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Multiple tilings by cubes with no shared faces 

SANDOR SZABO 

I. We consider a family of translates of a unit n-dimensional closed cube and 
assume that any point lies in only a finite number of the cubes. If every point which 
is not on the boundary of any cube~ lies in exactly k cubes, then we say that the 
given family of cubes furnishes a k-fold tiling of n-dimensional space. The number 
k is the multiplicity of the tiling. If the translations of the cubes form a lattice, then 
the tiling is called a lattice tiling. 

Lattice cube tilings arise in connection with a famous conjecture of Minkowski. 
In a 1-fold lattice cube tiling of n-dimensional space, two of the cubes must share a 
complete (n -1)-dimensional face. Haj6s confirmed Minkowski's conjecture [3]. 

There were two different generalizations of Minkowski's conjecture: 
Furtw/ingler's and Keller's conjectures. 

Furtw/ingler conjectured that in a k-fold lattice cube tiling of n-dimensional 
space, two of the cubes must share a complete (n-1)-dimensional  face. 
Furtw~ingler proved this statement for n -< 3 [1], while Haj6s proved that it was 
false for n > 3 [2]. 

Consider the following question: For which k does there exist a k-fold lattice 
cube tiling of n-dimensional space such that no two cubes have a common face? 

Robinson proved the following [9]: 
If n =4 ,  then p~lk,  where p is an odd prime; if n =5 ,  then k = 3  or k ->5; if 

n_>6, then k->2.  
Keller conjectured that in a 1-fold cube tiling of n-dimensional space two cubes 

must share a complete (n - 1)-dimensional face. Perron proved this statement for 
,z a 6 [7], [81. 
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Consider the following question: For which k does there exist a k-fold cube 
tiling of n-dimensional  space in which no two cubes have a common face? 

Robinson proved that  this is not possible for any k for n -< 2 but k = 25, 49, 50, 
74, 75, 81, 98, 100 and every k > 313 is possible for n = 3 [9]. He  wrote [9]: "But  the 
most  interesting question is whether  25 is the smallest possible multiplicity". 

The main result of this paper  is that every k > 1 is possible for  n > 2. Thus k = 2 
is the smallest possible multiplicity for n = 3, 4, 5, 6. 

II.  Let ~ ,  R, l be n-dimensional  Euclidean space, the real number  field, and 

the integer number  ring, respectively. The  translations of ~"  belong to the 
n-dimensional  vector space E ~ over  R. Let  e~ . . . . .  e, be an or thonormal  basis in E" 
and O a fixed point in *". The set 

~ o : =  {P : O P  = c~et + . "  + c,en ; 0 < - c, <- 1 . . . . .  0 < - c~ <- 1} 

is called a cube with preferential  vertex O. Denote  the interior of C¢o by int q¢o. The 
linear t ransformation a : E  ~-->E n is defined by (x~el + ' "  +xne~)a = 

(xJqt)e~ + " "  + ( x . / q . ) e~  ; xl . . . . .  x. ~ L where q~ . . . . .  q~ are fixed positive inte- 
gers. The mapping a : ~ n ___> ~ ,  belongs to the linear transformation a .  Let  X be a 
free abelian group with generators  e~ . . . .  , e~. If L is a subgroup of Xa,  then_ we say 
that  L is a lattice. We shall use the following notation ( ~ o , L ) =  {CCp:OP E L}. 
The  set C~oa will be called a cell. Obviously (ego, L ) a  = (C~ocZ, La ) .  

Let 91 be a finite abelian group, which is written multiplicatively. We shall use 
the group ring Z[91] with integer coefficients over  Z. The sum in the group ring of 
the elements of 91 is denoted by ,v[91]. If A is an e lement  of 9 / and  q is a positive 
integer, then S = 1 + A + A 2 + . . .  + A q-I is called a series. 

I lL  T H E O R E M  1 ([2], [4]). I f  there is a finite abelian group 91 and  series 

$1 . . . . .  Sn such that 

S , . . - S n  = k,~[911, (1) 

then there exists a k - fo ld  lattice tiling (qgo, L )  o f  n -d imens ional  space. The  lattice L is 

the kernel o f  the homomorphism ~ : X a  --> 91, which is defined as 

\ql  qn ! 
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Rob inson  [9] gave some solutions of  (1) and we shall use two of  them. 
The  first example  of a solution of  equa t ion  (1) is the following [9, p. 253]: If 9/is 

defined by U 6=  V 4 =  1 and Al  = U, A 2 =  V, A3 = U V  2, A 4 =  U 3 V ,  A s =  U2V2;  

q 1 = 3 ,  q 2 = 2 ,  q 3 = 3 ,  q 4 = 2 ,  q 5 = 2 ,  then the series S I = I + U + U  2, S 2 = I + V ,  
$3 = 1 + U V 2  + ( U V 2 )  2, S ,  = 1 + U 3 V ,  $5 = 1 + U 2 V  s and S ,$2S3S ,$5  = 3,~[~].  Ac- 

cording to T h e o r e m  1, there is a 3-fold lattice tiling (qgo, L )  of  5-dimensional  space. 

For later use, construct  the lattice L by exhibiting a basis for it. 
The  l inear t ransformat ion  a :/~5---~ E 5 and the h o m o m o r p h i s m  ~b :Xot--~ 9~ are 

_ !  e . i ' ~ e . q , =  U , ~  2¢, V,  defined by e l a  = ~el, e20t - 2 2, e30t = ~e3, e4ot = ½e4, e s a  = -zes, le = 

~ e 3 ~ = U V  2, ½e4 tO=U3V,  ½ e s t O = U 2 V  2. T he  vectors  L = 2 e l ,  12=2e~,  13 = 

~e~ + es - ~-e3 3, L = e, + ~e2 - ½e4, 15 = ~el + e2 - ½e5 span the lattice L = Ker ~O. Indeed,  
l~q~ = 2e~d/ = 6~e,tO = U 6 = 1, lzqJ = 2e2~ = 4½e2tp = V" = 1, 13~b = (~el + ez - a3e3)~0 = 
U V ~ ( U V 2 )  -l = 1, L~b = (e, +½es-~e4)~b = U 3 V ( U 3 V )  -~ = 1, 15qJ = (~el + ez -½e~)qJ 

= U ~ W ( U  s V2) ~l = 1 and det(L . . . . .  15) = - a3. 

The second example  of a solution of  (1) is the following [9, p. 255]: Let  2[* be 
defined by U 6=  V 6 =  W 3= 1 and Al  = U, A s =  V, A 3 - -  U s V  3, A 4  = U 3 V  2, A 5  = 

U V 3 W ,  A 6  = U " V 3 W ;  q~ = 3, qs = 3, q3 = 2, q4 = 2, q5 = 3, q6 = 2. Then  the series 
S I = I + U + U  s, S s = I + V + V  s, S 3 = I + U  2V 3, S 4 = I + U  3V 2, $ 5 = 1 +  

U V  3 W + ( U V  3 W )  2, S6 = 1 + U 4 V 3 W satisfy S l - - -  $6 = 2,~ [9.1"]. Accord ing  to 

Theorem 1 there is a 2-fold tiling ( c ~ o , L * )  of 6-dimensional  space. We shall 

construct the tattice L *  
The linear t ransformat ion  ~t * : E6---> E 6 and the h o m o m o r p h i s m  ~0" : Xt~ * ---> 91" 

are defined by  e l a  * = ~ef, ez~t* = ~e~, e~at * = ½e3, e4~l t  * ---- ½e4,  e s a  * ----- ~es, e6a * = ~e6; 
~e.q,* = U.  ~esq ,*  = V,  ~e~O* = U~V ~, ~e ""* = = . v  = U ~W, ~esq~* UV~W, ~e~* 
U ' V ~ W .  The  vectors  l * = 2 e ,  l * = 2 e ~ ,  l *=Z3e~+e2-½e~ ,  l * = e ~ + ] e 2 - ~ - e  2 4~ 

l * = e ~ + 3 e z - e s ,  l * = e ~ + ~ e s - ~ e 6  span the lattice L = K e r q ~  *. Indeed,  
l'tO* = 2e~b* = 6~ez~b* = U 6 = 1, l*~b* = 2e:q~* = 6]ez~b* = V 6 = 1, I ' tO* = 

(2e, + es-~e3)q~* = U z V a ( U ~ V ~ ) - '  = 1, l * ~ *  = (el  + ~e~-½e,)~O* = U 3 V : ( U 3 W )  -~ 

= 1, !* q~* = (el + 3e~ - e~)q~* = U a V9(UV ~ W) -~ = 1, 16t0* = (el + ~es - ~e6)¢* = 
U ~ U V 3 W ( U ' V 3 W ) - '  = 1 and det( l*  . . . . .  l*)  = ½. 

IV. T H E O R E M  2. I f  n, k E Z; n > 2, k > 1, then  there exis ts  a k - f o l d  cube  

tiling o f  n - d i m e n s i o n a l  space  in wh ich  no two cubes  h a v e  a c o m m o n  face .  

Proof. First we prove  a l emma  that  will enable  us to construct  a 34o ld  tiling of  
~3 and a 2-fold tiling of ~3 in which no cubes share a c o m m o n  face. This will be 

,accomplished by taking a 3-dimensional  cross section of  tilings of  higher  d imen-  

sional spaces, in particular,  the tilings of Rob inson  discussed in Section III .  
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Once that is done, Theorem 2 follows almost immediately. First of all, any 
integer k -> 2 can be expressed as a sum of 2's and 3's. So, by superposing 2-fold 
tilings and 3-fold tilings of ~3, none of which have cubes sharing a common face, we 
can build a k-fold tiling of ,3  with the same property. Then, to construct a k-fold 
tiling of ,4 ,  take the product of a k-fold tiling of ,3  with the unit interval. This 
produces a tiling of layer of ~4 without cubes sharing a common face. By taking 
copies of this tiling, translated to avoid cubes with common faces, we produce a 
tiling of ~4. By induction on n, there is a k-fold tiling of ~ ~, k -> 2, n -> 3, where no 
cubes share a common face. 

Let  I be a subset of {1 . . . . .  n}, r E/~"  and 
_...> 

~ :  = {P : OP = r + ,YA,e~, A~ ~ R, i ~ I}. 

This is an 1I l-dimensional plane in *". We consider the n-dimensional cubes cap, 
cao, where P-'~ = x~e~ + . . .  + x,e, ,  cap n ~ ' )  = ca~,, cao n ~ '~  = ca~.. Assume that 

(intcap)f3 ~ ' ) # 0  and (intcao)f3 ~ n # 0 .  (2) 

L E M M A  1. I f  the [II-dimensional cubes ~_~, ca~, have a common (lll-1)- 
dimensional face (i.e., there is a t E I such that P'  Q'  = +- e, ), then there exists a t E I 

such that Ix, l = 1  and Ix, l<1 forj {1 . . . . .  n } \ I a n d  Ix, l=O for i  E I \ { t } .  

...-> .---> ~ ---> - - ~  

= PP' + P 'Q '  + Q ' Q  and PP' = ~tzjej, Proof. Indeed, PQ 
j E { 1  . . . . .  n } \ L  Thus P Q = + - - e , + Z ( l ~ j - v j ) e j  so Ix, l=l  and 
i E I \ { t } .  By virtue of (2), Ix j l<  1 for j E{1 . . . . .  n } \ L  

..-.> 

QQ'  = ~vjej, 

Ix, I = 0 for 

L E M M A  2. For k = 2 and 3 there is a k-fold tiling of ~g3 in which no two cubes 

share a common face. 

Proof. Case k = 3. Let  I = {1,2, 3} and r = 4e, + 4es, whereby (int ca)n  ~ ) #  0 
for ca E(Cao, L ) ,  where (cao, L )  is the first example considered in Section III. 
Consider the system 

(qgo, L )  f3 ~n :={ca~  n ~;r,: cap ~ (~o,L)}.  

Obviously this system is a 3-fold cube tiling of ~3. We prove that there are no two 
cubes with a common face in this system. Assume that cap, cao E(Cao, L); 
cap n ~ ' ) =  ca~.,, cao n ~ ' ~  = ca6. and ca~,, ~ ,  have a common 2-dimensional face. 
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Since PO = t~ll + . .  • + tsl~; t, . . . . .  t5 E 7; (t~ . . . . .  ts) ~ (0 . . . . .  0), one  of the follow- 
ing systems has a solution which differs f rom (0 . . . .  ,0): 

t6t, + t3 + 3t4 + 2t, l = 3, 

[4t2+2t3 + t ,+2 t s [  = 0, 

I t~l = o, (3) 
tt, t <2,  

[ /5 [<2 ;  

[6tl + t3+3t4+2ts[=O, 

t 4 t2+2 t3+  t4+ 2t51 = 2, 

It31 =0, 
It4[ <S 2, 

It, l<2;  

(4) 

[6tt + t3+3t4+2ts l=O,  ] 

t 

14t2+2t3 + t4+2tsI = 0, 

I/~t =3, 

It4[ < 2 ,  

1t5t<2. 

(5) 

System (3) is not  possible: 4 t2+t4+2t s=O and [ 6 t l + 3 t 4 + 2 t s l = 3  so 
16tl + 3( - 4t2 - 2t5) + 2t5[ = 3, so the left-hand side is even and the r ight-hand side is 
odd. 

System (4) is not possible either:  6t~+3t4+2ts=O,  so 3[t5. But [ t5 [<2 ;  thus 
t5 = 0  and 6t~ = - 3 h ,  that  is, - 2 t l  = t4. Since t t, l < 2, we have [2t~ f < 2 ,  tha t  is, 
It11 < 1, hence  t~ = 0. Thus  (t~ . . . . .  ts) = (0 . . . .  ,0). 

Finally, system (5) is not  possible: 6 t a - - + 3 + 3 t , + 2 t s = 0 ,  so 3tt5 and 
4t2 +_ 6 + t4 + 2t5 = 0, so 2 [ / , .  F rom 3 I t ,  and ItsI < 2, it follows that  t5 = 0. F r o m  2[ t4  
and [ t,! < 2, it follows that  t4 = 0, and 6t~ = i 3. However ,  -+ 3 is not  a multiple of 6. 

Case k = 2. Le t  I = {1,2,5}, r Ie3 1 l = + , e , + , e 6 ,  whereby  (int ~ ) f l  ~ ] ' ) # 0  for  
~ ( ~ o , L * ) ,  where  ( ~ o , L * )  is the second example  considered in Section III. 

Consider the system 

(c£o,L*)  N ~ ) : = { q g p  n ~ ' : , :  ~ ,  E (~o ,L* )} .  
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Obviously this system is a 24old cube tiling of ~3. We prove that there are no two 
cubes with a common face in this system. Assume that @p, @o E(@o,L*) ;  
@~, rt ~ ] ' )=  qg~,, qgo N ~ ] ' )=  cog, and Re,, c~g, have a common 2-dimensional face. 
Since PO = tJ*  + . . .  + t61*; t~ . . . . .  t6 E Z; (h . . . .  , t6) ~ (0 , . . . ,  0), one of the follow- 
ing systems has a solution which differs from (0 . . . . .  0): 

16t~ + 2t3 + 3t4 + 3ts + 3t61 =3 ,  

16t2+3t3+2t4+9tsI =0 ,  

It3[ <2, 

It, l < 2 ,  

I - 3 t , +  t61 =0 ,  

It61<2; 

(6) 

16h + 2t3 + 3t4 + 3ts + 3t61= O, 

16t~ + 3t3 + 2tn + 9tsI =3 ,  

Its[ <2, 

It, I < 2 ,  

I -3 t ,+  t6l =0, 

l / d < 2 ;  

(7) 

16tl + 2t3 + 3t4 + 3t5 + 3t61= O, 

16t2+3t3+2t,+9ts[ = 0 ,  

lt, l <2, 
It,[ <2, 

I - 3 t , +  t61 = 3, 

t t~[<2. 

(8) 

Obviously 31t3, 3It,, 31t6, it, I<2 ,  1"1<2,  It61<2, so t , = t 4 = t 6 = O .  
System (6) is not possible: - 3t5 + t6 = 0 and t6 = 0 imply that t5 = 0, so 16tll = 3, 

a contradiction. 
System (7) is not possible because -3 t5  + 16----0 and t6 = 0 imply t5 = 0, so 

16t~l -- 3, a contradiction. 
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System (8) is not  possible as 6t2 + 9t5 = 0, so 21t5 and  I -3 t51 = 3. The  left-hand 

side is even and the r ight-hand side is odd. 
This completes  the proof  of  T h e o r e m  2. 

The  au thor  would  like to thank  the referee for his valuable suggestions. 
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