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A Limit Law for the Ground
State of Hill’s Equation

H. P. McKean'
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It is proved that the ground state A(L) of (—1)x the Schrodinger operator with
white noise potential, on an interval of length L, subject to Neumann, periodic,
or Dirichlet conditions, satisfies the law

1 for x<O0
: 12 _ 842 _
LhTr.rl PL(L/n) A exp(—547%) > x] {e__‘ for x>0
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1. INTRODUCTION

Let O be Hill’s operator? — D?+q, in which q is the standard white noise
on a circle 0 < x <L of large perimeter L. It is to be proved that, if A(L)
is the ground state of —Q under (a)Neumann, (b)periodic, or
(c) Dirichlet conditions, then

for x<O0

1
: 12 8432 _
lim P[(L/m) A"X(L)exp(~84%3(L)> x] {e_.\, for x>0

LYoo
which is to say that A(L) is well approximated by
(0.519+)(1g L) + [(0.116+)1g, L — (0.510—) — (0.346+) 1g x](Ig L)~ '

with an exponential variable x. A(Neumann) < A(periodic) < A(Dirichlet),
so it suffices to deal with the first and the third. The proof employs a
diffusion introduced and exploited by Halperin'®’; compare Section 4
below.

! Courant Institute of Mathematical Science, New York, New York.
2 D signifies differentiation by x.
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2. DIRICHLET CASE

Fix Ae R and let y,(x, 1) be the sine-like solution of Qf =Af with
¥,(0)=0 and p5(0)=1. The motion p(x)= ys(x, 4)/y,(x, 1) satisfies
p'=q—(4A+p?), ie, it is the diffusion with infinitesimal operator

=(1/2) 8*/0p*> — (1 + p*) 8/op = 8/dm(p) 8/ds(p)

in which one sees the so-called scale ds(p)=exp[2(p*/3+1p)]dp and
speed measure dm(p)=2exp[ —2(p*/3+Ap)]dp. The process starts at
p(0) = + o0, this being an entrance barrier?; it hits the exit barrier® —co at
the first root x, of y,(x, A)=0, then reappears at + oo, and so on; see It6
and McKean‘®’ for such matters.

We have P[ —A(L)> 1] = P[x,> L], the latter event being the same
as: no root of y,(x, A)=0 for 0 < x< L. This probability is to be estimated
for Lt oo and 4| —oo. To see what is happening, write kp(kx) in place of
p(x) with k=_/—A Then G is changed to (—24)~*%(1/2)d%dp>—
(p>—1) 8/dp, from which it appears that the diffusion acts like a chain of
three states, — o0, 0, + oo, the motion being (almost) deterministic except
for a pause (tunneling time) at O alias —1 < p< +1, whose mean must be
appraised. This could be done by the methods of Friedlin and Vencel,!!’ as
reported in ref. 2, p. 326,% but I prefer another proof, without such scaling.

Now E(exp(—ax,)) is the reciprocal of h_ (—oc,a), h, being the
decreasing positive solution of Gh=ah with h(co) =1 (see, e.g., ref. 6):

ho(p,a)=1+a ©ds wdm+a2 DCds mdm wds Idm+etc.
+ | ol anve] ] an]
Let ¢(—4) be the mean passage time

1 * o
E(z,)=lim—E(1—exp(—a:l))=f dsj dm
x| 00 — p
and note the appraisal®
dq

\/EJ—

It is to be proved that & (—oo, a/c) tends to | +a as 1| —oo; the
limit law for A(L) is an easy consequence of that: indeed, the limit law

c(—i)=(2n)"2j°° e lwve ) — exp—(—z)”x [1+0(1)]
[

*{g dm |7 ds < oo, which means that paths come in from + 0.

¢{%, ds[* dm < oo, which means that paths actually arrive at — oo at a finite time.

51 owe these references to Varadhan (private communication).

® The integral concentrates at the saddle point g =2 \/_——1 which makes the verification easy.
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states that L/c(— A) tends to an exponential variable, i.e., that e ¥ is the
limit, as L1 o0, of

P[L/c(—A)y>x]1=P[(L/x)< —A]=P[x<x,/c]
takenfor A= —c YL/x)]| —0
Proof. 1/h _(—o0,a/c) is the Laplace transform of a probability

measure on [0, o0), so it is enough to make the proof for 0 < a < 1/2, say.
But now

0<h, <—oo,§>—(l +a)
< 4—1ci '[io ds j: dm J: ds J[: dm
+ é '[_mw ds I: dm j.: ds L: dm Lj ds L: dm etc.
< % f:o ds LT dm f,: ds -[: dm

1= —(g3/6 + 2q1) Y6+ 24q)
:? o~ /6 + 2iq dqu e /8 +20an) o
0 0

=« 2 2
Xj e 24P dPI e~ 22p dpz

- oz a2+ + 4272

to which the main contribution comes from a saddle point at g, =¢,=
2./ —4, as in the appraisal of ¢ noted before, and the whole is exponen-
tially small for A| —co. It would be unprofitable to report the simple
details.

3. NEUMANN CASE

The proof is similar. The diffusion is now p{x)= yi(x, A)/y,(x, 4), ¥,
being the cosine-like solution of Qf = Af with y,(0)=1 and y{(0)=0; it is
nothing but the old process starting not from p(0)= +o0, but from
p(0)=0, and one has P[ —A(L)>A]=P[x,>L & p(L)>0], the latter
event being the same as; no root of y,(x, 1) for 0<x< L and y\(L, A)>0.
Now —A(L) is-a decreasing function of L, so the same is true of P[x,> L
etc.], and it suffices, for the limit law, to check that

1
l+a

f Plx,>xc&p(xc)>0]e > dx tends to as A| —oo
o
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Proof. The left-hand side may be evaluated as

jm P[x,>x & p(x)>0] e—“/f’-“@J‘—(O)jw h, dm
0 (4 4 0

N ROVA)

c

in which h_=h_(p,a/c) is as before and h_ is the allied increasing
solution of Gh= (a/c}h with h(—o0)=0and k'_h, —h_h', =1.” Now

h_ <p,%>=s(p)+%jp dst ‘sdm

— —

+ z—j KT ds filw dm '[ i:o ds J‘ ” sdm etc.

—oC

if the normalization is ignored, and, from the symmetry p - —p which
exchanges s and my/2, one sees that A_(0)=h,(0) and A, (0)=
—2(et/c) h_(0), whence the quantity to be studied is the reciprocal of
@+ (¢/2) h>.(0)/h2(0) with the wnnormalized function #_. The proof is
finished by checking three small items confirming that (¢/2) £% (0)/h* (0) =
1+o0(1).

Item 1: Note that, for 1] —c0, c=2[*_ ds I;” dm may be identified
with 25%(0); this is done by saddle point, as before.

Item 2:
ho(O)=1+(afe) [ ds[ h, dm
0 r
—l4c! xO[h,,(O)ro dst dm]
Y r
and

c™! Loo ds J:n dm = J:o dq V[:Y e~ *Pr+4) dp125s2(0)

=o(1)
This shows that £, (0)=1+ o(1).

7 The prime signifies differentiation with regard 1o the scale s(p)=|" _ exp[2(¢g*/3 + Aq)] dg.
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Item 3:

h_(0)= —(c/20) 1", (0)

(1/2) j:’ h, dm~(1/2) j:o dm = 5(0)

by symmetry, so (2/c) h* (0)/s*(0)=1+o(1).

4. INTEGRATED DENSITY OF STATES

The present method of diffusion affords a pretty complete picture of
the statistics of the spectrum of @ with simple proofs. The integrated
density of states N(A)=Ilim,,, L™'x (the number of eigenvalues <A)
provides a nice additional example: roughly, it is half the winding number
about the origin of the path [y,(x, 1), y3(x, 1)]: O0<x<L, alias the
number of passages of p(x): 0<x<L from +0o0 to —oo and, if this
number is n, then L approximates the sum %, of the passage times, so that
N(L)=1lim,, , n/z, = 1/E(x,), by the law of large numbers—in short,

1 = (27[)1/2 J.o0 e—(q’/6+lq)iq_

N() 0 Ja

The fact is due to Frisch and Lioyd,?’ and the pretty proof to Halperin'®;
compare Lifshits et al. (ref. 7, pp.172-174) and also Fukushima and
Nakao."
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