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A combinatorial theory of Griinbaum's new regular polyhedra, 
Part II: Complete enumeration 

ANDREAS W.  M.  DRESS 

Abstract. The new regular polyhedra as defined by Branko Griinbaum in 1977 (cf. I-5]) are completely 
enumerated. By means of a theorem of Bieberbach, concerning the existence of invariant affine subspaces 
for discrete affine isometry groups (cf. [3], [2] or [1]) the standard crystallographic restrictions are 
established for the isometry groups of the non finite (Griinbaum-)polyhedra. Then, using an appropriate 
classification scheme which--compared with the similar, geometrically motivated scheme, used originally 
by Griinbaum--is suggested rather by the group theoretical investigations in [4], it turns out that the 
list of examples given in [5] is essentially complete except for one additional polyhedron. 

So altogether---up to similaritym.there are two classes of planar polyhedra, each consisting of 3 indivi- 
duals and each class consisting of the Petrie duals of the other class, and there are ten classes of non 
planar polyhedra: two mutually Petrie dual classes of finite polyhedra, each consisting of 9 individuals, 
two mutually Petrie dual classes of infinite polyhedra which are contained between two parallel planes with 
each of those two classes consisting of three one-parameter families of polyhedra, two further mutually 
Petrie dual classes each of which consists of three one parameter families of polyhedra whose convex span 
is the whole 3-space, two further mutually Petrie dual classes consisting of three individuals each of which 
span ~3 and two further classes which are dosed with respect to Petrie duality, each containing 3 individuals, 
all spanning 63 , two of which are Petrie dual to each other, the remaining one being Petrie dual to itself. 

In addition, a new classification scheme for regular polygons in E ~ is worked out in §9. 

AMS (1980) subject classification: Primary 51M20, 51F15. 
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§1 Griinbaum systems 

In the following note we are going to use the results proved in [4] to classify 
in detail all of the new regular polyhedra, defined by Branko Griinbaum in [5]. 
Let us recall the basic results of [4] in a form which is suitable for our further 
considerations: if rt is a regular polyhedron according to Grfinbaum with vertex set 
V = l"O C ~ :=  ~3, edge set VI ~_ : (Vo)  =:  {TI T~_ Vo} and face set V2 _ ~'(V~) and if 
(v0, vl, v2)~ Vo × Va x I:2 is a "n-flag" (i.e. satisfies VoEVleV2) then for each i = 0, 1, 2 
there exists a unique isometry ~ of the affine subspace < Vo> generated by Vo with the 

following properties: ~(Vo) = Vo, the induced map cti:~(Vo)-+ ~(Vo) maps V~ onto 
V~ and the consequently induced map : (V~)  --+ ~(V~) maps I:2 onto V2, ~(vs) = vj for 

je{0, 1, 2}~\{i} and ct~(v3 4: vi. Moreover, these isometrics satisfy the relations 
~02 ---~ 0~2 = (~2 = (0~00~2)2 = 1, the group <Cto, al,  0~2>, generated by ~0, a~, a2 is 
discrete, coincides with the automorphism group of rc and acts transitively on 
Vo, V1, V2 and on the "flag space" ~-.  :=  {(Wo, wl, w2)e Vo x V1 x V2 IWoZW~ ~ w~}, so 

one has Vo = <~0, ~,, a~) 'Vo:= {~tvolae<Cto, ~t, ~2)}, v, = <~o)'Vo = {Vo, ~oVo}, 
V1 = <~o,a~,~t~>'v~, v2 = <~o,~tl>'Vl, V2 = <~to,~q,~2>'v2, i.e., the knowledge of 
v = Vo, ~0, al and ~2 allows to reconstruct the polyhedron n. In particular, if 
(Wo, w~, w2) is another n-flag and if flo, 31 and 32 are the corresponding isometries 
of Vo, then the isometry a¢<~o, cq, a~> with ~t(Vo, vl, v2)= (Wo, Wh w2) satisfies 
~ct:t- 1 = fl~ _ more generally, two polyhedra, n, r( are isometric/similar, if and only 
if for some (or---equivalently---for all) flags (vo, vl, v2)z~-, and (v5, v'~, vh )e~ . ,  with 

' 0~' ~' corresponding isometries ao, ~ ,  a2 and ~o, ~, 2 there exists some isometry/similarity 
~': ( Vo > ~ < Vb > with ~'Vo = vb and Va~7- ~ = a~ (i = 0, 1, 2). 

Hence, to classify all Grfinbaum polyhedra it is enough to classify all "discrete 
GriJnbaum systems" up to isometry or similarity, where a Gr/Jnbaum system is defined 
to be a system (v; ~o, ~ ,  a~)¢E x lso(~.) z satisfying the conditions 

~2o = ~ = ct~ = (~o~2) 2 = ld~, (GI) 

a l V = ~ z v = v ,  (G2) 

(G3) 

such a system is defined to be discrete if (ao, a l ,  ~2 > is discrete, and two such systems 
(v; ~0, cq, ct2) and (w; ao, al, ~2) are defined to be isometric/similar if there exists an 
isometry/similarity ?:~: ~ E with ?v = w and y~iT-11 <#o.#,.#2 > .w =/31l <#o,#,,#~ >.w 

For an isometry ctelso(~_) we denote by dimu the dimension of the fixspace 
~ : : = { x ~ . l a x = x }  and for ~, fl~lso(g-) we define ~(~, fl) to be 0 unless 
1 = dim ~, dim fl < 2 in which case we define g (~, fl) as the angle between E" and 
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E # o r - - i n  case E~c~ IE # = ~5--as  the angle between properly intersecting parallel 
t ransforms of  these two spaces. T o  avoid ambiguities, we assume always 

0°=< 9: (~, fl) =< 90 °. 
Note  that  for two involutions ~, fl~lso(F.) one has ~.fl = fl.~ if and only if 

E ~ c~ E # # ~ and either 9: (~, fl) = 0 ° or  9: (a, fl) = 90 ° and one has 0~ = fl if and only 
if E~c~ E # 4 ~ ,  d ima  = dimfl  and 9: (a, fl) = 0 °. Note  also that  {(dima, dimfl, dim~,)l 
• , fl, y~lso(~_)\{IdE} and ~ 2 =  f12= y 2 =  o~fly = (ldE} = {(a,b,c)~j3jO<=a, b, c <2  

and a + b + c~{3, 5}}. 
Now, we define two Gr i inbaum systems (v; ~o, at ,  a2) and (w; flo, ill, f12) to 

have the same dimensionali ty if d imao = dimflo, d i m ~  = dimfl~, dima2 = dimfl2 
and dim~oc~2 =dimflof l2  o r - - e q u i v a l e n t l y ~ d i m ~ = d i m f l i  for i = 0 ,  1, 2 and 
9: (~to, 0~2) = 9: (flo, f12) and we define (v; ~0, ~q, 0~2) and (w; flo, ill, f12) to have the 
same angulari ty if, moreover ,  9: (~to,~q) = 9: (flo, fl~) and 9: (cq,~t2) = 9: (3~,fl2). 

We are going to enumerate  all discrete Gr i inbaum systems (v; ~to, cq, ~t2) by first 
discussing the various possibilities for the sequence of numbers  dim ~to, dim ~t2, dim ctoctz 
and then deriving for each such sequence the var ious--a lways  finitely m a n y - -  
possibilities for 9:(Cto, ~q) and 9: (ctt, ct2). It will turn out  that for all but four 
dimensionality types the angulari ty determines the system already up to similarity, 
whereas for those four dimensionali ty types there is for each admissible angularity a 
one-parameter  family of similarity types. 

Each similarity type, of course, consists of a one-parameter  family of isometry  types. 
But before discussing these various types we have to establish some simple 

properties of  Gr i inbaum systems which we do in the next section. 

§2 Simple properties of Griinbaum systems 

We continue with our  notation.  At first we claim the following. 

P R O P O S I T I O N  1. I f(v;  C¢o, ~1, 0 ~ 2 ) ~  >(lso(~-) 3 is a Grfinbaum system, then the 

followin9 holds: 

(i) OtoV # v, in particular ~o 4- ~2, 
(ii) C~o~1 # ~t~o, in particular ~o # ~1, 

(iii) ~1~2 :/: ~ : q ,  in particular ~ # ~2, 
(iv) dim ~1, dim 0~2 _>- 1, 
(v) there is no line U: ~_ E with c~i(~:) = ~:]br all i = 0, 1, 2. 

Proof  (i) This follows immediately from ~oI<,o ..... ~>.v :~ Id<,o.,~.~2>.~ and 
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(ii) If  ~to~l =~1~o,  then ~t~{v, ~oV})= {v, ~ov} for all i = 0 ,  1, 2 and,  
hence, (Cto, ~q, ct2) .v={v,  ~toV} in contradict ion to ~21~v,~ov~=ldtv,~ov~ and 

~t2l <~o ..... ~> "v # ld<~o ..... ~ . . . .  
(iii) If  ~lct2 = ~2cq, then ~t2t < .. . . .  >.~ = ld<~o,~>.~ and,  hence, (Gto, ctl, ~ 2 ) ' v  = 

(cto, ~q) 'v ,  again  in contradic t ion to ct2I <~o .... .  ~> .~ # ld<~o ..... ~>.~. 
(iv) Since v ~ E ~ n  E ~2 # ~ and CtxCt2 # ct2~1, we have necessarily dim~q # 0 # 

dim ~2. 
(v) Assume ~to(~=)= cq(0=)= Gt2(g=)= 0= for some line 0=~ ~=. If v¢I=, then the 

intersection w of 0= and the line 0=' th rough  v which is perpendicular  to ~= is fixed by 
~ and ct2, so we have Q='__. E~c~E ~2. But the group  {~telso(E)t~t([=)= IF, F ' _  E ~} 
is i somorphic  to the Klein four-group,  consisting of the identity, the 180°-degree 
rotat ion a round  ~=', the reflection at  the plane (~= ~=') and  the reflection at  the plane 
containing ~=' and perpendicular  to ~=. So c t~ :  # ct2cq implies that  ~q and ct2 cannot  
both be contained in this group,  a contradict ion.  

If ve~=, then (~to, ~ ,  ~2).v~_~:=(v,  ~oV)~_~ =~ in contradict ion to 

0~21 <¢t 0 . . . . . .  >'v ¢" ld . . . . . . . .  2> "~. [] 
It  follows easily f rom ~oV ~ v that  a quadrupel  (v; ~o, ~1, ~2)eE x Iso(~_) 3 is a 

(discrete) G r i i n b a u m  system if its "Petr ie  dual"  P(v; ~to, ~q, ~t2) : = (v; Cto~t2, ~ ,  ~t2) is a 
(discrete) G r i i n b a u m  system. So, since obviously P(P(v; Oto, cq, ~2)) = (v; ~to, ~q, ~2), 
it follows that  G r i i n b a u m  systems come in pairs of mutual ly  Petrie dual G r t i n b a u m  
systems. Moreover ,  since two G r t i n b a u m  systems (v; Cto, ~ ,  ~:) and (w; flo, fl~, f12) are 
i sometr ic /s imi lar  if and only if the systems P(v; ~to, 0~, ~t2) = (v; Cto~2, ~q, ~t2) and  
P(w; flo, fl~, f12) = (w; flofl2, ill, f12) are isometric/similar,  it follows that  this pairing 
induces a pair ing of the isometry/similari ty classes of Gr i i nbaum sys t ems - - t hough  
in this s i tuat ion it may  happen  that  an isometry/similari ty class is Petrie dual  to itself. 

Note  that  the Petrie dual  of  a G r i i n b a u m  system (v; ~to, cq, ~ )  has the same 
dimensionality as (v; ~0, cq, ~t2) if and only if dim~to = dim~to~t2 if and only if 
dim ~0 = dim ~t2 = 1, since dim ~0 + dim t~0~2 + dim ~2 e { 3, 5}, so dim ~o = d im Cto~t2 # 1 
would imply dim~2 = 1, dim~to = dim~to~t2 = 2 and E ~ = E~°c~ E ~°~ ___ Ir :~° in con- 
tradiction to veE~2\E~°. 

§3 Discrete Griinbaum systems 

Continuing with our  nota t ion  let us now consider discrete G r i i n b a u m  systems. 
We claim Propos i t ion  2. 

P R O P O S I T I O N  2. If(v; ~o, Ctl, 0~2)~[E x lso(E) 3 is a discrete Griinbaum system, 
then the intersection of (~o, a l ,  atE) with the group T = TE < lso(E) of translations of 

has finite index in (Cto, ~1, ~t2) and rank ~ 1. 
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Proof. According to Bieberbach (cf. [-3], E2] or  [1] )  for any discrete subgroup 
G<lso(~_) there exists a subspace g : ~  with g ( ~ ) =  0: for all ~ 6 G  and 

(GI~:(GI~ c~ T~)) < o~. 

Choose  such a subspace 0: for G = (Cto, cq, ~t2). W. 1. o. g. assume 0: # L If 
d im ~: = 0, it follows that  the discrete g roup  G has a fixed point  and so G itself is 
finite. Dim~: = 1 is excluded by Propos i t ion  1, (v), and dim0: = 2 implies 
(G: G c~ T) < ~ ,  since in this case G ~ G I ~ has finite kernel and  ~tt ~ e T~ implies ~2 e T. 

So we have always (G: G c~ T) < ~ .  N o w  assume rk(G c~ T) = 1 and z e G  c~ T, ~ ~ 1. 
Consider  the set of  all lines ~: _ ~ in the direction of z, i.e. with z(0:) = 0:. The action 
of G on ~ induces an act ion of the finite g roup  G/(G c~ T) on this set which inherits 
the structure of an affine euclidean plan f rom E Moreover ,  G/(G ~ T) acts isometrically 
on this euclidean plane, so it has a fixed point.  But this contradicts  once again 

Propos i t ion  1, (v). ~ 

C O R O L L A R Y  1. I f  (v; Cto, ~tl, ct2) is a discrete Griinbaum system and if 
G = (~o, ~tx, ~2) is not finite, then 9:(o~, ~2)~{30 °, 45 °, 60 °} and ~(~o, ctl)e 
{0 °, 30 °, 45 °, 60 °, 90°}. 

Proof. This follows f rom rk(Gc~T)>=2 and the s tandard  crystallographic 
restrictions together  with the fact that  E ~1 c~ E ~2 # ~ and cq~2 # ~2cq which excludes 

(~1, ~2)e{0 °, 90°}. [] 

C O R O L L A R Y  2. I f  (v; Cto, cq, cz2) is a discrete Griinbaum system, then 
rk((o~o, ~1, ~t2)c~ T ) =  2 if  and only if there is a plane ~: ~_ ~_ with O~o(n:)= O~l(D:)= 
ot2(g:) = 0:, in which case we say that (v; ~0, ~tl, ~2) has an invariant plane. 

Proof. I f  (Cto, ~1, c t 2 )n  T is spanned by Zx and z2, then the isometric  act ion of 
the finite g roup  G/Gc~ T on the "euclidean line" consisting of all planes D: ~_ E with 

zl(0:) = z2(0:) = 0: necessarily has a fixed point  0:0. 

Vice versa, if ct~(IF) = ~: for i = 0, 1, 2 for some plane D: ~ ~ then we have necessarily 
rk((~o, 0tl, ~t2) n T) < 2. But  rk((o~o, 0~1, ~t2) n T) < 2 implies (~to, ~i,  0~2> t'~ T = {Ida}, 
so (~to, cq, c t2) - -be ing  f in i te - -  has a fixed point  w and so it also leaves invariant  the 
line through w which is perpendicular  to F, once again  contradic t ing Propos i t ion  1, (v). 

~4. The planar case 

We define a G r i i n b a u m  system (v; ~0, ~1, ~2) to be planar ,  if (Uo, 41, ~ 2 ) ' v  is 
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contained in a plane U:, in which case 0: must  be spanned by (~o, ~1, 0~2)'U, since 
otherwise ~oV # v would imply that  (:to, ~ ,  ct2).v spans a line which then would be 
invariant under  Cto, ~ ,  ~2, contradict ing Proposi t ion 1, (v). 

Now assume (v; ~o, ~1, ct2) to be planar.  We may  replace ~o, ~1 and ~2 by 
those- -uniquely  de te rmined- - i somet r ics  flo, fl~ and /~2, respectively, which satisfy 
82 = f12 = f12 = ldE and [Fa~= ~zn~:" (i = 0, 1, 2) without  changing the isometry 
type of our  system, since /?~l~ = :t~lE implies that  the necessary relations hold for 
? = Ida. So we may  assume dimcq = dimct2 = 1 and dimcto < 1. 

Moreover ,  Corol lary  2 of  Proposi t ion  2 implies r k ( ( ~ o ,  cq, : t 2 ) ~  T ) =  2 and, 
hence, ~:,o~ IF,1 c~ ~:,~ = ~ and ~ (~l, 0~2)E{30 °, 45 °, 60°}. Thus, in case dim~o = 0, 
we have at most  three angular i ty  types and, similarly, in case dim ~o = 1 w h i c h - - u p  
to i somet ry - - i s  Petrie dual to the first case, we have also at most  three angular i ty  
types in view of K (~o, ~ )  + 4,( (~1, ~ )  = ~ (~o, ~2) = 90 °. 

Moreover ,  one verifies easily that  all these 6 angulari ty types determine the 
corresponding Gr f inbaum system up to similarity and that  all these exist and 
correspond to the six well known types of  p lanar  polyhedra,  exhibited in I-5]. 

§5. The non planar cases 

From now on let us restrict our  a t tent ion to non planar  Gr i i nbaum systems. In 
principle, for a G r i i n b a u m  system (v; Cto, ~ ,  :t2) the quadrupel  (dim~2, dim~a Idimc(o, 
dim~o~2) can be any one of the quadrupels  (n2, nl Ino, n b ) e ~  4 with 1 < nl, n2 < 2, 
0 <  no, nb < 2 and no + nb + n2e{3, 5}. But we know already that  no = n~ can hold 
only for no = nb = n2 = 1 and we see easily that  in case no = 0 and n2 --  1 (and thus 
nb --- 2) as well as in the Petrie dual case no = 2, n2 = 1, nb = 0 our  system is p lanar  
since in case n~ = 1 the plane ( E " u P  2) contains v and is invariant  under 
(~o, ~1, ~2) whereas in the case n~ = 2 the plane 0: which contains E "2 and is 
perpendicular to E ' '  is invariant  under  (~o, ~ ,  ct2) and contains v. 

So we are left to study non planar  Gl-i inbaum systems (v; ~o, Cth Ct2) with 
(dim~2, dimctxldimcto, dimcto:t2) being one of the following quadrupels,  g rouped  
into pairwise Petrie dual cases: (2, 212, 1), (2, 211, 2); (2, 2tl, 0), (2, 210, 1); 
(2, 112 , 1), (2, 1]1, 2); (2, 111, 0); (2, l l0 ,  1); (1, 2 l l ,  1); (1, l l l ,  1). 

§6. The finite case 

We define a G r i i n b a u m  system (v; ~o, ~1, ~t2) to be finite if (~o, ~1, iX2) is finite. 
This implies obviously  the finiteness of  (COo, ctl, ct2) 'v and in case of  discrete systems 

it is equivalent with the finiteness of  (Cto, ~1, ~2 )" v (since for a discrete group  G ~_ lso(~_) 
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and velE the stabilizer group G~ = {~eGl~.v = v} is necessarily finite) as well 
as with E~o~E~c~tE ~2 # ~ ,  i.e. E <~° ..... ~ > ~  ~ .  In general, a Gr i i nbaum system 

(v; ~o, cq, ~2) is defined to be bounded  if E <~° .. . . .  :> :~ ~ .  We claim 

P R O P O S I T I O N  3. A non planar Griinbaum system (v; ~to, ~t,  ~t2) is bounded if 
and only/fdim ~t2 = dim~q = 2 and dim ~to + dim ~o~t2 = 3. 

Proof If dimcto = d i m ~  = dimct2 = 2, then either the three planes ~:i:= E ", 
(i = 0, t, 2) have a non empty  intersection in which case (v; ~to, ~1, at2) is bounded  or 
there exists a plane U: containing v which is perpendicular  to Eo, 0:~ and 0=2 in which 
case <~o, ctl, ~2 >-v _~ <cto, ~l ,  ct2 >-If = IF implies that  our  system is necessarily planar. 

Similarly, dim~oct2 = d i m ~ l  = d i m ~ 2  = 2 implies also the boundedness  of 
(v; ~o, ~ ,  ~2) if this system is non  planar.  

Vice versa, if (v; ~o, ~tl, (X2) is bounded  and, hence, E<'°"~"2>-¢: ~ ,  say 
w e e  <~° .... ~> ,  then v, weE~lc~E ~ and v v~w implies dim(E~lc~E~2)>l.  But 

alct2 4:ct2~1 implies E ~1 :/: E "~ n E "~ # E "~, so we have necessarily d i m ~  = dim~2 = 2. 
Similarly, ~o~l # ~1~o implies E "° # {w} and, hence, dim ~to > 1, whereas (Cto~2)~1 ¢ 

~1(~o~2) implies E "°'~ ~ {w} and hence, d imao~2 ~ 1. Since moreover  dimcto + 
dimao~2 + d im~2e{3,  5}, we are left with dimc~o + dim~to~t2 = 3, i.e. dim~o = 2 and 

dim~to~2 = 1 or  dim~to = 1 and dim~octz = 2. 
Let us now study in detail  the bounded  case dim~2 = d im~l  -- dim~to = 2. Since 

the line E~o~=E~oc~E~ cannot  be contained in E ~, we have necessarily 
E~oc~E~c~E ~ = {u} for some ueE_\(v}. Moreover ,  it is easily seen that  for two 
tripels of  planes (~:o, IF~, ~:2) and (~:b, ~:'~, ~ )  and two points u, u '~E with 
Ue~oc~tF~c~:2, u'eFbc~:'~c~ 2, ~(IFo, IF~) 90 ° and ~(~:o, lF~)=90  ° there exists 
an isometry  ~Iso(~_) with ~tu = u' and  ct(~:i) = ~:~ for i = 0, 1, 2 if and only if 
"~ (~:o, ~:~)= ~ (~:b, V1) and ~ (~:~, ~:2)= ~ (~:'t, ~:~), since for two perpendicular 
planes ~o and 0=2, a given point  u6tFo~:2 and two given angles ~Oo and (~2 with 
0 ° < q~o, tp2 < 90 ° there exist at  most  four planes IF with u~lF, ~g 0:o, ~:) = ~Oo and 

(~:2, ~:) = tp~ on which the Klein f'our group  generated by the reflections at  ~o and 

IF~ acts transitively. 
More  precisely, if q~o + ~o~ < 90 °, there exists no such plane, if ~0o + tp~ = 90 °, 

there exist two such planes bo th  of which contain  ~:oC~:2, and if ~o + ~0~ > 90 °, 
there exist four such planes none  of which contains  U:o ~ 0=2. 

So, for a bounded  G d i n b a u m  system (v; ~to, ~l,  ~t2) with dim~to = 2 we have 
(~o, ~l )  + ~ (ctl, ~2) > 90 ° and  for two bounded  G r i i n b a u m  systems (v; ~to, ~q, ~t2) 

and  (w; flo, fl~, fl~) there exists an isometry ~lso(~_) with ),ct~-~ = fl~ for i = 0, 1, 2 
if and only  if bo th  systems have the same angulari ty in which case we can compose 
), with a (unique!) di latat ion with center Ea°c~ If a~ c~E a~ to get a similarity between 

(v; ~to, ~q, ct2) and  (w; flo, ill, f12). Moreover ,  if the distance f rom v to  E~°c~lE ~ c~E ~ 
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coincides with the distance from w to ~#oc~ ~a '~  E #~, then this dilatation is either 
the identity or the inversion at w, so--for similar systems--this condition is necessary 
and sufficient for isometry. 

Finally, using Petrie duality, we can deduce corresponding results in case 
dimao = 1. So, altogether we have proved Proposition 4. 

PROPOSITION 4. Two bounded Griinbaum systems (v; %, cq, cc2) and (w; flo, ill, flz) 
are similar if and only if  they have the same anoularity and they are isometric if and 
only if in addition the distance from v to E~°~ ~ '  c~ ~a~ coincides with the distance 
from w to E#°c~ ~ ' ~  E #2. 

Let us now study the angularity of finite Griinbaum systems (v; So, ~1, ~2) with 
dim ~o = 2. Since (%,  ~1, ~2) is finite and since there is no line which is left invariant 
by (So, ~ ,  ~2), this group must leave invariant either a cube or a dodecahedron with 
center ~o c~ ~ c~ E ~2. In the first case this leads to g (~o, ~1), ~ (~1, ~2)e { 30 °, 45 °, 60 ° }, 
so in view of ~(~o, ~x)+ ~(~1, ~2)>90 ° we have the three possibilities 
~(~o, ~1)=45  ° and ~(~1, ~2)=60  ° , ~(~o, ~1)=60  ° and K(~I, ~2)=45  ° or 
g(~o, ~1)= 4:(~1, ~2)--60 ° (which, by the way, correspond to the cube, the 
octahedron and the tetrahedron---cf. §10). In the second case we get from an analysis 
of the reflection planes of a dodecahedron ,~ (So, ~) ,  ,,~ (~1, ~2)~{36 °, 60 °, 72 ° } and  

(%, ~1) ~ ~ (~ ,  ~2)--the last inequality being a consequence of the fact that the 
angle ~o between E ~' and the plane which is perpendicular to E ~° and to E ~2 satisfies 
also ~o~{36°, 60 °, 72 °} and sin 2 ~0 + sin 2 (K (~o,~)) + sin 2 (~  (~,~2)) = 2 = sin 2 36 ° + 
sin260 ° + sin272 °, so one has necessarily {~o, ~ (%, ~z), K (~ ,  ~2)} = {36 °, 60 °, 72°}. 
This can also be deduced from the fact that there is no isometry of a dodecahedron 
which switches two perpendicular ones among its reflection planes into each other 
since otherwise its isometry would contain a rotation of order 4. 

So we are left with the 6 possibilities (36 °, 60°), (36 °, 72°), (60 °, 36°), (60 °, 72°), 
(72 °, 36°), (72 °, 60 °) for ( ~ (~o, ~1), ~ (~ ,  ~)) ,  (which, by the way, correspond to the 
dodecahedron, the great dodecahedron, the icosahedron, the great icosahedron, the 
small stellated dodecahedron and the great stellated dodecahedron----cf. §10). 

If(v; So, ~ ,  ~2) is a finite Griinbaum system with dim~o = 1, then we may apply 
Petrie duality to conclude that, again, there are altogether at most 9 possibilities for 
the compatible angularities. More precisely, the Petrie duals of the nine cases (45 °, 60°), 
(60 °, 45°), (60 °, 60°), (36 °, 60°), (36 °, 72°), (60 °, 36°), (60 °, 72°), (72 °, 36°), (72 °, 60 °) 
have angularity (30 °, 60°), (30 °, 45°), (45 °, 60°), (18 °, 60°), (30 °, 72°), (18 °, 36°), (54 °, 
72°), (30 °, 36°), (54 °, 60°}--in respective order. This follows once again from the 
observation that for three pairwise perpendicular planes ~:~, ~:2, 0:3 and one additional 
line ~-/plane ~: one has 
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sin2(iF1, EL) + sin2(IF2, ~_) + sin2(IF3, [1_) = 1 

and 

sin2(IF~, IF) + sin2(IF2, IF) + sin2(iF3, IF) = 2, 

whereas for two lines I1_1, [l-2 and two planes IF1, IF2 with ~ (II_I,IF~) = ~ (L2, IF2) = 90 ° 
one has 9:(L1, IL2)= 90 ° -  ~(L1,  IF2)= 90 ° -  ~(U:I, L2)=  C:(IF~, IF2). So, in 
the three cubic cases with dim0to = 2 the angle between [ "  and E ~o'2 = E'°c~E "~ 
is determined by the fact t ha t - - coun t ing  mult ipl ici t ies--one must have 
{ ",~ (~o, cq), 9z (~q, ~2), 90 ° - ~ (cq, Cto0t2) } = {45 °, 60 °, 60 ° } whereas in the 6 dodeca- 
hedral cases one has { ~ (~o, ~t), ~ (cq, ~2), 90 ° - ~ ( ~ ,  ~o~2)} = {36 °, 60 °, 72°}. 

Since moreover  al together t8 similarity types of finite Grf inbaum polyhedra are 
known to exist (cf. [5]),  we have proved the following. 

P R O P O S I T I O N  5. A Grfinbaum system (v; ~to, ~tx, ct2) is finite if and only if 
dimct2 = dim~a = 2 and either dimcto = 2 and ( ~  (~o, Cq), ~ (cq,ct2))e{(45°,60°), 
(60 °, 45°), (60 °, 60°), (36 °, 60°), (36 °, 72°), (60 °, 36°), (60 °, 72°), (72 °, 36°), (72 °, 60°)} 
or dim~oct2 = 2 and ( g (Cto, cq), ~ (ctl, ct2))e { (30 °, 60°), (30 °, 45°), (45 °, 60°), (18 °, 60°), 
(30 °, 72°), (18 °, 36°), (54 °, 72°), (30 °, 36°), (54 °, 60°)}. Moreover, all these 18 possibilities 
do occur and each one is characterized up to similarity by these data. 

§7. The non planar rank 2 case 

Let us now study non  planar  Grf inbaum systems (v; Cto, ~1, ct2) for which there 
exists an invariant plane, i.e. a plane IF c IE with ~i(IF) = IF for all i = 0, 1, 2. Recall 
that for a discrete system this is equivalent r k ( < ~ o , ~ , ~ 2 > n T ) = 2 .  We claim 
the following. 

P R O P O S I T I O N  6. A non planar Griinbaum system (v; 0to, cq, ~2) has an invariant 
plane if, and only if, dim ~2 = dim ~1 = 2 and dim cto + dim ~o~2 = 1. 

Proof If(v; Cto, ~1, ct2) satisfies dim~2 = d im~l  = 2 and dimcto = 0 or dim~o~2 = O, 
then the plane IF which is perpendicular  to E ~2 and E ~' and contains E ~° or  [,o~2 
is necessarily an invariant  plane. 

Vice versa, assume (v; 0to, ~1, ~t2) to be a non  planar Gr i inbaum system and to 
possess an invariant plane IF. Since our  system is non  planar, we have v¢IF, so the 
line through v which is perpendicular  to IF is necessarily pointwise invariant  under 
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~1 and under  ~2, i.e., we have d i m ( E ~ ' n E ~ 2 ) ~ l  which implies (as above) 
dim~q = dim~2 = 2 in view of ~q~t2 :~ ctzcq. 

Since, moreover ,  one has always dimc~2 + dimcto +dim~to~2e{3, 5} and since 
dimcq = dim~2 = 2 and dim~o + dim~to~2 = 3 together with non planari ty is known 
to lead to bounded  Gr i inbaum systems which can never have an invariant plane 
(otherwise, as pointed out already above, the line through a fixed point which is 
perpendicular to an invariant plane would be invariant, too), we are indeed left with 
the case dimcto + dimctoCt2 = 1. [] 

Let  us now consider the isometry and the similarity problem for non  planar  
Gri inbaum systems (v; ~to, ~ ,  ~2) with dim~2 = dima~ = 2 and dim~o = 0. Obviously,  
if (w; flo, fit, f12) is another  such system with ~z (~q, ~2 )=  ~: (fl~, f12), then we can 
always find an isometry 7 with ~,v = w, ?~q~-~ = fl~ and ~ 2 7  -~ = f12.  Moreover ,  we 
can compose ~ with one of the four isometries 5 with 6w = w, 6fl~5- ~ = fl~, 5fl25 - ~ = f12 
so that 6TCtoT-~tS-~ --flo if and only if the distances d(~:~o,v) and d(E ~o, IE~,~ E ~z) 
of E ~o to v and to the line IE ~, c~ E ~z coincide with the corresponding distances in the 
system (w; flo, fl~, fl~). No te  that d(IE ~°, v )>  d(E ~°, E ~' c~ E ~)  > 0 since otherwise the 
plane containing v and perpendicular  to E ~' c~ 11 :~ would contain IE ~° and so it would 
be invariant. 

So we have a 2 parameter  family of isometry classes of such systems for any given 
angularity. Moreover ,  we can find a similarity fi with 6w = w, 6fl~6- ~ = ill, 5fl26- ~ = f12 
(so fi is the composi t ion of  an isometry with the same properties and a dilatation 

d(E% v) 
with center w) and with 5?Cto?- 15- ~ = flo if and only if the quotient  

which always exceeds 1 coincides with the corresponding quotient  for the system (w; 
fl0, ill, f12). So we have a one parameter  family of similarity classes of such systems for 
any given angularity. 

Using Petrie duality and ~z (~q, ct2)e{30 °, 45 °, 60 °} for discrete and non finite 
Griinbaum systems as well as the existence of altogether 6 one parameter  families of 
similarity classes of  Gr i inbaum polyhedra  whose isometry group leaves a plane 
invariant (cf. [5] )  the following proposi t ion results. 

P R O P O S I T I O N  7. A non planar, discrete Grf~nbaum system (v; ~o, ~q, ~2) has an 
invariant plane if and only if  dim ~q = dim ~2 = 2, dim ~to + dim ~0~t2 = 1 and 

(~1, ~t2)e {30 °, 45 °, 60°}, in which case 9: (0~1, ~to) + ~ (Ctl, CtoCt2) + 9: (cq, ~2) = 90 °. 

I f (w; flo, ill ,  f12) in another such system with the same angularity, then (v; ~to, cq, ~2) 
is isometric~similar to (w; flo, ill, f12) /f and only i f  d(~_ ~°, v ) =  d(E ~°, w) and 

. d(E ~°, v) d(E a°, w) 
d(~ ~°, ~ ' c~  E ~2) = d(IE tJo, Eu~ c~ EP2)/d(~:~o ~ n E ~2) = d(E p°, E p. c~ Ea2) ' respectively. 
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Moreover, for any choice of (dimGo, dim GoG2)e {(0, 1), (1, 0)}, ~(G1,G2)e 
d(E a°, v) 

{30°' 45°' 60°}' d(E ~°, E~l c~ E~2) > 1 and d(E ~°, v )>  0 there exists a corresponding 

non planar, discrete Griinbaum system with these values. 

~8. The rank 3 case 

Let us now consider the remaining non planar and non bounded Grfinbaum 
systems, i.e. those systems (v; Go, G1, ~2) for which there exists neither a fixed point 
nor  an invariant plane. According to the last remark in §5, their dimensionalities 
(dimG2, dimGlldimGo, dimGOG2) can attain any one of  the following values 
(2, 112, 1), (2, 111, 2), (2, 111, 0), (2, llO, 1), (1, 2[1, 1), (1, 111, 1). 

So, in particular, v is always determined as the intersection of E ' '  and fr "2. 
We claim at  first Proposi t ion 8. 

P R O P O S I T I O N  8. If(v; ~to, G1, ct2) is a non planar Griinbaum system without a 
fixed point or an invariant plane, then ~: (Go, G1)e{0°,90 °} if  and only / f  dimcto = 0 
(and, hence, ~ (~o, Gt) = 0°). 

Proof. If dimGo = 0, then, of course, z; (Go, Ctl)= 0 ° and ~ (0~OG2 , ~ t l ) =  90 ° -  
~(ct2, G1)~{0 °, 90°}. So- -us ing  Petrie dua l i ty - -we  have ~(Go, Gi)6{0 °, 90 °} if 
dimGoG2 = 0. If dim~to = dimaoa2 = dimG2 = 1 and ~ (Go, G1)e{0 °, 90°}, then the 
plane containing v which is perpendicular  to E ~° would be invariant. 

In the remaining cases we have dimG2 = 2, dimG1 = 1 and dimGo + dimatoG2 = 3. 
But then dimGo = 1 and ~(Go, G l ) = 0  ° is ruled out, since it implies I :~' c_~ :~2, 
dimGo = t and ,): (Go, Gi) = 90 ° is ruled out, since in this case the plane containing v 
which is perpendicular  to E ~° would be invariant, dimG0 = 2 and ~ (G0, Gl) = 0 ° is 
ruled out,  since in this case the line through v which is perpendicular  to E ~° would be 
invariant,  and the last possibility dimGo = 2 and ~ (Go, G1) = 90 ° is also ruled out, 
since in this case E ~o n E ~' ~ ~:~ and therefore ~oG1 = ~lGo, contradict ing Proposit ion 1. 

Next,  let us observe that  in case dim~t2 = 2, dim~q = 1 the classification of 
isometry/similarity types for given angulari ty can be derived from the corresponding 
classification in case dimG2 = dimG1 = 2 s ince--with  respect to this quest ion--we 
may always replace ~tl by the product  fl~ of  G1 with the inversion at v which is a 
plane reflection. Hence in case dimGo + dimGoG2 = 3 the angulari ty determines the 
similarity type and the angulari ty together  with the distaace d(v, E ~°) from v to E ~° 
determines the isometric type, whereas in case dim Go + dim GoG2 = 1 the isometry 
type is determined by the angulari ty and d(~ :~°, v) and d(H :~°, E~c~E a~) and the 
similarity type by the angulari ty and the quot ient  of  these two distances. 
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Moreover ,  in case dima2 = dimoco = 1, d imal  = 2 and in case dima2 = dimao = 
dim oq = 1, the angulari ty determines the similarity type and the angulari ty together  
with the distance d(E%, v) determines the isometric type, s ince--as  above - - fo r  the 
given pair of  or thogonal  lines IF ~° and IE ~2 there are at most  four planes (or lines) 
0: with ~:~°n ~2 _ IF and with given angles ~: (IF, ~o) and ~ (L IF~2) and the Klein four 
group (ao, a2 > acts transitively on those planes (or lines), so there are at most  eight 
such planes (or lines) through v and the group generated by Oto, a2 and the inversion 
at ~ ° n  E ~' acts transitively on those planes (or lines). Finally, we know that the 
discreteness of(v; ao, al ,  a2)  implies ¢:(al, a2)e {30 °, 45 °, 60 ° } and- -us ing  Proposi t ion 
8--i t  implies ¢:(ao, a l ) e{30  °, 45 °, 60 °} or dim~o = 0 as well as (using Petrie duality) 
~c (ao~2, a l ) e  {30 °, 45 °, 60 °} or  dim~oc~2 = O. 

Hence in case dim~2 = 2, d imal  = 1, dimao = 2, dim0~o~2 = 1, in which case we 
have necessarily (90 ° -  ~(a~,  ~2))+(90 ° -  ~(a~,  a o ) ) >  ~C(ao, ~ 2 ) = 9 0  °, i.e. 
,.'c (ao, a t ) +  ¢ (ao, a t ) <  90 °, we are left with the three possibilities ~ (ao, ~ ) =  
~((0q, a 2 ) = 3 0  ° , ~ (ao ,  a i ) = 3 0  ° and ~ ( a l ,  0~2)=45 ° or -~C(ao, a l ) = 4 5  ° and 

(0~1, 0(2) = 30 °. 
F rom sin2(,)C(ao, a l ) ) +  sin2(~(0q, a2)+  sin2(90 ° -  ~ (a l ,  0Coa2))= 1 one derives 

easily that the corresponding Petrie dual cases are characterized up to similarity 
by dima2 = 2, dime1 = dim~o = 1, dimc~oC~2 = 2 and (.~(ao, ~l), ,~(oq, ~2) )=  
(45 °, 30°), (60 °, 45 °) or  (60 °, 30°), respectively. 

In case dim~2 = 2, d i m ~  = 1 and dim~o = 0, the condit ion ~c(~t, ~ 2 ) =  30 °, 
45 ° or 60 ° is the only condit ion which has to be specified and in the Petrie dual case 
dim a2 = 2, dim0q = dim0~o = 1, dim~oa2 = 0, the corresponding conditions are 
(~: T- ao, ~ ) ,  ,): T-a~,~2)) = (60 °, 30°), (45 °, 45 °) or (30 °, 60°), respectively. 

In case dim a2 = dim0~o = dim aoa2 = 1 and dim al = 2, one has necessarily 
sinZ(~(ao, ~ i ) )+s in2(gz(a l ,  ~2))+sin2(gz(al ,  a2~xo))= 1, so one has (¢(ao ,  al), 
~(ctl, a2), 9z (cq, ot2ao)) = (30 °, 30 °, 45°), (30 °, 45 °, 30 °) or  (45 °, 30 °, 30°), the first case 
being Petrie dual to the last one and the second case being Petrie dual to itself. 

And finally, in case dim (X 2 = dim cq = dim Cto = dim ~toOt2 = 1, one has necessarily 
sinE(~z(ao, a l ) )+ ( s in2 (~ (cq ,  a2))+sin2(gz(oq, a2ao))= 2, so one has (9:(ao, cq), 
~:(~, a2), ¢:(at, a2~to)) = (45 °, 60 °, 60°), (60 °, 45 °, 60 °) or (60 °, 60 °, 45°), again the 
first one being Petrie dual to the last one and the second one being Petrie dual to 
itself. Actually, it was this last configuration which has been overlooked in [5]. 

So we have proved the following. 

P R O P O S I T I O N  9. If(v; Cto, a l ,  a2)  is a non planar and non finite discrete Griinbaum 

system without an invariant plane then the 7-tupel (dima2, dim 0q, dim Oto, dim 0toOt2; .~ 
(~o, ~q), g (oq, a2), ~ (~q, ot2O~o)) can assume thefollowino values, only: 

(2, 1, 2, 1; 30 °, 30 °, 45°), (2, 1, 2, 1; 30 °, 45 °, 60°), (2, 1, 2, 1; 45 °, 30 °, 60°), 
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(2, 1, 1, 2; 45 °, 30 °, 30°), (2, 1, 1, 2; 60 °, 45 °, 30°), (2, 1, 1, 2; 60 °, 30 °, 45°), 
(2, 1, 0, 1; 0 °, 30 °, 60°), (2, 1, 0, 1; 0 °, 45 °, 45°), (2, 1, 0, 1; 0 °, 60 °, 30°), 
(2, 1, 1, 0; 60 °, 30 °, 0°), (2, 1, 1, 0; 45 °, 45 °, 0°), (2, 1, 1, 0; 30 °, 60 °, 0°), 
(1, 2, 1, 1; 30 °, 30 °, 45°), (I, 2, 1, 1; 30 °, 45 °, 30°), (1, 2, 1, 1; 45 °, 30 °, 30°), 
(1, 1, 1, 1; 45 °, 60 °, 60°), (1, 1, 1, 1; 60 °, 45 °, 60°), (1, 1, 1, 1; 60 °, 60 °, 45°). 

Moreover, these values determine the Griinbaum system up to similarity except 
in case dim~o + dim~o~2 = 1, in which case the similarity type is determined by these 
values together with the quotient d(E "°, v)/d(E "°, P2c~Uh) which can assume any 

value larger than 1 where [31 denotes the product oral  with the inversion at v. 
In the last section, where we are going to compare  this list to the list of polyhedra 

given by Branko  Gr i inbaum in [5], we will also see that  all these values can indeed 
be at tained by discrete Gr i inbaum systems. T o  prepare this comparison,  we will discuss 
regular polygons in the next  section which we will study, quite generally, in the 
euclidean n-space rather  than in 3-space, not  only because it can be done easily in 
this generality, but also because things will become clearer this way. 

§9. Regular polygons 

According to [5], a (regular) polygon in the euclidean n-space IE = I£" consists 
of a non empty  set V _  E of vertices and a set E ~ ~2(V)  :=  {e _ Vl#e = 2} of edges 
such that for each vertex v e V one has # {ely e e} = 2 and for any two vertices v, w e V 
there exists a finite sequence v = Vo, vl, . . . ,  Vk = We V of vertices with {v0, vl}, 
{vl, v2} . . . . .  {vk-l, vk}eE (and, moreover ,  for any two pairs (v, e) and (w, f )  in V x E 
with v e e and w ~f(i.e. for any two "flags") there exists an isometry ~ ~ E with ~(V) = V, 
the induced map  ~: 2~i~2(V)--¢ '~2(V)  maps E onto  E, ~(v) = w and oc(e) =J) .  

Two regular polygons (V, E) and (IV, F)  are defined to be isometric/similar if there 
exists an isometry/similari ty ~: E ---, E with ~(V) = W such that the induced map c~: 
~2(V)--,  ~2(IV) maps E on to  F, in which case one can find such an ~ for any (v, e)E 
V x E with v e e  and any ( w , f ) e  W x F with w ~ f w h i c h  in addit ion satisfies ~(v) = w 

and ~ (e )= f .  
Now assume (V, E) to be a regular polygon and pick some ve  V. Let  e = {v, w} 

and e' = {v, w'} denote  the two edges containing v and let ~ denote  an isometry with 
~(IO = V, <z(E) = E, cz(~v) = v and c~(e) = e', in part icular  ~(v) = w' and o~2(v) # v, since 
otherwise w" = ~(v)= ~ -  l(v) = w in contradict ion to e #e ' .  Then we have (~>v = :  {~"(v)[ 
n ~ E} = V and (~>e = :{~"(e)ln E 2~} = E, since at least ~"(vi e V and ~"(e)e E for each 

neT/,  so in case (~>v c V we may  find some vertex u~(oOv and some vertex 

u e V\ (~>v with {u, u'} e E. But for u = ~"(v) we have the two edges ~"(e) = {~"(v), @(w)} 
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and c("(e') = {~"(v), ~"(w')} with u e ~t"(e) and u e ~"(e'). Since moreover  ~"(e) # ct"(e'), we 
have necessarily either {u, u'} = ~t"(e)= {~"(v), ct"(w)} = {ct"(v), ~"-~(v)} or  {u, u'} 
= ~"(e') = {~t"(v), ~"(w')} = {~"(v), ~"+~(v)}, so in any case we have u'e(~t)v.  

P R O P O S I T I O N  10. (i) A set V ~_ ~_ together with a set E ~ ~2(V) is a regular 
polygon if and only if  there exists some ~e  Iso(lE) and some v e ~_\~_~ with (c~)v = V 
and (~){v ,  ~v} = E. 

(ii) Moreover, if(v, ~t), (w, fl)eE_ × Iso(E), v¢~9,  w¢IE ~, then ((¢t)v, (~t){v, av}) and 
((fl)w, (fl){w, flw}) are isometric~similar if and only is there exists an isometry/ 

similarity 7 with 7v = w and 7~7-a[<b>~ = fl[<b>~" 

Proof (i): We have to show that for a e l s o  (E) and veE\IE "2 the set V : =  (0t)v 
forms the set of vertices of a regular polygon with edge set E : =  (a){v,  a(v)}. 

Since for any n e e  one has ~"(v)e{~"(v), ct"+l(v)}=c("({v, ~(v)}), ct"(v)e 
{c("-l(v), ~"(v)} = ~"-1({v,~(v)}) and ~ " - l ( v ) #  ~"+l(v) any element in V is indeed 
contained in at least two different sets in E. Moreover ,  ~t"(v)e :tk({v, ~(V)}) for some 
k e 2~ implies ~"(v) = ~k(v) or ~"(v) = ~k+ I(V ) and hence ~k({v, ~(V)}) = {~tk(v), ~k+ I(V)} = 
{~"(V), ~"+ I(V)} = ~"({V, a(V)}) or ~k({v, ~(V)})= ~"-I({V, ~t(V)}), SO there is no further 
set in E which contains ~"(v). 

Finally, for ct"(v), 7re(v) e Vand,  say, n < m, the sequence vo = ct"(v), vt = ~"+ l(v) . . . . .  
{vm-, = ~"(v) satisfies {vo, vl}, {v~, Vz}, . . . ,  {v , , - , -  ~, vm-,}eE,  so (V, E) i s  a polygon. 

To show regularity, we observe at first that ( : t )  acts transitively on the "flags" 
of the form (~"(v), {~"(v), ~"+ l(v)}) and on the flags of the form (~"(v), {~"(v), ~"-l(v)}). 
So it is enough to show that there exists an isometry/ / :  E-* E with fl(ct"(v)) = a-"(v) 
for each n e 2~ which follows from the fact that the euclidean distance between ct"(v) 
and ~"(v) coincides with the euclidean distance between ct-"(v)= ~-"-"(ctm(v)) and 
~-~(v) = ~-m-"(~"(v)) .  

(ii) If (v, c(), (w, /~)elE × Iso (E), vCE_ "~, weE_ t~2, V = ( ~ ) v ,  E =  (~){v,  ct(v)}, 
W = (/~)w and F = (/~) {w,/~(w)}, and if the polygons ( V, E) and (W, F) are isometric/ 
similar, then there exists an isometry/similarity 7 with 7(v) = w, 7(~t(v)) = fl(w), 7(V) = W 
and 7(E) = F. It follows that  7(~"(v)) = ~q"(w), so for//"(w) e Wwe have (7ct 7-  ~)(/~"(w)) = 

(7~-I)(7(c("(v)) ) = 7(ct "+ ~(v)) = fl"+ l(w) = fl(fl"(w)), i.e. we have 7~7-~lw = fllw. 
Vice versa, if 7v = w and 7c(7-~1~ = fll~ for some isometry/similarity 7, then 

;(~"(v)) = (7~,7-x)(Tv)= (7~t7-~)"(w)=/~"(w), so 7 establishes an isometry/similarity 
between (V, E) and (W, F). [ ]  

We are now going to associate with each regular polygon (V, E) a certain mapping 
f =- fv .  ~) from S ~ : = {z e C Ilzl = 1 } into II~ +, the set of non negative real numbers, which 
determines (V, E) up to isometry. 
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We begin by representing (V, E) in the form (<~>v, <~){v, ~(v)}) according to 
Proposition 10. Then we consider the (linear) action of ~ on the real vectorspace T 
of translations of IF given by ~: T--* T: O~--~(9) : = a~9c¢-1 Let <l>: T x T--* 1~: (9l, ~2)~ 
<`91[~2> denote the canonical positive definite form on T which is induced from the 
euclidean metric on ~. Since ~: T ~  Tpreserves this form, the action of~ is diagonizable 
once we extend it to an action, also denoted by ~, on the complexification C ® T 
of T, i.e. C ® T splits canonically into the direct sum of its ~-eigenspaces (C @ T)~ = : 
{`9 ~ C ® Ti~(~) = z ' ,9} ,  i.e. C ® T = •(C ® T)z. Moreover, (C ® T)~ = 0 unless z ~ S 1, 

z 

complex conjugation swaps (C @ T)~ and (C @ ~ and the above decomposition is 
a decomposition into pairwise perpendicular subspaces with respect to the canonical 
extension of <1) to a hermitian form on C ®  T which will also be denoted by (I). 

Now consider the translation T = z~v) which maps v onto ~(v) and its decomposition 

T = (9 v ~  @ (C (9 T)~ into ~-eigenvectors and define f :  =J~,,,~: S 1--, E+ by f (z) := 
Z~S 1 z~S 1 

At first, we observe that J~.,.)=J~p,~ whenever there exists some isometry 7 
with 7 v =  w and ~,c¢7-al<~>~=l/t<p>~, since these conditions imply 7(~"(v))= 
(7~"7-1)(7(v)) = ('2~7-1)"(w) = ~"(w), so f maps the ~-invariant subspace T~ of transla- 
tions which preserve the affine subspace <<~>v), spanned by <~)v, isometrically onto 
the correspondingly defined ~-invariant subspace T~, it maps r = r~u,)~ ~ onto 
r ' :  = r~ ~) ~ T~ and it satisfies ~(~(0)) = ]~(~(0)) for ,9 e T~, so the decomposition r = 

z~ of • into a sum of ~-eigenvectors is mapped by ~ into the corresponding 

decomposition r' = (9 r'~ of z' into a sum of ~-eigenvectors, in particular, f,~,,~(z) = 
z~S 

<'[zl"(Jz> 1/2 = <'[tzl"[z> l/2 = f((~.)w) for all z ~ S 1 ,  i . e .  J ~ , , , )  =J~a.w). 
It follows, that for (V, E) = (<.>v, <.>{v, ~(v)}) the mapf,.~l depends only on the 

polygon (V, E) and that, moreover, it depends only on the isometry class of (V, E). 
It is easy to see that - vice versa - it also determines this isometry class, since for 
any n, m~Z we can compute the distance d(~"(v), c~m(v)) in terms o f f = f . . . ~ :  since 

d(~"(v) ,  ~"(v)) = d(~"-'(v),  v) = d(v,  ~"-"(v)),  we may assume w.l.o.g, that n > 0 = m. 
Consider the translation 9. which maps v into ~"(v) and, hence, satisfies <0.19.> = 
d(~"(v), v) ~. Since 0. is the sum of the translations &~(z) (i = 0 . . . . .  n - 1) which map 

n - 1  n - 1  1 - z n 
:d(v) onto ~+~(v), we have 0 . =  Z ~ (z )=  Z Z z i z ~ = n . r ~ +  E -r~ and 

i=o i=o z~s, zes,.,{uv~° 1 - z 
1 - R e ( z " ) . . . z  

therefore d(~"(v ) ,v )  ~ = (,9.1,9.} = n'f(1) 2 + Z - l ~ j ~ , z )  . 
z~S ~ ',{ I } v04n 

It is also easily seen that the dimension of the affine subspace < V), spanned by 
V = <co>v, coincides with the cardinatity of the support supp(f) :  = {z e S ~ If(z) # 0} 
o f f  since both coincide with the dimension of the c~-invariant subspace (~"(~)1 n ~ Y > 
T of T, generated by z = r~ ~). 
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So we have proved parts  of Proposi t ion 11. 

P R O P O S I T I O N  1 I. There is a one to one correspondence between isometry classes 
of regular polygons in ~_" and mappings f:  $1--+ ~ + of the unit circle into the set of 
non negative real numbers which satisfy f (z) = f (D for all zeS  a, supp( f )  ~ { - 1} and 

#supp(f)  ~< n. 
l f  f = J~v,E): S 1 ~ ~ + is associated to the regular polygon ( V, E) with respect to this 

correspondence, then the following holds: 

(i) ifvo, V, , . . . ,vne V;el = :{v0, vl} . . . . .  e, = :{Vn-l,V,}eEandel -'/: e2 ¢ ... ¢ e,, 
then 

d(vo, v,) 2 = n 'f(1)  2 + s~. ~ f(z)2; 

(ii) V is bounded if and only/ f f(1)  = 0; 
(iii) V is finite if and only/f f(1) = 0 and supp(f)~_ {exp(2rci'qlqeQ}, 
(iv) V is discrete and infinite if and only/ f  f(1)  ¢ 0, so a regular polygon is either 

discrete or bounded; 
(v) (V, E) is similar to (W, F) if and only if there is some 2 > 0 with f(v,E) = 2]iw,v); 

(vi) the dimension of the affine subspace (V) ,  spanned by V, coincides with 

#supp(f). 

Proof. As above,  let T denote the real vectorspace of translations of F. We have 
shown already how to associate to a regular polygon (V, E) a mapf=f~v,E~:S 1 ~ ~+ 
which characterizes (V, E) up to isometry by representing (V, E) in the form 
(V, E ) =  ( (~)v ,  (~ ){v ,  ~(v)}) and studying the decomposi t ion  of the translat ion 

= r; ~') with r ( v ) =  ~(v) into 5-eigenvectors ~ = ® z~ with respect to the linear 
z ~ S  1 

action 5: TF--~ TO~--~e~cC 1 Since complex conjugat ion in C ® T fixes T, it maps  ~= onto  

r:, so we h a v e f ( z ) : =  (T=[r=) 1/z = (r:{v~) 1/2 = f ( / ) .  Since supp( f )  is contained in the 
set A~ of eigenvalues of  the linear opera to r  5, we have #supp(f )  ~< n. Since e2(v) ¢- v, 
we have ( ~ -  1)(ev) = e(~(v)) = c~Z(v) 4: v = ~- 1 (w) = ~-  l(ev) and, hence, a r e -  1 4: ~-  1 

= - ~, i.e. ~ 4: r -  ~ which implies z= ¢ 0 for some z e S ~\ { - t }, i.e. supp( f )  ¢: { - t}. So, 
the map f =fly,E): S~ ~ R +, associated with a regular polygon (V, E) satisfies indeed 

the special condit ions stated in Proposi t ion  11. 
Assertions (i) and  (vi) have also been established already and the assertions (ii)-(v) 

follow immediately from (i). 

So it remains to show that  for any m a p  f:  S 1 __+ I~ + withf(z)  = f(z3, supp( f )  ¢ { - 1 } 
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and # s u p p ( f ) <  n there exists a regular polygon (V, E) with f=J~v,e) .  But, at least, 
there exists some isometry  ~ with supp( f )  ___ A, and so, this follows from 
Propos i t ion  12. 

P R O P O S I T I O N  12. lf~t~lso(l~) and/f f :~+ satisfies flz) = f ( : ? ) ( z ~ S  ~) as well as 
supp( f )  ¢ { -  1}, then there exists some v~E\~_ ~ with f = f,.~) if and only/ fsupp(f)  is 
contained in the set A~ of eioenvalues of ~ and f (1 )  = m(~ ) :=  i nf(d(w, ~(w))[we E). 

Moreover, for each ~e Iso(E) there exists some we E with d(w, ~(w)) = re(c0, in parti- 
cular one has m(ot)=O if and only if ~_~ ~ ~ ,  and if E~ ~ ~ and OcT ~, then 
m(0~9) = (,9/,9) x/2, so, if f satisfies all of the above conditions except perhaps f(1) = m(~), 
one can always replace o~ by the composition ~O of ~ with some translation ~ so that f (l) 
= m(ot~9) in which case there exists some v e E \ E  ~a)~ wi th f=f~ . ,o .  

R E M A R K .  This is, of  course, in accordance with the well known fact that  E" :~ 
if l e A ,  and that  ct satisfies ~ z =  1 if and only if A , =  { - 1 }  or A,~_{___I} and 

Proof If v e ~ \ E  "~, weE, ~ = r~ ~m, ,9 = r~' and f = f , . , ) ,  then e ( w ) =  a(~9(v))= 
(~(0))(c~(v)) = (~(~9))(r(0- l(w)) shows that  ~'2 w) = ~(0) - 0 + ~, so we have d(w, e(w)) = 

( ~ ( 0 )  - 0 + ~I~(0 )  - 0 + v )  ~/z = ( ( ~ ( ~ )  - 0 + @ r~ l~ (0 )  - ~ + ® z~ > + ( z ~  lr~ ))~/2 
z ; e l  z ¢ l  

> f ( t ) ,  since (&(oq) - 01~1) = (&(0)Iv1) - (~9!xl) = (01&-~(r~))  - ( 0 l ~ ) )  = ( 0 1 ~ )  
1 

- (0 [z~)  = 0, whereas d(w, ~t(w)) = f ( 1 )  for 0 = @ 7 - - ~ r ~ T =  I ® T ~ _ C ® T .  
z ¢ l l  - - Z  

This compu ta t ion  shows also that  m(~) = inf(d(w,~(w))lweE) is always assumed 
by some weE, in par t icular  m(~) = 0 if and only if E" # ~ ,  and  that  d(w, ~(w)) = m(~) 
if and only if z~ w) is fixed by ~. It is also clear that  supp(f,,v~) _~ A,. 

Vice versa, if f (1)  = inf(d(w, ~t(w))lwe E) = d(v, ~(v)) for some  v ~ E - -  so we have 
~(T~ ~v)) = z~ tm - -  and,  if supp( f )  c A, for some f : S  1 ~ ~+  with supp( f )  ~ { - 1} and 

f ( z )=f(~)(zeS1) ,  then we can find for each z e s u p p ( f ) \ { 1 }  some  ~ e ( C ® T ) ~  
with (~9~t~) = f ( z )  such that  ~9, coincides with the complex conjugate  of 9~ for all 

1 
z e supp(f ) ,  in which case there exists some o a e T with ,9 = 1 ® ~ = @ ~ 0~ 

z ~ s u p p ( f ~  { 1 } 2 - -  

and w = O(v) satisfies w e  E\~ ~ a n d f = f ~ . ~ .  
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Finally, if w e ~  ~ ~ ~ and  0 e  T ~, then ~0 = 9c~ and ~(q(w)) = ~(q)w for q~  T, so 
one has 

m(~O) = m(O~) = inf(d(u, O(o:(u)))l u e E) = inf(d(q(w), O(~(q(w)))))l  q e T) = 

= inf((  - q  + 0 + ~(r/)l - r / +  0 + ~(r/)) 1/2) = 

= inf((~(q) - ql~(r/) -- r/) + (oalO))~/21r/~ T ) = ( 9 t 9 )  1/2. 

In particular,  if E = E a is the three dimensional  euclidean space, then we have 
one similarity class of one-dimensional  polygons,  associated with the mappings  
f :  S ~ ~ R + with suppor t  { 1 }, we have a one-paramete r  family of similarity classes of 
planar polygons associated with the mappings  of  suppor t  { + 1, - 1}, all of  which 
are discrete and infinite, for each z = x + iy ~ S ~ with y > 0 there exists one similarity 
class of p lanar  polygons (V, E) associated with the mappings  f :  S ~ ~ R + with suppor t  
{z, ~} (and (V, E) is finite if and only if z~{ex p  ( 2 n i . q [ q ~ Q } )  and there exist two 
one-parameter  families of  similarity classes of  non-p lanar  polygons (V, E), associated 
with the mappings  f :  S ~--, 1t~+ with suppor t  {1, z, ~} or { - 1 ,  z, ~}, respectively. In 
the first case all polygons  are discrete and infinite, in the second case all polygons 
are bounded and they are finite if and only if ze{exp ( 2 r c i ' q l q e Q } .  

And, if ~ I s o ( ~ ) ,  w E \ E  ~, (V, E ) = ( ( ~ ) v ,  (~){v ,  ~(v)}), d i m ( ( V ) ) ~ > 2  and 
f = J],.~ = j~v.E), then in case E" = ~ one has either dim((/I")) = 2 and A, = supp( f )  = 
{ + 1, - 1 } or  d im ( (V) )  = 3 and A, = supp( f )  = { 1, z, :?} for some z e S ~\{ + 1, - 1 }, 
whereas in case E ' - ¢  ~ there exists some z e A , \ { +  1, - 1 } ,  and one has either 

d im((V))  = 2 and supp( f )  = {z, ~?} or  d i m ( ( V ) )  = 3 and supp( f )  = A~ = { -  1, z, ~} 
and ( V, E) is finite if and only if ~ is of  finite order if and only if z" = 1 for some n > 0. 

§10. Comparison to Branko Griinbaum's list of regular polyhedra 

We are now well p repared  to compare  our  list of Gr i inbaum systems to the 

list of regular polyhedra  given in [5]. There the classification scheme is in terms 
of the polygon and the vertex figure associated with a regular polyhedron.  

Let us restrict ou r  a t tent ion to the non planar  case. So let H = (Vo, V1, I/'2) be 
a regular, non  p lanar  po lyhedron  in the sense of [5], let (Vo, vl, v2)~ Vo x VI x I/2 

be a H-flag and  let (v = vo; ~0, ~ ,  ~2) denote  the associated Gr i inbaum system. Then  
Po = : (  w w~,v2)  is a regular polygon which coincides with ((~o~l),(~o~l){v,~o(v)}) 

and whose isometry class depends only on H and not  on the element v2E I/2 and 

P~ :=  ({we Vol there exists a sequence of flags i i . (vo, V~,V~) - t = O, 1 . . . . .  n - 

with v ° = vl,  v ° = v2, ~ = {v, w} and either v] = v] -~ or 
v~ = v~- 1 for i = 1 . . . . .  n}, { { w, w'} ~ ~2(Vo) l there exists a sequence 
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of flags (Vo, v~, v~) - i = 0, 1 . . . . .  n - - w i t h  v ° = v~, v ° = v2, 
v] -1 = {v, w}, v] = {v, w'} and either vii = v~ -1 or  v~ = v~ -~ for 

i =  ~ . . . . .  n} )  

AEQ. MATH. 

is a regular polygon,  too, which coincides with (<cq72>(~o(V)), @lct2>{~to(V), ~lCto(V)}) 
and whose isometry class depends also only on I-1 and not  on the flag (vo, Vl, v2). 
The classification of  regular polyhedra,  given in [5],  is in terms of the isometry classes 

of  these two polygons.  Let us therefore compute  the support  o f f o : = f ~  . . . . . .  ~ and of 
f l  : =  f~l~,~otv)). Since (~oCtt>v cannot  be contained in a straight line IF, since 
otherwise <C~o~1 )v _ ~: = <v, C~o(V)> ~_ E ~2, which would imply <~to, ~i, ~tz)v _ U ~ in 
contradict ion to ~21<~o.~, ~ > v #- ldl <~o . . . . . .  >, we have necessarily supp(fo) ~ { 1 }. 

Note  also that IP °'~ ~ ~ if and only if tE'onE ' '  # ~ ,  since <cto, s t>  acts as a 
finite g roup  (of order  at most  2) on E . . . .  . So, if d i m ~ o = 0 ,  we have A .... = 

{ + 1 ,  - 1 }  and supp ( fo )=  {+1 ,  - 1 } ,  i.e. Po is a zigzag polygon,  and if dim~0 = 
dimcq >/1 and 0 ° < ~(~o, ~ )  = : ~b < 90 ° we have A,o, ~ = {1, cos 2(0 + / . s i n  2~o, cos 
2 q ~ - / . s i n  2(o}, so we have supp ( fo )=  {cos 2(o + sin 2(0} if IE'°c~ E ~ # ~ --- which, 

by the way, is equivalent to dim~o = dim~2 = 2 and leads to planar polygons 
which are "convex" if and only if 2¢p divides 360 °, so it leads to convex polygons 
unless q0 = 72 °, whereas in case ~,o c~ E "~ = ~ - -  which, by the way, is equivalent 

to dim~o = d i m ~  = 1 - -  we have s u p p ( f o ) =  {1,cos2q~_+i.sin2q~} which leads 
to helical polygons.  Finally, if dim~o #: d i m ~  and  0 < q~: = 90 ° - ~:(~o, ~ )  < 90 °, 

then A~o~ ~ = { - 1 ,  cos 2(o _+/-sin 2~o} and - 1  ~ supp(fo) if and only if ve  I~ ~ is con- 
tained in the plane which contains the one-dimensional  subspace a m o n g  ~o and U ~ 
and is perpendicular  to the two dimensional  one. So, if dim ~1 = 1 < dim Cto = 2, we 
have supp(fo) = {cos 2(o _+/-sin 2q~}, whereas in case d i m ~  > dim~o = 1 we have 

supp(fo) = { - 1, cos 2(o ___/.sin 2~o} since in this case the plane containing v and ~° 
is necessarily invariant under  ~2, so for a non planar  polyhedron this plane cannot 

be perpendicular to ~ .  

Let us now consider supp(fl).  Since ve 1~ ~ c~ ~ :  4: ~ ,  we have necessarily f:(1) = 0, 

so in case dim~q = dim~t2 and hence - 1 ¢ A ~ t ~  we have necessarily supp(f~)= 

{cos 2~0 _+. i. sin 2~,} for ~k : =  ~ (~q, ct2) whereas in case dim ~l 4: dim ~t2 we have--with  
~k : = 90 ° - g (~l, c t2)-  {cos 2~, _+ i. sin 2~,} ~ supp(f l )  ~_ A~,,~ = { - 1, cos 2q~ _+ i" sin 2~0) 

with - l ~ s u p p ( f ~ )  if and only if ~o(V)etP ~ is contained in the plane which 

contains the one-dimensional  subspace a m o n g  the two subspaces tP, and IP 2 and 

is perpendicular to the two dimensional one. So we have - 1 Csupp(f~) if dim IE ~ = 1, 
whereas in case dim ~ '  = 1 < dim ~ = 2 the plane containing ~ and ~to(V) cannot 

be perpendicular to IP • in the non planar case, so we have supp(f~) -= 

{ - 1, cos2~k _+ i.sin2~b} in this case. 
It is now easy to identify the Gr i inbaum systems associated to the various classes 

of  regular polyhedra  described in [1]. We summarize the result in the following table: 
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Gr i inbaum's  description dimao d imal  dima2 ~(~o,  al)  aX (cq, ~t2) 

class 1: Platonic polyhedra 2 2 2 ¢ 72 ° 4:72 ° 
{3, 3} te t rahedron 60 ° 60 ° 
{3, 4} octahedron 60 ° 45 ° 
{4, 3} cube 45 ° 60 ° 
{3, 5} icosahedron 60 ° 36 ° 
{5, 3} dodecahedron 36 ° 60 ° 

class 2: planar tesselations 1 1 1 ,~ (ct0, c q ) +  g (~th ct2) = 90 ° 
{4, 4} 45 ° 45 ° 
{3, 6} 60 ° 30 ° 
{6, 3} 30 ° 60 ° 

class 3: Kepler-Poinsot  polyhedra 2 2 2 72~e #: (~to, ctl), ~ (cq, ~tz) 
{5, 5/2} great dodecahedron 36 ° 72 ° 
{3, 5/2} great icosahedron 60 ° 72 ° 
{5/2, 5} small stellated 

dodecahedron 72 ° 36 ° 
{5/2, 3} great stellated 

dodecahedron 72 ° 60 ¢~ 

class 4: Petrie-Coxeter polyhedra 2 1 2 
{4, 6"/3/1} 45 ° 30 ° 
{6, 44s'~12'/1} 30 ° 45 ° 
{6, 633°3Y/1} 30 ° 30 ° 

class 5: 

class 6: 

Finite regular polyhedra with 
finite skew polygons 
{4"/1, 3} 
{6":3/1, 4} 
{6"/2t 1 , 4} 
{lo"/3/1, 5} 
{6":5/1, 5} 
{63"/'/1, 5/2} 

{10~/3/3, 5/2} 
{ 103"/5/1, 3} 

{ 10"/~/3, 3} 

Infinite polyhedra with finite 
skew polygons 
three infinite families of 
similarity classes 
{4~/1, 4} 
{6"/1, 3} 
{2.3"/1, 6} 
three individual similarity 
classes 
{ 6"/3, 6} 
{4"/3/1, 6} 
{6"/2/1, 4} 

1 2 2 

1 2 

1 2 

1 2 1 

45 ° 60 ° 
30 ° 45 ° 
30 ° 60 ° 
18 ° 36 ° 
30 ° 36 ° 
30 ° 72 ° 
54 ° 72 ° 
18 ° 60 ° 
54 ° 60 ° 

45 ° 45 ° 
30 ° 60 ° 
60 ° 30 ° 

30 ° 30 ° 
45 ° 30 ° 
30 ° 45 ° 
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G r i i n b a u m ' s  descr ipt ion dimao d i m ~  dimct2 ~ (ao, ~t) 4: (~, ~) 

class 7: Regular  polyhedra  with 
zig-zag polygons  0 
three infinite families with 
an  invar iant  p lane 0 2 2 
{o~', 4} 
{~',  3} 
{o~', 6} 
three infinite families wi thou t  
an  invar iant  p lane 
{ ~ : ~ ,  4 ~*~/1 } 0 1 2 
{o0 w'~, 6~'*tb~/1} 0 1 2 
{ O~ '~(~), 2.3~*(b)/1 } 0 1 2 

0 ° 45 ° 
0 o 60 ° 

0 ° 30 ° 

0 o 45 ° 

0 ° 30 ° 
0 ° 60 ° 

class 8: Po lyhedra  with helical po lygons  1 1 
three infinite families 1 1 2 
{ ~ ) , . / 2 ,  4~.~b)/1 } 45 ° 45 ° 
{ ~r~bj.2./3 &.~b~/1 } 60 ° 30 ° 
{ c~e), . /3,  2.3~.o~/1 } 30 ° 60 ° 
three individual  similari ty types 1 1 2 
{OtJ t/2'2~t/3, &/3/1 } 60 ° 30 ° 

{oo z"/a'"/2, 6"**/1} 45 ° 30 ° 
{ ~  2./3,2./3, 4./a/1 } 60 ° 45 ° 

three individual  similari ty types 1 1 1 
{oo 2'~/3'"/2, 3} 45 ° 60 ° 
{oo ~"/~'2"/3' 3} 60 ° 60 ° 
{ O~ hi2, 2./3, 4} 60  ° 45  ° 

F r o m  this cor respondence  it follows easily that  all G r i i n b a u m  systems do indeed 
cor respond  to regular  po lyhedra  except perhaps  in case dim s2 = dim s l  = dim So = 1, 
9: (So, s l )  = 9: (sosz, s l )  = 60 °, ,): (s l ,  s2) = 45 ° which has not  been considered in 
[5]. But the cubic lattice Z 3 ~ R 3 is preserved under  the 180°-rotations So, ~a and ~2 
a round  the lines IFo = (0, 0, 1 /2 )+  R.(0, - 1 ,  1), IF1 = (0, 0, 0 ) +  i ~ . ( - 1 ,  0, 1) and 
IF2 = (0, 0, 0) + R.(1, 0, 0) f rom which fact one can easily deduce that  the Gr i inbaum 
system (v; so, s~, s2) with d imso  = d ims1  = d ims2  = 1, -~ (~o, ~ ) =  60 °, ~ (at, 
s2) = 45 ° cor responds  to a regular  polyhedron,  too, which then is described by 
{ o  "/2'2"/3, 4} according to Gr i i nbaum ' s  terminology.  

Let  us finally ment ion  two open prob lems  in this context.  
(1) Does  there exist a (finite) subgroup  G < lso(~_)v for some v e ~  = ~:" and some 

element selso(~f_)\lso(~_)v (with s z = 1) such that  (G,  ~)~ # G (and (G ,  ~)  is discrete)? 

(2) G iven  finitely m a n y  subspaces  IF1, IF2 . . . . .  0:k ~_ ~ = E", 
(a) find necessary and sufficient condit ions for the discreteness/finiteness of the 

group,  generated by the involut ions s l ,  s2 . . . . .  sk with E ~' = IF~ (i = 1, 2 . . . . .  k). 
(b) Given  a second sequence of  subspaces IF'~, ~:' IF' 2 ,  . . . ,  k ~- ~, find necessary and 

sufficient condit ions for the existence of  an isometry/s imilar i ty  y with 

y(IF,) = g:} (i = 1 . . . . .  n). 
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