Aequationes Mathematicae **26** (1983) 191–196 University of Waterloo

On convex triangle functions

CLAUDI ALSINA

Abstract. We prove that the strongest (largest convex) solution of the functional inequality

$$\tau\left(\frac{F+G}{2},\frac{H+K}{2}\right) \leq \frac{\tau(F,H)+\tau(G,K)}{2},$$

where F, G, H and K are arbitrary distribution functions, is the triangle function $\tau(F, G)(x) = Max(F(x) + G(x) - 1, 0)$.

Our chief concern in this paper is to find the strongest solution of the functional inequality

$$\tau\left(\frac{F+G}{2},\frac{H+K}{2}\right) \le \frac{\tau(F,H) + \tau(G,K)}{2},\qquad(*)$$

where F, G, H and K are arbitrary distribution functions in Δ^+ and τ is a triangle function on Δ^+ . This inequality arises in the investigation of countable products of probabilistic metric spaces ([1]) and it has been studied in detail in the case $\tau = \tau_T$ ([1], [2]). In this paper we generalize the techniques introduced in [1] in order to study (*) in a more general context. Specifically, let Δ^+ be the space of distribution functions vanishing at the origin, i.e.,

 $\Delta^+ = \{F \mid F : \mathbb{R} \to [0, 1], F(0) = 0, F \text{ is non-decreasing and left-continuous on } \mathbb{R}\}.$

Manuscript received November 19, 1982, and in final form, May 16, 1983.

AMS (1980) subject classification: Primary 39C05.

Among the elements of Δ' are functions ε_a and A_b^a defined, for $a \ge 0$ and $b \in [0, 1]$, by

$$\varepsilon_{a}(x) = \begin{cases} 0, & x \leq a, \\ & & A_{b}^{a}(x) = \begin{cases} 0, & x \leq 0, \\ b, & 0 < x \leq a \\ 1, & x > a. \end{cases}$$

respectively. We denote by ε_{∞} the null function ($\varepsilon_{\infty}(x) = 0$ for all x in \mathbb{R}) in Δ^+ .

DEFINITION 1. A two-place function τ from $\Delta^+ \times \Delta^+$ into Δ^+ is a triangle function if the following conditions are satisfied for all F, G, H and K in Δ^+ :

- (i) $\tau(F, \varepsilon_0) = F$;
- (ii) $\tau(F,G) \le \tau(H,K)$ whenever $F \le H$ and $G \le K$;
- (iii) $\tau(F,G) = \tau(G,F);$
- (iv) $\tau(\tau(F,G),H) = \tau(F,\tau(G,H)).$

Any triangle function satisfying (*) will be called convex.

LEMMA 1. A continuous triangle function τ is convex if and only if τ satisfies the inequality

$$\tau\left(\sum_{i=1}^{\infty}\frac{1}{2^{i}}F_{i},\sum_{i=1}^{\infty}\frac{1}{2^{i}}G_{i}\right) \leq \sum_{i=1}^{\infty}\frac{1}{2^{i}}\tau(F_{i},G_{i}), \qquad (**)$$

for all sequences (F_i) , (G_i) in Δ^+ .

Proof. Obviously (**) implies (*). Conversely, if (*) holds, then an easy induction shows that

$$\tau\left(\sum_{i=1}^{n} \frac{1}{2^{i}} F_{i}, \sum_{i=1}^{n} \frac{1}{2^{i}} G_{i}\right) \leq \sum_{i=1}^{n} \frac{1}{2^{i}} \tau(F_{i}, G_{i}),$$
(1)

for all natural numbers n. The continuity of τ and (1) yield (**).

Since addition dominates Max (see [3, p. 209]), we immediately have

LEMMA 2. The continuous triangle function π_w defined by

 $\pi_{w}(F,G)(x) = Max(F(x) + G(x) - 1, 0),$

is convex.

AEQ. MATH.

192

Vol. 26, 1983

THEOREM 1. If a continuous triangle function τ is convex, then $\tau \leq \pi_w$, i.e., π_w is the strongest solution of the inequality (*).

Proof. Given F and G in Δ^+ and x > 0, we want to show that

$$\tau(F,G)(x) \le \max(F(x) + G(x) - 1, 0).$$
⁽²⁾

We will divide the proof into two cases (corresponding to the nullity or strict positivity of the right-hand side of (2)).

Case 1. Suppose x is such that $F(x) + G(x) \le 1$. Let

$$F(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} F(x)_i$$
 and $G(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} G(x)_i$,

where $F(x)_i$, $G(x)_i \in \{0, 1\}$ for each *i*, be binary expansions of F(x) and G(x), respectively. Next, for each *i* we consider the functions f_i and g_i in Δ^+ given by

$$f_i = \begin{cases} \varepsilon_0, & \text{if } G(x)_i = 0, \\ \varepsilon_x, & \text{if } G(x)_i = 1, \end{cases} \qquad g_i = \begin{cases} \varepsilon_0, & \text{if } G(x)_i = 1, \\ \varepsilon_x, & \text{if } G(x)_i = 0. \end{cases}$$

Then

$$G \le A_{G(x)}^{*} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} g_{i},$$
(3)

and, using the fact that

$$F(x) \le 1 - G(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} [1 - G(x)_i],$$

it follows that

$$F \le A_{1-G(x)}^{x} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}.$$
(4)

Thus, since τ is non-decreasing and convex, it follows from (3), (4) and Lemma 1 that

$$\tau(F,G) \le \tau\left(\sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}, \sum_{i=1}^{\infty} \frac{1}{2^{i}} g_{i}\right) \le \sum_{i=1}^{\infty} \frac{1}{2^{i}} \tau(f_{i}, g_{i}).$$
(5)

However, by the construction of f_i and g_i , for each i we have $\tau(f_i, g_i) = \varepsilon_x$, whence (5) yields

$$\tau(F,G)(x) \leq \sum_{i=1}^{\infty} \frac{1}{2^i} \tau(f_i,g_i)(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} \varepsilon_x(x) = 0,$$

i.e., $\tau(F,G)(x) = 0$ and (2) holds when $F(x) + G(x) \le 1$.

Case 2. Suppose x is such that F(x) + G(x) > 1. If either F(x) = 1 or G(x) = 1, then (2) is trivial. So we may suppose that both F(x) and G(x) are in (0, 1). Let $B_0 = 0$, and, for any $n \ge 1$, let $B_n = 1/2 + \cdots + 1/2^n$ and consider the partition of the set

$$R = \{(u, v) \mid 0 < u < 1, 0 < v < 1, u + v > 1\}$$

given by $R = \bigcup_{n=2}^{\infty} R_n$, where

$$R_n = \{(u, v) \mid 0 < u < 1, 0 < v < 1, 1 + B_{n-2} < u + v \le 1 + B_{n-1}\}.$$

There exists $n \ge 2$ such that $(F(x), G(x)) \in R_n$. Thus we can write

$$F(x) + G(x) = 1 + B_{n-2} + a$$

where $0 < a \le 1/2^{n-1}$, so that at least one of F(x), G(x) must be greater than B_{n-1} . Suppose $F(x) = B_{n-1} + \sum_{i=n}^{\infty} F(x)_i/2^i$, where $F(x)_i \in \{0, 1\}$ for each *i*. Then, since $1 - B_{n-1} = 1/2^{n-1}$, we have

$$G(x) = 1 + B_{n-2} + a - F(x) = B_{n-2} + a + (1/2^{n-1}) - \sum_{i=n}^{n} F(x)_i / 2^i$$
$$= B_{n-2} + 2^{n-1} a / 2^{n-1} + \sum_{i=n}^{\infty} (1 - F(x)_i) / 2^i, \tag{6}$$

and we can also write

$$F(\mathbf{x}) = B_{n-2} + 1/2^{n-1} + \sum_{i=n}^{\infty} F(\mathbf{x})_i / 2^i.$$
⁽⁷⁾

Now we introduce two sequences (f_i) and (g_i) in Δ^+ where, for each *i*, f_i and g_i are defined by

AEQ. MATH.

Vol. 26, 1983

On convex triangle functions

$$f_{i} = \begin{cases} \varepsilon_{0}, & \text{if } 1 \leq i \leq n-1, \\ & & \\ A_{F(x)_{i}}^{*}, & \text{if } i \geq n, \end{cases} \qquad g_{i} = \begin{cases} \varepsilon_{0}, & \text{if } 1 \leq i \leq n-2, \\ A_{2^{n-1}a}^{*}, & \text{if } i = n-1, \\ A_{1-F(x)_{i}}^{*}, & \text{if } i \geq n. \end{cases}$$

Then, using (6) and (7), it is easily proved that

$$F \leq A_{F(x)}^{x} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}, \qquad G \leq A_{G(x)}^{x} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} g_{i}.$$

Thus, by Lemma 1,

$$\tau(F,G) \le \tau\left(\sum_{i=1}^{\infty} \frac{1}{2^{i}} f_{i}, \sum_{i=1}^{\infty} \frac{1}{2^{i}} g_{i}\right) \le \sum_{i=1}^{\infty} \frac{1}{2^{i}} \tau(f_{i}, g_{i}),$$
(8)

i.e.,

$$\tau(F,G)(x) \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \tau(f_{i},g_{i})(x)$$

$$= \sum_{i=1}^{n-2} \frac{1}{2^{i}} \tau(\varepsilon_{0},\varepsilon_{0})(x) + \frac{1}{2^{n-1}} \tau(\varepsilon_{0},A_{2^{n-1}a}^{x})(x)$$

$$+ \sum_{i=n}^{\infty} \frac{1}{2^{i}} \tau(A_{1-F(x),i}^{x},A_{F(x),i}^{x})(x)$$

$$= B_{n-2} + a + 0 = F(x) + G(x) - 1$$

$$= \pi_{W}(F(x),G(x)).$$

If $F(x) < B_{n-1}$, then reversing the roles of F(x) and G(x) yields the same conclusion, and this completes the proof. \Box

COROLLARY 1. If T is a continuous t-norm and τ_T is convex then $T \leq W$. Thus τ_W is the strongest convex τ_T -operation.

Proof. In view of the above theorem, if τ_T is convex, then $\tau_T \leq \pi_w$, but this yields, for any a, b in [0, 1],

$$T(a,b) = \tau_T(A_a^1, A_b^1)(1) \le \pi_W(A_a^1, A_b^1)(1) = W(a,b).$$

An easy computation shows that τ_w is convex. \Box

REFERENCES

- [1] ALSINA, C., On countable products and algebraic convexifications of probabilistic metric spaces. Pacific J. Math. 76 (1978), 291-300.
- [2] ALSINA, C., On a family of functional inequalities. In General Inequalities 2, Birkhäuser, Basel 1981, pp. 419-427.
- [3] SCHWEIZER, B. and SKLAR, A., Probabilistic metric spaces. Elsevier, North Holland-New York, 1983.

Department de Matemàtiques i Estadística, E.T.S. Arquitectura de Barcelona, Universitat Politècnica de Barcelona, Diagonal 649, Barcelona -28-, Spain.