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Abstract. Two ways of defining a well-conditioned minimization prob- 
lem are introduced and related, with emphasis on the quantitative 
aspects. These concepts are used to study the behavior of the solution 
sets of minimization problems for functions with connected sublevel sets, 
generalizing results of  Attouch-Wets in the convex case. Applications to 
continuity properties of  subdifferentials and to projection mappings are 
pointed out. 
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1. Introduction 

The notion of a well-posed optimization problem is important and has 
been given several variants; see Refs. l to 6, and in particular Refs. 1 and 
6 for comprehensive treatments. Besides the qualitative results presented in 
the just quoted papers, one may wish to dispose of quantitative estimates. 
This may be useful for the study of the speed of convergence of algorithms. 
Generally speaking, it is well known that the notion of conditioning is impor- 
tant in numerical analysis and statistics, see for instance Ref. 7. 

We introduce here two functions which describe the conditioning of a 
minimization problem. It appears that they are quasi-inverse functions in 
the sense of Refs. 8 and 9; the precise meaning of this inversion property is 
recalled in Section 2. 

1We are grateful to M. Valadier for pointing otft, during a lecture by the author in Montpellier 
in October 1990 presenting the main results of the present paper, that existence results in 
Section 2 of the present paper can be dissociated from estimates. 

2Professor, Math6matiques URA 1204, Facult6 des Sciences, Universit6 de Pau, Pau, France. 
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Using these tools, we are able to devise estimates for the variation of 
the infimum of a function and for the variation of its set of minimizers 
(Section 3) when the function varies in the set of inf-connected functions, 
i.e., functions whose sublevel sets are connected. Such a class of functions 
has gained wide interest as it is a natural generalization of the class of 
quasiconvex functions (Refs. 10-12). Here, we get a true Lipschitzian prop- 
erty for the variation of the infimum in terms of the function, whereas a 
Stepanov property or stability property in the sense described below was 
obtained in Ref. 13. We show by an example that the situation is different 
for the sets of minimizers: their Stepanov property cannot be improved to 
a Lipschitz property. Recall that a mapping F: M ~ M '  between two metric 
spaces M, M' is said to be stable (or Stepanoff) at xo~M (Refs. 14, 15) if 
there exist c > 0  and a neighborhood N of x0 in M such that, for any xeN, 
one has 

d( F(x), F(xo))<_ca(x, xo ). 

It is stable if it is stable at any point of M. Such a property is weaker than 
a Lipschitzian property, but is still useful; see Ref. 14, for instance. Note 
that here as in Ref. 13 we do not use a true metric on the space M of 
extended real-valued functions on the normed vector space (n.v.s.) X; we 
prefer to use the more natural family of polymetrics (d,.),.>o of bounded 
hemiconvergence (see Section 2) described or used in Refs. 16-25, which 
is more convenient than the genuine metric inducing the same topology 
(Ref. 21 ). 

Section 4 is devoted to an application to the hemicontinuity (continuity 
in the sense of the Hausdorff metric or Hausdorff hemimetrics) of subdiffer- 
entials of convex functions. In Section 5, we consider another application: 
we estimate the variation of the projection of a fixed given point on a variable 
closed convex subset of a uniformly convex Banach space. It has been 
shown in Ref. 13 that, in the Hiibert case, the behavior is of H61derian 
type rather than of Lipschitzian type. Here, we relate the estimate that we 
present to a geometrical characteristic of the space, its modulus of uniform 
convexity. 

2. Conditioning Gages and Conditioning Modulus 

In the sequel, f,  g are extended real-valued functions on a metric space 
(X, d). We denote by P [resp. R+] the set of positive [resp. nonnegative] 
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real numbers, and we denote by 

my := inff, 
X 

Sf: = {xeX:f(x)=mr},  

the infimum o f f  and the set of minimizers off ,  respectively. 
For EeR+, the E-approximate solution set of f is 

S/(e) := {xeX: f (x)  <mr+ e}. 

If A is a subset of X and xeX, eeR+, we set 

d(x, A) := inf d(x, a), 
aEA 

U(A, e) := {xeX: d(x, A) < E}, 

B(A, e) := {xeX: d(x, A)<_ e}. 

lfA = {a}, we write U(a, e) [resp. B(a, e)] instead of U(A, e) [resp. B(A, e)]. 
When X has a fixed base point 0, in particular when X is a normed vector 
space (n.v.s.), we set B~ = B(0, E). 

For two subsets C, D of X and reR+, we set 

e,.( C, D):= sup{d(x, O): xeC n B,.}, 

d,.( C, D) := max(e,.( C, D), e,.(D, C)), 

with the usual convention 

inf ~ = 0% sup ~ = 0 in R+. 

These quantities have been introduced by Kato to study the variation of 
vector subspaces; they are also mentioned in the work of Mosco (Ref. 16). 
The use of these local excesses (or hemimetrics) and distances for dealing 
with analytical and geometrical operations has been pointed out in Ref. 17; 
subsequently, they received a great deal of attention; see for instance Refs. 
18-25. 

In particular, it has been shown that the Legendre-Young-Fenchel 
transform is continuous for the topology which they induce (Refs. 22, 23), 
and it has been shown in Ref. 24 that they satisfy the following collective 
triangle inequality which justifies the name "polymetrics": given nonempty 
subsets C, D, E of X, there exists roeR+ such that, for r>_ro, one has 

dr(C, E) <_d3,.( C, D) + d3r(D, E). 

Identifying a function f :  X~I~ with its epigraph, 

E( f )  := {(x, r)eX x R: r>_f(x)}, 
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the preceding excesses and polymetrics induce hemimetrics and polymetrics 
on the space O`x of extended real-valued functions on X, 

er(f, g) := e,.(E(f), E(g)), 

d,(f, g) := d,.(E(f), E(g)). 

Then, one can define a topology, called the topology of bounded hemicon- 
vergence or bounded Hausdorff convergence, on ~x by taking as a base of 
open sets the open balls 

Vr(f, e ) :=  {gEO`x: d,.(f,g)<e}. 

This topology is metrizable and, if X is complete, the space of closed proper 
functions is complete in the associated metric (Ref. 21). Moreover, when X 
is a Hilbert space, the topology of bounded hemiconvergence just described 
coincides with the topology of Attouch-Wets defined through infimal convo- 
lution (Ref. 26). 

Given an extended real-valued function f :  X-.P, such that mf~R and 
St is nonempty, a function ~0: R+~R+ := R+ u {~} is said to be a condi- 
tioner for f if 

d(x, St) <- q~(f(x) -mr) ,  Vx~X. 

Such a function is of interest for numerical purposes, since it yields an 
estimate of the error on the current estimate of an algorithm in terms of the 
error on the value, assuming that me is known. In general, it is not easy to 
determine a conditioner; it is usually easier to determine a function 
7: R+~O`+ such that 

r (d(x, St)) _<f(x) - m r ,  VxeX. 

Such a function will be called a growth function (Ref. 13). In Ref. 13, the 
largest one is called the radial regularization o f f  We prefer to use the largest 
nondecreasing function Yl satisfying this inequality. We call it the canonical 
growth function o f f  It is obviously given by 

?'r(r) = inf{ f (x )  -mr: xeX, d(x, St) > r}. 

When 7(f is a gage, i.e., is positive on P := ]0, co[, we call it the canonical 
growtl-, gage o f f  Let us recall that a function ~, is a gage if it is nondecreasing 
andfirm (or admissible or forcing) in the following sense: any sequence (r,) 
of R+ such that lira, ~,(r,,)=0 converges to 0. Here, we note that, for a 
nondecreasing function 9', firmness is equivalent to the property that 9' is 
positive on P. 

Similarly, one can introduce the smallest conditioner and the smallest 
nondecreasing conditioner Ps of f ,  owing to the fact that the infimum of a 
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family of conditioners is still a conditioner. Let us observe that the latter is 
given by 

/~/(r) := e(Sy(r), St) 

:= sup{d(x, St'): xeX, f (x)  _<m:+ ,,}. 

We call it the canonical conditioner. We are interested in situations in which 
p:  is a modulus, i.e., when ~/is  continuous at 0 with value 0 at 0. 

A direct proof of the following result is easy; however, in the proof 
below, we will use some material from Ref. 8 in order to get connections as 
precise as possible. 

Proposition 2.1. For any function f:  X o R ' : =  R w {oo} with finite 
infimum m: and nonempty set of minimizers S:, the following conditions 
are equivalent: 

(a) f h a s  a conditioner which is a modulus; 
(b) the canonical conditioner/-(r o f f  is a modulus; 
(c) the canonical growth function D of f is a gage; 
(d) there exists a growth function which is a gage; 
(e) f is metrically well set in the sense of Ref. 8: 

lim e(S:(E), Sy)=0. 
~---~0 

Clearly, (b) and (e) are the same statement with a different phrasing. 
In order to prove the other equivalences, it will be useful to recall from 
Refs. 8 and 9 some facts about the generalized inversion of nondecreasing 
functions. If F: X ~  Y is a relation, we denote by 

F - ' =  {(y, x)e YxX:  (x, y)eF} 

its inverse relation. 
Given a nondecreasing function tp: R+--.I~+, let us denote by E(q0 and 

H(O) its epigraph and its hypograph, respectively, 

E(q~) = {(r, s)eP, x R: tp(r)_<s}, 

H( o) = {(,., s) R • R: q,(,')___ s}. 

We observe that H(q~) -I is not an epigraph but is a pseudo-epigraph in the 
sense that, if (r, s)~H(cp) -~ and if t>s, then (r, t)~H(q~) -l. Thus, its vertical 
closure is an epigraph. More precisely, H(cp)-I is the epigraph of the function 
r given by 

tff(s) = inf{r~R+ :(r, s)sH(qO-'}. 
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Similarly E(q0 -1 is a pseudo-hypograph for the function q]' given by 

r :(r,  s) ~e(~p)}. 

Let us recall (Refs. 8, 9) that ~': R+~R,+ is a semi-epi-inverse [resp. a 
semi-hypo-inverse] of  ~p if E(~)~H(~o)-' [resp. H(~t)cE(~p) -j] iff ~>~0 h 
[resp. ~, < eft]; see Ref. 9, Proposition 2.6. Recall (Refs. 8 and 9, Proposition 
2.8) that, if ~p is a gage, then ~ and qr are moduli, a modulus being a 
nondecreasing funct ion/ t :  R+-~R+ such that lim,.~o/~(r) =0.  

The core of  the proof  of  Proposition 2.1 is contained in the following 
lemma. 

L e m m a  2.1. 

(a) Suppose that 7 is a growth gage f o r f  Then, any modulus/z > 7, h, 
in particular 7/I' itself, is a conditioning modulus for f ,  i.e., a condi- 
tioner which is a modulus. 

(b) Suppose that/1 is a conditioning modulus for f. Then, any gage 
7,</1 ~, in particular/z ~ itself, is a growth gage forf .  

Proof. Let us introduce 

F= {(r, s )eR+ x R+: 3xeX, r = f ( x ) - n V ,  s=d(x, Sf)}. 

Then, a gage 7/is a growth gage f o r f i f f  F -I cE(~,) ,  and a modulus p is a 
conditioning modulus for f i f f  FcH(p) .  Therefore, assuming that 7 is a 
growth gage for f,  if p > ~/h, i.e., if :r is a semi-epi-inverse of  p or if 
E ( 7 )  c H(p) -I, we get F -j ~E(~,) ~H(p)  -I and p is a conditioning modulus 
of f :  F=H(p). The proof of  the second assertion is similar: 7,<p ~ iff 
H(p)cE(~,) -I, hence F -1 c E ( 7  ) when Fel t (p) .  [] 

The following lemma supplements our study of the relationships 
between the canonical conditioning and the growth functions/~.r and ~(r of  
f,  even w h e n f i s  not metrically well set. 

L e m m a  2.2. The function Zr and jUr are quasi-inverses: for any r, s in 
R+, one has r_</~r(s), whenever y r ( r )<s ,  and s_< zr(r), whenever i~r(s ) < r. 

Proof. When Zr(O<s,  we can find x~X with d(x, S/)>r such that 
f ( x ) -mr<s ,  so that x~S/(s) and llr(s)>d(x, S/)>r. 

When p.r(s) < r, for any x~X with d(x, Sy) > r, we cannot have xESr(s), 
so that f ( x )  >mr+s and zr(r) >_s. [] 
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Although the preceding lemmas bring an appealing symmetry between 
conditioning modulus and growth gages, we note a degradation of informa- 
tion when using quasi-inverses: we have only (in view of the definitions of 
pf  and Zf) 

(Zf)h___pr, (#r ) '<~f .  

However, we observe that (Xr) h is u.s.c, and (Pf)" is l.s.c. These properties 
are often very useful, as we will see. Moreover, when p f [resp. Ys] is u.s.c. 
[resp. I.s.c.] the first [resp. second] of the preceding inequalities is an equality 
(Ref. 8, Proposition 2.2). 

Let us observe that, in view of Proposition 2.2 of Ref. 8, Lemma 2.2 
implies that the functions yf and pf  are related by the inequalities 

( ZrY < #r < (~.r)/', 

(#rY < Zr< (#r)"- 

When p f is (strictly) increasing, by Proposition 2.2 and Corollary 2.3 
of Ref. 8, its quasi-inverses all coincide and are continuous, so that the 
last inequalities above are equalities. This happens under convexity and 
uniqueness assumptions (Ref. 13, Proposition 5.2). In fact these assumptions 
can be relaxed: uniqueness is not needed and starshapedness at each point 
of Sfcan replace convexity. Recall tha t f i s  said to be starshaped at u if, for 
any v e X  and any re[0, I], one has 

f ( ( l  - t)u + tv) <_ ( 1 - t)f(u) + tf(v) ; 

it is said to be starshaped if it is starshaped at 0 with f ( 0 ) =  0. 
The following result completes and makes more precise Ref. 13, Propo- 

sition 5.2; here, Sy is not supposed to be a singleton and the convexity 
assumption is relaxed. 

Proposition 2.2. Suppose that X is a n.v.s., Stis nonempty, my is finite, 
and f i s  starshaped at any xeS f .  Then, the radial regularization off ,  

Vr(r) := inf{ f ( x ) -  mr : x e X ,  d(x, Sy)= r}, 

is starshaped. Therefore, if V(r(ro)>0 for some ro>0, then ~.r is strictly 
increasing on [ro, oo[ c~ dom ( r  and coincides with 7(f on this interval. In 
particular, if ~f is a gage, 75r = ( f .  

Proof. Let r > 0  and let te]0, 1[. Suppose we have v ( t r )> tv ( r )  for 
:= Vs. Then, we can find qe ]v(r),  t-I~t(tr)[ and x e X ,  with d(x, S i )=r ,  
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such t h a t f ( x ) - m f < q .  As inf,,,sj (1 - I I x -  ull - ' ( l  - t ) r )  = t, we can pick ueSf  
such that (1 - I l x -  ull-t(l - t ) r )  ( f ( x ) - m f ) < t q .  Then, for se[0, 1], we have 

a(s) := d((l - s)u + sx, St) 

>_d(x, SD -II(l - s ) (x-u) l l  = r -  (1 - s )  I lx -  nil, 

and the intermediate value theorem yields some s,e [0, 1 - I lx-ul l -~( l  - t ) r ]  
such that d(y, ,  S f )= t r  for y, := (1 - s , ) u+s ,x .  Then, a s f i s  starshaped at 
u and f ( u )=  mr, we have. 

(tr) <_ f ( y , )  - mr< s,( f ( x )  - mr ) < tq < ~t(tr), 

a contradiction. The last assertions follow easily. [] 

Remark 2.1. If we suppose moreover that the closed balls of X are 
compact for some topology tr for which f is I.s.c. and Sy is compact, then 
( f i s a  gage and Zf = ~(t. In general, it is not so. To see that, take an infinite- 
dimensional space X and a sequence (a,) of the unit sphere Sx without limit 
point, and s e t f ( a , ) = a ,  with a,,e ]0, 1[, (a,,)~O+. Since A := {a,:nEN} is 
closed, we can extendf to  a continuous function on Sx with values in [0, 1]. 
Adding d( . ,  A), if necessary, we may assume that f is positive on Sx and 
extend it by positive homogeneity to X, with f ( 0 ) =  0. Then, SI= {0}, f is 
starshaped, but ~ f ( r )=0  for each reR+. 

In the following lemma, we identify a class of functions which will be 
important for the sequel. 

Lemma 2.3. For any f : X ~ R u { ~ } ,  one has the implications 
(a) =~ (b) .~ (c) among the following assertions. If X can be endowed with a 
topology tr for whichfis  I.s.c., and if the closed balls of X are compact, the 
three assertions are equivalent: 

(a) Ssis bounded and nonempty, and y.fis not identically 0; 
(b) for any O~X, there exists/3, p e P  such that Ss(fl)~B(O, p); 
(c) f i s  pseudo-coercive: for any OeX, lim infd(o.x)~o~f(x)>me. 

Proof. 

(a)=~(b) Given OEX, and a, fl, ~eP such that SfcB(O, 4), ~f(Ct)> 
fl>O, for any xeSf( f l )  we have 

zf(d(x, Sf)) < f (x )  - me< fl ; 

hence, d(x, $I)< a and Sz(fl) is contained in B(O, ~ + a). 
(b) ~ (c) For r > p, we have inf{ f ( x )  : xeX ,  d(O, x) > r} > mr+/3 when 

sA/3) = S(O, p). 
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(c) =~ (b) Taking fl >0 such that mr + fl <iim infato.x)~f(x), we can 
find p > 0  such that f (x)>mr+ fl for xeX\B(O, p), so that Ss(fl)cB(0, p). 

Whenf i s  l.s.c, for a topology tr for which B(0, p) is compact, f attains 
its infimum on B(0, p), hence on X when S.r(fl) c B(O, p). Moreover, then 
Sfc  B(O, p) and, for a >2p  and x~X, with d(x, Ss) > a , we have xq~B(O, p), 
hence f ( x ) - m r > f l  and ~(r(a) >-fl >0. [] 

3. Continuity of Values and Upper Hemicontinuity of the Solution Set 

It is well known that epiconvergence is precisely the type of convergence 
which is suited to obtain semicontinuity properties of the value function 
(Refs. 27-28). It is desirable to obtain quantitative versions of results of this 
kind. Such an aim has been pursued with great success in the convex case 
(Refs. 13, 19). Here, we complete the study made in these articles and we 
treat some nonconvex cases. 

We consider the class of inf-connected functions: f~  0, x is said to be 
in f-connected if, for each ~ R, the sublevel set [ f <  ~.] := {x ~X:f(x)  < ;t} is 
connected. Obviously, when X is a n.v.s, and f is quasiconvex, f is inf- 
connected. 

It is easy to obtain an upper semicontinuity property for the infimal 
value functionf~--~mr. The following one is in the vein of Ref. 13, Theorem 
3.1, but here there is no restriction of the type m i n f = f ( 0 ) = 0 .  For another 
result of this sort, see Ref. 30, Proposition 3.4. 

Proposition 3.1. Let r>max(Imsl, d(0, St)). Then, for any 
g : X ~ R u  {~}, one has 

mg< my+ d,.(f, g). 

More generally, if for some ceR+ one has r>max(Imr+ el, d(0, Ss(e)) ), 
then 

me <mr+ e +dr(f ,  g). (1) 

Proof. Since r>d(0, S.r(e)), we can find xESs(e ) n B,.. Then, for any 
6 > dr(f, g), there exists (y, s) E E~, with d(y, x) < ~, Is - (mr+ e)J < t~. It fol- 
lows that 

mg <_ g( y) <. s < rig+ e + 6. 

Taking the infimum over t~, we get the result. [] 
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Upper hemicontinuity results for the solution multifunction are more 
subtle and involve a kind of well-posedness property. Note however that 
assumption (3) below is weaker than well-posedness. The next proposition 
prepares for upper hemicontinuity results; it also incorporates a Stepanov 
property for the value function. 

Proposition 3.2. Let f :  X-,if, be such that, for some a, fl, 5, p in P 
with 26<f l  and some nonempty subset S of X, one has U(S, a + 6 ) c B p  
and 

inff(B,,) =mr:= inff(X) ~R, (2) 

xe Bp, d(x, S) > a =,f(x) > m./.+ ft. (3) 

Let eeR+ and r~R+ be such that 25+E<f l ,  r>max(p,  Im/I +fl). Then, 
for any inf-connected ftmction ge  V,.(f, 5), one has 

(a) infg(Bp)=mg:= infg(X)~R, 
(b) e(Sg(e) ,S )<a+d, ( f ,g ) ,  
(c) ling- mrl -< d,.(f, g). 

Proof. We first observe that, by (2) and (3), we have 

inf f (B(S,  a)) = mr. 

It follows from the proof of the preceding proposition that 

mg<inf g(U(S, ct + 8)) <_mf+dr(f, g). 

In fact, taking 5 '~]d, . ( f ,g) ,~[ ,  fl'E]0, fl[, and x~U(S,a) ,  with 
f ( x )  <mr+ fl', we can find (y, s)~Eg, with y~x  + ~'Bx, g(y) <_mr+ fl' + ~', 
so that y~U(S, a + Z )  and m g < m r + f l ' + 6 ' ;  and taking the infimum on fl' 
and 6', the preceding inequality ensues. Moreover, since 26_< fl, we see that 
the sublevel set [g<_mr+ fl - ~ '] meets U(S, ct + 6 '). 

Now, let us show that, for any 6'E]d, . ( fg) ,6[  and any 
y ~ Bp \ U(S, a + 5 '), we have g(y) > mr + fl - ~ '. Otherwise, we could find 
x~ U( y, 8 '), with f (x) <mr+ fl, so that by (3), we would have d(x, S ) ~  a, 
a contradiction with d(x, y) < 6' and d(y, S) >_ a + 5 '. 

It follows that the sublevel set [g_< mr+ f l -  5'] of g is contained in the 
union of the disjoint open sets X\Bp and U(S, a + 8'); moreover, we have 
seen that it meets U(S, a + 5'). Since this sublevel set is connected, it is 
contained in U(S, a + ~'). As 

rag+ ~_<mr + 5 ' +  ~_<m[+ fl - ~', 
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we get 

Ss( �9  ) := [g < m, + �9 ] r [g ~ m/.+ fl - 8 '] c U( S, a + 6 ') = B p . 

Since 6 '  is arbitrarily close to d,.(f, g), we get infg(Bp)=m~ and (b). 
It remains to show that m ~ > m , - 8 '  for any 6 '  as above. If  we had 

rag<re.r- 6', there would exist some Y ~ [ g < m r -  S'] c [g<ms+ fl - 6,] c 
u(s ,  a + 6 ' ) c B p  and we could find xEB(y ,  6') with f (x) < ( m f - 6 ' ) +  ~', 
an impossibility. Therefore, 

rag- mr >_ -d,. ( f ,  g). [] 

Taking �9 = 0 and S =  S I, we get a more striking result. 

Corollary 3.1. Suppose that, for f ~ x  with me finite and for some 
a, fl, p in P, we have Ss4: ~ ,  Ilaill := sup{ tlxll:x~Sf} <p-a ,  and 

xe  B,,, d(x, St') > a =~ f (x) > mr+ ft. 

Let r_> max( p, [mtl + fl). Then for d; e [0, ( I/2)fl], with 1[ S s 1[ + t~ < p - a, and 
for any inf-connected function g s  Vr(f, 6) ,  one has 

e(Sg, Sy) < a + d, (f ,  g), 

Im,-.lrl .< d,. ( f ,  g). 

Note that, in Corollary 3.1, the set Sg may be empty. In the following 
theorem, the existence of  solutions is part of  the conclusions; in Ref. 13, 
Theorem 3.5, it was an assumption. Moreover, in this last result, a localiza- 
tion of  S, was needed in the assumptions; here, it is part of  the conclusions 
too, and the hypothesis that f attains a unique firm (or strong) minimum 
at 0 is not required. Observe that our assumption on X is satisfied if X is a 
reflexive Banach space and if cr is the weak topology, or more generally if 
X is a dual Banach space and if a is its weak* topology. 

Theorem 3.1. Suppose that X is endowed with a topology a such that, 
for each r e R + ,  the ball B,. is compact for a. Suppose that f, a, fl, 8, p, r 
are as in the preceding corollary. Then, for any lower semicontinuous (for 
or), inf-connected function g such that d,(f ,  g) < 6, the set Sg of  minimizers 
of  g is nonempty and 

e(Sg, Sf) <_ a + d~(f, g), 

I,,7,- "!A <,4,( f, g). 

Proof. This follows from the fact that the proof  of  Proposition 3.2 
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shows that the level set [g_<mr § ~5 ] is nonempty and contained in Bp. Since 
it is closed for tr, it is compact for cr and Sg=argmin (g, [g_<mt-§ is 
nonempty. []  

The preceding results are stability results of the Stepanov type, as in 
Ref. 13. The following result has a true Lipschitzian character. 

Proposition 3.3. LetfelS, x be such that, for some a, fl, 6, p in P, with 
26 <fl,  and some nonempty subset S of X, one has U(S,  ct + 6 )cB , .  and 

inff(B~,) = mr: = inff (X)  e R, 

xe  B,,, d(x, S)  > a =~ f (x) > mr+ ft. 

Let r>max(p ,  Imrl+3) and let r /=(1/2)6.  Then, for any g, heV,.(f ,  11) 
with d,.(g, h) < 11, one has 

ling - m,, I <- dr(g, h). 

Proof. Taking c=f l -211  >211, ge Vr(f, 7) in Proposition 3.2, we get 
by conclusion (b) that 

x e Bp, d(x, S)  > a + 11 :=> g(x) >mg + e. 

Using conclusion (a), it follows that we may replace f, a,/3, 6 in the preced- 
ing proposition by g, a + 1/, c, I/ respectively, and we get that, for any 
he Vr(g, 11) with the same r, 

Imh--mel <d,.(g, h). [] 

Although the roles of g and h are symmetric, we cannot assert that 

e(Sl,, S e) <a  + 11 +dr(g, h), 

because here S cannot be taken to be Sg. See Remark 3.I below in this 
connection. 

Let us reformulate Theorem 3.1 in a more synthetic and more usable 
way. 

Theorem 3.2. Suppose that the set St of minimizers o f f  is nonempty 
and bounded. Suppose that f is  metrically well set, with an u.s.c, conditioner 
q~. Then, there exists r > 0 and 6 > 0 such that, for any inf-connected function 
g: X ~  R u { oo } satisfying dr (f,  g) < 6, one has 

Imp,- mrl < dr ( f, g), 

e( Sg, St-) <d,.( f ,  g) + tp(2d,. (f ,  g)). 
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If moreover g is l.s.c, for a topology o- for which the balls B~ are compact, 
then Sg is nonempty. 

Let us note that, in this statement, we can take for ~o the u.s.c, regulariza- 
tion P V of P r, given by 

p r(r) = inf{pr(s): s> r}. 

It is not easy to compare the estimate for e(Sg, St) with the one given in 
Ref. 13,Theorem 3.5: there, a Lipschitz regularization of a growth gage of 
f is used, and the estimate is indirect; here, we have an explicit estimate. 

Proof. Since q~(0)=0, lim ~p(t)=0, we can find ao, flo>0 such that 
r ~ 0  

r Then, taking a=ao,  fl=/3o, ~=(1/2)/3o, p=llS.rll+ao, and 
choosing r>max(p ,  [mr[ + fl), we get that, for any inf-connected function 
g : X - , R  w {or}, with d,.(f, g) < 8, the inequality ling-mr I <_d,.(f,g) holds 
and Sg is nonempty if g is l.s.c, for or. 

For such a g, let us take al>rp(2d,.(f,g)), a , < a o ;  note that 
r (f,  g)) < q~(/3o) < ao. As rp is u.s.c,, we can find fit > 2d,.(f, g) such that 
fl~ <13o and r <a~ for t~[0, fl~]. Then, i f x ~ X  is such that d(x, Ss)>_at, 
we have tx :=f(x)  -mr>/31, since otherwise d(x, Sf) _</z.r(tx ) < a. Since the 

chosen r is still valid for the new a=a,  and /3=ill ,  and since d~(f,g) 
</3/2, a new application of Proposition 3.2 yields 

e( Sg, Sy) <d,.( f g) + al . 

Since a~ is arbitrary in ]tp(2d~(f, g)), a0[, the result follows. [] 

Corollary 3.2. Suppose that the set Sr of minimizers o f f  is nonempty 
and bounded, suppose that mr is finite, and suppose that, for some gage 
), := R+-,R+, one has, for each xeX,  

f (x) >mr+ 7(d(x, SI)). 

Then, there exists r>  0 and 6 > 0 such that, for any inf-connected function 
g: X ~ R  w {~} satisfying d,.(f, g) _< 6, one has 

l ing- mr[ < dr(f, g), 

e(Sg, Ss) <_d,.(f, g) + rh(2d~(f, g)), 

where 

?'h(t) =sup{reR+ : t>_ 7(r)}. 

Proof. Since y is a growth gage for f, yh is a conditioning modulus 
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f o r f b y  Lemma 2.1 ; moreover, ~,h is u.s.c, by Ref. 8, Proposition 2.3. []  

In the following example, we prove that the estimate of  Corollary 3.2 
is sharp. 

Example 3.1. Let f :  R ~ R  be given by f ( x )=c lx l  p, with c>0 ,  p >  1. 
Let us define a one-parameter family g,, of  functions on R for aE[0, i] such 
that, for any r > 0, one has d~ ( f ,  go ) < (1 ~2)ca ~ while e(Sg,,, St) = a. There- 
fore, as ~'h(t)= (c-lt) I/p when ?(s)=cs p, 

lim sup e(Sg,,, S/)-I[d,.(f, g,) + rh(2d~ (f ,  go))] < 1. 
a ~ 0  

It suffices to define g,, by 

g,(x) = (c/2)a p, for xe[ -a ,  a], 

g,,(x) = f ( x )  - (c/2)(2-a-Ilx[)+, for Ix[ >a ,  

where r§ =max(r ,  0). 

Remark 3.1. Without further assumptions, one cannot have an esti- 
mate of  the Hausdorff  distance d(Sg, S.r) in terms of dr(f,g). To see this, 
take for instance X =  R, f ( x ) = m a x ( I x l -  1,0); and, for e e  ]0, 1[, let g be 
given by g(x) =max(Ixl - 1, Elxl - E). Then, one has d(Sg, Sy) = 1 and, for 
each r>_O, one has d r ( f  g)<_c. [] 

Finally, we show that the inf-connected assumption on g is crucial in 
Theorem 3.2. 

Remark 3.2. Let f :  R ~ R  be given by 

f ( x ) = l x l ,  for x ~ [ - l ,  1], 

f (x )=ls inrcxl+lx l  -j , for Ixl > 1. 

Then, for any r > 0 ,  t~>0, we can find g: R ~ R  such that d ~ ( f , g ) < ~  and 
e(Sg, Sy)= + ~ .  It suffices to take g such that 

g(x) = I sin rcxl, for I xl -> max(~-~, r), 

g(x) = f ( x ) ,  otherwise. 

4. Application to Upper Hemicontinuity of Subdifferentials 

In this section, we deduce from the preceding result a quantitative form 
of  the Asplund-Rockafellar  theorem about the continuity of  the subdiffer- 
ential Of of a convex function satisfying a smoothness condition. 
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We need the following lemma whose proof is obvious. 

Lemma 4.1. Let f:  X---,R u { + ~ }  and let g: X ~ R  be bounded on 
bounded sets. Then, for each reR+, one has 

d,.(f,f + g) <suplg(rBx )l. 

In the following theorem, we use the Legendre-Fenchel conjugate of 
the function f, given by the usual formula f *(y) := supx~x((y, x) - f(x)) .  

Theorem 4.1. Let f :  X ~ R  u {+oo} be a proper convex 1.s.c. function. 
Suppose that, for some xoeX, the set df(xo) is nonempty and bounded and 
that, for some gage 7, one has, for each yeX*, 

f*(y)  > (.'Co, y) -f(xo) + ~'(d( v, Of(x0))). 

Then, there exists some r>O and some E>O such that, for xEB(xo, E), one 
has 

e(df(x), ~f(xo)) < rllx-x0 II + yh(2rl[x -Xo ]l ). 

Proof. Let us observe that the set St, of minimizers of the function 
h := f*  - x on X*, given by h(y) =f*(y) - (x, y), satisfies 

yeOf (x) e~xeOf*ty).,..),eS,,. 

Thus using Corollary 3.2, and observing that the assumption can be written 
as 

f * ( y )  - (Xo, )') >_f*(yo) - (x0 ,  yo)  + r(d(y, Of (xo))), 

for any yoeOf(xo), we get, for some r>0,  6>0, 

e(Of(x), Of(xo))=e(Sr-x, Sj*-xo) 

<d, . ( f* -x , f* -xo)  + yh(2d,(f*-- x , f* --Xo)), 

provided dr(f *-x ,  f * - x o )  <6, which occurs when I[X-Xo [I <e:=r-16, 
since d,.(f* - x, f * - Xo) < r l ix-  Xo l[ by the preceding lemma. [] 

Given a modulus/t ,  one defines f to be/t-smooth at x0 if there exists 
some yosX* such that 

f(x)<f(xo)+(X-xo,yo)+l~(llx-xoll), Vx~X. 

Then, one can show (see Ref. 32, Theorem 2.1, Proposition 3.1) that 

f*(Y)> f*(Yo)+(xo,y-Yo)+l~*(lty-yoll), VyeY 
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and if/~ given by I~(t) = t-~p(t) is a modulus, one sees easily t ha t f i s  Fr6chet 
differentiable at Xo with f ' (x0 ) = y0. Since f *(y0 ) - (xo, yo) = - f (xo) ,  one 
can apply the preceding Corollary 3.2 with 7/=p*.  Using the results of  Refs. 
31 and 32, we get a quantitative form of a well-known upper semicontinuity 
result. For other results obtained independently along this line, see Ref. 33. 

5. Application to Best Approximation 

Recall that a n.v.s. X with unit ball Bx is said to be uniformly convex 
if there exists a function 7/: [0, 1 ]--* [0, 1 ] satisfying ?'(0) = 0, ?'(t) > 0 for t > 0, 
such that, for u, v ~ Bx, E ~ [0, 1 ], 

ii(1/2)(u-o)il >~=~ 1 - l l (1 /2 ) (u  + v)ll > y(E); 

see Ref. 34 for the existence of  such a function and its relation to other 
uniform convexity gages. Let 7r~ be given by 

~'x(~) :=inf{ 1 - l l ( 1 / 2 ) ( u +  o)ll : u, v~nx, 11(1/2)(u-o)11 _>E}. 

Then, the canonical modulus of  uniform convexity, given by 

px(~):=sup{ll(1/2)(u-o)li: u, o~nx, 1-[[(1/2)(u+o)i[ <~},  

is easily seen to be a quasi-inverse of  the canonical gage ?'x, in the sense 
that ~ i, ?'x < Px < ?'x (see Ref. 8, Proposition 2.2 and Lemma 4.1). In particular, 
Px is a modulus. 

The qualitative part of  the following result is well known, but its quanti- 
tative part seems to be new. 

Lemma 5.1. Let C be a nonempty closed convex subset of  X, and let 
p e C  be the projection of  some point weX\C.  Then, for each xeC, one has 

, [p-xi l<2l lx-wllpx(1 l iP- wll ) 
l lx-  wll 

w,. l ijx- w, _- ,p-  ll/ < 2  IIx 
- ~ d(w, C)  ]" 

Proof. Without loss of  generality, we may suppose that w=O. Let 
r=ilxll. Then, u=r-Jp and v=r-Jx belong to Bx and tl(1/2)(u+o)ll = 
r-1ll(1/2)(p+x)ll >r-lJlPl[, as C is convex and licll > IIPll for each c~C. By 



JOTA: VOL. 90, NO. 3, SEPTEMBER 1996 551 

the definition of  Px,  setting 3 =  l - r - '  IIPlI, we have 

(1/2) I lu- oll ___/ix(1 - r -j IlPll )- 

The second inequality follows from the fact that Px is nondecreasing. []  

The preceding result shows that the minimization problem off (x)- - -  
IIx-oll on C is well set. This allows us to estimate the variation of  the 
solution set, which is a singleton {pc(w)}, as C varies in the family if(X) 
of  nonempty closed convex subsets of  X. 

Proposition 5.1. Let X be an uniformly convex Banach space with 
modulus of  uniform convexity Px, and let CE~,(X). Given wEX\C, one 
can find r >  0, t5 > 0 such that, for any De~(X) satisfying dr(C, D ) <  t~, one 
has 

Idc(w)-do(w)l <dr(C, O), 

Ilpc(w) -po(w)II <dr(C, D) + tp(2dr( C, O) ), 

where pc(w) and po(w) are the best approximations of  w in C and D 
respectively, de(w)-- I lw-pc(w) ll, do(w)-- IIw-po(w) ll, and tp(t) = 
2(dc(w) + t)px(dc(w)-lt). 

Proof. This ensues from Theorem 3.2 by setting 

f (x)  = IIx-wll + ic(x), 

g(x) -- I lx-  wll + iotx), 

where ic and io are the indicator functions of  C and D respectively [(0 on 
C, + ~  on X\C) and (0 on D, + ~  on X\D) respectively]. Here, we see 
easily that 

dr(f, g) <dr(C, O), 

and the preceding lemma shows that ~0 is a conditioning modulus for f. []  

Remark 5.1. The preceding result is not exactly a locally H61derian 
property, even when ~ is known to be H61derian, as it is the case with Lp 
spaces. 

6. Conclusions 

We have examined the Lipschitzian and the Stepanovian behavior of  the 
infima and of  the sets of  minimizers of  convex functions and of  generalized 
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convex functions. The quantitative estimates that we have obtained can be 
used to get information about the rate of  convergence of algorithms which 
use approximations of  the sets or the functions involved in a given minimiza- 
tion problem. Our results have been completed recently in Ref. 35 by further 
studies in which a connection with the notion of  an asymptotically well- 
behaved function is pointed out. 

On the other hand, our study of the behavior of the metric projection 
can be seen as a special case of  the sensitivity analysis of solutions to parame- 
trized variational inequalities. In this direction, we are pleased to point out 
the recent work of  Yen (Ref. 36), who tackles the case of a parametrized 
convex set. By considering the whole space if(X) of closed nonempty convex 
subsets of X as a parameter space, our setting could be reduced to his 
framework. Conversely, his framework is encompassed by our setting, at 
least for the metric projection, since the parametrization can be factorized 
through c~(X). 
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