Aequationes Mathematicae 26 (1983) 191-196 University of Waterloo

On convex triangle functions

CLAUDt ALSINA

Abstract. We prove that the strongest (largest convex) solution of the functional inequality

$$
\tau\left(\frac{F+G}{2},\frac{H+K}{2}\right)\leq \frac{\tau(F,H)+\tau(G,K)}{2},
$$

where F, G, H and K are arbitrary distribution functions, is the triangle function $\tau(F,G)(x)$ = $Max(F(x) + G(x) - 1, 0).$

Our chief concern in this paper is to find the strongest solution of the functional inequality

$$
\tau\left(\frac{F+G}{2},\frac{H+K}{2}\right) \leq \frac{\tau(F,H)+\tau(G,K)}{2},
$$
\n^(*)

where F, G, H and K are arbitrary distribution functions in Δ^+ and τ is a triangle function on Δ^+ . This inequality arises in the investigation of countable products of probabilistic metric spaces ([1]) and it has been studied in detail in the case $\tau = \tau_T$ ([1], [2]). In this paper we generalize the techniques introduced in [1] in order to study (*) in a more general context. Specifically, let Δ^+ be the space of distribution functions vanishing at the origin, i.e.,

 $\Delta^+ = \{F \mid F : \mathbb{R} \to [0, 1], F(0) = 0, F \text{ is non-decreasing and left-continuous on }$ **R}.**

AMS (1980) subject classification: Primary 39C05.

Manuscript received November 19, 1982, and in final form, May 16, 1983.

Among the elements of Δ^+ are functions ε_a and A_b^a defined, for $a \ge 0$ and $b \in [0, 1]$, by

$$
\varepsilon_a(x) = \begin{cases} 0, & x \le a, \\ 1, & x > a, \end{cases} \qquad A_b^a(x) = \begin{cases} 0, & x \le 0, \\ b, & 0 < x \le a \\ 1, & x > a. \end{cases}
$$

respectively. We denote by ε_{∞} the null function $(\varepsilon_{\infty}(x) = 0$ for all x in R) in Δ^{+} .

DEFINITION 1. A two-place function τ from $\Delta^+ \times \Delta^+$ into Δ^+ is a *triangle function* if the following conditions are satisfied for all F , G , H and K in Δ^+ :

- (i) $\tau(F, \varepsilon_0) = F$;
- (ii) $\tau(F, G) \leq \tau(H, K)$ whenever $F \leq H$ and $G \leq K$;
- (iii) $\tau(F, G) = \tau(G, F);$
- (iv) $\tau(\tau(F, G), H) = \tau(F, \tau(G, H)).$

Any triangle function satisfying (*) will be called *convex.*

LEMMA 1. A continuous triangle function τ is convex if and only if τ satisfies *the inequality*

$$
\tau\left(\sum_{i=1}^{\infty}\frac{1}{2^i}F_i,\sum_{i=1}^{\infty}\frac{1}{2^i}G_i\right)\leq \sum_{i=1}^{\infty}\frac{1}{2^i}\,\tau(F_i,G_i),\tag{**}
$$

for all sequences (F_i) , (G_i) in Δ^+ .

Proof. Obviously (**) implies (*). Conversely, if (*) holds, then an easy induction shows that

$$
\tau\left(\sum_{i=1}^{n}\frac{1}{2^{i}}F_{i},\sum_{i=1}^{n}\frac{1}{2^{i}}G_{i}\right)\leq\sum_{i=1}^{n}\frac{1}{2^{i}}\,\tau(F_{i},G_{i}),\tag{1}
$$

for all natural numbers *n*. The continuity of τ and (1) yield (**).

Since addition dominates Max (see [3, p. 209]), we immediately have

LEMMA 2. The *continuous triangle function* π_w defined by

 $\pi_w(F, G)(x) = \text{Max}(F(x) + G(x) - 1, 0),$

is convex.

THEOREM 1. *If a continuous triangle function* τ *is convex, then* $\tau \leq \pi_w$ *, i.e.,* π_w is the strongest solution of the inequality (*).

Proof. Given F and G in Δ^+ and $x > 0$, we want to show that

$$
\tau(F,G)(x) \leq \text{Max}(F(x) + G(x) - 1,0). \tag{2}
$$

We will divide the proof into two cases (corresponding to the nullity or strict positivity of the right-hand side of (2)).

Case 1. Suppose x is such that $F(x) + G(x) \le 1$. Let

$$
F(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} F(x)_i \text{ and } G(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} G(x)_i,
$$

where $F(x)$, $G(x)$, $\in \{0,1\}$ for each i, be binary expansions of $F(x)$ and $G(x)$, respectively. Next, for each i we consider the functions f_i and g_i in Δ^+ given by

$$
f_i = \begin{cases} \varepsilon_0, & \text{if } G(x)_i = 0, \\ \varepsilon_x, & \text{if } G(x)_i = 1, \end{cases} \qquad g_i = \begin{cases} \varepsilon_0, & \text{if } G(x)_i = 1, \\ \varepsilon_x, & \text{if } G(x)_i = 0. \end{cases}
$$

Then

$$
G \le A_{G(x)}^* = \sum_{i=1}^{\infty} \frac{1}{2^i} g_i,
$$
\n(3)

and, using the fact that

$$
F(x) \leq 1 - G(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} \left[1 - G(x)_i \right],
$$

it follows that

$$
F \le A_{1-G(x)}^x = \sum_{i=1}^\infty \frac{1}{2^i} f_i.
$$
 (4)

Thus, since τ is non-decreasing and convex, it follows from (3), (4) and Lemma 1 that

$$
\tau(F, G) \leq \tau \left(\sum_{i=1}^{\infty} \frac{1}{2^i} f_i, \sum_{i=1}^{\infty} \frac{1}{2^i} g_i \right) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} \tau(f_i, g_i).
$$
 (5)

However, by the construction of f_i and g_i , for each i we have $\tau(f_i, g_i) = \varepsilon_x$, whence (5) yields

$$
\tau(F,G)(x) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} \tau(f_i,g_i)(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} \varepsilon_x(x) = 0,
$$

i.e., $\tau(F, G)(x) = 0$ and (2) holds when $F(x) + G(x) \le 1$.

Case 2. Suppose x is such that $F(x) + G(x) > 1$. If either $F(x) = 1$ or $G(x) = 1$ 1, then (2) is trivial. So we may suppose that both $F(x)$ and $G(x)$ are in (0, 1). Let $B_0 = 0$, and, for any $n \ge 1$, let $B_n = 1/2 + \cdots + 1/2^n$ and consider the partition of the set

$$
R = \{(u, v) \, | \, 0 < u < 1, \, 0 < v < 1, \, u + v > 1\}
$$

given by $R = \bigcup_{n=2}^{\infty} R_n$, where

$$
R_n = \{(u, v) | 0 < u < 1, 0 < v < 1, 1 + B_{n-2} < u + v \leq 1 + B_{n-1}\}.
$$

There exists $n \ge 2$ such that $(F(x), G(x)) \in R_n$. Thus we can write

$$
F(x) + G(x) = 1 + B_{n-2} + a,
$$

where $0 < a \leq 1/2^{n-1}$, so that at least one of $F(x)$, $G(x)$ must be greater than B_{n-1} . Suppose $F(x) = B_{n-1} + \sum_{i=n}^{\infty} F(x_i)/2^i$, where $F(x_i) \in \{0, 1\}$ for each i, Then, since $1 - B_{n-1} = 1/2^{n-1}$, we have

$$
G(x) = 1 + B_{n-2} + a - F(x) = B_{n-2} + a + (1/2^{n-1}) - \sum_{i=n}^{n} F(x)_i / 2^i
$$

=
$$
B_{n-2} + 2^{n-1} a / 2^{n-1} + \sum_{i=n}^{\infty} (1 - F(x)_i) / 2^i,
$$
 (6)

and we can also write

$$
F(x) = B_{n-2} + 1/2^{n-1} + \sum_{i=n}^{\infty} F(x)_i / 2^i.
$$
 (7)

Now we introduce two sequences (f_i) and (g_i) in Δ^+ where, for each i, f_i and g_i are defined by

$$
f_i = \begin{cases} \varepsilon_0, & \text{if } 1 \le i \le n-1, \\ A^{\times}_{F(x),}, & \text{if } i \ge n, \end{cases} \qquad g_i = \begin{cases} \varepsilon_0, & \text{if } 1 \le i \le n-2, \\ A^{\times}_{2^{n-1}a}, & \text{if } i = n-1, \\ A^{\times}_{1-F(x),}, & \text{if } i \ge n. \end{cases}
$$

Then, using (6) and (7), it is easily proved that

$$
F \le A_{F(x)}^x = \sum_{i=1}^{\infty} \frac{1}{2^i} f_i, \qquad G \le A_{G(x)}^x = \sum_{i=1}^{\infty} \frac{1}{2^i} g_i.
$$

Thus, by Lemma 1,

$$
\tau(F, G) \leq \tau \left(\sum_{i=1}^{\infty} \frac{1}{2^i} f_i, \sum_{i=1}^{\infty} \frac{1}{2^i} g_i \right) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} \tau(f_i, g_i), \tag{8}
$$

i.e.,

$$
\tau(F, G)(x) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} \tau(f_i, g_i)(x)
$$

=
$$
\sum_{i=1}^{n-2} \frac{1}{2^i} \tau(\varepsilon_0, \varepsilon_0)(x) + \frac{1}{2^{n-1}} \tau(\varepsilon_0, A_{2^{n-1}a}^{\lambda})(x)
$$

+
$$
\sum_{i=n}^{\infty} \frac{1}{2^i} \tau(A_{1-F(x_i)}, A_{F(x_i)}^{\lambda})(x)
$$

=
$$
B_{n-2} + a + 0 = F(x) + G(x) - 1
$$

=
$$
\pi_w(F(x), G(x)).
$$

If $F(x) < B_{n-1}$, then reversing the roles of $F(x)$ and $G(x)$ yields the same conclusion, and this completes the proof. \Box

COROLLARY 1. *If T* is a continuous *t*-norm and τ_T is convex then $T \leq W$. Thus τ_w is the strongest convex τ_T -operation.

Proof. In view of the above theorem, if τ_r is convex, then $\tau_r \leq \pi_w$, but this yields, for any a, b in [0, 1],

$$
T(a,b)=\tau_T(A_a^1,A_b^1)(1)\leq \pi_W(A_a^1,A_b^1)(1)=W(a,b).
$$

An easy computation shows that τ_w is convex. \Box

REFERENCES

- [1] ALS1NA, C., *On countable products and algebraic convexitications of probabilistic metric spaces.* Pacific J. Math. *76* **(1978),** 291-300.
- [2] ALSINA, C., *On a family of functional inequalities*. In *General Inequalities 2*, Birkhäuser, Basel 1981, pp. 419-427.
- [3] SCHWEIZER, B. and SKLAR, A., *Probabilistic metric spaces.* Elsevier, North Holland-New York, 1983.

 $Department de Matemàtiques i Estadística,$ *E.T.S. Arquitectura de Barcelona, Universitat Politècnica de Barcelona, Diagonal 649, Barcelona -28-, Spain.*