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A combinatorial theory of Griinbaum’s new regular polyhedra,
Part II: Complete enumeration

ANDREAS W. M. Dress

Abstract. The new regular polyhedra as defined by Branko Griinbaum in 1977 (cf. [S]) are completely
enumerated. By means of a theorem of Bieberbach, concerning the existence of invariant affine subspaces
for discrete affine isometry groups (cf. [3], [2] or [1]) the standard crystallographic restrictions are
established for the isometry groups of the non finite (Griinbaum-)polyhedra. Then, using an appropriate
classification scheme which—compared with the similar, geometrically motivated scheme, used originally
by Griinbaum—is suggested rather by the group theoretical investigations in [4], it turns out that the
list of examples given in [5] is essentially complete except for one additional polyhedron.

So altogether—up to similarity—there are two classes of planar polyhedra, each consisting of 3 indivi-
duals and each class consisting of the Petrie duals of the other class, and there are ten classes of non
planar polyhedra: two mutually Petrie dual classes of finite polyhedra, each consisting of 9 individuals,
two mutually Petrie dual classes of infinite polyhedra which are contained between two parallel planes with
each of those two classes consisting of three one-parameter families of polyhedra, two further mutually
Petrie dual classes each of which consists of three one parameter families of polyhedra whose convex span
is the whole 3-space, two further mutually Petrie dual classes consisting of three individuals each of which
span E? and two further classes which are closed with respect to Petrie duality, each containing 3 individuals,
all spanning [E3, two of which are Petrie dual to each other, the remaining one being Petrie dual to itsell

In addition, a new classification scheme for regular polygons in £* is worked out in §9.

AMS (1980 subject classification: Primary 5S1M20, S{F15.
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§1 Griinbaum systems

In the following note we are going to use the results proved in [4] to classify
in detail all of the new regular polyhedra, defined by Branko Griinbaum in [5].
Let us recall the basic results of {4] in a form which is suitable for our further
considerations: if 7 is a regular polyhedron according to Griinbaum with vertex set
V=VocE:=Eedgeset Vi € P(Vo) =:{T|T< V,} and face set V, < (V) and if
(vo, V1, U2)E Vo X V1 x V3 is a “n-flag” (i.e. satisfies voev,€v;) then foreachi =0, 1, 2
there exists a unique isometry &; of the affine subspace (V5 ) generated by V, with the
following properties: ai(Vo) = Vo, the induced map o;: #(Vo) = P(Vy) maps V, onto
V', and the consequently induced map 2(V;) — P(V:) maps V; onto V>, ai{v;) = v;for
je{0, 1, 2}\{i} and afv;) # v.. Moreover, these isometries satisfy the relations
0d = a? = af = (xonz)? = 1, the group {mo, oy, 2>, generated by oo, o1, ay is
discrete, coincides with the automorphism group of n and acts transitively on
Vo, V1, V2 and on the “flag space” & 1= {(wo, w1, wz)e Vo x V| X V3lwoew €W, }, 50
one has Vo = (ao, a1, ®2) vo:= {avolaeao, o1, %2}, v1 = (o) vo = {vo, tolo},
Vy = {ap, 01,02 01, U2 = {&o, 01 01, V2 =<{ao,o1,02) 02, i.e.,, the knowledge of
v=0vg, oy, % and o, allows to reconstruct the polyhedron n. In particular, if
{wo, w1, wy) is another n-flag and if o, §: and B, are the corresponding isometries
of Vo, then the isometry ae{ao, o1, o2 with a(ve, v1, v2) = (wo, W1, w2) satisfies
ae” = B; — more generally, two polyhedra, =, #’ are isometric/similar, if and only
if for some (or—equivalently—for all) flags (vo, v1, v2)eF » and (vo, V1, v3)eF » With
corresponding isometries uo, o1, o2 and o, &}, o5 there exists some isometry/similarity
P:{Vo> = (Vo) with yve = vy and yay ' = a} (i=0, 1, 2).

Hence, to classify all Griinbaum polyhedra it is enough to classify all “discrete
Griinbaum systems” up to isometry or similarity, where a Griinbaum system is defined
to be a system (u; ao, a3, a2)eE x Iso(E)® satisfying the conditions

0 = a? = a? = (ao02)? = Idg, (G1)
Y =00 =0, (Gz)
{Zg{ <ag.&Xi.&3> v # Id<a0.a1,a2> vy (GS)

such a system is defined to be discrete if (oo, a1, 22 ) is discrete, and two such systems
(; a9, ay, ot2) and (w; a0, o5, 002) are defined to be isometric/similar if there exists an
isometry/similarity y:E— E with y0 = w and yoy | <po.p,.82> -w = Bil <go.8,.85>w
For an isometry aelso(E) we denote by dima the dimension of the fixspace
Fi= {xeE|ox = x} and for a, felso(E) we define x(x, f) to be O unless
1 S dimg, dim B <2 in which case we define ¥ (x, ff) as the angle between E* and
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Ef or—in case F*nEf = @f—as the angle between properly intersecting parallel
transforms of these two spaces. To avoid ambiguities, we assume always
0° s % (o, )= 90°

Note that for two involutions «, felso(E) one has o f = f-a if and only if
F*~E? # & and either X {a, B) = 0° or ¥(a, f) = 90° and one has « = f if and only
if B*NEf # ¢, dima = dim B and « (o, f) = 0°. Note also that {(dima, dim g, dimy)|
a, B, yelso(E\{Id¢} and o? = p* =y = afy = {Ids} = {(a,b,c)eN’*|0 < a, b, ¢ <2
and a+b +ce{3, 5} }.

Now, we define two Griinbaum systems (v; ao, o1, ®2) and (w; fo, B1, B2) to
have the same dimensionality if dimao = dim o, dima; = dimf,, dima; = dimp,
and dimoaga; = dimfBeff; or—equivalently—dimo; = dimp; for i=0, I, 2 and
X (0, &2} = < (Bo, B2) and we define (v; ao, @1, a2) and (w; Bo, Bi, f2) to have the
same angularity if, moreover, ¥ (%, a1) = % (Bo, f1) and ¥ (xy,42) = < (81, B2).

We are going to enumerate all discrete Griinbaum systems {(v; ao, o1, &2) by first
discussing the various possibilities for the sequence of numbers dimag, dimo,, dimaga;
and then deriving for each such sequence the various—always finitely many—
possibilities for ¥ (ao, a1) and ¥ (ay, @2). It will turn out that for all but four
dimensionality types the angularity determines the system already up to similarity,
whereas for those four dimensionality types there is for each admissible angularity a
one-parameter family of similarity types.

Each similarity type, of course, consists of a one-parameter family of isometry types.

But before discussing these various types we have to establish some simple
properties of Griinbaum systems which we do in the next section.

§2 Simple properties of Griinbaum systems
We continue with our notation. At first we claim the following.

PROPOSITION 1. If (v; oo, &1, a2)€E x Iso(E)® is a Griinbaum system, then the
following holds:

(i) aov # v, in particular ao # a2,
(ii) oozt # a1to, in particular oo # a4,
(ii1) a0z # 22004, in particular oy # a2,
(IV) dim oy, dim oy 2 1,
(v) there is no line F E with a(F) =F for alli =0, 1, 2.

Proof. (i) This follows immediately from ao] <ap.a,ay> v # [d<ag.ar,a,>-» 204
01D = G0 = D.
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() If ooy = oyote, then af{v, aov})={v, aov} for all i=0, 1, 2 and,
hence, {ao, a1, o2)'v={p, aov} in contradiction to 02|(w,ae = Id e and
oz <agay,az> v F Id<ao,a1.a2>'v-

(i) H ayop = opy, then o2} <agu,> v = Id<ag,q,>-» and, hence, {ao, a1, az) v =
{ap, a1 p v, again in contradiction t0 2| <uap,a3> v # I <aguy,a,> v

(iv) Since veF** NE*2 # @J and o o, # az01, We have necessarily dima; 5 0 #
dim a5.

(v} Assume oo(F) = a1(F) = az(F) = F for some line F< E. If v¢lF, then the
intersection w of F and the line F' through v which is perpendicular to F is fixed by
a; and a2, so we have F' < E** n[E*2. But the group {aelso(E)|a(F) = F, F < E*}
is isomorphic to the Klein four-group, consisting of the identity, the 180°-degree
rotation around F, the reflection at the plane {FF'}> and the reflection at the plane
containing F' and perpendicular to F. So a;a, # oza; implies that oy and a2 cannot
both be contained in this group, a contradiction.

If veF, then d{ao, a1, 02> v=F=<v, aw)<F*? in contradiction to
a2’<«0.a1.a2>-v # Id<ao,az,,a2>-v- D

It follows easily from aov # v that a quadrupel (v; o, a1, o2)ek x Iso(E)® is a
{discrete) Grunbaum system if its “Petrie dual” P(v; a0, %1,02) 1= (v;0002,01,02)i8 2
(discrete) Griinbaum system. So, since obviously P(P(v; oo, a1, a2)) = (v; oo, %1, %2),
it follows that Griinbaum systems come in pairs of mutually Petrie dual Griinbaum
systems. Moreover, since two Griinbaum systems (v; ao, &1, ®2) and (w; o, B1, f2) are
isometric/ similar if and only if the systems P{v; ao, o1, a2) = (v; ttox2, o1, az) and
P(w; Bo, B1, B2) = (w; BoB2, B1, B2) are isometric/similar, it follows that this pairing
induces a pairing of the isometry/similarity classes of Griinbaum systems—though
in this situation it may happen that an isometry/similarity class is Petrie dual to itself.

Note that the Petrie dual of a Griinbaum system (v; o, a1, o2} has the same
dimensionality as (v; ao, a1, o) if and only if dimao = dimaoxz if and only if
dimog = dima, = 1, since dim oo + dim aoar; + dima, €{3, 5}, s0 dimap = dimaga, # 1
would imply dima, = 1, dimag = dimage, = 2 and £ = E*nE** < E* in con-
tradiction to ve F*2\ E*,

§3 Discrete Griinbaum systems

Continuing with our notation let us now consider discrete Griinbaum systems.
We claim Proposition 2.

PROPOSITION 2. If (v; oo, &1, a2)€E x Iso(E)® is a discrete Griinbaum system,
then the intersection of {ao, a1, a2 with the group T = T¢ < Iso(E) of translations of
E has finite index in {otg, oy, a2y and rank # 1.
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Proof. According to Bieberbach (cf. {3], [2] or [1]) for any discrete subgroup
G £ Iso(E) there exists a subspace FoE with oF)=F for all aeG and
(Gle:(Glen Ty)) < 0.

Choose such a subspace F for G = {ao, a1, #2). W. 1. 0. g. assume F # L. If
dimF = 0, it follows that the discrete group G has a fixed point and so G itself is
finite. DimF =1 is excluded by Proposition 1, (v), and dimF =2 implies
(G:Gn T) < oo, since in this case G — G| has finite kernel and afge Ty implies a’eT.

So we have always{G: G T) < ov. Nowassume rk{(GNnT) = landteGnN T, 7 # 1.
Consider the set of all lines F < E in the direction of 7, i.e. with 7(F) = F. The action
of G on E induces an action of the finite group GAGn T) on this set which inherits
the structure of an affine euclidean plan from E. Moreover, G/AG n T) acts isometrically
on this euclidean plane, so it has a fixed point. But this contradicts once again
Proposition 1, (v). 7

COROLLARY 1. If (v; a0, o1, «2) is a discrete Griinbaum system and if
G = (0o, a1, a2) is not finite, then & (x;, a2)e{30° 45°, 60°} and X (0o, x1)€
{0°, 30°, 45°, 60°, 90°}.

Proof. This follows from rk(GNnT)z2 and the standard crystailographic
restrictions together with the fact that E*! N E*? # ¢ and ay02 # 020y which excludes
X (o1, 22)e{0°, 90°}. O

COROLLARY 2. If (v; oo, o1, o) is a discrete Grinbaum system, then
rk({ao, 1, 02y T) =2 if and only if there is a plane F < E with ao(F) = ay(F) =
a2(F) = F, in which case we say that (v; oo, o1, a2) has an invariant plane.

Proof. If {ao, a1, 22> N T is spanned by 1, and 1, then the isometric action of
the finite group G/G T on the “euclidean line” consisting of all planes F < E with
71{F) = 12(F) = F necessarily has a fixed point Fo.

Vice versa, if a{F) = F fori = 0, 1, 2 for some plane F < E then we have necessarily
rk({ao, a1, 02 ) N T) < 2. But rk(<ao, a1, a2 > " T) < 2 implies {ao, a1, 22> N T = {Idg},
so {ao, &1, &z »—being finite— has a fixed point w and so it also leaves invariant the

line through w which is perpendicular to F, once again contradicting Proposition 1, (v)-
0

§4. The planar case

We define a Griinbaum system (v; oo, 1, &2) to be planar, if {ao, o1, %2)°? is
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contained in a plane F, in which case F must be spanned by {ao, 1, a2>-v, since
otherwise aov # v would imply that {ao, a1, 22> v spans a line which then would be
invariant under ag, «1, o2, contradicting Proposition 1, (v).

Now assume (v; oo, a1, ®2) to be planar. We may replace oo, @; and a; by
those—uniquely determined—isometries flo, f1 and f,, respectively, which satisfy
pi= P =Pp3=1Idg and F¥ = FAE% (i=0, 1, 2) without changing the isometry
type of our system, since fB;|; = a;|; implies that the necessary relations hold for
y = Idg. So we may assume dima; = dima; = 1 and dimag < 1.

Moreover, Corollary 2 of Proposition 2 implies rk({ao, o, 02> T) =2 and,
hence, FNF* nF*? = & and ¥ (a;, 22)e{30°, 45° 60°}. Thus, in case dimao = 0,
we have at most three angularity types and, similarly, in case dimao = 1 which—up
to isometry—is Petrie dual to the first case, we have also at most three angularity
types in view of (oo, o1) + ¥ (a1, a2} = & (oo, 02) = 90°,

Moreover, one verifies easily that all these 6 angularity types determine the
corresponding Griinbaum system up to similarity and that all these exist and
correspond to the six well known types of planar polyhedra, exhibited in [5].

§5. The non planar cases

From now on let us restrict our attention to non planar Griinbaum systems. In
principle, for a Griinbaum system (v; ao, &1, a2) the quadrupel (dima;, dima; |dimao,
dimaga,) can be any one of the quadrupels (ny, ny|no, no)eN* with 1 < ny, ny £2,
0<no, no <2 and no + no + n2€{3, 5}. But we know already that no = np can hold
only for ng = ny = n, = 1 and we see easily that in case no = 0 and n, = 1 (and thus
no = 2) as well as in the Petrie dual case no = 2, n; = 1, np = 0 our system is planar
since in case n; =1 the plane (E*'UE*) contains v and is invariant under
{ao, o1, @) whereas in the case n; = 2 the plane F which contains E*2 and is
perpendicular to E* is invariant under {ao, &y, o2 and contains v.

So we are left to study non planar Griinbaum systems (v; ao, o1, @2) with
(dimos, dima;|dimoo, dimaox;) being one of the following quadrupels, grouped
into pairwise Petrie dual cases: (2, 212, 1), (2, 2(11, 2); (2, 2{1, 0), (2, 2(0, 1);
2,112, 1), (2, 111, 2 (2, 111, 0); (2, 110, 1); (1, 2|1, 1) (1, 1|1, 1).

§6. The finite case

We define a Griinbaum system (v; o, &1, &2) to be finite if {ao, 1, #2) is finite.
This implies obviously the finiteness of (o, a1, 2> -v and in case of discrete systems
1tis equivalent with the finiteness of {ao, a1, &2 Y- v (since for a discrete group G < Iso(E)
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and vek the stabilizer group G, = {aeG|o-v =10} is necessarily finite) as well
as with FonE" ~E* # @, ie. E<®®22> % 0¥ In general, a Grilnbaum system
(v; a0, a1, oz} is defined to be bounded if E<%*%2> £ ¢¥ We claim

PROPOSITION 3. A non planar Griinbaum system (v, do, a1, a2) is bounded if
and only if dimo; = dima; = 2 and dim ap + dimaoaz = 3.

Proof. If dimag = dima, = dima, = 2, then either the three planes F;:= E*
(i = 0, 1, 2) have a non empty intersection in which case (v; %o, «1, @2) is bounded or
there exists a plane F containing v which is perpendicular to Fo, F; and ¥ in which
case {ag, oy, %2y U < {ao, 2y, %2 »-F = F implies that our system is necessarily planar.

Similarly, dimaga; = dima; = dima, =2 implies also the boundedness of
(v; &o, &1, az) if this system is non planar.

Vice versa, if {v; oo, &1, «2) is bounded and, hence, E<*o*v%2” % X say
weE<%*%>  then v, weE*nE* and v#w implies dim(E* ~E*2)=1. But
o0ty # o0ty implies F* 5 E* A E*2 # £*2, so we have necessarily dima, = dima; = 2.
Similarly, aoa; # ;%0 implies E* # {w} and, hence, dimap = 1, whereas (ao02) oy #
ay(aoaz) implies E*°2 # {w} and hence, dimaoaz = 1. Since moreover dimoo +
dimaoa; + dimaye{3, 5}, we are left with dimao + dimaoaz = 3, ie. dimao = 2 and
dimago, = 1 or dimao = 1 and dimaga; = 2. O

Let us now study in detail the bounded case dima,; = dima; = dimao = 2. Since
the line [E** = [%~[F* cannot be contained in [E*, we have necessarily
E~E** nE* = {u} for some uck\{v}. Moreover, it is easily seen that for two
tripels of planes (Fo, Fy, F2) and (Fo, Fy, F2) and two points u, v'el with
ueFonFinFa, weFonFynlFs, £ (Fo, F2) = 90° and X (Fs, F2) = 90° there exists
an isometry aelso(E) with ou = v and «(F;)=F; for i=0, 1, 2 if and only if
¥ (Fo, Fy) = ¥ (Fb, F1) and « (F,, Fz) = % (Fi, F3), since for two perpendicular
planes Fo and F», a given point ueFonF; and two given angles @o and ¢, with
0° < @o, @2 <90° there exist at most four planes F with ueF, ¥ (Fo, F) = @o and
% (F3, F) = ¢, on which the Klein four group generated by the reflections at Fo and
F, acts transitively.

More precisely, if @o + @1 < 90°, there exists no such plane, if @o+ ¢y = 90°,
there exist two such planes both of which contain FonF,, and if @o + @1 > 90°
there exist four such planes none of which contains FonF,.

So, for a bounded Griinbaum system (v; ao, &1, az) with dimag =2 we have
X (a0, 0t1) + ¥ (01, ®2) > 90° and for two bounded Griinbaum systems (v; oo, ®1, %2)
and (w; Bo, B1, B2) there exists an isometry yeIso(E) with yoy™ ! = Bifor i =0, 1,2
if and only if both systems have the same angularity in which case we can compos¢
y with a (unique!) dilatation with center Efo~E#1 ~EP2 to get a similarity between
(v; a0, a1, a2) and (w; Bo, B1, B2). Moreover, if the distance from v to E*°n E* nE*?
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coincides with the distance from w to Efe~EPt A P2, then this dilatation is either
the identity or the inversion at w, so—for similar systems—this condition is necessary
and sufficient for isometry.

Finally, using Petrie duality, we can deduce corresponding results in case
dimao = 1. So, altogether we have proved Proposition 4.

PROPOSITION 4. Two bounded Grimbaum systems (v; &0, &1, %2} and (w; o, 1, f2)
are similar if and only if they have the same angularity and they are isometric if and
only if in addition the distance from v to E*° ~E** ~E*2 coincides with the distance
from w to Efe m [P A EFP2,

Let us now study the angularity of finite Griinbaum systems (v; oo, o1, ®2) with
dimag = 2. Since {ao, a3, o2 > is finite and since there is no line which is left invariant
by {ae, a3, 22 >, this group must leave invariant either a cube or a dodecahedron with
center E*0 ~E* ~ 2. In the first case this leads to ¥ (oo, a1), & (o1, 22)€{30°,45°,60°},
so in view of (oo, o)+ ¥{s, %2)>90° we have the three possibilities
X (o, 1) =45 and (o1, oz) = 60°, L (o, 1) = 60° and ¥ (xy, a2) = 45° or
X (0, 01) = ¥ (1, a2) = 60° (which, by the way, correspond to the cube, the
octahedron and the tetrahedron—cf. §10). In the second case we get from an analysis
of the reflection planes of a dodecahedron & (xo, 1), & (o1, %2)€{36°, 60°, 72°} and’
X {0, 1) # ¥ (o0y, 2)}—the last inequality being a consequence of the fact that the
angle ¢ between E* and the plane which is perpendicular to E* and to E*2 satisfies
also e{36°,60° 72°} and sin? @ + sin? (X (o, %1)) + sin? (£ (o1, #2)) =2 =sin? 36° +
sin?60° + sin272°, so one has necessarily {@, ¥ (20, %1), ¥ (21, @2)} = {36°, 60°, 72°}.
This can also be deduced from the fact that there is no isometry of a dodecahedron
which switches two perpendicular ones among its reflection planes into each other
since otherwise its isometry would contain a rotation of order 4.

So we are left with the 6 possibilities (36°, 60°), (36°, 72°), (60°, 36°), (60°, 72°),
(72°, 36°), (72°, 60°) for { X (%0, 21), ¥ (21, ®2)), (Which, by the way, correspond to the
dodecahedron, the great dodecahedron, the icosahedron, the great icosahedron, the
small stellated dodecahedron and the great stellated dodecahedron—cf. §10).

If (v; o9, &y, at2) is a finite Griilnbaum system with dimao = 1, then we may apply
Petrie duality to conclude that, again, there are altogether at most 9 possibilities for
the compatible angularities. More precisely, the Petrie duals of the nine cases (45°, 60°),
(60°, 45°), (60°, 60°), (36°, 60°), (36°, 72°), (60°, 36°), (60°, 72°), (72°, 36°), (72°, 60°)
have angularity (30°, 60°), (30°, 45°), (45°, 60°), (18°, 60°), (30°, 72°), (18", 36°), (54°,
72°); (30°, 36°), (54°, 60°)—in respective order. This follows once again from the
observation that for three pairwise perpendicular planes Fy, F,, F3 and one additional
line L/plane F one has
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sin®(Fy, L) + sin®(F,, L) + sin?(Fs, 1) = 1

and
sin¥(Fy, F) + sin®(F,, F) + sin?(F3, F) = 2,

whereas for two lines Ly, L; and two planes Fy, F» with £ (L(,F,) = £ (L3, F2) = 90°
one has x(lL;, L3)=90°— x(ly, Fz)=90°— x(F1, L;)= x(F1, F2). So, in
the three cubic cases with dimag = 2 the angle between E* and E™% = E*onE™
is determined by the fact that—counting multiplicitiecs—one must have
{ ¥ (20, 01)s ¥ (21, 22), 90° — X (a1, to02) } = {45°, 60°, 60°} whereas in the 6 dodeca-
hedral cases one has { ¥ (2o, o1), ¥ (21, %2), 90° — & (21, wox2) } = {36°, 60°, 72°}.

Since moreover altogether 18 similarity types of finite Griinbaum polyhedra are
known to exist {cf. [5]), we have proved the following.

PROPOSITION 5. A Griinbaum system (v; oo, %1, a2} is finite if and only if
dima, = dimoy = 2 and either dimoo =2 and (¥ (%0, 1), & (a1, %2))e{(45° 60°),
(60°, 45°), (60°, 60°), (36°, 60°), (36°, 72°), (60°, 36°), (60°, 72°), (72°, 36°), (72°, 60°)}
or dimaoay = 2 and ( £ (%o, 1), ¥ (21, a2))e{(30°, 60°), (30°, 45°), (45°, 60°), (18°, 60°),
(30°,72°), (18°, 36°), (54°, 72°), (30°, 36°), (54°, 60°) }. Moreover, all these 18 possibilities
do occur and each one is characterized up to similarity by these data.

§7. The non planar rank 2 case

Let us now study non planar Griinbaum systems (v; oo, ;, o2) for which there
exists an invariant plane, i.e. a plane F < E with afF) = F for all i = 0, 1, 2. Recall
that for a discrete system this is equivalent rk({ao,a1,02>NnT) =2 We claim
the following.

PROPOSITION 6. 4 non planar Griinbaum system (v; oo, o1, %2) has an invariant
plane if, and only if, dima; = dima; = 2 and dim o + dim ooz = 1.

Proof. If (v; ap, o, a2) satisfies dima; = dima; = 2 and dimoo = 0 or dimaoxz = 0,
then the plane F which is perpendicular to E*2 and E* and contains E* or E*"
is necessarily an invariant plane.

Vice versa, assume (v; oo, &1, ®2) to be a non planar Griinbaum system and t0
possess an invariant plane F. Since our system is non planar, we have v¢F, so the
line through v which is perpendicular to F is necessarily pointwise invariant under
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a; and under a2, ie, we have dim{E*nE*)=1 which implies (as above)
dimoy = dimay = 2 in view of o002 # ;.

Since, moreover, one has always dima; + dimao + dimaoa2€{3, 5} and since
dimay = dima; = 2 and dimao + dimaoa, = 3 together with non planarity is known
to lead to bounded Griinbaum systems which can never have an invariant plane
(otherwise, as pointed out already above, the line through a fixed point which is
perpendicular to an invariant plane would be invariant, too), we are indeed left with
the case dimao + dimoeor, = 1. 0

Let us now consider the isometry and the similarity problem for non planar
Griinbaum systems {(v; a0, a1, ®2) with dimea, = dime, = 2 and dimao = 0. Obviously,
if (w; Bo, B1, B2) is another such system with <« (o1, a2) = ¥ (B1, B2), then we can
always find an isometry y with yv = w, ya;y ™! = B, and yozy ™! = 2. Moreover, we
can compose y with one of the four isometries § with dw = w, 816! = $,,6826 "1 = B>
so that dyooy "6~ ! = Bo if and only if the distances d(E%,v) and d(E%, E*' N E*)
of £% to v and to the line E* nE* coincide with the corresponding distances in the
system (w; fBo, B1, B1). Note that d(E™, v} > d{E*, E* n[E*?) > 0 since otherwise the
plane containing v and perpendicular to £ N E* would contain E* and so it would
be invariant.

So we have a 2 parameter family of isometry classes of such systems for any given
angularity. Moreover, we can find a similarity § with dw=w, 6.6 ' =8,,6826 "' =8,
{so & is the composition of an isometry with the same properties and a dilatation

d(E*, v)
d(E%, E )
which always exceeds 1 coincides with the corresponding quotient for the system (w;
Bo, B1, B2). So we have a one parameter family of similarity classes of such systems for
any given angularity.

Using Petrie duality and < (1, a2)e{30° 45°, 60°} for discrete and non finite
Griinbaum systems as well as the existence of altogether 6 one parameter families of
similarity classes of Griinbaum polyhedra whose isometry group leaves a plane
invariant (cf. [5]) the following proposition results.

with center w) and with dyaoy ™ '6~ ! = fo if and only if the quotient

PROPOSITION 7. A non planar, discrete Griinbaum system (v; oo, %1, &2) has an
invariant plane if and only if dima;, =dimay =2, dimao + dimaea; =1 and
* {1, w2)€{30°,45°,60°}, in which case ¥ (a1, %) + ¥ (1, %002) + ¥ (@1, az) = 90°.

) If (w; Bo, B1, B2) in another such system with the same angularity, then (v; %o, 21, a2)
Is isometric/similar to (w; Bo, B1, B2) if and only if d(E®, v)=d(E*, w) and
d(E*, v) d(EPe, w)

d(EaO, IE“I o\ |E‘12) - d(IEpo, [Eﬂl ) Eﬁz)/d(lan [Eal A [Euz) - d(EﬂO, [Egl P [Eﬂz)y

respectively.
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Moreover, for any choice of (dimao, dimaoaz)e{(0, 1), (1, 0)}, < (a1,az)e

d(E*, v)
° 45°, 60°), ——— 1
(307, 45% 60, Gew, B nEny)

non planar, discrete Griinbaum system with these values.

> 1 and d(E*, v)> 0 there exists a corresponding

§8. The rank 3 case

Let us now consider the remaining non planar and non bounded Griinbaum
systems, i.e. those systems (v; g, ®1, &2} for which there exists neither a fixed point
nor an invariant plane. According to the last remark in §5, their dimensionalities
{dima,, dime;|dimag, dimaeaz) can attain any one of the following values
2,112, 1), (2, 111, 2), 2, 111, 0), (2, 1]0, 1), (1, 2|1, 1), (1, 1]1, 1).

So, in particular, v is always determined as the intersection of E** and E*2.

We claim at first Proposition 8.

PROPOSITION 8. If (v; oo, 21, 02} is a non planar Griinbaum system without a
fixed point or an invariant plane, then X (a0, 1)€{0°,90°} if and only if dimao =0
{and, hence, <« (ao, 001} = 0°).

Proof. If dimag = 0, then, of course, ¥ (2o, 1) =0° and % (xot2, 1) = 90° —
¥ (22, 21)¢{0° 90°}. So—using Petrie duality—we have < {xo, a1)¢{0°, 90°} if
dimoaoo; = 0. If dimao = dimaga, = dima, = 1 and x (@0, a1)e{0°, 90°}, then the
plane containing v which is perpendicular to E* would be invariant.

In the remaining cases we have dima; = 2, dima; = 1 and dimao + dimago, = 3.
But then dimao =1 and X (x, 1) =0° is ruled out, since it implies E* < E*,
dimao = 1 and & (o, o01) = 90° is ruled out, since in this case the plane containing v
which is perpendicular to E* would be invariant, dimao = 2 and ¥ (%o, a;) = 0° is
ruled out, since in this case the line through v which is perpendicular to E* would be
invariant, and the last possibility dimao = 2 and < (20, #1) = 90° is also ruled out,
sincein this case E%~ F* # ¥ and therefore aoot; = o300, contradicting Proposition 1.

l

Next, let us observe that in case dima, = 2, dima, = 1 the classification of
isometry/similarity types for given angularity can be derived from the corresponding
classification in case dima; = dima, = 2 since—with respect to this question—we
may always replace «; by the product §; of a; with the inversion at v which is a
plane reflection. Hence in case dimao + dimaoa, = 3 the angularity determines the
similarity type and the angularity together with the distance d(v, E*) from v to E*
determines the isometric type, whereas in case dimao + dimoox, = 1 the isometry
type is determined by the angularity and d(E*, v) and d(E%, E*2~E*') and the
similarity type by the angularity and the quotient of these two distances.
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Moreover, in case dima, = dimoo = 1, dima; = 2 and in case dimoy = dimog =
dima; = 1, the angularity determines the similarity type and the angularity together
with the distance d(E%, v) determines the isometric type, since—as above—for the
given pair of orthogonal lines E* and E*: there are at most four planes (or lines)
F with E**~E*2 = F and with given angles « (F, E*)and « (E, F*?) and the Klein four
group {ag, a2 ) acts transitively on those planes (or lines), so there are at most eight
such planes (or lines) through v and the group generated by ayo, o> and the inversion
at ENE* acts transitively on those planes (or lines). Finally, we know that the
discreteness of (v; ao, a1, a2) implies X (ay, az)e{30°, 45°, 60°} and—using Proposition
8—it implies «(ao, a1)}e{30° 45°, 60°} or dimao = 0 as well as (using Petrie duality)
£ (o2, o1 )€{30°, 45° 60°} or dimago, = 0.

Hence in case dimoay = 2, dima; = 1, dimoo = 2, dimaeo; = 1, in which case we
have necessarily (90° — ¥ (ot;, @2))+(90° — % (o1, ao))> ¥ (o, &2)=90°, ie.
¥ (a0, a1) + ¥ (2o, 1) <90° we are left with the three possibilities « (xo, o1) =
¥ (o, oz) = 30°, £ (oo, 1) = 30° and & (o5, az) = 45° or ¥ (a0, ay) = 45° and
‘): (O(l, az) = 300.

From sin?( %(ao, o1)) + sin?(x(ay, o2} + sin}(90° — X (ay, aoxz)) = 1 one derives
easily that the corresponding Petrie dual cases are characterized up to similarity
by dima, =2, dima; = dimoag = 1, dimaoas = 2 and (X{oo, a1), (o, o2)) =
{45°, 30°), (60°, 45°) or (60°, 30°), respectively.

In case dimay = 2, dima; = 1 and dimayp = 0, the condition & {u;, oz) = 30°,
45° or 60° is the only condition which has to be specified and in the Petrie dual case
dima, = 2, dimay = dimae = 1, dimagas = 0, the corresponding conditions are
(% Fag, 1), ¥ Fay,az)) = (60° 30°), (45°, 45°) or (30°, 60°), respectively.

In case dima, = dimag = dimaga; =1 and dima; = 2, one has necessarily
sin®( K (o, 1)) + sin}(K(ay, a2)) +sin?(X(ay, ®200)) =1, so one has (X{xo, o1),
Lo, 22), Lo, aa00)) = (30°, 30°, 45°), (30°, 45°, 30°) or (45°, 30°, 30°), the first case
being Petrie dual to the last one and the second case being Petrie dual to itself.

And finally, in case dim a, = dim «; = dimag = dim apa, = 1, one has necessarily
sin®(&(xo, 1))+ (sin?(& (a1, a2)) + sin?(X (21, %200)) = 2, so one has (X(xo, 1),
Loy, a2), ¥ (g, xacte)) = (45°, 60°, 60°), (60°, 45°, 60°) or (60°, 60°, 45°), again the
first one being Petrie dual to the last one and the second one being Petrie dual to
itself, Actually, it was this last configuration which has been overlooked in [5].

So we have proved the following.

PROPOSITION 9. If(v; ao, a1, 22) is a non planar and non finite discrete Griinbaum
System without an invariant plane then the T-tupel (dima,, dima;,, dimao, dimaoas; &
(@0, o), % (a1, o12), & (a1, %200)) can assume the following values, only:

(2, 1,2, 1; 30°, 30°, 45°), (2, 1, 2, 1; 30°, 45°, 60°), (2, 1, 2, 1; 45°, 30°, 60°),
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1, 2; 459, 30°, 30°), (2, 1, 1, 2; 60°, 45°, 30°), (2, 1, 1, 2; 60°, 30°, 45°),
,0, 1;0°, 30°, 60°), (2, 1, 0, 1; 0°, 45°, 45°), (2, 1, 0, 1; 0°, 60°, 30°),
1, 0; 60°, 30°, 0°), (2, 1, 1, 0; 45°, 45°, 0°), (2, 1, 1, 0; 30°, 60°, 0°),
1, 1; 30°, 30°, 45°), (1, 2, 1, 1; 30°, 45°, 30°), (1, 2, 1, 1; 45°, 30°, 30°),
1, 1; 459, 60°, 60°), (1, 1, 1, 1; 60°, 45°, 60°), (1, 1, 1, 1; 60°, 60°, 45°).

Moreover, these values determine the Griinbaum system up to similarity except
in case dimay + dimoga, = 1, in which case the similarity type is determined by these
values together with the quotient d(E®, v)/d(E%, E*2~[E?') which can assume any
value larger than 1 where B, denotes the product of ay with the inversion at v.

In the last section, where we are going to compare this list to the list of polyhedra
given by Branko Griinbaum in [5}, we will also see that all these values can indeed
be attained by discrete Griinbaum systems. T'o prepare this comparison, we will discuss
regular polygons in the next section which we will study, quite generally, in the
euclidean n-space rather than in 3-space, not only because it can be done easily in
this generality, but also because things will become clearer this way.

§9. Regular polygons

According to [57, a (regular) polygon in the euclidean n-space E = E" consists
of a non empty set V = E of vertices and a set E € 2,(V) := {e < Vl|#e = 2} of edges
such that for each vertex ve V one has #{e|vee} = 2 and for any two vertices v, we V
there exists a finite sequence v = vo, v1, ..., vx = we V¥ of vertices with {vo, v1},
{v1, v2}, ..., {ve-1, s} € E (and, moreover, for any two pairs (v, e) and (w, f) in V x E
with ve e and wef(i.e. for any two “flags”) there exists an isometry a e E with (V) = V,
the induced map a: 2,(V)— 2{V) maps E onto E, afv) = w and ale) = f).

Two reguiar polygons (V, E) and (W, F) are defined to be isometric/similar if there
exists an isometry/similarity a: E— E with o¥) = W such that the induced map «
P(V)— P2(W) maps E onto F, in which case one can find such an « for any (v, e)€
¥V x E with vee and any (w, f)e W x F with wef which in addition satisfies «(v) = w
and afe) = f.

Now assume (¥, E) to be a regular polygon and pick some ve V. Let e = {1, w}
and ¢ = {v, w'} denote the two edges containing v and let a denote an isometry with
a(V) =V, (E) = E, a(w) = v and a(e) = ¢/, in particular a(v) = w’ and a*(v) # v, since
otherwise w' = a(v)=o~'(v)=w in contradiction to e £ ¢’. Then we have (a)v =: {¢"(v)
neZ} =V and {a)e =:{a"(¢)|ne Z} = E, since at least a"(v)e V and a"(e) € E for each

neZ, so in case {ayv < V we may find some vertex ue{a)v and some vertex
%

ue V\{ayv with {u, '} € E. But for u = «"(v) we have the two edges o’(e) = {a"(v), a"(W)}
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and a"(e') = {a"(v), a™(w')} with uea’(e) and ueo’(¢’). Since moreover a™(e) # a™(e’), we
have necessarily either {u, v’} = «"(e) = {a"(v), (W)} = {&"(v), «" " Hv)} or {u, v}
= a"(e') = {a"(v), (W)} = {«"(v), 2" * (v)}, s0 in any case we have u’ e {a)v.

PROPOSITION 10. (i) 4 set V < E together with a set E< Py(V) is a regular
polygon if and only if there exists some o€lso(E) and some ve E\E* with (adv =V
and (o) {v, av} =

(ii) Moreover, if (v, @), (w, B)€E x Iso(E), v¢E*’, w¢ EP’, then ({a)v, {a){v, av}) and
(BO>w, {BY{w, Bw}) are isometric/similar if and only is there exists an isometry/
similarity y with yo = w and yay ™ <o = Bl w-

Proof. (i) We have to show that for aelso (E) and ve F\E** the set V:={adv
forms the set of vertices of a regular polygon with edge set E:= (2D {v,a(v)}.

Since for any neZ one has a'(v)e{o"(v), «"T'v)} = a"({v, v)}), «"(v)e
{a" " Xv), a"(v)} = 0"~ ({v,(v)}) and a""'(v) # «"* (v) any element in V is indeed
contained in at least two different sets in E. Moreover, o"(v) € 2*({v, a(v)}) for some
ke Z implies a"(v) = o*(v) or a"(v) = a** }(v) and hence &*({v, a(v)}) = {a*(v), & * ()} =
{€"(v), ** (1)} = o"({v, a(v)}) or d*({v, av)}) = a" " *({v, «(v)}), so there is no further
set in E which contains a"(v).

Finally, for a"(v), a™(v) € V and, say, n < m, the sequence vo = a"(v), v; = " }(v),.. .,
{Um—n = a™(v) satisfies {vo, 01}, {1, 02}, .., {Um-n-1, m-n} €E, so (¥, E) is a polygon.

To show regularity, we observe at first that {«) acts transitively on the “flags”
of the form (a"(v), {a"(v), 2" * }(v)}) and on the flags of the form (a"(v), {a"(v), &~ *(v)}).
So it is enough to show that there exists an isometry f: E— E with (a"(v)) = a~"(v)
for each ne Z which follows from the fact that the euclidean distance between a"(v)
and o™(v) coincides with the euclidean distance between o™ "(v) = o™ "o™(v}) and
2Mv) = " (a(v)).

(i) If (@, o), (w, BeE x Iso (F), v¢E*, w¢E”, V= "{adv, E={){v, av)},
W= {p>wand F = {B){w, f(w)}, and if the polygons (V, E) and (W, F) are isometric/
similar, then there exists an isometry/similarity y with p(v) = w,y(a(v)) = (W), (V) = W
and y(E) = F. It follows that y(a"(v)) = B"(w), so for B (w)e W we have {yoy “D(B"(W)) =
(ray ™ Hipler(v)) = a1 (v) = B"* '(w) = B(B"(w)), i.e. we have yay~Hw = Blw.

Vice versa, if yv =w and yay~!fw = flw for some isometry/similarity y, then
Ho(0)) = (ya™y = H)(yv) = (yay ™ 1)(w) = B"(w), so y establishes an isometry/similarity
between (¥, E) and (W, F). O

We are now going to associate with each regular polygon (¥, E) a certain mapping
f=fv.5fromS?: = {zeCljz| = 1}into R+, the set of non negative real numbers, which
determines (V, E) up to isometry.



236 ANDREAS W. M. DRESS AEQ. MATH.

We begin by representing (V, E) in the form (<adv, <ad{s, «(v)}) according to
Proposition 10. Then we consider the (linear) action of a on the real vectorspace T
of translations of E given by & T—T: 9—&(9) := a9a~ 1. Let {|>: Tx T-R: (31, $2)—
{$:]192) denote the canonical positive definite form on T which is induced from the
euclidean metric on E. Since & T~ T preserves this form, the action of  is diagonizable
once we extend it to an action, also denoted by &, on the complexification C® T
of T, i.e. C® T splits canonically into the direct sum of its a-eigenspaces (C® T), =:
{3eCR®TIaY) =29}, ie. COT = ®(C®T).. Moreover, (C® T). = Ounless ze S,

z

complex conjugation swaps (C® T), and (C® T); and the above decomposition is
a decomposition into pairwise perpendicular subspaces with respect to the canonical
extension of {|> to a hermitian form on C ® 7 which will also be denoted by {}).
Now consider the translation t = t** which maps v onto «(v) and its decomposition
1= @ 1.€ ® (C® T). into &-eigenvectors and define f:=f,,):S' >R+ by f(2):=

zeS?t zeS!
CAL DS

At first, we observe that fi . = fis.w) Whenever there exists some isometry y
with yw =w and yoy Y <g>w = Bl<s>w, since these conditions imply y(«"(v)) =
(ya"y " H{y(®)) = (yay "Y' (w) = B"(w), so 7 maps the &-invariant subspace T% of transla-
tions which preserve the affine subspace {{x)v), spanned by (v, isometrically onto
the correspondingly defined B-invariant subspace 7%, it maps t = 12" e T} onto
;=" e TE and it satisfies 5(&(3)) = B(H(9)) for $e T3, so the decomposition 1 =
@ 1, of 7 into a sum of a-eigenvectors is mapped by 7 into the corresponding

zeS!

decomposition v = @ 1, of T’ into a sum of -eigenvectors, in particular, f,.(z) =

zeS!
(et M2 = ()2 = fih for all zeS1, ie. fawn = fipm-

It follows, that for (V, E) = ({a)v, {a){v, o(v)}) the map fu.. depends only on the
polygon (¥, E) and that, moreover, it depends only on the isometry class of (¥, E).
It is easy to see that — vice versa — it also determines this isometry class, since for
any n, meZ we can compute the distance d(o"(v), «™(v)) in terms of f = fiu.y: since
d{o"(v), a"(v)) = d{o" " "(v), v} = d(v, a*™ "(v}), we may assume w.lo.g thatn>0=m
Consider the translation 3, which maps v into «™(vj and, hence, satisfies {33 =
d(a"(v), v). Since 9, is the sum of the translations &/(t) (i =0,..., n — 1) which map

N B -1 n~1 . 1-—2z"
a(v) onto " '(v), we have 3, = X a{r)= £ Z Zr.=n1,+ Z z 7, and
i=0 i=0 zeS! st 1eodn 1 — 2
2 2 1 - Re( n) 2
therefore d{a"(v), v)* = {In|Ss) = n-f(1)* + x e f(7) 2,

2680 {1}e04n 1 —Re ( )
It is also easily seen that the dimension of the affine subspace (¥, spanned by
¥ = {a)v, coincides with the cardinality of the support supp(f):={zeS'|f(z) # 0}
of fsince both coincide with the dimension of the a-invariant subspace (&"(t)|neZ) &
T of T, generated by 1 = %)
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So we have proved parts of Proposition 11,

PROPOSITION 11. There is a one to one correspondence between isometry classes
of regular polygons in E" and mappings f:S* - R, of the unit circle into the set of
non negative real numbers which satisfy f(z) = f(Z) for all zeS*, supp(f) £ {—1} and
#supp(f) <n.

Iff = fir.5: St = Ry is associated to the regular polygon (V, E) with respect to this
correspondence, then the following holds:

(i) ifvo.v1,...,n€Vier = {vo,v1},....en =:{Un—1,nj€Eand e, # ez # ... # en,
then

oo, v = nf (1 + 3 TR

(i) V is bounded if and only if f(1) = 0;

(iiiy V is finite if and only if f(1) = 0 and supp(f) < {exp(2ni-q|qe Q},

(iv) V is discrete and infinite if and only if f(1) # O, so a regular polygon is either
discrete or bounded;

(v) (V, E) is similar to (W, F) if and only if there is some A > 0 with fiv g = Mw.ry

{(vi) the dimension of the affine subspace {V), spanned by V, coincides with
#supp(f)-

Proof. As above, let T denote the real vectorspace of translations of E. We have
shown already how to associate to a regular polygon (¥, E)a mapf = fy 5:S" —> R+
which characterizes (V, E) up to isometry by representing (¥, E) in the form
(V, E) = ({apv, {ay{v, a(v)}) and studying the decomposition of the translation
T =1 with t(v) = a(v) into x-eigenvectors 7= @ 1, with respect to the linear

zeS!

action &: T TS+ x9a ™ L. Since complex conjugation in C® T fixes 1, it maps 7, onto
T., 80 we have f(z):= (t.|t.>"? = (1:|1;>!/* = f(2). Since supp(f) is contained in the
set A, of eigenvalues of the linear operator &, we have #supp(f) < n. Since a*(v) # v,
we have (ata ™) (ow) = a(t(v)) = a*(v) # v=1""' (v} =1 '(ow) and, hence, ata "' # 17!
= ~1,i.e. 7 # t_; which implies 7, # 0 for some zeS"\{ 1}, i.e. supp(f) & {—1}. So,
the map f = fiv.5:St - R, associated with a regular polygon (V, E) satisfies indeed
the special conditions stated in Proposition 11.

Assertions (i) and (vi) have also been established already and the assertions (ii}{v)
follow immediately from (i).

So it remains to show that for any map f:S* — R+ with f(z) = f(2), supp{f) & {—1}
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and #supp(f) < n there exists a regular polygon (V, E) with = fy . But, at least,
there exists some isometry o with supp(f)= A, and so, this follows from
Proposition 12.

PROPOSITION 12. If aelso(E) and if f: R+ satisfies f(z) = f(Z) (zeS*) as well as
supp(f) & { — 1}, then there exists some ve E\E** with f = Jiaw if and only if supp(f) is
contained in the set A, of eigenvalues of a and f (1) = m(a): = inf(d(w, a(w))|weE).

Moreover, for each a€lso(E) there exists some wel with d(w, a(w)) = m(), in parti-
cular one has m(o) =0 if and only if F* + &, and if E* # & and $S€T°, then
m(a8) = (8/9>12, so, if f satisfies all of the above conditions except perhaps f(1) = m(a),
one can always replace o by the composition a3 of « with some translation 9 so that f (1)
= m(a9) in which case there exists some ve E\EY” with f = fizs.1).

REMARK. This is, of course, in accordance with the well known fact that ¥ #
if 1¢A, and that « satisfies «* =1 if and only if A, ={—1} or A, {+1} and
E* # .

Proof. If veE\E¥, wek, 1=, §=1" and f= f,., then a(w)= «Hv)) =
(@3 () = (@IM)((S$~ Yw)) shows that 12 = (J) — § + 7, so we have d(w, a(w)) =

GO~ 9+ 1a9) =+ D =(EN -9+ @ ]aA) -9+ @ . > + {n|uuN?
z# 1 z# 1

2 (1), since (&P — 311> = {&(9)|t1) — (Slt1) = (I]a"H11)) — (I|1)y = Sl

— {J|t1> = 0, whereas d(w, a(w)) =f(1) for § = @ —L-rzeTz IT=C®T.

211 —z

This computation shows also that m(ax) = inf(d(w, a(w))|wel) is always assumed
by some wek, in particular m(«) = 0 if and only if E* # 5, and that d(w, a(w)) = m(®)
if and only if 1% is fixed by &. It is also clear that supp(fe,ny) € Aa. ‘

Vice versa, if /(1) = inf(d{w, a(w))}|weE) = d(v, «(v)) for some ve E — so we have
&(1*W) = 2@ — and, if supp(f) S A« for some f:S' —» R, with supp(f) ¢ {1} and
f(z) =f(Z)(zeS"), then we can find for each zesupp(f)\{1} some 3,e(C®T):
with (9.]9,> = f(z) such that 3, coincides with the complex conjugate of 9, for all

1
zesupp(f), in which case there exists some e Twithd=1® 8= @ 1 9
zesupp(f} (1} Z ™

and w = 9(v) satisfies we E\E** and f = fi.m.
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Finally, f weE® # ¢ and 3€ T° then a3 = S« and a{n(w)) = &{yw for ne T, so
one has

m(xd) = m(3a) = infld(u, He(u}))|uek) = infldn(w), Ha(n(w)))NqeT) =
=inf({—n+3+am)|—n+9+am)? =
= inf({a(n) — nla(n) — n) + {319 *|neT) = (3|92

In particular, if E = E? is the three dimensional euclidean space, then we have
one similarity class of one-dimensional polygons, associated with the mappings
f:8*— R, with support {1}, we have a one-parameter family of similarity classes of
planar polygons associated with the mappings of support {+1, —1}, all of which
are discrete and infinite, for each z = x + iye §! with y > 0 there exists one similarity
class of planar polygons (V, E) associated with the mappings f: S' - R with support
{z, Z} (and (¥, E) is finite if and only if ze {exp 2ni-q|qeQ}) and there exist two
one-parameter families of similarity classes of non-planar polygons (V, E), associated
with the mappings /> S! — R, with support {1, z, Z} or {—1, z, Z}, respectively. In
the first case all polygons are discrete and infinite, in the second case all polygons
are bounded and they are finite if and only if ze {exp (2ni-q|qeQ}.

And, if aelso(E), veE\E¥, (V, E) = (Ka)v, <{a){v, a(v)}), dim({¥V))=2 and
f = fawy = fov.p), then in case E* = ¢ one has either dim({¥)) = 2and A, = supp(f) =
{+1, —1} or dim({¥>) = 3 and A, = supp(f) = {1, z, Z} for some ze S'\{+1, — 1},
whereas in case F* # (J there exists some zeA,\{+1, —1}, and one has either
dim({V)) = 2 and supp(f) = {z, z} or dim({V)) = 3 and supp(f) = A = {—1, 2, 7}
and (V, E) is finite if and only if « is of finite order if and only if 2" = 1 for some n > 0.

§10. Comparison to Branke Griinbaum’s list of regular polyhedra

We are now well prepared to compare our list of Griinbaum systems to the
list of regular polyhedra given in [5]. There the classification scheme is in terms
of the polygon and the vertex figure associated with a regular polyhedron.

Let us restrict our attention to the non planar case. So let IT = (Vy, V1, V2) be
a regular, non planar polyhedron in the sense of [5], let (vo, vy, v2)€Vo X Vi x V3
be a M-flag and let (v = ve; &o, o1, %2) denote the associated Griinbaum system. Then
Po =:(U wy,i)isa regular polygon which coincides with ({aoa1 ), {aot1 {0, %0(1)})

wiEy,
and whose isometry class depends only on IT and not on the element va€ V> and
Pi:= ({weV,| there exists a sequence of flags (vo,v,05) —i=0,1,...,n—~
with o = vy, v = v;, v} = {v, w} and either v} = v{"" or
vy =vi" for i = 1,...,n}, {{w, w}ePaVo)|there exists a sequence
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of flags (v, v', 1t5)—i =0, 1,..., n—with 0§ = v}, 1§ = v,,
77 = {v, w}, v} = {v, w} and either v} = v{7! or v}, = v§7! for
i=1,...,n})

is a regular polygon, too, which coincides with (CayazMao(v)), {atraz){ao(v), x100(v)})
and whose isometry class depends also only on IT and not on the flag (ve, vy, v;).
The classification of regular polyhedra, given in [5], is in terms of the isometry classes
of these two polygons. Let us therefore compute the support of fo:= fi, ., ., and of
fi 1= faan aowp- Since {aoaspv cannot be contained in a straight line [, since
otherwise {aou; >0 © F = (v, ao(v))> < E*2, which would imply (a0, a1, 22> S E*2 in
contradiction to %2l <,y a;, 2,50 7# 14| <4y, a,,,>» WE have necessarily supp(fo) & {1}.

Note also that E** % ¥ if and only if E**n[E* # (&, since {ap, ®;) acts as a
finite group (of order at most 2} on E**. So, if dimao =0, we have Ay, =
{+1, —1} and supp(fo) = {+1, —1}, ie. Py is a zigzag polygon, and if dimao =
dimo; > 1 and 0° < (oo, ot1) =: ¢ < 90° we have Asge, = {1, cos 2¢ + i-sin 2¢, cos
2¢ —isin 2¢}, so we have supp(fo) = {cos 2¢ =+ sin 2¢} if E*°E* # ¢ — which,
by the way, is equivalent to dimao = dima,; = 2 — and leads to planar polygons
which are “convex” if and only if 2¢ divides 360°, so it leads to convex polygons
unless ¢ = 72°, whereas in case E**nE* = @ — which, by the way, is equivalent
to dimao = dima; =1 — we have supp(fo) = {1,c0s2¢ % i-sin2¢} which leads
to helical polygons. Finally, if dimag 3 dima; and 0 < @: = 90° — X{ao, ;) <90°,
then Asgs, = {—1, cos 2¢ +i-sin 2¢} and —1¢supp(fo) if and only if ve E*' is con-
tained in the plane which contains the one-dimensional subspace among E* and "
and is perpendicular to the two dimensional one. So, f dima; = 1 <dimag = 2, we
have supp(fo) = {cos 2¢ + i-sin 2¢}, whereas in case dima, > dimao = | we have
supp(fo) = { —1, cos 2¢ + i'sin 2¢} since in this case the plane containing v and £
is necessarily invariant under «,, so for a non planar polyhedron this plane cannot
be perpendicular to E*.

Let us now consider supp(f1). Since ve E* n E*2 # (¥, we have necessarily f1(1) = 0,
so in case dima, = dima, and hence —1¢A,,., we have necessarily supp(f1) =
{cos2y + i-sin2y} for ¥ := ¥ (o1, ;) whereas in case dim o; # dim &, we have—with
W= 90°— X (a1, 22) — {cos 2 + i-sin 2¢/} Ssupp(fi) S Agya, = { — 1, cOs 24 +i-sin 2¢)
with —1l¢supp(fi) if and only if ao(v)eE* is contained in the plane which
contains the one-dimensional subspace among the two subspaces E* and E*2 and
is perpendicular to the two dimensional one. So we have — 1 ¢supp(f;) if dimE*> = 1.
whereas in case dimE* = 1 < dimE* = 2 the plane containing E* and xo(v) cannot
be perpendicular to E** in the non planar case, so we have supp(fi)=
{~1, cos2y + i-sin2y} in this case.

It is now easy to identify the Griinbaum systems associated to the various classes
of regular polyhedra described in [1]. We summarize the result in the following table:
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Griinbaum’s description dimay  dima, dimo, X{oo, 01)  X{a, o2)
class 1:  Platonic polyhedra 2 2 2 #72° #72°

{3, 3} tetrahedron 60° 60°

{3, 4} octahedron 60° 45°

{4, 3} cube 45° 60°

{3, 5} icosahedron 60° 36°

{5, 3} dodecahedron 36° 60°
class 2:  planar tesselations 1 1 1 X (otg, 1) + ¥ (23, 02) = 90°

{4,4) 45° 45°

{3, 6} 60° 30°

{6, 3} 30° 60°
class 3:  Kepler-Poinsot polyhedra 2 2 2 72°€ ¥ (w0, ot1), ¥ (a1, a2)

{5, 5/2} great dodecahedron 36° 72°

{3, 5/2} great icosahedron 60° 72°

{5/2, 5} small stellated

dodecahedron 72° 36°
{5/2, 3} great stellated
dodecahedron 72° 60°

class 4:  Petrie-Coxeter polyhedra 2 i 2

{4, 6™%/1} 45° 30°

{6, 448«)12'/1} 30° 450

{6, 633°3%/1} 30° 30°
class 5:  Finite regular polyhedra with

finite skew polygons 1 2 2

{472/1, 3} 45° 60°

{67371, 4} 30° 45°

{6v2/1, 4} 30° 60°

{1073/1, 5} 18° 36°

{6“/5/1, 5 3y 36°

{63"/5;'], 5/’2} 30° 72°

{10™3/3, 5/2} 54 72°

{10°%3/1, 3} 18° 60°

{10%%/3, 3} 54° 60°
class 6:  Infinite polyhedra with finite

skew polygons 1 2

three infinite families of

similarity classes | 2 2

{4%/1, 4} 45° 45°

{6*/1, 3} 30° 60°

{2.37/1, 6} 60° 30°

three individual similarity

classes 1 2 i

{63, 6} 30° 30°

{47/1, 6} 45° 30°

{6™3/1, 4} 30° 45°
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Griinbaum’s description dimao dima;  dima; Xlag, 1) Ko, ay)

class 7. Regular polyhedra with

zig-zag polygons 0

three infinite families with

an invariant plane 0 2 2

{OO', 4} 0° 45°
{ wa, 3} Oo 600
{0*, 6} 0° 30°

three infinite families without
an invariant plane

{oo™®), 4axiti/g1 0 1 2 0° 45°
{oo"®) grxbl/1} 0 1 2 0° 30°
{oodt) 2.35%®) /11 0 1 2 0° 60°
class 8:  Polyhedra with helical polygons 1 1

three infinite families 1 1 2

{om®1R12_ 4awd)/ 1) 45° 45°
{ oo VB 2R/3, ()ntbi/ 1} 60° kit
{opbrri3 3 3ok 30° 60°
three individual similarity types 1 1 2

{Oo«/z.2n/3, 6"/3/1} 60° 30°
{0027:13.1:/2, 6“**/1} 45° 30°
{0021r/3‘2n/3, 41!/3/1} 60° 45°
three individual similarity types 1 1 1

{oo2m/3512, 3} 45° 50°
{oo?%/3.2m3, 3) 60° 60°
{mn/2,2x/3’ 4} 60Q 45°

From this correspondence it follows easily that all Griinbaum systems do indeed
correspond to regular polyhedra except perhaps in case dimo, = dima; = dimao = |,
X (a0, a1} = ¥ (a2, ;) = 60°, & (o5, ®2) = 45° which has not been considered in
[5]. But the cubic lattice Z3 = R? is preserved under the 180°-rotations o, z; and a2
around the lines Fo = (0, 0, 1/2)+R-(0, —1, 1), F; = (0, 0, 0)+ R-(—1, 0, 1) and
F, = (0,0, 0) + R-(1, 0, 0) from which fact one can easily deduce that the Grinbaum
system (v; oo, @3, az) With dimag = dimay = dima, = 1, & (%, a1) = 60°, ¥ {21,
a2} = 45° corresponds to a regular polyhedron, too, which then is described by
{oo™22%3 4} according to Griinbaum’s terminology.

Let us finally mention two open problems in this context.

(1) Does there exist a (finite) subgroup G £ Iso(E), for some vek = E" and some
element ae Iso(E)\ Iso(E), (with a? = 1) such that (G, a), # G (and (G, a) is discrete)?

(2) Given finitely many subspaces Fy, F», ..., k€ E=F",

(a) find necessary and sufficient conditions for the discreteness/finiteness of the
group, generated by the involutions ay, ¢, ..., & wWith E*=F, (i=1,2,..., k).

(b) Given a second sequence of subspaces Fi, F3, ..., Fi € E, find necessary and
sufficient conditions for the existence of an isometry/similarity y with
yWF)y=F@=1,...,n.
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