Aequationes Mathematicae 25 (1982) 83-89 University of Waterloo

Multiple tilings by cubes with no shared faces

SÁNDOR SZABÓ

I. We consider a family of translates of a unit n -dimensional closed cube and assume that any point lies in only a finite number of the cubes. If every point which is not on the boundary of any cube lies in exactly k cubes, then we say that the given family of cubes furnishes a k -fold tiling of n -dimensional space. The number k is the multiplicity of the tiling. If the translations of the cubes form a lattice, then the tiling is called a lattice tiling.

Lattice cube tilings arise in connection with a famous conjecture of Minkowski. In a 1-fold lattice cube tiling of n-dimensional space, two of the cubes must share a complete $(n - 1)$ -dimensional face. Hajós confirmed Minkowski's conjecture [3].

There were two different generalizations of Minkowski's conjecture: Furtwängler's and Keller's conjectures.

Furtwängler conjectured that in a k -fold lattice cube tiling of *n*-dimensional space, two of the cubes must share a complete $(n-1)$ -dimensional face. Furtwängler proved this statement for $n \leq 3$ [1], while Hajós proved that it was false for $n > 3$ [2].

Consider the following question: For which k does there exist a k -fold lattice cube tiling of n-dimensional space such that no two cubes have a common face?

Robinson proved the following [9]:

If $n = 4$, then $p^2 | k$, where p is an odd prime; if $n = 5$, then $k = 3$ or $k \ge 5$; if $n \ge 6$, then $k \ge 2$.

Keller conjectured that in a 1-fold cube tiling of n-dimensional space two cubes must share a complete $(n - 1)$ -dimensional face. Perron proved this statement for $n \leq 6$ [7], [8].

AMS (1980) subject classification: Primary 10E30. Secondary 20K01.

Manuscript received March 17, 1982, and in final form, October 24, 1982.

Consider the following question: For which k does there exist a k -fold cube tiling of n -dimensional space in which no two cubes have a common face?

Robinson proved that this is not possible for any k for $n \le 2$ but $k = 25, 49, 50$, 74, 75, 81, 98, 100 and every $k > 313$ is possible for $n = 3$ [9]. He wrote [9]: "But the most interesting question is whether 25 is the smallest possible multiplicity".

The main result of this paper is that every $k > 1$ is possible for $n > 2$. Thus $k = 2$ is the smallest possible multiplicity for $n = 3, 4, 5, 6$.

II. Let \mathscr{E}^n , R, Z be *n*-dimensional Euclidean space, the real number field, and the integer number ring, respectively. The translations of \mathscr{E}^n belong to the *n*-dimensional vector space E^n over **R**. Let e_1, \ldots, e_n be an orthonormal basis in E^n and O a fixed point in \mathscr{E}^n . The set

$$
\mathscr{C}_0 := \{ P : \overrightarrow{OP} = c_1 e_1 + \cdots + c_n e_n ; 0 \le c_1 \le 1, \ldots, 0 \le c_n \le 1 \}
$$

is called a cube with preferential vertex O. Denote the interior of \mathcal{C}_{o} by int \mathcal{C}_{o} . The linear transformation $\alpha : E^n \to E^n$ is defined by $(x_1e_1 + \cdots + x_ne_n)\alpha =$ $(x_1/q_1)e_1 + \cdots + (x_n/q_n)e_n$; $x_1, \ldots, x_n \in \mathbb{Z}$, where q_1, \ldots, q_n are fixed positive integers. The mapping $\alpha : \mathscr{C}^n \to \mathscr{C}^n$ belongs to the linear transformation α . Let X be a free abelian group with generators e_1, \ldots, e_n . If L is a subgroup of $X\alpha$, then we say that L is a lattice. We shall use the following notation $(\mathscr{C}_{\scriptscriptstyle O}, L) = \{ \mathscr{C}_{\scriptscriptstyle P} : \overrightarrow{OP} \in L \}.$ The set $\mathscr{C}_{\scriptscriptstyle{\Omega}}\alpha$ will be called a cell. Obviously $(\mathscr{C}_{\scriptscriptstyle{\Omega}}, L)\alpha = (\mathscr{C}_{\scriptscriptstyle{\Omega}}\alpha, L\alpha)$.

Let $\mathfrak A$ be a finite abelian group, which is written multiplicatively. We shall use the group ring $\mathbb{Z}[\mathfrak{A}]$ with integer coefficients over \mathbb{Z} . The sum in the group ring of the elements of $\mathfrak A$ is denoted by $\Sigma[\mathfrak A]$. If A is an element of $\mathfrak A$ and q is a positive integer, then $S = 1 + A + A^2 + \cdots + A^{q-1}$ is called a series.

IlL THEOREM 1 ([2], [4]). *If there is a finite abelian group 91 and series* S_1, \ldots, S_n such that

$$
S_1 \cdots S_n = k \Sigma [\mathfrak{A}], \tag{1}
$$

then there exists a k-fold lattice tiling $(\mathscr{C}_{\mathcal{O}}, L)$ of *n-dimensional space. The lattice L* is *the kernel of the homomorphism* ψ : $X\alpha \rightarrow \mathfrak{A}$, which is defined as

$$
\left(\frac{x_1}{q_1}\,\boldsymbol{e}_1+\cdots+\frac{x_n}{q_n}\,\boldsymbol{e}_n\right)\,\psi=A\,1^{x_1}\cdots A\,n^{x_n};\qquad x_1,\ldots,x_n\in\mathbb{Z}.
$$

Robinson [9] gave some solutions of (1) and we shall use two of them.

The first example of a solution of equation (1) is the following [9, p. 253]: If $\mathfrak A$ is defined by $U^6 = V^4 = 1$ and $A_1 = U$, $A_2 = V$, $A_3 = UV^2$, $A_4 = U^3V$, $A_5 = U^2V^2$; $q_1=3$, $q_2=2$, $q_3=3$, $q_4=2$, $q_5=2$, then the series $S_1=1+U+U^2$, $S_2=1+V$, $S_3 = 1 + UV^2 + (UV^2)^2$, $S_4 = 1 + U^3V$, $S_5 = 1 + U^2V^2$ and $S_1S_2S_3S_4S_5 = 3\Sigma$ [\leq 21]. According to Theorem 1, there is a 3-fold lattice tiling (\mathcal{C}_o , L) of 5-dimensional space. For later use, construct the lattice L by exhibiting a basis for it.

The linear transformation $\alpha : E^5 \to E^5$ and the homomorphism $\psi : X\alpha \to \mathfrak{A}$ are defined by $e_1 \alpha = \frac{1}{3} e_1$, $e_2 \alpha = \frac{1}{2} e_2$, $e_3 \alpha = \frac{1}{3} e_3$, $e_4 \alpha = \frac{1}{2} e_4$, $e_5 \alpha = \frac{1}{2} e_5$, $\frac{1}{3} e_1 \psi = U$, $\frac{1}{2} e_2 \psi = V$, $\frac{1}{3}e_3\psi = UV^2$, $\frac{1}{2}e_4\psi = U^3V$, $\frac{1}{2}e_5\psi = U^2V^2$. The vectors $l_1 = 2e_1$, $l_2 = 2e_2$, $l_3 =$ $\frac{1}{3}e_1 + e_2 - \frac{1}{3}e_3$, $l_4 = e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_4$, $l_5 = \frac{2}{3}e_1 + e_2 - \frac{1}{2}e_5$ span the lattice $L = \text{Ker }\psi$. Indeed, $l_1\psi = 2e_1\psi = 6\frac{1}{3}e_1\psi = U^6 = 1$, $l_2\psi = 2e_2\psi = 4\frac{1}{2}e_2\psi = V^4 = 1$, $l_3\psi = (\frac{1}{3}e_1 + e_2 - \frac{1}{3}e_3)\psi =$ $UV^2(UV^2)^{-1} = 1$, $L_4\psi = (e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_4)\psi = U^3V(U^3V)^{-1} = 1$, $L_5\psi = (\frac{2}{3}e_1 + e_2 - \frac{1}{2}e_3)\psi$ $= U^2 V^2 (U^2 V^2)^{-1} = 1$ and det(l_1, \ldots, l_5) = - $\frac{1}{3}$.

The second example of a solution of (1) is the following [9, p. 255]: Let \mathfrak{A}^* be defined by $U^6 = V^6 = W^3 = 1$ and $A_1 = U$, $A_2 = V$, $A_3 = U^2 V^3$, $A_4 = U^3 V^2$, $A_5 =$ *UV³W, A₆ = U⁴V³W;* $q_1 = 3$ *,* $q_2 = 3$ *,* $q_3 = 2$ *,* $q_4 = 2$ *,* $q_5 = 3$ *,* $q_6 = 2$ *. Then the series* $S_1=1+U+U^2$, $S_2=1+V+V^2$, $S_3=1+U^2V^3$, $S_4=1+U^3V^2$, $S_5=1+U^3V^2$ $UV^3W + (UV^3W)^2$, $S_6 = 1 + U^4V^3W$ satisfy $S_1 \cdots S_6 = 2\Sigma[\mathfrak{A}^*]$. According to Theorem 1 there is a 2-fold tiling (\mathcal{C}_o, L^*) of 6-dimensional space. We shall construct the lattice L^* .

The linear transformation $\alpha^*: E^6 \to E^6$ and the homomorphism $\psi^*: X\alpha^* \to \mathfrak{A}^*$ are defined by $e_1\alpha^* = \frac{1}{3}e_1, e_2\alpha^* = \frac{1}{3}e_2, e_3\alpha^* = \frac{1}{2}e_3, e_4\alpha^* = \frac{1}{2}e_4, e_5\alpha^* = \frac{1}{3}e_5, e_6\alpha^* = \frac{1}{2}e_6;$ $\frac{1}{2}e_1\psi^* = U, \quad \frac{1}{2}e_2\psi^* = V, \quad \frac{1}{2}e_3\psi^* = U^2V^3, \quad \frac{1}{2}e_4\psi^* = U^3V^2, \quad \frac{1}{2}e_5\psi^* = UV^3W, \quad \frac{1}{2}e_6\psi^* = V^3V^2$ *U'V'W.* The vectors $l_1^* = 2e_1$, $l_2^* = 2e_2$, $l_3^* = \frac{2}{3}e_1 + e_2 - \frac{1}{2}e_3$, $l_4^* = e_1 + \frac{2}{3}e_2 - \frac{1}{2}e_4$, $l_5^* = e_1 + 3e_2 - e_5$, $l_6^* = e_1 + \frac{1}{2}e_5 - \frac{1}{2}e_6$ span the lattice $L = \text{Ker } \psi^*$. Indeed, $l_1^* \psi^* = 2e_1 \psi^* = 6\frac{1}{3}e_2 \psi^* = U^6 = 1$, $l_2^* \psi^* = 2e_2 \psi^* = 6\frac{1}{3}e_2 \psi^* = V^6 = 1$, $l_3^* \psi^* =$ $(\frac{2}{3}e_1 + e_2 - \frac{1}{2}e_3)\psi^* = U^2V^3(U^2V^3)^{-1} = 1$, $l^*_{+}\psi^* = (e_1 + \frac{2}{3}e_2 - \frac{1}{2}e_4)\psi^* = U^3V^2(U^3V^2)^{-1}$ $= 1,$ $I_5^* \psi^* = (e_1 + 3e_2 - e_5)\psi^* = U^3 V^9 (UV^3 W)^{-3} = 1,$ $I_6 \psi^* = (e_1 + \frac{1}{3}e_5 - \frac{1}{2}e_6)\psi^* =$ $U^3UV^3W(U^4V^3W)^{-1} = 1$ and det(l_1^*, \ldots, l_6^*) = $\frac{1}{2}$.

IV. THEOREM 2. If n, $k \in \mathbb{Z}$; $n > 2$, $k > 1$, then there exists a k-fold cube *tiling of n-dimensional space in which no two cubes have a common face.*

Proof. First we prove a lemma that will enable us to construct a 3-fold tiling of \mathscr{E}^3 and a 2-fold tiling of \mathscr{E}^3 in which no cubes share a common face. This will be accomplished by taking a 3-dimensional cross section of tilings of higher dimensional spaces, in particular, the tilings of Robinson discussed in Section III.

86 SANDOR SZABÓ AEQ. MATH.

Once that is done, Theorem 2 follows almost immediately. First of all, any integer $k \ge 2$ can be expressed as a sum of 2's and 3's. So, by superposing 2-fold tilings and 3-fold tilings of \mathscr{E}^3 , none of which have cubes sharing a common face, we can build a k-fold tiling of \mathscr{E}^3 with the same property. Then, to construct a k-fold tiling of \mathscr{E}^4 , take the product of a k-fold tiling of \mathscr{E}^3 with the unit interval. This produces a tiling of layer of \mathscr{E}^4 without cubes sharing a common face. By taking copies of this tiling, translated to avoid cubes with common faces, we produce a tiling of \mathscr{E}^4 . By induction on *n*, there is a k-fold tiling of \mathscr{E}^n , $k \ge 2$, $n \ge 3$, where no cubes share a common face.

Let I be a subset of $\{1, \ldots, n\}$, $r \in Eⁿ$ and

$$
\mathcal{P}_I^{(r)} := \{P : \overrightarrow{OP} = r + \Sigma \lambda_i e_i, \lambda_i \in \mathbb{R}, i \in I\}.
$$

This is an |I|-dimensional plane in \mathscr{E}^n . We consider the *n*-dimensional cubes \mathscr{C}_P , \mathscr{C}_{Q} , where $\overrightarrow{PQ} = x_1e_1 + \cdots + x_ne_n$, $\mathscr{C}_P \cap \mathscr{P}_I^{(r)} = \mathscr{C}_{P'}$, $\mathscr{C}_Q \cap \mathscr{P}_I^{(r)} = \mathscr{C}_{Q'}$. Assume that

$$
(\text{int } \mathcal{C}_P) \cap \mathcal{P}_1^{(r)} \neq \emptyset \quad \text{and} \quad (\text{int } \mathcal{C}_Q) \cap \mathcal{P}_1^{(r)} \neq \emptyset. \tag{2}
$$

LEMMA 1. If the |I|-dimensional cubes \mathcal{C}'_{R} , \mathcal{C}'_Q have a common $(|I|-1)$ *dimensional face (i.e., there is a t* \in *I such that P'Q'* = $\pm e_i$), then there exists a t \in *I such that* $|x_i| = 1$ *and* $|x_i| < 1$ *for* $j \in \{1, ..., n\} \setminus I$ *and* $|x_i| = 0$ *for* $i \in I \setminus \{t\}.$

Proof. Indeed, $\vec{PQ} = \vec{PP'} + \vec{P'Q'} + \vec{Q'Q}$ and $\vec{PP'} = \sum \mu_i e_i$, $\vec{QQ'} = \sum \nu_i e_i$, $j \in \{1, \ldots, n\} \backslash I$. Thus $PQ = \pm e_i + \Sigma(\mu_j - \nu_j)e_j$ so $|x_i| = 1$ and $|x_i| = 0$ for $i \in I \setminus \{t\}$. By virtue of (2), $|x_i| < 1$ for $j \in \{1, ..., n\} \setminus I$.

LEMMA 2. For $k = 2$ and 3 there is a k-fold tiling of \mathcal{E}^3 in which no two cubes *share a common face.*

Proof. Case $k = 3$. Let $I = \{1, 2, 3\}$ and $r = \frac{1}{4}e_4 + \frac{1}{4}e_5$, whereby (int $\mathcal{C} \cap \mathcal{P}_1^{(r)} \neq \emptyset$ for $\mathscr{C} \in (\mathscr{C}_{\scriptscriptstyle O}, L)$, where $(\mathscr{C}_{\scriptscriptstyle O}, L)$ is the first example considered in Section III. Consider the system

$$
(\mathscr{C}_o, L) \cap \mathscr{P}_1^{\{r\}} := \{\mathscr{C}_r \cap \mathscr{P}_1^{\{r\}} : \mathscr{C}_r \in (\mathscr{C}_o, L)\}.
$$

Obviously this system is a 3-fold cube tiling of \mathscr{E}^3 . We prove that there are no two cubes with a common face in this system. Assume that \mathscr{C}_P , $\mathscr{C}_Q \in (\mathscr{C}_Q, L)$; $\mathscr{C}_P \cap \mathscr{P}_1^{(r)} = \mathscr{C}_{P'}', \mathscr{C}_Q \cap \mathscr{P}_1^{(r)} = \mathscr{C}_{Q'}'$ and $\mathscr{C}_{P'}', \mathscr{C}_{Q'}'$ have a common 2-dimensional face.

Since $\overrightarrow{PQ} = t_1 l_1 + \cdots + t_s l_s; t_1, \ldots, t_s \in \mathbb{Z}; (t_1, \ldots, t_s) \neq (0, \ldots, 0)$, one of the following systems has a solution which differs from $(0, \ldots, 0)$:

$$
|6t_1 + t_3 + 3t_4 + 2t_5| = 3,
$$

\n
$$
|4t_2 + 2t_3 + t_4 + 2t_5| = 0,
$$

\n
$$
|t_3| = 0,
$$

\n
$$
|t_4| < 2,
$$

\n
$$
|t_5| < 2;
$$

\n
$$
|6t_1 + t_3 + 3t_4 + 2t_5| = 0,
$$

\n
$$
|4t_2 + 2t_3 + t_4 + 2t_5| = 2,
$$

\n
$$
|t_3| = 0,
$$

\n
$$
|t_4| < 2,
$$

\n
$$
|t_5| < 2;
$$

\n
$$
|t_6| < 2;
$$

\n
$$
|t_7| < 2;
$$

\n
$$
|t_8| < 2;
$$

\n
$$
|t_8| < 2;
$$

\n
$$
|t_9| < 2;
$$

\n
$$
|t_9| < 2;
$$

\n
$$
|t_1| < 2;
$$

\n
$$
|t_2| < 2;
$$

\n
$$
|t_3| < 2;
$$

\n
$$
|t_4| < 2,
$$

\n
$$
|t_5| < 2;
$$

\n
$$
|t_6| < 2;
$$

\n
$$
|t_7| < 2;
$$

\n
$$
|t_8| < 2;
$$

\n
$$
|t_9| < 2;
$$

\n
$$
|t_1| < 2;
$$

\n
$$
|t_1| < 2;
$$

\n
$$
|t_2| < 2;
$$

\n
$$
|t_3| < 2;
$$

\n
$$
|t_4| < 2;
$$

\n
$$
|t_5| < 2;
$$

\n
$$
|t_6| < 2;
$$

\n
$$
|t_8| < 2;
$$

\n
$$
|t_9| < 2;
$$

\n
$$
|t_1| < 2;
$$
<

$$
\begin{aligned}\n|6t_1 + t_3 + 3t_4 + 2t_5| &= 0, \\
|4t_2 + 2t_3 + t_4 + 2t_5| &= 0, \\
|t_3| &= 3, \\
|t_4| < 2, \\
|t_5| < 2.\n\end{aligned}
$$
\n(5)

System (3) is not possible: $4t_2 + t_4 + 2t_5 = 0$ and $|6t_1 + 3t_4 + 2t_5| = 3$ so $|6t_1+3(-4t_2-2t_5)+2t_5|=3$, so the left-hand side is even and the right-hand side is odd.

System (4) is not possible either: $6t_1+3t_4+2t_5=0$, so $3|t_5$. But $|t_5|<2$; thus $t_5 = 0$ and $6t_1 = -3t_4$, that is, $-2t_1 = t_4$. Since $|t_4| < 2$, we have $|2t_1| < 2$, that is, $|t_1| < 1$, hence $t_1 = 0$. Thus $(t_1, \ldots, t_5) = (0, \ldots, 0)$.

Finally, system (5) is not possible: $6t_1 \pm 3+3t_4+2t_5=0$, so $3|t_5$ and $4t_2 \pm 6 + t_4 + 2t_5 = 0$, so 2 $|t_4$. From 3 $|t_5|$ and $|t_5|$ < 2, it follows that $t_5 = 0$. From 2 $|t_4|$ and $|t_4|$ < 2, it follows that $t_4 = 0$, and $6t_1 = \pm 3$. However, ± 3 is not a multiple of 6.

Case $k = 2$. Let $I = \{1, 2, 5\}$, $r = \frac{1}{4}e_3 + \frac{1}{4}e_4 + \frac{1}{4}e_6$, whereby (int $\mathcal{C} \cap \mathcal{P}_1^r \neq \emptyset$ for $\mathscr{C} \in (\mathscr{C}_{\scriptscriptstyle{\mathrm{O}}},L^*)$, where $(\mathscr{C}_{\scriptscriptstyle{\mathrm{O}}},L^*)$ is the second example considered in Section III. Consider the system

$$
(\mathscr{C}_o, L^*) \cap \mathscr{P}_1^{(r)} := \{ \mathscr{C}_P \cap \mathscr{P}_1^{(r)} \colon \mathscr{C}_P \in (\mathscr{C}_o, L^*) \}.
$$

88 SANDOR SZABÓ AEQ. MATH.

Obviously this system is a 2-fold cube tiling of \mathscr{E}^3 . We prove that there are no two cubes with a common face in this system. Assume that \mathscr{C}_P , $\mathscr{C}_Q \in (\mathscr{C}_Q, L^*)$; $\mathscr{C}_P \cap \mathscr{P}_I^{\prime\prime} = \mathscr{C}_{P'}', \mathscr{C}_Q \cap \mathscr{P}_I^{\prime\prime} = \mathscr{C}_{Q'}'$ and $\mathscr{C}_{P'}', \mathscr{C}_{Q'}'$ have a common 2-dimensional face. Since $PQ = t_1 l_1^* + \cdots + t_6 l_6^*$; $t_1, \ldots, t_6 \in \mathbb{Z}$; $(t_1, \ldots, t_6) \neq (0, \ldots, 0)$, one of the following systems has a solution which differs from $(0, \ldots, 0)$:

$$
\begin{aligned}\n|6t_1 + 2t_3 + 3t_4 + 3t_5 + 3t_6| &= 3, \\
|6t_2 + 3t_3 + 2t_4 + 9t_5| &= 0, \\
|t_3| &= 2, \\
|t_4| &= 2, \\
|-3t_5 + t_6| &= 0, \\
|t_6| < 2;\n\end{aligned}
$$
\n(6)

$$
|6t1 + 2t3 + 3t4 + 3t5 + 3t6| = 0,|6t2 + 3t3 + 2t4 + 9t5| = 3,|t3| < 2,|t4| < 2,|-3t5 + t6| = 0,|t6| < 2;
$$
 (7)

$$
|6t1 + 2t3 + 3t4 + 3t5 + 3t6| = 0,|6t2 + 3t3 + 2t4 + 9t5| = 0,|t3| |t4| -3t5 + t6| = 3,|t6| < 2.
$$
 (8)

Obviously $3|t_3, 3|t_4, 3|t_6, |t_3| < 2, |t_4| < 2, |t_6| < 2,$ so $t_3 = t_4 = t_6 = 0.$

System (6) is not possible: $-3t_5 + t_6 = 0$ and $t_6 = 0$ imply that $t_5 = 0$, so $|6t_1| = 3$, a contradiction.

System (7) is not possible because $-3t_5 + t_6 = 0$ and $t_6 = 0$ imply $t_5 = 0$, so $|6t_2| = 3$, a contradiction.

System (8) is not possible as $6t_2 + 9t_5 = 0$, so $2|t_5|$ and $|-3t_5| = 3$. The left-hand side is even and the right-hand side is odd.

This completes the proof of Theorem 2.

The author would like to thank the referee for his valuable suggestions.

REFERENCES

- [1] FURTWANGLER, PH., *Uber Gitter konstanter Dichte.* Monatsh. Math. Phys. *43* (1936), 281-288.
- [2] HAJÓS, GY., *Többméretü terek befedése kockaráccsal.* Mat. Fiz. Lapok 45 (1938), 171-190.
- [3] HAJÓS, Gy., *Többméretü terek egyszeres befedése kockaráccsal. Mat. Fiz. Lapok 48 (1941), 37–62.*
- [4] HALOs, GY., *Ober einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Wiirfelgitter.* Mat. Z. *47* (1942), 427-467.
- [5] KELLER, O.-H., *Uber die liickenlose Erfiillung des Raumes mit Wiirfeln.* J. Reine Angew. Math. *163* (1930), 231-248.
- [6] MINKOWSKI, H., *Geometrie der Zahlen. Erste Lieferung.* Teubner, Leipzig, 1896.
- [7] PERRON, *0., Uber liickenlose Ausfiillung des n-dimensionalen Raumes dutch kongruente Wiirfel.* Math. Z. 46 (1940), 1-26. II. *46* (1940), 161-180.
- [8] PERROr~, O., *Modulartige liickenlose Aus[iillung des R, mit kongruenten Wiir[eln.* Math. Ann. *117* (1940), 415-447. II. *117* (1941), 609-658.
- 19] ROBlr~SON, R. M., *Multiple tilings of n-dimensional space by unit cubes.* Math. Z. *166* (1979), 225-264.
- [10] STEIN, S. K., *Algebraic tiling. Amer. Math. Monthly 81* (1974), 445-462.

Department o[Mathematics in Civil Engineering, Technical University Budapest, H-1111 Budapest, Stoczek u. 2, Hungary.