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Abstract. Let P and Q be two disjoint simple polygons having rn and n sides, 
respectively. We present an algorithm which determines whether Q can be moved 
by a sequence of translations to a position sufficiently far from P without colliding 
with P, and which produces such a motion if it exists. Our algorithm runs in time 
O(mna(mn) log m log n) where a(k) is the extremely slowly growing inverse 
Ackermann's function. Since in the worst case fl(mn) translations may be necessary 
to separate Q from P, our algorithm is close to optimal. 

1. Introduction 

In this paper  we develop an algorithm for the problem stated in the abstract. 
That  is, for a given pair  of  disjoint  simple polygons P and  Q having m and n 
sides respectively, de termine whether Q can be moved by a sequence of  transla- 
t ions to a posi t ion sufficiently far from P without coll iding with P, and produce 
such a mot ion  if it exists. This problem generalizes previous research on  transla-  
t ional  separabil i ty of  p l ana r  objects (see Toussaint  [22], for a survey of this 
research). In  most  of  the previous work on p lanar  separabil i ty the goal was to 
separate the given objects by t ranslat ing them one at time in some single fixed 
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Fig. 1.1, 
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An instance of the polygon separability problem. 

direction. In the case of two simple polygons P and Q as above, Toussaint [22] 
has given an O(m+n) algorithm for determining whether P and Q can be 
separated by a single translation of one of them (see also Sack and Toussaint [ 18 ]). 

In this paper we study the problem of separating Q from P under an arbitrary 
sequence of  translations (see Fig. 1.1 for an illustration of this problem). This 
version of the problem is of intermediate complexity between the simple single- 
translation separability problems mentioned above and the more difficult problem 
of  separating Q from P by any collision-free motion, involving both translations 
and rotations. In fact, the problem that we study is a special instance of  the 
motion-planning problem which seeks a purely translational collision-free motion 
of a polygonal object (Q) amidst a collection of polygonal obstacles. Our case 
is special because the obstacles consist of a single polygon P. Also, the destination 
position of  Q is fixed (some placement sufficiently far from P); however, our 
techniques can also handle the case of an arbitrary destination of Q. 

Several related motion-planning problems have been recently studied. If the 
moving object Q is a convex polygon (having m sides) and P is an arbitrary 
collection of polygonal obstacles (having n sides altogether) then one can play 
a purely translational motion of  Q between any two placements (when such a 
motion exists) in time O(mn log mn) (see Leven and Sharir [15], Kedem and 
Sharir [11], Kedem et al. [13], Chew and Drysdale [5], and Fortune [7]). In fact, 
within this time bound one can calculate a discrete representation of the entire 
space of free placements of Q (all having the same given orientation). 

Another related problem is the polygon containment problem, in which, given 
two polygons P and Q, we wish to determine whether Q can be transformed into 
a polygon which is entirely contained inside P. Chazelle [3] has shown that if P 
is convex and only translations of Q are allowed, then the existence of such a 
placement can be determined in O(m + n) time. Related work on polygon contain- 
ment by translations is also found in Guibas et al. [9], in Fortune [7], and in 
Edelsbrunner and Welzl [6]. 

The problems become considerably more difficult when the motion of  Q may 
also involve rotations. Chazelle [3] presents an O(m3n3(m + n) log (m + n)) naive 
algorithm for the general polygon containment problem. If Q is a line segment 
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and P is an aribtrary polygonal region, then the general motion-planning problem 
for Q can be solved in O(n 2 log n) time (see Leven and Sharir [14] and Sifrony 
and Sharir [19]). If Q is a convex polygon (and again P is an arbitrary polygonal 
region) then the motion of  Q can be planned in time O(mnh6(mn) log ran) [16], 
[12], where M(k) is an almost linear function of k yielding the maximal number 
of connected graph portions which compose the lower envelope of  k continuous 
functions, each pair of  which intersect in at most s points. Chazelle [3] has shown 
that if P is also convex, then the existence of a (translated and rotated) copy of 
Q inside P can be determined in O(mn 2) time. Another recent related work by 
Yap [23] involves planning the passage of  an arbitrary simple polygon P through 
a "door"  (an interval opening in some infinite line obstacle l). Such a motion 
(which can also be viewed as the separation of P from another polygonal arc Q, 
chosen so that it overlaps I in a sufficiently large interval, and its endpoints are 
the endpoints of the door) can be planned in time O(n2). 

As stated above, in this paper we investigate the problem of separating Q from 
P by a purely translational motion. We develop an algorithm which runs in time 
O(mna(mn) log m log n), where c~(k) is the inverse Ackermann's function. We 
also exhibit an example in which Q may require ~I(mn) translations to be 
separated from P, showing that in the worst case our algorithm is close to being 
optimal. 

We also show that the space F of all free placements of Q (whose combinatorial 
complexity is always at most O(m2n2)) can have ~l(m2n 2) connected components 
in the worst case. Thus our algorithm is superior to any motion-planning algorithm 
that has to calculate the entire space F. 

Our algorithm also has the following properties: 

(1) Given a final desired separated position of Q, the algorithm can produce 
the shortest separating translational motion of Q from its given position 
to that destination. 

(2) Given an integer k, the algorithm can determine whether Q can be separated 
from P using at most k translations, and, if so, produce such a "k- 
separating motion." 

(3) The algorithm can be generalized to an algorithm for planning collision-free 
translational motion of Q between any two free placements. 

2. The Algorithm 

Our algorithm is based on the following well-known observation (see Lozano 
Perez and Wesley [17]). Fix a reference point Z in Q, and assume without loss 
of generality that at the given placement of Q, Z lies at the origin. Define 

K = P - Q = { x - y :  x~ P, y c  Q}, 

where x - y  denotes vector difference (K is known as the Minkowski or vector 
difference of P and Q). Clearly, a placement of Q (with the same given orienta- 
tion) intersects P if and only if the reference point Z at this placement lies in 
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K. Thus the space F of  free placements of  Q (that is, placements in which P 
and Q are disjoint) is conveniently represented as F = K c in the sense that each 
x ~ F corresponds to the free placement of  Q in which Z coincides with x. 

Thus our goal is reduced to that of  analyzing KL More specifically, we wish 
to determine whether the origin (i.e., the given placement of  Z )  and the point 
at infinity lie in the same connected component  of  K", and, if so, calculate a 
(polygonal) path ~r between these two points which lies entirely within K". Note 
that each straight segment in ~r corresponds to a single translation of Q, so that 
the number  of  segments in ~r is the number of translations in which Q can be 
separated from P, also the length of  ~r between O and some point sufficiently 
far from P is equal to the total translational distance in which Q is moved during 
this motion. 

The approach that we take thus aims to calculate the unbounded connected 
component  C~ of K c. We first establish some properties of  K and of C~. 

Lemma 2.1. 

(a) K is a polygonal region having at most O(m2n 2) corners. 
(b) C~ is a simple polygon. 

Proof. (a) We repeat here well-known arguments (see, for example, Guibas et 
al. [9]). Clearly, the boundary of K must consist of  vector differences of  pairs 
of  points lying, respectively, on the boundaries of  P and of Q. Hence P -  Q is 
a polygonal region, each of whose edges has the form p - q, where either p is an 
edge of P and q is a vertex of Q or p is a vertex of P and q is an edge of Q. 
Since there are at most 2ran such differences, it follows that the boundary of 
P -  Q is contained in the union of these 2ran segments. Moreover, each corner of  
P - Q must be either the difference of a vertex of P and a vertex of Q, or a point 
of  intersection of two of  the above segments. Since there are plainly at most mn 
corners of  the first kind and O(m2n 2) corners of  the second kind, the claim follows. 

(b) It is plain that P -  Q is connected, so that the boundary of  any connected 
component  of  ( P -  Q)C must be connected. [] 

Before continuing we present two examples which help to calibrate the worst- 
case combinational complexity of P -  Q and of Ca. 

Example 1. This example shows that in the worst case P -  Q can have l l (m2n 2) 
connected components (and thus also l)(m2n 2) corners). In this example, as 
illustrated in Fig. 2.1, Q consists of two "combs"  each having m long thin "teeth" 
so that their "backbones"  are perpendicular to one another and their teeth point 
away from the right angle formed between the backbones. P also consists of  a 
pair of  matching aligned combs, each having n teeth, which now point into the 
right angle formed between the backbones of  P. The separation between adjacent 
teeth of  P is taken to be much larger than the separation between adjacent teeth 
of  Q. (Figure 2.1 shows a skeletal representation of P and Q; by slightly thickening 
these skeletons we can turn them both into simple polygons.) It is clear that if 
the length of the teeth and backbones of P and Q and the separations between 
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1 
P 

Fig. 2.1. Example 1. 

the teeth of  P and between the teeth of  Q are appropriately chosen, the space 
P - Q  of free positions of  Q will contain D(m2n ~) connected components,  each 
of which (except the unbounded component) is determined by choosing a pair 
of adjacent vertical teeth of  Q and placing them on two sides of a vertical tooth 
of P, and by similarly choosing a placement of  the horizontal teeth of  Q amidst 
those of P. 

Example 2. This example shows that in the worst case the boundary of C~ can 
have l-l(mn) corners. In this example, as illustrated in Fig. 2.2(a), P has a skeletal 
representation consisting of a sequence of m rectangular " rooms"  lying in a row 
next to each other, such that each pair of  adjacent rooms are connected by a 
small "door"  in their common wall, and such that the last (rightmost) room also 
has a similar door in its right exterior wall. The second polygon Q has a skeletal 
representation of the shape of a zigzag line consisting of n' segments. The initial 
placement of Q is in the "innermost"  (leftmost) room of P. The dimensions of 
P and Q can be chosen so that the only way to translate Q out of  P is to move 
it to the right through one door at a time, so that translation of Q through each 
door must involve n' distinct translations in alternating upward and downward 
directions, each pushing a different segment of  (the skeleton of) Q through the 
door. Since P has m = O(m') sides and Q has n = O(n') sides, it follows that in 
this example fl(mn) translations may be required to separate Q from P. This 
example also shows that the unbounded component  C~ of ( P -  Q)C can consist 
of l)(mn) sides, as illustrated in Fig. 2.2(b). We are indebted to Ryan Hayward 
for suggesting this example. 

We next show that even though the entire P - Q  may have I~(m2n 2) corners, 
the boundary bd(Co~) of  Co contains at most only O(mnc~(mn)) corners, a bound 
which is very close to the worst-case lower bound provided by Example 2. 

Theorem 2.2. bd(C~) has at most O(mna(mn)) corners. 

Proof. As observed in the proof  of Lemma 2.1(a), bd(C~) is contained in the 
union of 2ran segments, each of which is either a difference of a side of  P and 
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Fig. 2.2. (a) Example 2. (b) ( P - Q ) ' =  C~ in Example 2. 

a vertex of Q or of a vertex of  P and a side of Q. Enumerate these segments as 
el, e 2 , . . . ,  er, where r = 2mn .  It is clear that we can orient each segment e; so 
that a sufficiently small neighborhood of  ei lying on its right side is disjoint from 
C~. By Lemma 2.1(b), y = b d ( C ~ )  is a simple closed polygonal curve, and the 
above observation implies that if we traverse y in a clockwise direction, then for 
each segment ei, evey portion of it that appears along y is traversed in the 
direction assigned to ei; moreover, the (clockwise) order in which these portions 
are encountered along y coincides with their order along ei (we omit details of 
the proof  of  these rather simple topological facts). 

Consider the circular sequence of straight segments y~, Y2 . . . .  , y, of which y 
is composed (starting at an arbitrary corner of y and arranged in clockwise 
order). For each i-< t the segment y~ is a portion of  some e,,, let U denote the 
(circular) sequence u,, u 2 , . . . ,  u,. For each segment e, consider all appearances 
of its index a in U. The preceding arguments imply that there exist two appear- 
ances urc~), u~ l  of a in U, which we denote, respectively, as the designated first 
and the designated last appearances of a in U, such that all other appearances 
of a in U are within its portion U ~"~ = (ur~a~, urta~÷,,. • . ,  ul~,~-,, u ,~) .  (Regarding 
these notations, recall that U is a circular sequence, so we might have f(a) > l(a), 
in which case U ~ consists of the portion u r t ~ , . . . ,  u, followed by the portion 
u~ . . . . .  u , ~ ;  note also that one might have f ( a ) =  l(a), in which case a appears 
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in U just once, and U (~) consists of  the single element ur(a,) We will regard 
each U (~ as a linear sequence whose elements are ordered by their circular order 
along U. 

The sequence U has the following properties: 

(1) u i c { l , . . . ,  r} for each i-< t. 
(2) u ,¢  ui÷~ for each i<-t (where i+1  is computed modulo t). 
(3) For each pair a ~ b c {1 . . . . .  r}, there do not exist five indices p < i < j  < 

k < q  in U (") (in the linear order induced on U (a) by U) such that 
u p = u , = u q = a  and u , = u k = b .  

The first two properties are obvious. The third property actually states that for 
each segment eo, as portions of it appear  along y in their order along ea, no 
other segment eb can alternate twice between these portions. The proof  is topologi- 
cal in nature, and shows that such an alternation would imply that points of  C~ 
lie both in the exterior and in the interior of  y, which contradicts the Jordan 
curve theorem. 

More specifically, to establish the third property, assume, to the contrary, that 
such a, b, and p, i, j, k, q exist. Let us denote by y,,j the portion of  y traversed 
in clockwise order from y~ to yj, excluding yi and yj. Without loss of  generality, 
assume that no element of  U between ui and Ug is equal to b, and that no element 
of  U between up and u~ or between Uk and Uq is equal to a. We distinguish two 
cases. 

Case (i). The portion e* of e~ between yp and yq (excluding these two subinter- 
vals) does not intersect the portion e* of eb between its two subintervals y~ and 
Yk (again excluding y~ and Yk). Let (5 be the closed curve 

3/p, i Y i e  b "Yk T k . q e  a 

(see Fig. 2.3). By our assumptions and the fact that y is simple, it follows that 
is also simple, and is thus a (polygonal) Jordan curve. 
We claim that the interior of  (5 is disjoint from C~. Indeed, assume the contrary 

and let w be a point in the interior of (5 which also belongs to Co.  Then one can 
find a path ¢r connecting w to the point at infinity, lying entirely within the 

rp rj )'q 
L e~* J 
r"  -1 

Fig. 2.3. Case (i) in the proof of Theorem 2.2, property (3). 
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interior of  C~,  and intersecting 8 only finitely many times, so that each of  these 
intersections is transversal and takes place at a point in the relative interior of  
some edge of  & But each such intersection x is either at an edge of y, i.e., a point 
on the boundary of Ca ,  or is a point on e, or on eh in which case rr must contain 
points (lying sufficiently near x on one side of  it) which lie in C~, contradicting 
in both cases the assumption that ~r lies entirely within the interior of  C~. 

Now consider y~ which is a portion of e*. Since points lying on the left side 
of  yj sufficiently near it belong to C~,  it follows that the interior of  8 near yj 
lies on the right side of  that edge. But then it is easily checked that both sides 
of  yp (also of  y,) sufficiently near these edges lie in the interior of  ~5, which is 
impossible because one of these sides contains points in Co~. This contradiction 
completes the argument in Case (i). 

Case (ii). e* and e* intersect. Let x denote their point of  intersection, and 
assume without loss of  generality that x lies between yj and yq (see Fig. 2.4). 
Let t5 be the curve 

= ~lp, i ~ / i e b e a ,  

where ~'a (resp. eb) is the portion of ea (resp. of  eb) between yp and x, excluding 
yp (resp. between Yi and x, excluding yi). Arguing as above, it is easy to show 
that 8 is a Jordan curve whose interior is disjoint from C~. However, it follows 
from the structure of  ~ that either the left side of  y~ or the left side of  7j (sufficiently 
near these edges) must lie in the interior of  ~, which is impossible because these 
sides both lie in C~. This contradiction completes the proof  of  property (3). 

We next transorm U into another sequence U* as follows. Replace each index 
a - r for which U ~a~ "wraps around" U (i.e., f (a)  > l(a)),  by two distinct symbols 
a ' ,  a", such that all appearances of  a in the subsequence ur~a~ . . . .  , u, are replaced 
by a ' ,  and all appearances of  a in u ~ , . . . ,  u~o~ are replaced by a". The resulting 
sequence U* has the same length t as U, and is composed of  at most 2r symbols. 
We claim that U* satisfies the modified properties: 

(2*) u* ~ u*÷~ for each i < t. 
(3*) For each pair of  symbols a ~ b, there do not exist five indices i~ < i2 < i3 < 

i4<i5 in U* such that u * = u * = u * = a  and u*=u*=b. .  ,, 

e, yp YJ ~ " ~  e~ 

Fig. 2.,1. Case (ii) in the proof of Theorem 2.2, property (3). 
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Indeed, concerning (3*), this property is a direct consequence of (3) if a is one 
of  the original unsplit indices of  U. If, say, a = c' for some original index c, then 
all indices is . . . . .  i5 must also belong to the portion of U tc~ between the indices 
f(c) and t, so again the claim follows from property (3) of  U. Similar arguments 
apply if a = c" for some index c. 

U* is thus a (2r, 3)-Davenport-Schinzel sequence in the terminology of  Hart 
and Sharir [10], and, by the results of  that paper, the length of U* (and of U) 
is at most O(2rc~(2r)) = O(mna(mn)) .  [] 

Remark. Using similar arguments to those in the proof  of  Theorem 2.2, one can 
obtain the following generalization: let e l , . . . ,  e, be any (possibly intersecting) 
n straight segements in the plane. Then the boundary of the unbounded (in fact, 
of  any) component  of  the complement of  the union of these segments consists 
of  at most O(na(n) )  segments (which are portions of  the segments el). 

2.1. Efficient Calculation of  bd(C~) 

We next present an efficient algorithm for the calculation of 3' = t~d(C~,). First 
obtain a hierarchical decomposit ion of  Q as in Chazelle [2]. Specifically, we first 
obtain a triangulation T of  Q. Then we cut Q along one of the diagonals of  T 
so as to divide it into two subpolygons Q~, Q2, each of which contains at least 
some fixed fraction of the sides of Q, and continue to cut Q1, Q2 recursively in 
the same manner. Chazelle [2] has shown that such a decomposition is always 
possible; Guibas et al. [8] present a linear time algorithm for the calculation of  
such a decomposition, once a triangulation of  Q is given (see Tarjan and Van 
Wyk [21]). 

Our algorithm then applies the following divide-and-conquer approach: Let 
Q = Q~ w Q2 be the decomposition of Q as described above. Calculate recursively 
the boundaries 3,1, y~ of  the unbounded connected component  of  (P-Q~)C, 
( P - 0 2 )  c, respectively. Then merge y~, Y2 to obtain the desired boundary y = 
bd(C~) of  the unbounded component  of ( P -  Q)C. The merging of y~ and y2 is 
performed as follows. Since y~ and y2 are both simple polygons, we can use the 
technique of Chazelle and Guibas [4] (see also Guibas et al. [8]) to preprocess 
each of  these polygons into a data-structure which supports efficient response to 
ray-shooting queries, where each such query asks for determination of the first 
point on y~ (resp. on Y2) hit by a ray emerging from some specified point X in 
a specified direction u. As shown in Chazelle and Guibas [4] and in Guibas et 
al. [8] this shooting problem can be solved in O(t log log t) preprocessing time 
(and O(t)  storage) and O(log t) query time, where t is the number of  sides of 
~/1 (resp. of  y2). 

Having preprocessed y~ and Y2 in this manner,  we next find a starting point 
X~ lying on one of these curves and being exterior to the other (e.g., one can 
take X~ to be the leftmost vertex among all vertices of  y~, Y2). We then begin to 
trace the desired boundary y, which is also easily seen to be the boundary of the 
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unbounded connected component  of  (Y, w 72) c, from X~ in a clockwise direction. 
Suppose we have progressed along 3; from Xl up to some corner X, of  3'. If  X, 
is a corner of  3'~ or of  3'2, say for definiteness of  3'~, we take the next edge of  3' 
to be traced to be the edge of  y~ incident to Xi and pointing from it in a clockwise 
direction along 3'~. Suppose on the other hand that Xi is a point of  intersection 
of an edge e~ of 3'~ with an edge e2 of 3'2. Suppose further without loss of  
generality that our tracing of  y has reached X; along e2 ; then the next edge e of  
3; to be traced is taken to be e~ (which has to be traced from X; in a clockwise 
direction along 3'0- 

In either case we now have an edge e of  3'~ (and of 3') which we want to trace 
from the point X; lying on it until the next corner X;+~ of 3'. To find Xi+~ we 
perform a ray-shooting query to find the first point Z on 3'2 hit by the ray emerging 
from Xi in the direction of  (the appropriate  portion of) e. I f  Z lies on e, we put 
X~+~: = Z ;  otherwise we take X;+~ to be the appropriate endpoint of  e. This 
tracing process is repeated until we trace the complete boundary 3' back to X~. 

The complexity of  this merging procedure can be estimated as follows. Let ni 
be the number  of  sides of  Qi for i = 1 , 2 .  By Theorem 2.2, 3', has at most 
O(mn~a(mn~)) vertices, so that the preprocessing of  3'~ and 3'2 for the shooting 
queries is accomplished in overall time 

O( mnl a( mnl ) log log mnl ) + O( mn2a( mn2) log log mn2) 

= O(mna(mn) log log ran). 

The starting point X~ can be calculated in O(mna(mn)) time. The tracing of  y 
consists of  repeated applications of  ray-shooting queries, one for each corner of  
y. Since 3' has at most O(mna(mn)) corners, it follows that the complexity of  
tracing 3' is O(mna(mn) log ran). 

Let T(m, n) denote the maximal time required to calculate the boundary of 
the unbounded component  of  the complement  of  P - Q ,  where P and Q are 
simple polygons having m and n sides, respectively. Then we have the following 
,~ecurrence: 

T(m, n) <~ T(m, hi) + T(m, n2) + O(mna(mn) log ran) 

where n > 3 and where both n~ and n2 are -> n/3 (see Chazelle [2] and Guibas 
et al. [8]). This formula implies 

T(m, n) = O(nT(m, 3) )+  O(mna(mn) log mn log n). 

To calculate T(m, 3) we make use of  the fact that in this case Q is just a triangle, 
and is therefore convex. Thus calculation of  P -  Q can be accomplished by the 
generalized Voronoi diagram approach of  Leven and Sharir [15] in time 
O(m log m). It follows that 

T(m, n)= O(mn[log m+ a(mn) log mn log n]), 

and, assuming without loss of  generality m -> n, we obtain 

T(m, n) = O(mna(mn) log m log n). 
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2.2. Remarks and Open Problems 

(1) The bound O(mna(mn)) on the size of  bd(C~) as given by Theorem 2.2 is 
not known to be tight in the worst case; the best matching lower bound is that 
given in Example 2. Moreover, for n = 3 or, more generally, for a convex Q it is 
known that the entire P -  Q contains O(mn) corners, of  which only O(m) corners 
are formed by intersection of edges (as in the proof  of  Lemma 2.1(a); see Kedem 
and Sharir [11], Kedem et al. [13], and Leven and Sharir [15]). Although for all 
practical purposes the bound O(mna(mn)) can be considered to be the same as 
O(mn), it is still interesting from a theoretical point of  view to improve it, at 
least in some special case, e.g., when Q can be decomposed as the union of a 
small number  of  openly disjoint convex subpolygons. Alternatively, can one show 
that in the worst case bd(C,~-) can indeed consist of  ta(mnc~(mn)) corners? 

(2) The merging procedure described above deserves some comments. First, 
it is significant that this procedure does not calculate all intersections between 
Yl and T2 (of which there might conceivably be ~(m2n2)). Note also that if y , ,  
T2, or 3, were not connected, then the complexity of our procedure would 
deteriorate, either because we would have to spend more time in locating a 
starting point on each component  of  T, or because the shooting queries would 
require more time, because the technique of Chazetle and Guibas [4] applies 
only to simple polygons. Finally, it is still an open problem whether 3' can be 
calculated in time linear in the number of  sides of  3'1, 3'2, and 3'. 

(3) Theorem 2.2 and the calculation of bd(C~,) can be generalized to apply 
to any connected component  of  ( P - Q ) ~ .  In particular, we can apply them to 
the connected component  C of (P-Q)C which contains the given position of 
(the reference point Z on) Q. Thus in time O(mna(mn)log m log n) we can 
calculate the space of all free placements of Q reachable from its given position 
by collision-free translational motion. 

3. Calculating Motions Separating Q from P 

In this section we comment on the actual calculation of the desired translational 
motion separating Q from P, using the data structures calculated in the previous 
section. Let 3/= bd(Coo) be the (simple polygonal) boundary of the unbounded 
connected component  C~ of ( P -  Q)', and let t = O(mna(mn)) be the number 
of  sides of  3,. To determine whether Q can be separated from P by a purely 
translational motion from a given placement, we simply have to test whether the 
position O of the reference point on Q at that placement lies in C~o. This can 
be trivially done in O(t) time. If O does indeed lie in C~, we can calculate an 
"opt imal"  translational separating motion of Q in the sense of  one of the following 
two approaches: 

(i) Calculate a Euclidean Shortest Separating Motion. Let 3'* be the convex 
hull of y. We will follow the reasonable convention that Q and P are considered 
to be fully separated whenever O lies on or outside 3'*. Again we can test Whether 



134 R. Pollack, M. Sharir, and S. Sifrony 

Fig. 3.1. 
pocket R. 

The curves N Y*, and a shortest separating motion of Q from a position within some 

O lies on or outside 3'* in O(t) time. If so, no separating motion is required. 
Otherwise O must lie in one of  the "pockets" enclosed between y and y*, where 
each such pocket R is a simple polygonal region bounded by an edge en of y* 
(the "l id" of  R) not belonging to 2/and by a contiguous portion of  y (see Fig. 
3.1). In this case our goal is to calculate the shortest path within R from O to a 
point in en. This can be done in O(t R log log tR) time, where t R is the number 
of sides of R, using the shortest path algorithm of Guibas et al. [8]. This algorithm 
calculates the shortest paths from O to all vertices of R, and produces a partition- 
ing of R into triangular regions such that for each of  these triangles A there exists 
a vertex v of  R such that the terminal segments of  the shortest paths from O to 
all the points in A all emerge from v. Hence by examining each triangle in this 
partitioning which intersect eg, it is straightforward to calculate the desired 
shortest path to eR in O(tR log log tg) time. 

(ii) Calculate a Separating Motion Consisting of the Smallest Number of  Transla- 
tions. This is also considered to be a useful criterion for efficiency of the 
separating motion (see Toussaint [22]). We will say that P and Q are k-separable 
by translations if they can be separated by a sequence of  k translations, but not 
by any sequence of  fewer translations; such a sequence of translations will be 
called a k-separating motion (of Q from P). To find such a k-separating motion, 
we first test, as in (i) above, whether O lies outside y*, in which case k = 0 and 
no motion is required. If O lies inside y*, let R be the pocket containing O (as 
in (i)) and let e R be its lid. Our task is then to find a polygonal path within R 
from O to eg consisting of  the fewest possible number of edges. This problem 
has been studied recently by Suri [20]. To describe his results, let us partition R 
into a collection Vi(eR), i = 1 , 2  . . . .  , of  polygonal regions defined as follows. 
V~(eR) consists of all points in R directly visible (withia R) from some point on 
eR. Inductively, Vi+l(eg) consists of  all points in R which are visible from some 
point in V~(eR) and are not contained in !~Jj<~ Vj(eR). Suri shows that this 
partitioning of R can be calculated in time O(tR log log tR). Given this partition- 
ing, we find (in additional O(tn) time) the region Vk(eR) containing O. Then, 
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clearly,  P and  Q are k - sepa rab le  from one another ,  and  the da ta  s tructures 
p r o d u c e d  by Suri 's  a lgor i thm enable  us to ca lcula te  a k - sepa ra t ing  mot ion  of  Q 
in add i t iona l  O(tR) t ime. 

In summary ,  we have shown:  

Theorem 3.1. After  calculating 7, one can determine in additional t ime O( tv log 
log tv) (where tv is the number o f  corners o f  ~) whether Q can be separated f rom 
P by translations, and, i f  so, also calculate such a separating motion having either 
a minimum length or a minimum number o f  links. 

Remark.  The two app roaches  jus t  descr ibed  can be easily modi f ied  so that  they 
first per form a p reprocess ing  phase ,  which de pe nds  only on the shape  o f  P and 
Q and  not  on their  p resen t  p lacements ,  and  then,  given specific p lacements  o f  
P and  Q, de te rmine  qu ick ly  whether  t rans la t ional  separab i l i ty  o f  Q from P from 
these p lacements  is poss ib le ,  and ,  if  so, also ca lcula te  the shortest  Euc l idean  
length o f  such a separa t ing  mot ion ,  or, a l ternat ively ,  the smal les t  n u m b e r  o f  links 
in such a mot ion.  Using the techniques  o f  G u i b a s  et al. [8] and  o f  Suri [20], such 
a p reprocess ing  can be done  in O ( t  log log t) t ime and  O ( t )  space ,  and  each 
actual  separab i l i ty  query can be answered  in O( log  t) t ime. 
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