
Aequationes Mathematicae 28 (1985) 199-207 
University of Waterloo 

0001-9054/85/010199-0951.50 + 0.20/0 
© 1985 Birkh/iuser Verlag, Basel 

Integral inequalities related to Hardy's inequality 

R. N. MOHAPATRA and D. C. RUSSELL 

Dedicated to Professor Janos Acz~l on his 60th birthday 

Abstract. Some generalizations are given of Hardy's inequality relating to LP-spaces. The results include 
many existing integral inequalities. 

1. Introduction and Statement of the Main Results 

Hardy's Integral Inequality (see [5], or [6, p. 240, Theorem 327,1) is well-known 
and states the following: 

Let f ( t )  >i O for t~R+ := (0, co) and F(x) := S~f(t)dt. I f  1 < p < c~ then 

I x -  IF(x)]Pdx <~ \P  _ 1 I Jo (1.1) 

the constant being best-possible. 
There is a companion theorem for 0 < p < 1 [6, Theorem 337,1 and an analogue 

for series in place of integrals [6, Theorem 3261, together with generalizations in several 
different directions (e.g. [1-1, [2], [31, [41, [71). The theorems in the present note are 
essentially the integral analogues of the series inequalities of J. N6meth [71, but they 
include, for example, all the inequalities given by E. T. Copson [2], and (for p > 0) 
those given by P. R. Beesack [1,1. We have not considered the case p < 0. 

We suppose throughout that all our functions are non-negative and measurable 
on their domains of definition, and we now state our main results. We remark that 
Hardy's inequality (1.1) is the case g(x)= x-P(x > 0), a (x , t )=  1(0 < t < x), m = oo, 
of Theorem l(a) below, though we shall give a number of other corollaries in ~3,  
4, 5 below. 
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T H E O R E M  1. Assume that a(.,-) is defined on R+ x R+,  with a(x,t)>~O for 
0 < t < x, a(x,t) = O for t > x, and suppose that, for some constant K~ >~ 1, 

a(x, t) <<. Kla(y,  t) for x > y > t. (1.2) 

Let g(x) >>. 0 (xeR+) and g(.)a(.,t)~L(t, oo) for each t > O, and write 

G2(t) :=  S;*g(x)a(x, t)dx (t > 0). (1.3) 

Let f (t ) ~ 0 ( t e R + )  and a(x, .) f (.) ~ L(O, x) for each x > O, and write 

Fl(X) :=  S~a(x, t ) f ( t )dt  (x > 0). (1.4) 

(a) I f  1 < p < ~ ,  0 < m <~ ~ ,  g(x) > 0 on (0, m), then 

S'~ gF~dx <~ (pK~-1)pI~ g~ -P(G2f)Pdx. (1.5) 

(b) IfO < p < 1, 0 ~< r < oo, Fl(x) > 0 on R+, then 

~ gFf  dx >1 ( p K ~ - 1 ) p ~  91 -P(G2f)Pdx. (1.6) 

(c) I f  p = 1 then hypothesis (1.2) is not required: (1.5) (0 < m < oo) and (1.6) 
(0 < r < ~ )  hold, with equality in (1.5)(m = ~ )  and (1.6)(r = 0). 

T H E O R E M  2. Assume that a(',') is defined on R+ x R+, with a(x,t)>>.O for 
0 < x < t, a(x,t) = O for x > t, and suppose that, for some constant K2 >t 1, 

a(x,t) <~ K2a(y,t)for x < y < t. (1.7) 

Let g(x) >>- O'(x ~ R +) and O(.)a(., t ) ~ L(O, t) for each t > O, and write 

Gl(t) :=  ~g(x)a(x, t )dx (t > 0). (1.8) 

Let f ( t )  >1 0 (re R+ ) and a(x, .)f(.)~ L(x, ~ )  for each x > O, and write 

F2(x) :=  •a(x, t ) f ( t )dt  (x > 0). (1.9) 

(a) I f l  < p <  oo, O~<r< oo, g(x) >/0 on (r, oo), then 

~,~ gF~dx < (pK ~- ~)P~,~ g~ - P(G~ f)Pdx. (1.10) 
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(b) I f  O < p < 1, 0 < m <~ ~ ,  F2(x) > 0 on R+, then 

I"d gFgdx >I (pK~- ')P~' g 1-'(G,f)"dx. 

(c) I f  p = 1 then hypothesis (1.7) is not required: (1.10)(0 < r < ~ )  
(0 < m < oo) hold, with equality in (1.10)(r = O) and (1.11)(m = av). 
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(1.11) 

and (1.II) 

2. Proofs of the Theorems 

We first require the following elementary result. 

LEMMA 1. (a) Let  1 <~ p < ~ and z(') be non-neyatibe and integrable over (O,x). 
Then 

( S~z( t )dt ) p = p~z( t  )( ~toZ(u)du)P- 1dr; (2.1) 

the result holds for 0 < p < 1 provided that ~toZ(U)du > 0 jbr 0 < t < x. 
(b) Let  1 <<. p < ~ and z(.) be non-negative and inteorable over (x, ~) .  Then 

( ~ z(t )dt )P = p ~  z(t )(~F z(u)du) p- l dt; (2.2) 

the result holds for 0 < p < 1 provided that ~Tz(u)du > O for x < t < ~ .  

Proof (2.1) is proved by Davies and Petersen [2, Lemma 2] (their proof, stated for 
p > 1, clearly holds also for 0 < p < 1 under the given positivity hypothesis). In a 
similar way, for (2.2) we write F(t):= ~z(u)du and then F'(t) = - z ( t )  a.e. on (x, oo); 
then (2.2) follows from 

[ F(x) ] p = - p S~ [ F(t )]P- X F'(t )dt. [] 

Proof of  Theorem l(a) (1 < p < oo). By (1.4) and (2.1), 

[ F l(x) ] p = p S~a(x, t ) f ( t  )( Stoa(x, u)f(u)du) p- l dt 

<= pKl  p- I S~a(x, t ) f( t  )[ F~(t ) ] p- ' at, by (1.2). (2.3) 

Hence on multiplying through by g(x), integrating over (0, m), and inverting the order 
of integration (the integrand being non-negative), 
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~gF1 p = < 

< 
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pKl p- '~f(t)[Fx(t)] p- ldtS~'g(x)a(x, t)dx 

pKlP-t~'~fFIP-IG2, by (1.3) 

pK1P- 1~g(1 -p)/eGzf(gl/PF1)p- 1, g > 0 on (0, m) 

1 1 
< pKlP-l(~gl-P(G2f)e)~/e(~,~aFlp)l/f, _ + = 1 (2.4) = p -; 

AEQ. MATH, 

by H61der's inequality. If ~gFI  p = 0 then (1.5) is trivially true; otherwise we may 
divide both sides of (2.4) by (~dgF~") lip', and then raise both sides to the power p, 
to get (1.5). D 

Proof of Theorem l(b) (0 < p < 1). The proof begins as in Theorem l(a), denoting F1 
as in (1.4) and using (2.1), and proceeding as in (2.3) since, by hypothesis, F1 > 0 on 
R+; but the inequality sign in (2.3) is now reversed since p - 1 < 0. If g = 0 a.e. on 
R÷ then (1.6) holds trivially. Hence suppose that g > 0 on a set E of positive measure, 
g = 0 on R + \E.  Then multiplying the (reversed) inequality (2.3) by g(x) and integrating 
over E, we shall obtain 

g F 1  p 
E 

pK1 p- l~ g(x)dx~a(x, t ) f( t  )[ Fl(t ) ] p- 1dr 
E 

= pKlP- l~ f ( t ) [F, ( t ) ]P- 'd t  ~ g(x)a(x, t)dx 
En(t, ~) 

= pKlP- I~ fF ,P- IG2 ,  by (1.3) 

> pKlP-I~fFlP-IG2 
E 

= pKlP- 1J'g(1 -p)/PG2f(gltPF1)P- 1, g > 0 on E 
Z 

1 1 
> + = 1 

by H61der's inequality for 0 < p < 1 (p' < 0) (e.g. [6, (6.9.3)]). Dividing through by 
(SEgFlP) 1/p" and raising both sides to the (positive) power p, we get (1.6) with the 
integrals S~ on both sides replaced by ~e. However, since g = 01 -P = 0 on R+\E, 
and by taking 0(x) = 0 for 0 < x < r (since (1.6) is not affected by those values) we 
can write our  result in the form (1.6). [3 

Proof of Theorem l(c) (p = 1). This is an obvious special case of (a) and (b); only 
Fubini's Theorem is required. [2 

Proof of Theorem 2. With F2 defined as in (1.9), we begin by using (2.2) and (1.7), 
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instead of (2.1) and  (1.2). The  modifications required, to the p roof  of  Theorem 1 set 
out above,  will be immediately evident. [] 

3. A Convolution Inequality 

T H E O R E M  3. Let s(t ) >_- 0(t > 0), s(t ) -- 0(t < 0), and for some constant K >= 1, 
s(x) <= Ks(y) for  x > y > 0; suppose also that 

S(x) : =  S~s(t)dt > 0 for x > O. 

If  f (t) >= 0 on • + and 1 < p < oo, then 

~-S- (~JoS(X-  t ) f ( t )d t  dx <= \ p - l /  Jo [f(t)]Pdt" (3.1) 

Proof For  any p > 0, denote  

G(t) : =  S~[S(x)-[-ps(x - t)dx (t > 0). (3.2) 

Now take a(x, t) = s(x - t), g(x) -- [S(x)]-P,  r = 0, m = ~ ,  in Theorem 1 and we get, 
for 1 < p <  co, 

S~([S(x) ] - l I~s(x - t ) f ( t  )dt )Pdx ~ (pK p- 1)PS~(SP- 1Gf)Pdt. (3.3) 

By (3.2), and  since S(x)T, 

p 2t  G(t) < ['S(t)]- ~, s(x  - t ) d x  + ~ [ S ( x  - t ) ] - P s ( x  - t ) d x  

= [S(t)] *-p ÷ (P - 1)-*{[S( t )]  1-p - [S(oo)] l -p}  

< p(p - 1)-*[S(t)]  1-p for p > 1. 

With this es t imate  on the right of  (3.3), we now obtain  (3.1). []  

E X A M P L E .  s(t) = l(t > 0), K = 1, in (3.3) gives Hardy ' s  inequali ty (1.1) again. 

R E M A R K .  Inequal i ty  (3.3) is reversed if 0 < p < 1. 
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C O R O L L A R Y .  l f f ( t )  ~ 0 on R+ and 1 < p < oo, then 

foO( , fo , ,  
l o g ( x +  1) x - - t +  - \ p - - 1  / Jo  

P r o o f  Theo rem 3 with s ( t )  = (t + 1)- l(t > 0), K = 1. 

AEQ, MATH, 

(3.4) 

4. Corollaries from Hardy, Littlewood and Polya [6] 

We select, as corollaries of  our  Theo rems  1 and  2, some examples  from [6] which 
are directly related to Hardy ' s  inequality, G i v e n f ( t ) ~  0 on R+, then whenever the 
integral exists finitely, we write 

Fl (x )  : =  S~f( t)dt ,  F2(t)  :=  S~ f ( t )d t ,  x > O. 

(4.1) [6, Th. 330,1. I f  1 < p < ~ ,  c > 1, then 

j'o - , , c - , i  - ( ,__e_ jof 
(4.2) [6, Th. 347,1. l f  O < p < 1, c > 1 the inequality in (4.1) is reversed. 

Proofs. Theo rem 1: g(x) = x -< (x > 0), a(x, t)  = 1 (0 < t < x), r = O, m = ~ .  {3 

R E M A R K .  F o r  a general izat ion of (4.1) see Feh6r [4]. 

(4.3) [6, Th. 330,1. The case 1 < p < ~ ,  c < 1 of(4.1). 
(4.4) [6, Th. 347]. The case 0 < p < 1, c < 1 o f  (4.2). 

Proofs. T h e o r e m  2: g(x) = x -c (x > 0), a(x, t )  = 1 (0 < x < t ), r = O, m = ~ .  [3 

(4.5)[6,Th.  328-l .Chooseg(x) = l (x  > O ) , a ( x , t ) =  l ( O < x  < t ) i n T h e o r e m 2 ( a ) .  E3 

(4.6) [6, (9.9.9),1./f 1 < p < oo, ~ < I/p, then 

co co p p p 

jo \ j .  i \ t - ~ p / j o  

Proof. T h e o r e m  2(a): #(x) = x - ' p  (x > 0), a(x, t )  = t ' -  i (0 < x < t), K2 = 1, r = 0. 
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(4.7) 1-6, (9.9.8)]. Choose g(x) = x p(~- 1)(x > 0), a(x, t)  = t -~(0 < t < x) in Theorem l(a). 

[] 

5. Corollaries from Copson [2] and Beesack [-1] 

Copson [2] has given six inequalities which generalize those which we have 
mentioned in ~4 above. Beesack I-1] has also given six similar inequalities, two of 
which provide alternative proofs for [2, Theorems 5 and 6]; a further two are additional 
cases which complete Copson's  list. Beesack's final two inequalities [1, (30) and (31)] 
deal with the case p < 0. 

Let f, ~b be positive and measurable on R +, and suppose that 

O(x) := S~ck(t)dt 

exists for 0 < x < oo. Whenever  the integral exists finitely, we write 

F,(x)  := ~fdpdt ,  FE(X) := S~fdpdt, x > O. 

(5.1) [2, Th. 1]. I f 1  < p < oo, c >  1, O < m <  oo, then 

Flp~p-¢c~dx < ~ P fpdpp-cq~dx. 
jo = \ c - l / J o  

(5.2) I-2, Th. 2]. l f  O < p < 1, c > 1, 0 < r < ~ ,  ¢b(oo) = oo, then 

(~--c X, > p f ~ p - c  X. 

dr  

Proofs. In our  Theorem 1 choose a(x, t ) = O ( t )  ( 0 < t < x ) ,  KI = 1, 
9(x) = 4~(x)[tl~(x)]-~(x > 0), so that (1.3) gives 

G2(t) = (c - 1)- l~b(t){ [tl~(t)] 1 - ~ -  [tl)(oo)] 1 - '}.  

In case (5.1) it is enough to use G2 =< (c - 1)-1~bO1-c; for the opposite inequality (5.2) 
we need ~ ( ~ )  = oo to give us G2 = ( C  - -  1)-lq5~1-c. [] 

(5.3) [2, Th. 3]. The case 1 < p < oo, c < 1, 0 < r < oo. 

(5.4) [2, Th. 4]. The case 0 < p < 1, c < 1, 0 < m < oo. 
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Proofs. These companions  to (5.1) and (5.2) come from our  Theorem 2 by choosing 
if3 a(x, t )  ~--- ~ ( t )  (0 < X < t)~ K2 = 1, ~(X) = ~(X)[(I)(X)]-C(x >" 0). 

(5.5) [1, (29)]. I f  1 < p < oo, 0 < r < oo, then 

fr °°F2pO-'~pdX ~-pp f ° ° f p o P - l  1. tier) j 

(5.6) [2, Th.  6] and [1, (33)]. I f  0 < p < 1, 0 < r < oo, then the inequality in (5.5) is 

reversed. 

Proofs. In our  Theorem 2 take a(x, t) = ~b(t)(0 < x < t), K2 = 1, m = oo, and 
g(x) = 0 (0 < x < r), g(x) = 4 , ( x ) [ ~ x ) ] -  ~(x > r). [] 

(5.7) [2, Th. 5] and [1, (28)]. I f  1 < p < oo, 0 < m < oo, then 

fo fo F l ' O - t q ~ d x  < p "  f p t } ,  - I ( "  
,l,(m) ] p 

(5.8) [1, ( 3 2 ) ] . / f 0  < p < 1, 0 < m < oo, the inequality in (5.7) is reversed. 

Proofs. In our  Theorem 1 take a(x, t ) =  ~b(t)(0< t < x), K1 = 1, r = 0, and 
g(x) = ~(x) [cI)(x)]- 1(0 < x < m), g(x) = 0 (x > m). [B 

A c k n o w l e d g e m e n t  

This work was suppor ted  by an Operat ing Gran t  from the Natura l  Sciences and 
Engineering Research Council  of  Canada,  and was written while the first au thor  was 
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