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A Limit Law for the Ground 
State of Hill's Equation 
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It is proved that the ground state A(L) of ( - 1 )x the Schr6dinger operator with 
white noise potential, on an interval of length L, subject to Neumann, periodic, 
or Dirichlet conditions, satisfies the law 

lim P[(L/n) A~/'-exp(-]A3n)>x]=~ 1 for x<0 
L T "~: '  [e-X for x/> 0 
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1. I N T R O D U C T I O N  

Let Q be Hill's operator-" - D ~ +  q, in which q is the standard white noise 
on a circle 0~<x < L of large perimeter L. It is to be proved that, if A(L)  
is the ground state of - Q  under (a)Neumann, (b) periodic, or 
(c) Dirichlet conditions, then 

tr~..lim P [ ( L / r c ) A ' / Z ( L ) e x p ( - ~ A 3 / Z ( L ) > x ]  : {~_.,. fOrfor Xx>~0<0 

which is to say that A(L)  is well approximated by 

(0.519+)(1g L) 2/3 + [(0.116+) lg2 L -  (0.510--)- (0.346+) lg x](lg L) -1/3 

with an exponential variable z. A(Neumann) ~< A(periodic) < A(Dirichlet), 
so it suffices to deal with the first and the third. The proof employs a 
diffusion introduced and exploited by Halperin~5); compare Section4 
below. 

' Courant Institute of Mathematical Science, New York, New York. 
2 D signifies differentiation by x. 
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2. D I R I C H L E T  C A S E  

Fix ) - eR  and let y2(x, 2) be the sine-like solution of Q f = ) f  with 
;t 3,2(0)=0 and y ~ ( 0 ) = l .  The motion p(x )=)2(x ,  2)/y2(x, 2) satisfies 

p ' =  q -  (2 + p2), i.e., it is the diffusion with infinitesimal operator  

G = (1/2) O2/Op 2 - (2 + p2) O/Op = O/Om(p) O/Os(p) 

in which one sees the so-called scale ds(p)=exp[2(p3/3 + 2 p ) ]  dp and 
speed measure d m ( p ) = 2 e x p [ - 2 ( p 3 / 3 + 2 p ) ]  dp. The process starts at 
p(0) = +0% this being an entrance barrier3; it hits the exit barrier 4 - oo at 
the first root  El of y2(X, 2 ) = 0 ,  then reappears at +oo ,  and so on; see It6 
and McKean  ~61 for such matters. 

We have P [ - A ( L ) >  2] = PI t1  > L] ,  the latter event being the same 
as: no root of yz(x, 2 ) =  O f  or 0 <<. x <~ L. This probability is to be estimated 
for L~" ~ and 21 - o o .  To see what is happening, write kp(kx) in place of 
p(x) with k = x / / - - ~ .  Then G is changed to (-2)-s/2(1/2)O2/Op 2 -  
( p 2 _  1 ) O/Op, from which it appears that the diffusion acts like a chain of 
three states, - o o ,  0, + oo, the motion being (almost) deterministic except 
for a pause (tunneling time) at 0 alias - 1  <. p<~ +1, whose mean must be 
appraised. This could be done by the methods of Friedlin and Vencel, I1~ as 
reported in ref. 2, p. 326, s but I prefer another proof, without such scaling. 

Now E ( e x p ( - r  ) is the reciprocal of h + ( - o o ,  c0, h+ being the 
decreasing positive solution of Gh = r with h ( o o ) =  1 (see, e.g., ref. 6): 

h + ( p , ~ ) =  1 + ~  ds din+or 2 ds dm ds dm +etc .  
1 I 2 3 

Let e ( - 2 )  be the mean passage time 

f E ( t i ) = l i m  -1 E ( 1 - e x p ( - c ~ : c l ) )  = ds ~- dm 

and note the appraisal 6 

c(_)-)=(21t)t/2~:e_lU3/6+2kq)d qx//q_ x ~  e x p ~ ( r t  8 _).)3/2 X [1 + 0 ( 1 ) ]  

It is to be proved that h + ( - o o ,  a/c) tends to 1 + ~  as 2 , L - o 0 ;  the 
limit law for A(L) is an easy consequence of that: indeed, the limit law 

3 ~ dm ~ ~ ds < ~, which means that paths come in from + oo. 
4~o_ ~ ds~ din< oo, which means that paths actually arrive at - ~  at a finite time. 
51 owe these references to Varadhan (private communication). 
6 The integral concentrates at the saddle point q = 2 x/r-~ which makes the verification easy. 
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states that  L / c ( - A )  tends to an exponential  variable, i.e., that e--" is the 
limit, as L Too, of 

P [ L / c (  -- A ) > x ]  = e [ ( L / x )  < - A  ] = e [ x  < x ~/c] 

taken for 2 = - c - ~ ( L / x ) ` [ - o o  

Proof .  1 / h + ( - o o ,  c~/c) is the Laplace transform of a probabil i ty 
measure on [0, ~ ) ,  so it is enough to make  the proof  for 0 < c~ ~< 1/2, say. 
But now 

i,  sf) f U 

f) s,- + ~c 3 ~ ds dm ds dm dm etc. 
-- 1 2 3 4 5 

- -  e -(ql/6+ J'ql) dql e - [ q ~ / 6 +  2;'q2} dq2 
2c z 

x e 2q~ pl dp ~ e - 2q2 p; dp,  
- -  o7_ I / 2  + Pl  + q2/2  

to which the main contr ibution comes from a saddle point at q~ = q2 = 
2 ~ - - 2 ,  as in the appraisal  of c noted before, and the whole is exponen- 
tially small for 2 , [ - o o .  It would be unprofitable to report  the simple 
details. 

3. N E U M A N N  C A S E  

The proof  is similar. The diffusion is now p(x) = y'j(x, 2)/),~(x, ),), ).,j 
being the cosine,like solution of Q_f= 2f  with y~(0 )=  1 and y'~(0! = 0 ;  it is 
nothing but the old process starting not from p ( 0 ) =  + ~ ,  but from 
p(O)=O, and one has P [ - A ( L ) > 2 ]  = P [ x ~  > L  & p ( L ) > O ] ,  the latter 
event being the same as: no root o f  y l ( x ,  2 ) f o r  0 <~ x <~ L and y'~(L, ) t )> O. 
Now - - A ( L )  is-a decreasing function of L, so the same is true of P[ t~ > L 
etc.], and it suffices, for the limit law, to check that  

P [ t l > x c & p ( x c ) > O ] e  . . . .  dx  t ends to  l + e  as 2 ~ - o o  
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Proof. The le•hand side may be evaluated as 

i: dx h_(O) f :  P[~I  > x & p(x) > 0 ]  e -(~/c)" h+ dm 
C C 

h_(O) h'+ (0) 

in which h + = h + ( p , a / c )  is as before and h is the allied increasing 
solution of Gh = (a/c)h with h( - oo) = 0 and h'_ h § - h _ h'+ = 1. 7 Now 

h p, = s ( p ) +  s d m  

+ - ;  ds dm ds s drn etc. 
C ~ a - - ~  - - o r  - -o r  - - o o  

if the normalization is ignored, and, from the symmetry p---, - p  which 
exchanges s and m/2, one sees that h ' _ ( 0 ) = h + ( 0 )  and h '+ (0 )=  
- 2 ( a / c ) h  (0), whence the quantity to be studied is the reciprocal of  

a+(c/2)h~(O)/h2_(O) with the unnormalized function h . The proof  is 
finished by checking three small items confirming that (c /2)h~ (0)/h2 ( 0 ) =  
l + o ( 1 ) .  

Item 1: Note  that, for 21 - o o ,  c = 2 ~ o : ,  ds~~ dm may be identified 
with 2sZ(0); this is done by saddle point, as before. 

Item 2: 

h+(0)  = 1 + (a/c) ds h+ din 

= l + c - l x O  h+(0)  ds dm 

and 

c - ~ ds d m =  dq 

= o ( 1 )  

e -  2pq(p + q) dp/2s2(O ) 

This shows that h + ( 0 ) =  1 +o(1) .  

7 The prime signifies differentiation with regard to the scale s(p) = S p_ ~. exp[2(q3/3 + 2q)] dq. 
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] tern 3: 

h _ (0) = - - (c /2~)  h'+ (0) 

fo =(1/2) h§ dm~(l/2) 

by symmetry,  so (2/c) h2_ (O)/s-'(O) = 1 + o(1 ). 

dm = s(O ) 
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4. I N T E G R A T E D  D E N S I T Y  OF STATES 

The present method of diffusion affords a pretty complete picture of  
the statistics of  the spectrum of Q with simple proofs. The  integrated 
density of states N ( k ) = l i m L r ~ L - '  x ( t h e  number  of eigenvalues ~<;t) 
provides a nice additional example: roughly, it is half the winding number  
about  the origin of the path [ y 2 ( x , k ) , y 2 ( x , k ) ] :  O<~x<L,  alias the 
number  of passages of p(x): 0 ~ < x < L  from +c~  to - o o  and, if this 
number  is n, then L approximates  the sum ~,, of the passage times, so that  
N(L)  = lim,,t ~ n/r,, = 1/E(r t ), by the law of large number s - - i n  short, 

1 = (27z)1/2 e_iq3/6+:.q ) dq 
N(k) 

The fact is due to Frisch and Lloyd, ~3) and the pretty proof  to HalperintS~; 
compare  Lifshits etaL (ref. 7, pp. 172-174) and also Fukushima and 
N a k a o )  4) 
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