (A3) is satisfied, then there exists a d > 0 
such that Prob[T~(0) < d] < 1, and for any  such d, 

E[z x~''~ < (z(1 - Prob[T1 (0) < d])/(1 - z Prob[T1 (0) < d])) t+ t/~, 

for all t > 0 and all 0 < z < (Prob[Tl(0) _< 6]) -1. 

The following Theorems 4.1 and 4.2 are the main results of this 
section. 

Theorem 4.1. Suppose that Assumptions (A2)-(A4) hold. Then, 
there exists a positive number c~ > 0 such that 

Prob[IM.N(t) = 1] = 1 -- O(e-~t), Prob[IM.N(t) = 0] = O(e-~'), (12) 

for the performance measure L~ (0, t); in other words, the indicator process 
converges at an exponential rate. It follows from (12) that 
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(E[(1M.N(t) -- 1)2]) L/2 = (Prob[IM.N(t) = 1]) 1/z = O(e-t~/2)'). 

Proof. We only need to prove that there exists a positive constant 
> 0 such that 

Prob[Ll(o-, t ) >  LI(O, t)] = 1 - O(e-~'), (13) 

for any ~re| 0~| since if (13) holds, according to Inequality (6), we 
have 

{ }+ Prob[IM, N ( t ) = l ] > m a x  1-- ~ ( l-Prob[Ll(~r,  t)>_L~(O, t)]) 
~ e ~ g  O ~ O h  

= 1 - O ( e - ~ ' ) ,  

from which the conclusion follows since P[IM.N(t) = 1] < 1. 
Using the Chernoff bound (Ref. 25 and Ref. 26, p. 391), 

Prob[X > a] < E[e'~(x-a)], Vs > 0, (14) 

for any random variable X e R ,  we have 

Prob[Ll (a, t) > Lj (0, t)] > 1 - E[e "~c,~~ - L~(~.m], for any s > 0. (15) 

Note that 

zx(,.o)(O) <_ t < rK~,.o~+ 1(0); for each 0cO.  

For v = 0 or o, define 

fO r~ mo(V) = (l(X(v, 4, u)) - (J(a)  - J(O))/2) du, 

f 
~i(v) 

mi(v) = (l(X(v,  ~, u)) - (J(~r) - J(O))/2) du, i = 1, 2 , . . . ,  K(t,  v), 
~]ri -- 1 (v) 

m .  (v)  --  ( l ( x ( v ,  4, u))  - ( J ( ~ )  - J(O)) /2)  du. 
x(r, ,,)(v) 

Then, we have 

E[m~(O)] = - E[T~ (O)](J(o) - J(O))/2 < 0, (16a) 

E[m;(a)] = E[T, (a)](J(a) -- J(O))/2 > 0. (16b) 

The boundedness of the function l (x)  in (A4) implies that IJ(O)l <_ B for 
any 0e|  Further, according to Assumption (A2), there exist positive 
constants 0 < C1 < 0% d~ > 0 such that 

E[e +~m~176 <- E[e zmr~176 _< C1 < o% on se[0, dl], for all 0~O. (17) 
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Next, we derive an upper bound for E[e+~";-~~ Define 

R(t, 8) = t - rx~,.o)(8), 

which is the backward recurrence time. Then, 

E[e +-''';-~~ = E[e+-".G.,..:.: ~x~~162176 <_ E[e 2B"R~"O~]. (18) 

Consider the distribution of  R(t, 8). Let Fr~<o)(u), Fz,,(u) be respectively 
the cumulative probability distribution of T~(O) and 

z,, = To(O) + ~ T,(O), n >_ O. 
i ~ l  

Then, for any 0 < r < t, 

Prob[R(t, 8) _< r] = ~ Prob[R(t, 8) < r, K(t, 8) = i] 
i=0 

= ~ Prob[Z.  < t, Z .  + T~ (8) > t, t - Z,, < r] 
i = O  

= 1 - (1 - Fr~(o)(t - u)) dH(u), 

where 

n(u)= ~ fz,(u) 
i~O 

is the renewal function. Therefore, 

;0 E[e2~"R~"~ = Q ( r -  u) dH(u), (19) 

where 

Q(v) = e2B'v(1 - Fr,(o)(V)). 

By applying the key renewal theorem (Ref. 24, p. 100), we know that 

lim Q(t - u) dH(u) = (1/E[T,(8)]) Q(v) dr. 

An elementary computation shows that 

s  Q(v)dV= fo~((e2n l)/2Bs)dFr,,o)(v). ..... 

For any s > 0 and x, a two-term Taylor-series expansion yields 

e "  <_ 1 + xs + (1/2)x a e"lxls2. (20) 
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Hence, we can choose C1 sufficiently large and dj sufficiently small so that 

l i m  f~  O( t  - u) d H ( u )  

< (E[T,(O)] + BsE[T~(O) eZB"r'(~ < (1/2)C,, 

when s ~ [0, d~ ]. This inequali ty,  together with (18)-(19), implies that, for 
such a dl, there exists a to such that 

E[e+_.~,,,T (o~] < Ci, (21) 

when t~[to, ~ )  and s~[0, dl]. 
In order to obtain a desired bound for E[e ''~La~ L~,,,))], we rewrite 

it as 

E[e.,.,~L, w.,) - L, ~.,~)] = E[e.,.o,,ow) + ,,,;- w) + E~c="~'~,,,i~o) - ,-o~) . . . .  ;- ~) - E~"~,,,= ~))]. 

Using the Cauchy-Schwarz  inequality, also noticing that too(O), m~- (0) are 
independent,  we obtain 

E[e.~t(L, Coa) - L 1 (a,t))] ~ (E[e4.,.,,,o(O)]E[e4.~,,i- (0)])1/4(E[e-4Smo(a)]E[e-a,m;- (#)1)1/4 

x (E[e4"E~r~="(%"A~ TM 

<Cl(E[e4.,.2~'.('),,,,(o) = ]) 1/4 (E[e --4sEK(t'7)mi(r ) =  ]) ,1/4 (22) 

when t~[to, 0o) and s~[0, d~/4]. The last inequality comes from (17) and 
(21). 

Further,  we know from Inequality (20), also noting (16), that 

E[e "~''~w)] <_ 1 + sE[mi(O)] + s2E[m 2 (0) e sl',w)l] 

<_ 1 - sE[TI (O)](J(a) - J(O))/2 + (2Bs)2E[T~(O) eZSsr'~~ 

Therefore, Inequality (16), together with Assumption (A2) and the remark 
following it, guarantees the existence of a positive constant dz > 0 such that 

E[e 4s'm~O)] ~ 1 - sCz,  on s~[0, dzl, (23) 

where 

C z = E[T,  (O)l(J(a)  - J(O))/4.  

To bound E[e4sYf~="(~)mi(~ we calculate 
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E[e4"~'~iKc="(""~(~ = E E[e4SZT='  "~(O)I~x~'.O)='~] 

+ ~, [e4"ZT=,"A~ {K(t.0) = n, ]~ 
i1 > ~t 

where I~A,~ = 1 is the indicator  funct ion and  �9 > 0 is a small cons tant  to be 
chosen.  I ~  < 1. Since II(x)l --< B, we have 

K(t.O) -] 

E e 4'' E m,(0) |  _< e 8 ' ' ' .  
i = 1  _J 

Then,  

E[e4"Ex~="[~'"',(~ < ~" e8B"'~'rr,_.tl~K(,.o) = n}] q- E E[e4Sy"]= , ,hi(O)] 

= e 8B'~' Prob[K(t ,  0) < et] + ~ (E[e4S"'(~ ". 
n > E !  

Using the C h e r n o f f  bound  (14) and  (23), we know tha t  

E[e4S ZxL'-g ) ,,,, (0)] _< e 8s"'E[e" - K(,.o)] + (E[e4Sm~ (o)]),t - l/1 ( 1 - E [ e  4 s ' '  (0)]) 

< e(Sns+,),E[e-X(,.o)] + ( sC2)-  l(1 _ sCz) , t -  l, 

when tc[to, oo], s~[0, min{d~/4, d2}]. Let  

C3 = e-~{1 - Prob[T~(0)  < c~]}/{1 - e -~ P rob[T l (0 )  < d]} < 1. 

Accord ing  to L e m m a  4.2 with z = e-~,  we have 

E[e4S ytx~__'./~' mi(O)] < C3 e(8~s +, + a-,(log c3))t 

+ (sC2)-1(1 - sC2)- l e "  xog(1 - sc2) (24) 

Choose  s~[0, min{d~/4, d2}] and �9 sufficiently small such tha t  

0 < 8Bs+ e < - 0 . 5 6  -~ log C3. 

Then,  f rom (24), 

E[e4S Zff.( ' ,,i(o)] _< (C3 + (sCz)-l(1 - sCz)-1) e-C4(o.~r)t, (25) 

where  

C4(0, o-) = rain{ - 0 . 5 d - '  log 6'3, - �9 log(1 - sE[T, (0)](J(o-) - J(O))/4)} > O. 
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Similarly, C3 and C4(0, a) can be chosen such that 

E[e -4"2~2"p"'(~)] < (C3 + (sC2)- I(1 - sC2) - i )  e-C4(O.~),. (26) 

The combination of (25)-(26) with (22) yields (13) with 

ct= min C4(0, a ) / 2 > 0 .  
tr~Og,O~O h 

Thus, the proof  is complete. [] 

Theorem 4.2. Assume that {X(0, ~, t)} and {X(tr, (, t)} are indepen- 
dent for any 0 ~ trE| Then, the conclusion of  Theorem 4.1 is also valid 
for the performance measure L2(O, t). 

ProoL 
prove that 

Prob[L2(a, t) > L:(O, t)] = 1 - O(e-~') ,  (27) 

for any ~re| 0cOb,  and for some ~ > 0. Define 

K(~I) fri(8) K(t.O) 

M(O) = I(X(O, ~, s)) ds, T(O) = ~, Ti(O). 
dr i_  t(O) i=  l 

Then, 

0 < T (a )  < t, 0 < T(O) < t. 

Using the Chernoff bound (14), we have 

Prob[L2(tr, t) >_ L2(O, t)] = Prob[M(a)T(O)  > M(O)T(tr)]  

> 1 - E[e s(M(~ M(~)T(O))], (28) 

for any s >_ 0. Note that, if a ~ 0 and a, 0~|  

K(t,O) 

( M ( O ) -  T ( O ) ( J ( a ) - - S ( O ) ) / 2 ) T ( a ) =  T(tr) ~ mi(O), i=1 
K(t,O) 

( M ( t r ) -  T ( O ) ( J ( a ) -  J(tr)) /Z)T(O) = T(O) ~ m, (a) ,  
i ~ l  

and 

According to the proof  of  Theorem 4.1, we again only need to 

E[es(M(O)r(a) - M(~)r(O))] 

__ E[e ,f( M(O) - r(O)(y(a) - ~(O))/2)T(a) -- (M(a) - -  T ( O ) ( J ( a )  - -  J(a))/2)T(O)1]" 

By applying the Cauchy-Schwarz  inequality, we get 
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E[es(M(O)T(~,)- M(~)T(O))] 

= (E[e 2.,.r~) Eft'.('),,,, (o)])l/2(E[e 2.,.TCo) Z~gf',,,,~,)])'/2. (29) 

ff~(O) = 2sT(a)m,(O), th~(r = 2sT(O)m~(~r). 

Then, the independence of  {X(0, r t)} and {X(a, r t)} shows that 

E[rh,(O)] = - s ( t  - E[To((r)] - E[R(t, a)]) 

• E[T, (O)](J(a) - J(O)) < O. 

By replacing e 2a'ru'~ with R(t, a) in (19), a direct computation yields 

lim E[R(t, a)] = E[T~(cr)]/2E[T~ (o')]. 
I ~ Z G  

Therefore, there is a to > 0 such that 

E[T0(a)] + E[R(t, o-)] < 0.5t, whenever t~[to, ~) .  

Consequently, 

E[rhi(0)] = -0.5stE[T~ (0)](J(~r) - J(O)) < O, 

for all re[to, ~) .  A procedure similar to that used in obtaining (23) reveals 
that there are constants Cs > 0, So > 0 such that 

E[e '~(~ < 1 - s o C5, (30) 

whenever te[to, ~ )  and sts[O, So]. Consider 

E[e z,.r~,) ZxL'.( '' ,,,,(0)] = E[eZ~(="~ " ,r,,~o)]. 

Using Inequality (30), the same argument as that used in obtaining (26) 
shows that the constant So can be chosen sufficiently small such that 

E[e Z~L''f''~'(~ < C6(0, a ) e  -c7(~ 

for some constants C6(0, a) > O, C7(0, a) > 0. Thus, 

E[e z'r(') E~x~=''(')"'(~ < C6(0, a ) e  -c7(~ ")' (31) 

Similarly, we can prove that C6(0, a) > O, C7(0, a) > 0 can be chosen such 
that 

E[e z'r~~ ZxL"f )",(')] < C6(0 , o') e-c7(o.,),. (32) 

The combination of  (31)-(32) with (29) gives 

E[e.~(M(O)r(.) - M(o)r(o))] <_ C6(0" a) e -  c7(o..),, (33) 
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which shows that (26) is true with 

0~= rain C7(O,a). 
~Og.OEO b 

Hence, the statement of the theorem follows from (28)-(29) and (33). [] 

A random variable X is said to be exponentially bounded if there exist 
two positive numbers C, p > 0 such that 

Prob[X > x] < C e -t ' ' .  

Assumption (A2) is satisfied if the duration of each regeneration cycle is 
exponentially bounded such as that in the M/M/1 queue. Moreover, if the 
interarrival times and serivce times are exponentially bounded, then the 
busy periods of any stable GI/G/1 queue are also exponentially bounded 
(Ref. 27). 

For regenerative simualtion, both LI(O, t) and L2(O, t) converge to 
J(O) with rate O(1/x/~); see Ref. 28. Theorems 4.1 and 4.2 show that, in 
such situations, the indicator process converges exponentially, much faster 
than that of the performance measure estimation. 

Example 4.1. See Ref. 29, p. 155. Consider a closed queueing net- 
work with two single servers, as depicted in Fig. 1. The service times at the 
two servers are exponential. There is a total of N customers in the network. 
The buffer size in front of each server is larger than N. The routing 
probabilities are 0 < p < 1, 0 < q < 1. This system can be described by a 
finite-state continuous-time Markov chain. Moreover, such a Markov 
chain is regenerative with exponentially bounded regenerative cycle times 
(Ref. 23, pp. 37-41). Therefore, Assumption (A2) is satisfied. Therorems 
4.1 and 4.2 are applicable for appropriate I(x). 

5. Averaging i.i.d. Random Variables 

In many simulations, performance measures are of the form of averag- 
ing i.i.d, random variables, i.e., 

L3(0 , t) - - - - -  (l/t) ~, Xi(O, ~), (34) 
i = 1  

where {Xi(O,()~R,i>I} is a sequence of i.i.d, random variables. If 
E[XI(O, ()] < oo and Var[Xl(0, ()] < oo, the strong law of large numbers 
guarantees that 

lim L3(O, t) = J(O), a.s., 
t ~ C  
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q 

1-q 

Fig. 1. Closed queueing network with N customers. 

P 

1-p 

with 

J(O) = E[X, (0, 4)]. 

In such cases, the assumptions of Theorem 4.1 can be weakened. 

Theorem 5.1. Assume that E[e ~'x,(~162 exists and is continuous in a 
neighborhood of s = 0, s > 0. Then, there exists a positive number fl > 0 
such that 

Prob[Ig.N(t) = 1] = 1 - O(e-~'), 

Prob[IM.N(t) = 0] = O(e-/~'). 

Proof. The proof is similar to that of Theorem 4.1; thus, it is 
omitted. It can also be proved by the large deviation principle, since (34) is 
a classical example where the large deviation principle applies (Ref. 30, pp. 
3-5). [] 

Example 5.1. Consider an M/M/1 queue with X~(O, ~) being the 
number of  customers served in the ith busy period. Then, {X~(O, ~)} is an 
i.i.d, sequence with distribution 

f ( x )  = Z p.,~(x - n), 
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where 

p,=(1/n)(2222)[l+l/p(O)]Lo(O)/(1 +,0(0) )2]  ~, n =  1 , 2 , . . . ,  

and p(O) is the traffic intensity. Similar distribution exists for M/D/1 
queue. In this case, the performance measure is the mean number of  
customers served in a busy period in steady-state. For this type of  
distribution, the assumptions of  Theorem 5.1 are satisfied, implying 
the exponential rate of  convergence for the indicator process. Simulation 
is of  course unnecessary in this problem, since the performance measure 
is monotone in p(O). We use this simple example to illustrate Theorem 
5.1. 

Remark 5.1. For the performance measure  L3(0 , t), it is not neces- 
sary that more information be helpful for choosing the correct design, as 
illustrated by the following example. 

Consider a case where, for each i > 1, Xi(O, ~) is distributed according 
t o  �84 

- -  1, w . p . 1  - p ,  

where p = 0.5. Let 

N = 2, M = 1, | = {0.8, 0}, J(O) = O. 

We assume that Xi(a, ~) and Xj(0, ( )  for i ~-j or a ~ 0 are independent. 
For this problem we can obtain the closed-form of Prob[IM, N(t)= 1]. 
Figure 2 illustrates that Prob[IM.N(t) = 1] is not nondecreasing in t, suggest- 
ing t ha t  more information (larger t) may not be helpful for making the 
right decision. 

Normal distribution is often an asymptotic form of performance 
measures in DEDS. The following Theorem 5.2 establishes an important 
property of  the indicator process--monotonici ty  in simulation time. It also 
provides a detailed formula. 

Theorem 5.2. Assume that, in L3(O, t), {(Xi(O1, ~), X~(02, ~),. . ., 
Xi(ON, ~)), i >  1 } is a sequence of  i.i.d, random variables with (nondegener- 
ate) normal distribution. Then: 

(a) Prob[IM.N(t) = 1] is nondecreasing and Prob[IM,N(t)= 0] is 
nonincreasing in t; 



384 JOTA: VOL. 91, NO. 2, NOVEMBER 1996 

0.95 

0.85 

0.75 

0 4 8 12 

Fig. 2. Prob[IM, N(t)= I] vs t. 

16 20 

(b) there exists a positive number  7 > 0 such that  

Prob[IM,N(t) = 1] = 1 - - O ( t  -~/2 e-;"), 

Prob[IM,N(t) = 0] = O(t-112 e-,l,). 

Proof .  
(a) Let  the joint  density funct ion 

X,(ON, ~)) be 

where 

of (X~(O,, ~), x,(O~, ~) . . . . .  

p(xi ,  x2 . . . . .  XN) = [1/~/(2rc)NIA i] e-( lm("-")~A- '~"- , , ) ,  

X T =  [X, ,  X 2 . . . . .  XN] , ]1 T :  [ J ( O l )  , J ( 0 2 )  . . . . .  J(ON)] ,  

and A is the autocovar iance  matrix.  Denote  

Y(o) = (~/.jT) y. (x , (o ,  ~) - s (o ) ) ,  
i = 1  

0~ |  
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The density function of (Y(01), Y(02) . . . . .  Y(ON)) is 

P ( Y i  , Y2 . . . . .  YN ) = e-(il2'Yr A-ly, 

Y = [Vi, Y2 . . . . .  YN] T" 

It is independent of  t. Therefore, 

Pr~176 ~ob 

=,,rob[ u t m a x ( Y ( a ' + t ' 1 2 ( j ( a ' - J ( O " ' > Y ( O ) } ] ,  
LOe| t .aeOg 

which is nondecreasing in t, since 

J ( a )  - J(O) > 0, for any a~|  O~| 

and since the distribution of  Y(O) is independent of  t. 
(b) In light of  (6), we only need to prove that 

Prob[L3(a, t) > L3(O , t)] = 1 - O(t  -1/2 e-7'), 

for any a~| O~| Using the same transformation as that used in the 
proof  of  (a), we know that 

Prob[L3(a, t) > L3(O, t)] 

= Prob[ Y(a)  - r ( o )  > - t llE(j(a) - J(O))]. 

Since both Y(a)  and Y(O) have (nondegenerate) normal distribution with 
zero means, so is Y ( a ) -  Y(O). Let us denote the distribution of Y ( a ) -  
Y(O) as ~(x /d ) ,  where ~(x)  is the standard normal distribution function 
and 

d 2 = Var[ Y(a)  - Y(O)]. 

Then, we know that 

Prob[L3(a, t) > L3(O, t)] = ~( t  l12d-I(J(a) - J(O))). 

For normal distributions, we have 

1 - @ ( x )  = 4~(x)Rx, 

where ~b(x) is the standard density function of  normal distribution and Rx 
is the Mill's ratio satisfying 

l / ( x +  x - l )  < R.,. < l /x ,  

for any x > 0; see Ref. 31, p. 505. Thus, 

Prob[L3(a, t) > L 3 ( O ,  t)] = ~(t  l/':' d-l (J( t r )  - -  J(O))) 
= 1 - O(t-1t2(b (t 1/2 d - i ( j ( a )  _ J(O)))). 
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By choosing 

7=(1/2)  min 
ae|162 

we know that (b) holds. 

d - 2 ( j ( o  ") - J (O))  2 2> O, 

[] 

Remark 5.2. Theorem 5.2 shows that the rate of convergence for the 
indicator process in the case of averaging i.i.d, normal random variables is 
still exponential, since we can vary the value of  y > 0. In many simulations, 
the performance measures have the asymptotic normal distribution. In this 
sense, Theorem 5.2 is useful for deriving the confidence level. Since 
Prob[Ig.N(t) = 1] is monotone in t, we only need to allocate the first t such 
that Prob[Ig.u(t)= 1] reaches the desired confidence level. 

However, Theorem 5.2 also reveals a potential problem. If  we choose 
the correct Y > 0, the ordinal comparison for normal distributions con- 
verges faster than O(e-;"). This means that it is possible to underestimate 
the confidence level if we use normal distribution as an approximation to 
the distribution of general random variables. 

6. Conclusions 

In this paper, we have formulated an indicator process to characterize 
the rate of  convergence for ordinal comparison. For  several forms of 
performance measures that are common in simulation, we prove that the 
rate of convergence is exponential. The results of this paper provide a 
theoretical explanation on the fast convergence of ordinal comparison that 
has been observed experimentally. 

This research represents a first step in the study of  the convergence for 
ordinal comparison. The following directions warrant further research. 

(i) Although regenerative assumption is satisfied in the simulation 
of many DEDS such as queueing networks and Markov chain 
models, it would be nice if we can give a bound on the rate of 
convergence for the simulation of  general DEDS. 

(ii) Monotonicity in t is very useful for determining the confidence 
level and for simulation planning. So far, we can only prove the 
monotonicity for the case of  averaging i.i.d, normal random 
variables. It is important to find out conditions under which 
Prob[Im,N(t) = 1] is monotone in the simulation time t. 

(iii) Simulation planning can affect the convergence of  the indicator 
process. Therefore, it is desirable to find out how to design a 



JOTA: VOL. 91, NO. 2, NOVEMBER 1996 387 

simulation such that Prob[IM.N(t)---- 1] is maximized. If this is 
possible, we can expect a quick separation of  good designs from 
bad ones. 
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