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Multiple tilings by cubes with no shared faces

SANDOR SzABG

I. We consider a family of translates of a unit n-dimensicnal closed cube and
assume that any point lies in only a finite number of the cubes. If every point which
is not on the boundary of any cube lies in exactly k cubes, then we say that the
given family of cubes furnishes a k-fold tiling of n-dimensional space. The number
k is the multiplicity of the tiling. If the translations of the cubes form a lattice, then
the tiling is called a lattice tiling.

Lattice cube tilings arise in connection with a famous conjecture of Minkowski.
In a 1-fold lattice cube tiling of n-dimensional space, two of the cubes must share a
complete (n — 1)-dimensional face. Hajos confirmed Minkowski’s conjecture [3].

There were two different generalizations of Minkowski’s conjecture:
Furtwingler’s and Keller’s conjectures.

Furtwiingler conjectured that in a k-fold lattice cube tiling of n-dimensional
space, two of the cubes must share a complete (rn — 1)-dimensional face.
Furtwiingler proved this statement for n <3 [1], while Hajés proved that it was
false for n >3 [2].

Consider the following question: For which k does there exist a k-fold lattice
cube tiling of n-dimensional space such that no two cubes have a common face?

Robinson proved the following [9]:

If n =4, then pzlk, where p is an odd prime; if n =5, then kK =3 or k =5; if
h =6, then k =2.

Keller conjectured that in a 1-fold cube tiling of n-dimensional space two cubes

must share a complete (n — 1)-dimensional face. Perron proved this statement for
n=6 {7], [8].
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Consider the following question: For which k does there exist a k-fold cube
tiling of n-dimensional space in which no two cubes have a common face?

Robinson proved that this is not possible for any k for n =<2 but k = 25, 49, 50,
74,75, 81, 98, 100 and every k > 313 is possible for n = 3 [9]. He wrote [9]: “But the
most interesting question is whether 25 is the smallest possible multiplicity”.

The main result of this paper is that every k > 1 is possible for n >2. Thus k =2
is the smallest possible multiplicity for n =3, 4, 5, 6.

II. Let €, R, Z be n-dimensional Euclidean space, the real number field, and
the integer number ring, respectively. The translations of €" belong to the
n-dimensional vector space E” over R. Let e,,. .., e, be an orthonormal basis in E”
and O a fixed point in €". The set

—
o:={P:OP=cie;+ - +ce,;0=c,=1,....,0=sc, =1}

is called a cube with preferential vertex O. Denote the interior of €, by int €. The
linear transformation a:E”—E" is defined by (xie;+---+x.e.)a=
(xi/q)ei+ - +(xu/qu)en; X1,. .., % €EZ, where qu,...,q. are fixed positive inte-
gers. The mapping a : €" — &€ belongs to the linear transformation @. Let X be a
free abelian group with generators e,, ..., e.. If L is a subgroup of Xa, then we say
that L is a lattice. We shall use the following notation (4,,L)={%,: OP € L}.
The set €oa will be called a cell. Obviously (%o, L)a = (€oa, La).

Let U be a finite abelian group, which is written multiplicatively. We shall use
the group ring Z[{?] with integer coefficients over Z. The sum in the group ring of
the elements of % is denoted by S[¥]. If A is an element of A and q is a positive
integer, then S=1+ A + A*+---+ A?"! is called a series.

III. THEOREM 1 ([2], [4)). If there is a finite abelian group W and series
S, ..., S, such that

Sl che Sn = kz[%{]Q (1)

then there exists a k-fold lattice tiling (%o, L) of n-dimensional space. The lattice L is
the kernel of the homomorphism  : Xa — ¥, which is defined as

(—;—'et+---+gﬁe,,):f1=A;‘1---A’,‘,n; X1y-., X, €EZ.

1 n
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Robinson [9] gave some solutions of (1) and we shall use two of them.

The first example of a solution of equation (1) is the following [9, p. 253]: If U is
defined by U°=V*=1and A, =U, A,=V, A,=UV? A,= UV, As= U?V?
=3, 9:=2, 4:=3, qs=2, qs=2, then the series S, =1+ U+ U? S,=1+V,
S,=1+ UV +(UV?, S, =1+ UV, Ss= 1+ U?V? and S,5,5:5.Ss = 33[¥]. Ac-
cording to Theorem 1, there is a 3-fold lattice tiling (o, L) of 5-dimensional space.
For later use, construct the lattice L by exhibiting a basis for it.

The linear transformation e : E°*— E® and the homomorphism ¢ : Xae — U are
defined by e, =le,, e;a =le;, e;a = ie;, e = 3., esa =jes; e,y = U, Je,p = V,
Lo = UV?, e = UV, desp = UV The vectors I, =2e, L,=2e,, L=
lo,+e,—%es, I, = e, +1e,—1e,, Is =%, + e, les span the lattice L = Ker ¢. Indeed,
Ly =2e;p =6lep =Us=1 L =2ey =de;y = V=1, L = (Jes + e~ de3)¢ =
UVHUVY =1, L = (e, +3e:— e )y = U3 V(UPVY ' =1, Isp = Ge,+ e.—les)s
=UPVHUPVH =1 and det(l,,...,I)= —1.

The second example of a solution of (1) is the following [9, p. 255]: Let A* be
defined by U= Vé=W’=1land A, = U, A, =V, A;=U’V A, =U’V? As=
UVW, Aq=U*V’W;4:.=3,9:=3,9:=2, .= 2, qs= 3, g = 2. Then the series
S$i=1+U+U? S,=1+V+V, S,=14+UV’, S,=1+U°V? S;=1+
UV*W +(UV’WY, Se=1+U'V’W satisfy S,---Ss=23[U*]. According to
Theorem 1 there is a 2-fold tiling (6o, L*) of 6-dimensional space. We shall
construct the lattice L*.

The linear transformation a*: E°—> E° and the homomorphism ¢ * : Xae* — U *
are defined by e;a* =ie,, e;a* = le,, e;a* =1e;, esa™ =le,, esa™ = les, eca ™ =le;
lep* = U, lep* =V, lesy* = UV?, Jep*=UV?, lesy* = UV*W, lep* =
U*VPW. The vectors [*=2e, [%=2e, 1%¥=%e,+e,—1es, I%=e,+3e;:— e,
IS=e,+3e.—es, It=e +les—3¢; span the lattice L =Kery¢*. Indeed,
ITy* =2e,4* =6le;p* = U =1, l*(ﬁ*—Zezt//*—égezlj/*=V6=1, y* =
Geite,—le)y* = UPVI(UV) ' =1, Iiy*=(e.+3e,—te)y* = UVI(U V!
=1, 134* =(ei+3e:— ey = UVAUV W) =1, Ip* = (e, +les—JeJy* =
U'UV*W(U*V*W) ' =1 and det(l%,...,1%)=

IV. THEOREM 2. If n, k €Z; n>2, k> 1, then there exists a k-fold cube
tiling of n-dimensional space in which no two cubes have a common face.

Proof. First we prove a lemma that will enable us to construct a 3-fold tiling of
¢” and a 2-fold tiling of ¥ in which no cubes share a common face. This will be
sccomplished by taking a 3-dimensional cross section of tilings of higher dimen-
sional spaces, in particular, the tilings of Robinson discussed in Section III.
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Once that is done, Theorem 2 follows almost immediately. First of all, any
integer k =2 can be expressed as a sum of 2’s and 3’s. So, by superposing 2-fold
tilings and 3-fold tilings of &°, none of which have cubes sharing a common face, we
can build a k-fold tiling of &* with the same property. Then, to construct a k-fold
tiling of &*, take the product of a k-fold tiling of €° with the unit interval. This
produces a tiling of layer of €* without cubes sharing a common face. By taking
copies of this tiling, translated to avoid cubes with common faces, we produce a
tiling of €*. By induction on n, there is a k-fold tiling of €, k =2, n = 3, where no
cubes share a common face.

Let T be a subset of {1,...,n}, r EE" and

P:={P: 0P =r+3\e, h ER, i €I}

This is an [ I |-dimensional plane in €". We consider the n-dimensional cubes %5,
€., where P_a =x.e;+ -+ x.8., € NPY=Cp, €o NP =%, . Assume that

(nt€)N PV #G and (int €o)N PP 446 2

LEMMA 1. If the |I|-dimensional cubes 6z, %o have a common ([I|—1)-
dimensional face (i.e., there is a t € I such that P'Q' = * e,), then there existsat €1
such that |x,|=1 and |x;|<1 forj€{l,...,n}\I and |x;|=0 for i € I\{t}.

—> —> —» —3 ey —>
Proof. Indeed, PQ =PP'+P'Q'+ Q'Q and PP'=Z3ue, 0QQ'=23vg,
j€{l,...,n\L Thus PO =*e+3(w;—v)e so |x[=1 and |x|=0 for
i € I\{t}. By virtue of (2), |x;|<1forj€{l,...,n}\L

LEMMA 2. Fork =2 and 3 there is a k-fold tiling of €’ in which no two cubes
share a common face.

Proof. Case k =3. Let I ={1,2,3} and r = e, +}es, whereby (int €)N P # 0
for € €(%o,L), where (%o,L) is the first example considered in Section III
Consider the system

(€0, LYN PP :={€ N PP : %6 €E(%0,L)}.
Obviously this system is a 3-fold cube tiling of €>. We prove that there are no two

cubes with a common face in this system. Assume that 4, 6o €(%o,L);
G NPV =€, €o N PP =%, and 4r, €5 have a common 2-dimensional face.
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Since P_Q) =th+ ot 4, EZ (.., 1) #(0,...,0), one of the follow-
ing systems has a solution which differs from (0,...,0):
|66, + ti+3t,+2t]=3, |
[4t,+ 20+ t+2t5] =0,
[t =0, ¢ 3
[t.] <2,

[ts] <2; )

[6t, + t:+3t+2t5|=0, ]
|4+ 26+ to+265] =2,
[£:] =0, ¢ “)

| ts] <2,

[ts]<2;
[66; + 64+3t,4+24]=0, ]
|[4t, 426+ t+2t5]=0,

4] =3, 7 )
[t <2,

[t:]<2. )

System (3) is not possible: 46, +1,+2t,=0 and |61, +3t,+2t]|=3 so
|66, + 3(— 48, — 2t5) + 245| = 3, 50 the left-hand side is even and the right-hand side is
odd.

System (4) is not possible either: 6¢,+3t,+ 25 =0, so 3|ts. But [t5] <2; thus
;=0 and 61, = — 31, that is, —2t; = .. Since |f,| <2, we have |2¢,| <2, that is,
|]< 1, hence t, =0. Thus (t,,...,t5)=(0,...,0).

Finally, system (5) is not possible: 6t,=3+31,+2t:=0, so 3 ! ts and
4 26+1,+2t5=0,502 l t:. From 3 l ts and |£5] < 2, it follows that ts = 0. From 2 | t
and [t,] <2, it follows that t, = 0, and 6¢, = + 3. However, + 3 is not a multiple of 6.

Case k =2. Let 1 ={1,2,5}, r =le;+ies+ies, whereby (int )N P #@ for
€ € (%o, L*), where (%o, L*) is the second example considered in Section III.
Consider the system

(G0, LN P :={G NPV : € E(%o,L*)}.
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Obviously this system is a 2-fold cube tiling of €>. We prove that there are no two
cubes with a common face in this system. Assume that €», %o €(%o,L*);
E NPP =€, 6o NPY = €4 and €5, 6o have a common 2-dimensional face.
Since PQ =11+ - +tle; ti,.. ., t EZ;(1,..., 1) #(0,...,0), one of the follow-
ing systems has a solution which differs from (0,...,0):

|66,  +28+ 3t +3ts+ 34| =3,

|6t + 33+ 214+ 915 = (),
|8 <2,
A <2, [ ©)
|—3ts+ £]=0,
[te] <25

[6t;  +2t:+3ta+3ts+ 316| = 0,

|68, + 315+ 2t, + 915 =3,
6] <2,
[ta] <2, | 0
| =3+ 1| =0,
ls] < 2;

(6t  +2t:+ 31+ 31+ 34| =0,

|68, + 3,4 214+ 915 =0,
|t:] <2,
4] <2, [ ®
|=3ts+ 15| =3,
[te] <2,

Obviously 3| t5, 3| ts, 3| te, [15] <2, [1:] <2, [ts] <2, 50 =t,=1,=0.

System (6) is not possible: — 35+ 1, = 0 and £ = 0 imply that ts =0, s0 |64, =3,
a contradiction.

System (7) is not possible because —3ts+t=0 and # =0 imply t;=0, so
|6t.] =3, a contradiction.
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System (8) is not possible as 6f,+ 95 =0, s0 2| ts and | — 35| = 3. The left-hand
side is even and the right-hand side is odd.
This completes the proof of Theorem 2.

The author would like to thank the referee for his valuable suggestions.
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