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O. Introduction 

Most papers on orthogonally additive mappings contain investigations under 
certain regularity conditions such as continuity, weaker forms of continuity, or 
certain kinds of boundedness (cf., e.g., [7], [8], [13], [17]). It is the purpose of the 
present note to avoid these regularity conditions in the beginning and to determine 
the most general orthogonalty additive mapping in some situations. Our main idea 
is to make extensive use of the properties of the domain space and, accordingly, to 
impose a minimum of conditions on the mappings. Later we shall derive as corollaries 
some of the results mentioned above. 

Throughout  the paper,  R, R+, R *+, O, Z, N denote the sets of real, nonnegative 
real, positive real, rational numbers,  integers, positive integers, respectively. For a 

subset A of a vector space, lin A stands for the linear hull (span) of A. We use o for 
the zero vector and 0 for both the real number  zero and the identity element of the 
abelian group (Y, + ) ;  it will always be clear from the con t e~  what is meant.  
Finally, _c is the symbol for the constant mapping with value c, and := means that 
the right hand side defines the left hand side. 

1. Orthogonality spaces 

D E F I N I T I O N  1. Let X be a real vector space of dimension /> 2 and 2_ a binary 

relation on X with the propert ies 
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(01) x ± o ,  o_Lx for every x E X ;  
(02) if x, y E X \ { o } ,  x _Ly, then x, y are linearly independent; 
(03) if x, y E X ,  x ± y ,  then a x Z f l y  for a l l a , / 3 E R ;  
(04') if P is a 2-dimensional subspace of X, x E P, A E R+, then there exists 

y E P  such that x Z y  and x + y ± A x - y .  
Then (X, ±) is called an orthogonality space. 

This definition is a modification of the one in [7, pp. 427-428]. Although our 
axioms (01), (02), (03), (04') are more restrictive than the ones in [7], none of the 
examples given there is eliminated here. Indeed, let X be a real vector space with 
dim~ X t> 2. Then the following relations ± make X into an orthogonality space: 

E X A M P L E  A. The "trivial" orthogonality on X, defined by (01) and 
x, y E X\{o}  ::> [x ± y ¢:> x, y linearly independent]. 

E X A M P L E  B. The ordinary orthogonality on the inner product space 
( X , ( . , . ) ) ,  defined by x ± y  ¢¢, (x ,y)  =0 .  For brevity, we then call (X ,±)  also an 
inner product space. 

E X A M P L E  C. The Birkhoff-James orthogonality on the normed vector space 

(x ,  ll'll), given by x L y  ¢:> IIx +/3y I1 > Ilxlt (v/3 E R ) .  

The crucial point in Example C is (04'). We briefly sketch a refinement of the 
argument of the proof of [17, p. 188, Lemma 1]. If Ax = o, then y = o has the 
properties required in (04'). In the following let A x ¢  o. By [9, p. 268, Corollary 2.2], 
there exists a v ~ P s u c h  that Ilvtl = 1 and x_Lv, and for u : =  (1/llxll).x we have 
II u II -- 1 and u ± v. Now let ~ : P ~ R 2 be the linear bijection which transforms u, v 
into (1, 0), (0, 1), respectively. By I,p(z)l :--IIz I1 (z ~ P),  a norm 1. l is defined on R:, 
and q~ is an isometry. Clearly L : =  {(1, a ) ;  a E R} is a line of support of the unit ball 
T in (R 2, I. I)- Taking into account that T may fail to be smooth or strictly convex, 

we form the set 

F : =  (ot, m ) E R + x R ;  m is the slope of a line of support of T at t(1,ot)t j . 

F turns out to be connected, and the continuous mapping ~ given by t~(ot, m)--- 
or + Am takes positive and negative values on F;  here A > 0 is important. Therefore 
there eJdsts (4, m)  E F such that & + Am = 0, i.e., m = - &/A. In other  words, there 
exists & E R .  such that a line of support at (1, &)/l(1, &)l and the ray from (0,0) to 
( A , - & )  are parallel, i.e., (1 ,&)_L(A,-&),  i.e., ( 1 , 0 ) + ( 0 , & ) Z ( A , 0 ) + ( 0 , - 6 ) .  
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Therefore,  by transforming back to P, u + &v ± Au - &v, and for y: = & II x ll v we get 
x ± y and x + y ± Ax - y. (Alternative arguments would consist in using approxi- 
mation techniques for convex sets, or the fact that, as the graph of a special 
subdifferential, F is maximal monotonic ([16, p. 32, Theorem B]), and the existence 
of 6 then follows from a result of Minty ([12, p. 343, Theorem 3]).) 

The following statement will be useful later. 

LEMMA 1. I1: (X ,±)  is an orthogonality space, x ~ X \ { o } ,  and P a 2- 
dimensional subspace of X with x E P, then there exists y E P with the property x i y, 
lin{x, y } = P. 

Proof. By putting A = 1 in (04') we get y E P such that x ± y and x + y ± x - y. 
y = o would lead to x L x which is impossible by (02). Hence y ~ o, and (02) implies 

linear independence of x, y, i.e., lin{x, y} = P. 

2. Orthogonally additive mappings 

DEFINITION 2. If (X, ±) is an orthogonality space and (Y, + ) an abel±an 
group, then a mapping f : X--~ Y is called orthogonally additive if 

f(x,  + xz) = f(xO + f(x2) for all x,, x2 E X with x, ± x2. (,) 

Thus the orthogonally additive mappings [ : X ~ Y are the solutions of the 
conditional Cauchy functional equation (*). The set of all solutions of (*) is denoted 
by Hom±(X, Y). The relation i is not symmetric in general, but for [ E  

Hom~(X, Y) we have nevertheless 

[(x~ + xz) = f(xl)  + f(x2) for all x~, x2 E X with x2 ± x~ (,') 

since the groups (X, + ), (Y, + ) are abel±an. Here  a generalization to the symmetric 
completion of _L and to the corresponding homomorphisms would be possible. The 

facts in the next two lemmas are straightforward. 

LEMMA 2. a) I f f  E Homl(X,  Y), then f (o)  = 0. b) If[, g E Homl(X,  Y), then 
f + g ~ Hom±(X, Y). c) If  f EHom~(X, Y)  and h : X--~ Y, h ( x ) : = f ( -  x) for all 
x E X, then h E Hom,(X,  Y). 
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R E M A R K  1. In Definition 1, we required d imRX/>2 for an orthogonality 
space. This is now well motivated by the fact that for dimR X = 0, dimR X = 1 we 
would have the uninteresting situations HomAX, Y)={_0}, HomAX, Y ) -  
{ f :X--> Y ; f ( o ) = 0 } ,  respectively, which do not need further consideration. 

DEFINITION 3. We say that the abelian group (Y, + ) is uniquely 2-divisible, 
if the mapping ~o : Y---~ Y, 00(y) = 2y (Vy E Y) is bijective. Then both o~ and ~0 ~ 
are automorphisms of (Y, +),  and we write y/2 for oJ-~(y). 

LEMMA 3. If (Y, +) is uniquely 2-divisible and f @Homl(X,  Y), 
g(x):=~[f(x)+f(-x)l, h ( x ) : = l [ f ( x ) - f ( - x ) ]  (Vx E X ) ,  then g,h E 
Homl(X, Y), g is even, h is odd, and f = g + h. 

LEMMA 4. If u, v E X, u ± v and f E Homi(X, Y )  is additive on lin{u } and on 
lin{v}, then f is additive on lin{u, v}. 

Proof. Let x~,xz~_lin{u,v} arbitrary, xl = a ~ u  +/3~v, x2=a~u +~2v. Then 
x, + x~ = (ot~ + az)U + (1~ + [32)v with (a, + a2)u ± (13~ + [32)v, by (03). Hence, by 
hypothesis and commutativity of (Y, +) ,  

f (x ,  + xz) = f [ (a ,  + a 2)u ] + f[(/3, + ~2)v ] = f (a ,  u)  + f(otzu ) + f(f l ,  v ) + f (~2v ) 

= f ( a ,  u ) + f(13, v )  + f(ot2u) + f ( ~ : v )  = f ( a ,  u + ~, v )  + f ( a : u  + 132v) 

= f (x , )  + f(x2). 

3. General solutions 

We next determine the general odd and the general even solution of (*). The 
corresponding continuous real-valued solutions in the framework of Example C 
were characterized in [17, Lemmas 2 and 3]; see also [5, p. 4.73 if]. In those proofs, 
continuity is used for establishing certain homogeneity properties. It is clear that 
our way of procedure must be completely different. 

T H E O R E M  5. I f  (X, ±) is an orthogonality space and ( Y, + ) an abelian group, 
then h : X ~ Y is an odd solution of (*) if and only if h is additive ([14, Theorem 1]). 

Proof. The "if"  part is obvious. Let h E Homl(X, Y), h odd. Then we have 
(i) x E X, h • R + implies h (x + hx) = h (x) + h (hx), 

(ii) x~, x2 E X linearly dependent implies h (x, + x2) = h (xl) + h (x2). 
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(i) Let P be a 2-dimensional subspace of X containing x. By (04') there exists 
y E P such that x 3_ y, x + y ± Ax - y, hence, by (03), x _L ( -  y). Therefore  

h(x + Ax)= h(x  + y + Ax - y) = h(x + y ) +  h(Ax - y)  

= h ( x ) +  h ( y ) +  h(Ax)+ h ( - y )  = h ( x ) +  h(Ax). 

(ii) For xl = o, the assertion is clear by Lemma 2a. If xl 4: o, then there exists 
/z E R with x2 =/xx~. 

Case 1. tz >!0. Then by (i) h(x~ + x2)= h(x, + tzx,)= h(x l )+  h(lxxl)= 

h (xl) + h (x2). 
Case 2. - l < I z < 0 .  We put y : = ( l + / x ) x ~ ,  A:= - t z / ( #  + l )  and get A > 0 ,  

Ay = - / xx l  hence, by (i), h(y  + Ay) = h (y)  + h(Ay), i.e., h[( l  + #)x~-/zx~]  = 

hi(1 + ix)x1] + h( -/zx~), i.e., h(x~) = h(xl + l~X~) - h(tzx~) = h(xl + x2) - h (x2), i.e., 
again h(x~ + x2) = h(x l )+  h(x2). 

Case 3. / x ~  < - 1 .  Here  we put A : = - l - / x ,  y : = - x ~  and get A>~0, A y =  
(1 + p,)xl = x~ + xz, hence, by (i), h(y + Ay) = h(y)  + h(Ay), i.e., h( - xt + xl + x2) = 
h ( -  x~) + h(x~ + x2), i.e, h(x2) = - h(xl) + h(x~ + x2), and (ii) is proved. 

Now let x~, x2 E X arbitrary and P a 2-dimensional subspace containing x~, x2. 
By Lemma 1, there are x, y @ P with the properties x ± y, lin{x, y } = P. By (ii), h is 
additive on lin{x} and on lin{y}, therefore by Lemma 4 also additive on P, and we 
have h(xl +x2) = h(xO+ h(x2), i.e., additivity of h on X. 

R E M A R K  2. It is clear that the set Hom(X, Y) of all additive mappings from 
(X, + ) into (Y, + ) also strongly depends on (Y, + ). If, for instance, the orders of 
the elements of Y form a finite subset of N, then Hom(X, Y) = {_0}. On the other 
hand, there are torsion groups (Y, + ) such that Horn(X, Y) ~ {_0}: Consider X as a 
Q-vector space and a surjective additive mapping k : X--* O (definition via Hamel 
base). Then the composite of k with the mapping a ~ e  z'~ (Or C O )  is a 
homomorphism onto a nontrivial torsion group. 

T H E O R E M  6. I f  (X, ±) is an orthogonality space, ( Y, + ) an abelian group and 
g : X--* Y an even solution of (*), then g is a quadratic mapping, i.e., 

g(x, + x2) + g(xl - x2) = 2g(x,) + 2g(xz) for all xl, x2 ~ X (Q) 

([15, Theorem 1']). 

Proof. We proceed in several steps. If g is an even solution of (*), 
(iii) u, v E X ;  u + v ± u - v implies g(u)  = g(v) ,  
(iv) u E X implies g(2u)  = 4g(u),  
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(v) x E X ,  A E R +  implies g(x + A x ) + g ( x - A x ) = 2 g ( x ) + 2 g ( A x ) ,  
(vi) x E X ;  ct, /3 E R implies g(ax +/3x) + g(ax - /3x)  = 2g(ax ) + 2g(/3x ). 

Step (iii). By (03), ½(u + v)_L ---½(u - v), so 

=g +g = g k - - ~ + - - - ~ ) = g ( v ) .  

Step (iv). By (04') there exists v E X with u _L v and u + v _1_ u - v, hence by 
(03) also u _L ( -  v), and the hypothesis and (iii) imply 

g(2u)= g(u + v + u - v ) =  g(u + v)+ g(u - v) 

= g(u)+ g(v)+ g(u)+ g ( -  v) = 2 g ( u ) +  2g(v)  = 4g(u) .  

Step (v). By (04') there exists y ~ X such that x _L y, x + y _L hx - y. Applica- 

tion of (*), (03), eveaness of g, and (iv) yields 

g(x + h x ) + g ( x  - h x ) + g ( 2 y )  = g(x + y + h x  - y ) + g ( x  - h x ) + g ( 2 y )  

= g(x + y  + A x - y ) + g ( x  - A x  +2y) 

=g(x  + y  +Ax - y ) +  g(x + y  - A x  + y )  

=g(x  + y ) + g ( A x - y ) + g ( x  + y ) + g ( - A x  + y )  

= 2g(x + y) + 2g(Ax - y) 

= 2g(x )+2g(y )+2g(Ax)+2g(  - y)  

= 2g(x)+2g(Ax)+4g(y)  

= 2g(x)+2g(Ax)+ g(2y). 

Subtraction of g ( 2 y ) o n  both sides leads to the assertion. 

Step (vi). For a = 0, the assertion is clear by Lemma 2a. Let  a ~  0, A:= I/3/a I, 
Z :  = OtX. 

Case 1. ~3~or >I O, i.e., A = /3 /a ,  Az =/3x. Then (v) implies 

g(ax + /3x)+ g(ax - f i x ) =  g(z + Az)+ g(z - A z )  

= 2g (z) + 2g (Xz) = 2g (ax) + 2g (/3x). 
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Case 2. [3/a < 0, i.e., h = - / 3 / a ,  hz = - /3x ,  and we may  cont inue  as in Case 
1, and (vi) is proved.  

Now let x~, x2 E X arbi t rary .  If x~ = o, then (Q) holds by L e m m a  2a. Let  xl ~ o 
and P a 2-dimensional  subspace  of X containing xl and x2. By L e m m a  1, there  
exists y E P such that  x~ _L y and lin{x,, y} = P. The re fo re  x2 = ax~ +/3y for  suitable 
a,/3 E R. (03) ensures  (1 + a )x~ ±/3y, (1 - a)x~ 2. ( - / 3 y ) ,  and f rom the hypotheses  
and (vi) we obta in  

g(x, + x:)+ g ( x , -  x~) = g[(1 + o~)x, + /3y l  + g [(1 - a ) x , -  fly] 

= g[(1 + a ) x , ]  + g(/3y) + g[(1 - a)x,] + g ( - / 3 y )  

= g(x, + ax,) + g(x,  - ax , )  + 2g(/3y) 

= 2g(x  0 + 2g(ax~) + 2 g ( ~ y )  

= 2g(x , )  + 2g(ax, +/3y) 

= 2g(x , )  + 2g(x2), 

so (O) holds again. 

C O R O L L A R Y  7. If (Y, + ) is uniquely 2-divisible, then every solution f of (*) 
has the form f = g + h with g quadratic and h additive. 

This follows immedia te ly  f rom L e m m a  3 and T h e o r e m s  5 and 6. 

R E M A R K  3. If every  solut ion of (*) is addit ive,  then the only even solut ion g 
of ( ,)  is _0. In fact,  for  every  x E X we have 

Here (Y, + ) need  not be  uniquely 2-divisible. 

4. Special elements of orthogonality spaces 

Following an idea in [11], we p repa re  here  the background  for  deal ing with 

some of our  examples .  

D E F I N I T I O N  4. If (X, ± )  is an or thogonal i ty  space,  then  an e l emen t  u of  X is 
called 
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a) a o-element if there exists v E X such that (u ± v and u + v ± u) or (v 2 u 
and u_l.u +v) ,  

b) a ~r-element if there exists w E X such that (w 2- u and u + w 3- u)  or (u 3- w 
and u 3- u + w ) .  

L E M M A  8. If (X, ±) is an orthogonality space, (Y, + ) an abelian group, u a 
p-element or a tr-element of X, and f E Hom l (X ,  Y), then f is additive on tin{u}. 

Proof. We put z : = v  if u is a p-element ,  z : = w  if u if a ~r-element. Let 
a, 13 E R arbitrary. From the conditions on z, from (03), (*), and (*') we get 

f ( a u )  + f (~u  ) + f (~z  ) = f (au  ) + f (~u  + ~z ) = f (au )  + f[fl (u + z )1 

= f[otu + /3(u +Z)]  = f(otu +flU + /3z ) 

= f[(c~ +/3)u  +/3z]  = f[(ot + /3)u]  +f(/3z) 

= f (au  +/3u) + f(/3z), 

and subtraction of f(/3z) on both sides completes the proof. 

R E M A R K  4. By (01), the zero vector o always is a p-e lement  and a or-element 
(choose v = o, w = o, respectively). If 3_ stems from an inner product  (Example B), 
then o is the only 0-e lement  and the only o ' -element of (X, 3_). Thus 0-elements 
and o ' -elements  are instruments relevant only for non inner product  orthogonality 
spaces, a fact which is illustrated for the first time as follows. 

R E M A R K  5. Let  2_ be the trivial orthogonali ty on the vector space X 
(Example A). Since Z is symmetric,  p-e lements  and i t -elements  coincide. 
Moreover  we have: 

a) Every element  of X is a p-element .  
b) For an arbitrary abelian group (Y, + ), every f E Hom~(X, Y) is additive. 

Proof: a) Let u ¢ o be arbitrary (the case u = o is settled by Remark 4). Choose 
v E X  so that u, v are linearly independent. Hence v ¢ o, u.t_v, u + v ¢ o, and 

u + v, u are linearly independent,  i.e., u + v 3- u, i.e., u is a o-element .  
b) Let  xt, x2E X arbitrary and u ,v  linearly independent  such that x~, x2~ 

lin{u, v}. Then u, v are p-e lements  and u 2- v. By L e m m a  8, f is additive on lin{u} 
and on lin{v}, hence by Lemma 4 additive on lin{u, v}, and we get f(x~ + x2)--- 
f (xO+f(x2) ,  i.e., additivity of f on X. 
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R E M A R K  6. Let  ± be the trivial orthogonality on X = R 2. By Remarks 5b 
and 3, the only even solution g : R~---~ R of (*) is _0. The square of the euclidean 
norm on R z is a quadratic mapping ~ _0, hence not a solution of (*). This shows that 
there is no converse of Theorem 6, a contrast to the situation in Theorem 5. 

5. Solutions of (*) on inner product spaces 

For Example A, the even solutions of (*) could be specified in Remark 6. The 
same is possible for Example B, as we now show. 

T H E O R E M  9. I[ (X, ±) is an inner product space and ( Y, + ) an abelian group, 
then g : X ~ Y is an even solution of (*) if and only if there exists an additive 
mapping l:  R ~ Y such that g ( x ) =  l(llx [I z) for every x E X ([14], Theorem 2). 

Proof. If I exists, then g is even and, by Pythagoras' theorem, a solution of (*). 
Conversely, assume that g be an even solution of (*). If u, v E X, II u 11 = I1 v II, then 
u + v ± u - v, and (iii) in the proof of Theorem 6 implies g(u)  = g(v). Thus g is 
constant on each sphere around o, and [ :  R+---~ Y is well-defined by f(llx 112):-- g(x)  
(Vx E x ) .  If A, /z E R~ then there exist x, y E X such that x ± y and IIx I12-- A, 

llyll 2--t~, hence llx +yll2=llxlt2+llylf 2= ;~ +t~, i.e., /(A + / x ) =  [(llx +yll2) = 
g (x + y ) -- g (x) + g (y) = [( tl x II 2) + g( I1 y II 2) -- g(~ ) + / ( ~  ). As an additive mapping, 
[ has an additive extension l : R --~ Y ([2, p. 265, Theorem 2]), and g(x)  =/ ( l lx  I12) 
(Vx E X)  holds. 

C O R O L L A R Y  10. If (X, ±) is an inner product space and (Y, + ) a uniquely 
2-divisible abelian group, then f : X --~ Y is a solution of (*) if and only if there exist 
additive mappings l : R ~ Y, h : X--* Y such that ]:(x)= /(llx 112)+ h(x)  ]:or every 
x ~ X  ([14, Corollary 3]). 

This was also found independently by R. Ger  and by Gy. Szab6. In [6], an 
application to ideal gas theory is indicated. The "if"  part follows from Theorem 9, 
Theorem 5, and Lemma 2b, the "only if" part from Lemma 3 and the same two 
theorems. 

We now turn to deriving from Corollary 10 results under various regularity 
conditions. 

C O R O L L A R Y  11. I]: (X, _1_) is an inner product space and ( Y, + ) a separated 
topological R -vector space then, ]:or any continuous solution ]: : X---~ Y o[ (*), there 
exista E Y and h : X ~ Y linear and continuous such that ]:(x) = II x tl 2. a + h (x ) ]'or 
every x ~ X. 
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Continuity may be replaced by hemicontinuity ([7, p. 427]); see also [7, p. 429, 
Corollary 2.3b] and [17, p. 190, first part of Theorem 1]. For X = L2[a, b], Y = R, 
we obtain the main result of [13]. 

Proof. If f is continuous, so are its even and odd parts x ~ l(llx II 2) and h. Let 
A E R +* and or, E Q, a ,  > 0 such that tt. ~ A (n ~ 00). Furthermore, x E X such 
that Ilxlff=A and x , :=(a , /A ) l /2 . x  ( V n E N ) .  Then l(llx, l l2)-ol( l lxl lb=l(X) 
(n -o  oo). O n  the other hand, l(llx, II 2) = l[(~,/A)llx 1151 = l ( , , . )  = a,l(1)--~Al(1), and 
separatedness of Y implies I (A)= AI(1). Thus l is positive-homogeneous, and 
oddness of l leads to I(A)=AI(1) for all A E R .  If we put a := l (1) ,  we get 
l(llx II 2) = Ilx 1t2- a. Linearity of h is obtained similarly. 

For the next two results see [7, p. 429, Corollary 2.4], and [8]. We present them 
here with different approaches. 

C O R O L L A R Y  12. I f  (X, 1 )  is an inner product space and if f E Hom~(X, R) 
has the property If(x)l ~< m IIx II for all x E X and a lixed m ~ R+, then f is a 
continuous linear functional. 

Proof. By Corollary 10, f ( x )  = l(llx II 2) + h ( x )  (Vx ~ X) with additive mappings 
l : R ~ R, h :  X --o R, and we have l l(ll x 112) 1 = [½[f(x ) + f (  - x)]l  ~< m tl x 11. Assume 
that there exist z E X  such that l ( l l z l l2 )~0 .  Then for every n E N  we get 
iI([lnzll2)i<--mtlnztt, i.e., n2ll(llzlP)l~nmllzll, i.e., nll(llzll2)l<~mllzl[, a con- 
tradiction. Therefore l(llxll2)=0 for all x E X ,  thus f = h ,  i.e., Ih(x)l<~mllxll 
(Vx E X). Hence h is continuous at o, and additivity of h implies that h is 
continuous on the whole of X. A standard argument leads to linearity of h. 

C O R O L L A R Y  13. I f  (X, 2.) is an inner product space and if f E Hom~(X, R) 
has the property f(x)>~O for all x E X, then there exists c E R+ with f ( x ) =  cllxll  2 
(Vx E ×). 

Proof. By Corollary 10, f ( x )  = l(tlx It2)+ h(x )  (Vx E X)  with additive mappings 
l : R ~ R, h : X -* R, and we have l (11 x 112) = ~[ f (x  ) + f (  - x )1 I> 0, i.e., ! (R +) C R+, 
which guarantees the existence of c ~ R +  with l ( a ) =  ca (Vot E R )  ([1, p. 34, 
Theorem I] ). Consequently, f (x)  = c tt x II 2 + h(x) (Vx ~ X), and, from 

cllxll2+h(x)>~O, c l l - x l l2 -h(x )~O we get Ih(x)l<-cllxll 2 for every x ~ X .  
Suppose the existence of z ~ X such that h ( z ) ~  O. Then for every n E N we get 

lh(xz) l -cll zll 2 
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i.e., 

% lh(z )l ~ - ~  llz tt 2, 
n 

i.e., nlh(z)I<~cllzlV, a contradiction. Therefore h=_0, i.e., f ( x ) = c l l x l l  2 
(Vx E X). 

C O R O L L A R Y  14. I f  (X,  3_) is an inner product space and f : X --~ R,  then f is 

orthogonally additive and bounded below if and only if 

(i) f = 9 or 
(ii) there exist c @ R *  and h : X--> R continuous and linear such that f ( x )  = 

c II x II ~ + h (x) (Vx E X). 

This extension of Corollary 13 was proved independently by P. Fischer (oral 
communication). 

Proof. 1. Let f E Homl(X,  R )  bounded below, say f(x)>~ d (Vx E X). Then,  by 
Lemma 2a, d <~ 0, and from a similar argument as in the proof of Corollary 13, we 
obtain the existence of c E R+, h : X---~ R additive such that 

f(x) = c II x 112 + h ( x )  (Vx  (E Y) .  (1) 

Case I. c = 0. Then f = h, i.e., h /> _d. Since h (nx)  = nh (x)  for all x E X and all 
n E Z, we necessarily have h = _0, i.e., f = _0, i.e., variant (i) holds. 

Case 2. c E R *. From (1) and f /> _d we obtain 

-h(x)~cllxll2-d, h(x)~cllxrf2-d, Ih(x)f~cllxll2-d ( V x E X ) .  (2) 

Let x E X arbitrary but fixed. Then a ~ h ( a x )  is an additive mapping from R into 

R. For 0 <~ a ~< 1, (2) implies 

h ( a x )  ~ c tt a x  II 2 - d ~ c,~ 211x IV - d ~ c II x II 2 - d ,  

thus, by [1, p. 34, Theorem 1], h ( a x )  = a h ( x )  (Va E R), so h is linear. From (2) we 

also conclude 

sup{Ih(x)l;nx II ~ 1 } ~  c - d, 

i.e., continuity of h. This is variant (ii). 
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2. If (i) or (ii) holds, then certainly f E Homl(X, R)  by Corollary 10. In the case 
of variant (ii), lh (x) l<-I lh l l . l lx l l ,  i.e., h(x )>~- I lh l l ' l l xP l ,  i.e., f(x)~> 
c It x II 2 - II h I1" I1 x II (Vx ~ x ) .  since c E R *, the mapping ct ~ ca 2 - tt h II a (ct E R ) is 
bounded below, and then so is [. The same fact is trivially true for variant (i). 

C O R O L L A R Y  15. For an inner product space (X, 2)  the [ollowing statements" 
are equivalent: 

(a) For every [ E Hom+(X, R )  which is bounded below, there exists an element xt, 

in X such that [(xo) <~ [ ( x )  [or all x E X.  
(b) X is a Hilbert space. 

Pro@ (a) implies (b): 
define [ : X ~ R by 

Let h : X---~ R be a continuous linear functional and 

f (x) :  = II x II 2 + h (x) (Vx E X). (3) 

By Corollary 14, ]" E Homl(X, R), and jf is bounded below. By (a) there exists 
x o E X  such that [(xo)<~[(x)  ( V x E X ) .  Moreover [ ( o ) = 0 .  From [7, p. 435, 
Corollary 3.6], we conclude the existence of c E R+ with the property 

/ f x ) =  cllx - x0112 + / ( x o )  (Vx  ~ x ) .  (4) 

From (3) and (4) we get 

h (x  ) = ½ I f ( x ) - f ( -  x)] = ½[c IIx - Xol[ 2 -  c !1 - x - xollq 

= c [ l lx  - xott 2 - t l x  + xot121 = - 2c<x, Xo> = <x, - 2cxo> (Vx ~ X). 

Let .(2 denote the (conjugate)-linear isometry from X into its dual space X* defined 
by g2(a):= ( - ,  a)  (Va E X). Since h E X* is arbitrary, we see that O(X)  = X*, i.e., 
that X is a Hilbert space (cf., e.g., [3, p. 105, Theorem 2]). 

(b) implies (a): Let X be a Hilbert space and ]' ~ Hom~(X, R)  bounded below. 
By Corollary 14, there are two cases. If [ = .0, then xo: = o satisfies the condition in 
(a). In the remaining case, there are c E R*, h @ X* such that 

f (x)  = c 11 x tl 2 + h (x) (Vx E X). (5) 

By the Riesz representation theorem there exists z E X with 

h (x) = (x, z ) (Vx E X). (6) 
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From (5) and (6) we get 

f(x )= c [ [Ix ilS + !c h(x ) ]  

On orthogonally additive mappings 

[ltxit2  <x,z>] = C  

1 2 

zl  zl] 
1 2 1 ell x zft  cBl c 

For xo:-- - ( 1 / 2 c ) z  we therefore have 

f ( x o ) - - - l I I z [ [  2 and f(x)1>f(xo) ( V x E X ) .  

So (a) is true. 

47 

6. Solutions of (*) on normed vector spaces 

We suppose in this section that (X, II [1) is furnished with the Birkhoff-James 
orthogonality (see Example C in Section 1), and we recall the remarks at the 
beginning of Section 3 about the continuous real-valued solutions of (*). With 
respect to Theorem 5, we have to focus our interest on the general even solution. 

T H E O R E M  16. Fbr a normed R-vector space (x, ll.ll) with Birkhoff-James 
orthogonality ± and an arbitrary abel±an group (Y, +) ,  each of the following 
conditions is sufficient for the additivity of every f E Hom±(X, Y): 

(a) d imnX i> 3, and X is not an inner product space. 
(b) dimR X = 2, and the unit ball T of X is a polygon. 
(c) dimR X = 2, and ± is not symmetric. 

It then follows from Remark 3 that every even g E Homl(X,  Y) is _0. 

Proof. (a) is due to Lawrence [11]. The restriction to the case of dimRX i> 3 
stems from the use of a theorem of Day ([4, p. 333, Theorem 6.4]) and James ([10, p. 
560, Theorem I]) which has no analogue for dimRX = 2. 

(b) Let x and x + y be any two consecutive vertices of the convex polygon T. 
Then x _L y and x + y ± y, i.e., any "side vector" y of T is a ~r-element in the sense 
of Definition 4b. For every side vector y of T, the point (1/lly II)Y lies on the 
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bounda ry  of T. Consequen t ly  there  exists a side vector  w of T such that 
(1/[lyll)y _hw, i.e., y 3-w. By (02), y and w are l inearly independent .  Let  i r e  
Hom~(X,  Y)  arbi t rary .  Since y and w are t r -e lements ,  L e m m a  8 ensures  additivity 
of ]" on  lin{y} and on tin{w}, hence  by L e m m a  4 also addit ivi ty on lin{y, w} = X. 

(c) Let  u, v E X  be such that  u 2. v but  not v ± u. (01) guaran tees  that  u #  o 
and v #  o. By  [9, p. 269, T h e o r e m  2.3], there  exists a E R such that  ctu + v 3- u, and 
our  hypothes is  m a k e s  ct - - 0  impossible .  T h e r e f o r e  by (03), 

+± 1 
u v 3 - u  and u Z - - v  

Ot 0t 

which shows that  u is a p - e l emeen t .  In a similar  way, using Coro l la ry  2.2 of  [9], we 
see that  also v is a p - e l emen t .  Now we p roceed  as in the p roof  of (b) by means  of 

L e m m a s  8 and 4. 

R E M A R K  7. In the s i tuat ion of E x a m p l e  C, the exis tence of non-zero 
o--elements  in X means  that  the n o r m e d  space (X, I[" ll) is not  smoo th  or not strictly 
convex  ([9, pp.  274-275,  T h e o r e m s  4.2 and 4.3]). 

R E M A R K  8. T h e  l~-norm and the l~-norm on R 2 satisfy condi t ions (b), (c) of 

T h e o r e m  16. The  mixed  l~- /=-norm on R 2 defined by II(~,~)ll:--t~t÷J~t if 
£ -  r />i  0, II (~:, r/)lI: = max  {1 ~: I, ] r/1} if ~ .  r / <  0 satisfies (b) but  not (c) ([ 10, p. 561l). 
Finally, for  p > 1, p #  2, the /P -norm on R 2 violates (b) but  satisfies (c) as the 
vectors  u = ( -  1,2~/P), v = (1,2 °/p~-t) demons t ra t e :  u 3_ v but  not  v _1_ u. This shows 
that  condi t ions  (b) and  (c) in T h e o r e m  16 are not  necessary  for  Hom~(X,  Y)C 
Horn(X,  Y) and that  a good  condi t ion for  the case d i m R X  = 2 is still missing. 
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