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Abstract. This paper gives several new demonstrations of the usefulness of random 
sampling techniques in computational geometry. One new algorithm creates a search 
structure for arrangements of hyperplanes by sampling the hyperplanes and using 
information from the resulting arrangement to divide and conquer. This algorithm 
requires O(sd+D expected preprocessing time to build a search structure for an 
arrangement of s hyperplanes in d dimensions. The expectation, as with all expected 
times reported here, is with respect to the random behavior of the algorithm, and 
holds for any input. Given the data structure, and a query point p, the cell of the 
arrangement containing p can be found in O(log s) worst-case time. (The bound 
holds for any fixed e > 0, with the constant factors dependent on d and e.) Using 
point-plane duality, the algorithm may be used for answering half space range queries. 
Another algorithm finds random samples of simplices to determine the separation 
distance of  two polytopes. The algorithm uses expected O(n td/2j) time, where n is 
the total number of vertices of  the two polytopes. This matches previous results [10] 
for the case d = 3 and extends them. Another algorithm samples points in the plane 
to determine their order k Voronoi diagram, and requires expected O(st+~k) time 
for s points. (It is assumed that no four of the points are cocircular.) This sharpens 
the bound O(sk 2 log s) for Lee's algorithm [21], and O(s 2 log s + k ( s -  k) log 2 s) 
for Chazelle and Edelsbrunner's algorithm [4]. Finally, random sampling is used 
to show that any set of s points in E 3 has O(sk 2 log s s /( log log s) 6) distinct j-sets 
with j_< k. (For S c  E ~, a set S ' c  S with IS'I=j is a j-set  of S if there is a half- 
space h ~ with S ' =  S n h+.) This sharpens with respect to k the previous bound 
O(sk s) [5]. The proof of the bound given here is an instance of a "probabilistic 
method" [15]. 

* A preliminary version of this paper appeared in the Proceedings of the 18th Annual ACM 
Symposium on Theory of Computing, Berkeley, CA, 1986. 
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1. Introduction 

i.I. The Problems and Results 

The use of random sampling to divide and conquer is quite old: the partitioning 
step of quicksort may be viewed as an example [19]. This paper describes several 
new applications of this technique. 

Searching Arrangements. Given a set of hyperplanes S with IS] = s, their arrange- 
ment Ms is the division of space into polyhedral regions that is implied by S. 
Such polyhedral regions are termed cells. All of the points in a cell P are on the 
same side of each hyperplane in S. That is, for every h ~ S, no two points in P 
are on opposite sides of h. Using point-hyperplane duality, an algorithm for 
determining the cell containing a given query point immediately yields an 
algorithm for halfspace range queries. The O(log s) query time of the algorithm 
given here is much faster than that of several algorithms previously known [29], 
[30], [7]. However, these algorithms require O(s) storage, while the new algorithm 
requires worst-case O(s a+~) storage, for any fixed e > 0. On the other hand, its 
preprocessing time and storage compare quite well with those of previous 
algorithms for range queries having query times that are O(log s) [11], [8]. These 
algorithms require [l(s 2~-') storage. The result for three dimensions compares 
favorably with that in [3], where an O(log 2 s) query time is obtained with O(s 3) 
storage. 

Sharper Bounds for k-sets. A k-set of a set of sites (points) S in d dimensions 
is a subset of S of size k that is all on one side of some hyperplane, while the 
other sites are all on the other side of the hyperplane. Letfk(S) denote the number 
of k-sets of S. A combinatorial question relevant to several algorithms [5], [6], 
[13] concerns the quantity 

fk, e( S ) = max fk(S). 
S ~ E  a 
tSl=s 

Some bounds are known for fk.2(s) [13], [16]. However, the only previously 
known bounds for fk,3(s) concern the related quantity 

g~3(s) = max E fj(S).  
S ~ E  3 0<_j<_k 

Isl=, 

Cole et aL [9] showed that gk,3(S)= O(s2k), and Chazelle and Preparata [5] 
showed that gga(S) = O(skS). The new bound gg3(s) = O(sk 2 (log s s)/(log log s) 6) 
is less than the [9] bound for all but very large k, and much less dependent on 
k than the [5] bound. 

The proof of the new bound involves a subset R c S with certain properties, 
and a family Sa of sets of  sites that is derived from R. It is shown that R can 
be chosen so that for every j_< k, every j-set of S is a j-set of a member of SR. 
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The number of subsets of  S in SR is of the same order as the number o f j , - s e t s  
of R, where j ,  is polylog in IR]. The size of  R is about s/k, so the size of  SR is 
O(s/k)o(s ~) using the [5] bound. Each subset in S~ has about k members, and 
the easy bound on the number of j-sets of  k sites is O(k3), so a bound of  
O(sk2)o(s ~) follows. 

The existence of  R c S with the properties needed for the new bound is shown 
by demonstrating that with nonzero probability, a random sample of S has those 
properties. This proof technique is an instance of the "probabilistic" method [ 15]. 

Constructing Order k Voronoi Diagrams. The techniques that yield a tighter k-set 
bound also give a faster algorithm for determining all of  the k-sets of  a set of  
sites. This in turn gives a faster algorithm for constructing or0er k Voronoi 
diagrams, due to the well-known relationship between k-sets in three dimensions 
and order k Voronoi diagrams in two dimensions. An order k Voronoi diagram 
is a partition of the plane so that all points in a partition block have the same 
set of k nearest neighbors among the sites. Lee [21] showed that the order k 
Voronoi diagram on s sites has O(k(s-k))  regions, and he gave an algorithm 
requiring O(sk ~ log s) time for the construction of such diagrams. His algorithm 
builds the ordinary first-order Voronoi diagram, and then uses that to build the 
second-order diagram, and so on. Chazelle and Edelsbrunner [4] have given an 
algorithm requiring O(s 2 log s + k ( s -  k)log 2 s) time, which is faster than Lee's 
algorithm when k is large. These algorithms and the use of random sampling 
result in an algorithm requiring O(sl+~k) expected time for any fixed e > 0. 

Determining the Separation of Polytopes. The separation of two polytopes is the 
minimum distance from a point of one to a point of the other. Points realizing 
this distance need not be vertices. With the use of  random sampling, an algorithm 
is obtained for determining the separation of two polytopes A and B in 
O([vert A I la/2l + [vert BI t~/2l) expected time. This running time matches previous 
deterministic results for d = 2 [26] and d = 3 [10], and apparently no comparable 
previous results are known for higher dimensions. 

1.2. The Ideas 

The main idea behind these algorithms is the simple one that a random sample 
may give useful approximate information about the sampled set. For example, 
consider the halfspace range counting problem: given a set of sites S and an 
oriented plane h, find the number of  sites in the positive half space h +. Random 
sampling provides a simple approximate solution to this problem: given h, take 
a random sample R c S. Then the proportion of  sites of  R in h + should be a 
good estimator for the proportion of  sites of  S in h +. The accuracy of  this 
estimator grows rapidly with IR[, independently of  IS[, and the cost of  obtaining 
R is also basically independent of IS[ [28]. 

This technique extends even to the case where a large set of planes is given, 
and it is desired to use only one random sample. For each plane h ,  the proportion 
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of R in h~ provides a good estimator for the proportion of S in h~-. Even though 
these estimators are dependent random variables, it is still easy to show that the 
probability is rather small that any one of  them will be very inaccurate. This is 
the gist of  the lemmas of Section 4, and this idea is the basis of every algorithm 
in this paper. 

However, suppose h is given after R has been chosen. How accurate an 
estimator must the proportion of R in h ÷ be? In other words, an infinite number 
of  planes are given to test the accuracy of  the random sample estimator, and an 
adversary is allowed to choose the worst one, the plane h for which IR n h+l/IRI 
is the worst estimator for IS n h+l/lSl. How bad may be the worst estimator that 
is chosen? In this case, geometrical properties can be brought to bear. The main 
lemma of  Section 3 shows that if h divides R into two sets R ' c R n h  + and 
R " =  R \ R ' ,  then h ÷ is contained in the union of d halfspaces associated with 
the convex hull of  R". Further, h + contains the intersection of  d halfspaces 
associated with the convex hull of  R'. Thus if R provides a good estimator for 
a finite number of  certain regions associated with the convex hulls of its partitions, 
then R is a reasonably good estimator for all halfspaces. This geometrical 
reduction, from an estimator for an arbitrary plane to one for a finite number of  
fixed planes, is used in the k-set bound and Voronoi diagram algorithm, and in 
the algorithm for determining polytope separation. 

1.3. Related Work 

Reischuk [24] has used a probabilistic result that is a one-dimensional analog 
of  Lemma 4.2, or of  Lemma 7.1 of [6]. With that result, he obtained a probabilistic 
parallel sorting algorithm. Vapnik and Chervonenkis [27] have derived general 
conditions under which several probabilities may be uniformly estimated using 
one random sample. (For example, the halfspace range counting problem of the 
last section falls within their framework.) Their work has inspired the recent 
results of  Blumer et al. [ 1 ] on learnability, and the recent probabilistic algorithms 
of  Haussler and Welzl [18] for halfspace and simplex range queries. The com- 
plexity analysis of  the latter algorithms may be readily performed using the results 
of  this paper. 

1.4. Contents of  the Paper 

Notation and related matters are discussed in Section 2. Some crucial lemmas 
related to geometrical properties and probabilities are discussed in Sections 3 
and 4. The new k-set bound is given in Section 5, and the proof  machinery for 
that bound is used for the order k Voronoi diagram procedure of  Section 6. A 
procedure for building a search structure for arrangements is given in Section 7, 
polytope separation is discussed in Section 8, and some concluding remarks are 
given in Section 9. Sections 7 and 8 do not depend on Sections 5 and 6. 
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2. Notation, Terminology, and Background 

In general, the geometric notation used here follows [6], which in general follows 
[ 17]. The following terminology will also be useful, and is collected in this section 
for reference. Some other terminology used throughout the paper is also intro- 
duced in Sections 3 and 4. 

E a denotes d-dimensional Euclidean space; 
A + B is the pointwise sum {x + yl x ~ A, y e B}, for A, B c E a; 
x + A and A + x denote {x}+A, for x e Ea; 
aA  denotes the product {axlxs A}, for a ~ ~,  A c  Ed; 
A flat F c  E a is an a~inely closed set: for x, y e F, the straight line through x 

and y is contained in F;  
aft A denotes the affine closure of a point set A c Ed: the intersection of all 

flats containing A; 
dim A denotes the affine dimension of  A: the dimension of  the linear subspace 

(aft A) - p ,  for p e A. A k-fiat F has k = dim F; 
cony A denotes the convex closure of  A; 
relint A is the interior of A relative to aft A, that is, considered as a subset of  

a l iA;  
relbd A is the boundary of A relative to its affine closure. 

Hyperplanes and Halfspaces. Let h~.q denote the oriented hyperplane that has 
normal vector a and that passes through point q. Let h + denote the open positive 
halfspace bounded by the oriented hyperplane h, so that 

h~q = {xJ ( x -  q ) .  a > 0}. 

Let/~+ denote the closed positive half space bounded by h. Often in this work, 
the orientation of a hyperplane will be implied by context. Also, if a is a ray 
from the origin and ua is a point in a, a hyperplane h u~.q will be denoted by 
simply ho~q. 

Complexes. A complex is a collection of polyhedral sets such that every face of  
a polyhedral set in the complex is also in the complex, and the intersection of  
two polyhedral sets in the complex is a face of each of  them. (In the complexes 
considered here the empty set is a face.) A polyhedral set of  dimension k in a 
complex is a k-face of  that complex. For example, the boundary complex ~ ( P )  
of  a polyhedral set P is the set of  facets of  P, together with their faces. Another 
example is the arrangement ~ s  associated with a set of  hyperplanes $. 

Triangulations. A triangulation of a complex ~ is another complex that is a 
refinement of  ~ into simple components. A particular kind of triangulation of  
c~, denoted A(C~), is used in this paper. The triangulation of  a complex ~ is a 
collection of  simplices whose vertices are also vertices of  q~. The union of the 
simplices in a triangulation is the union of  the polyhedral sets in the complex. 
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This definition of a triangulation must be modified somewhat is c~ is 
unbounded. An unbounded polyhedral set may be viewed as the convex hull of 
a set of points consisting of  its vertices together with points at infinity correspond- 
ing to the "'endpoints" of its unbounded edges. That is, the notion of  a polytope 
as the convex hull of a finite number of  points may be extended to include 
unbounded polyhedral sets as well. This allows, for example, "simplices" that 
are simple cones. By extending the notion of simplex in this way, the notion of  
a triangulation is also extended. 

The triangulation A(P)  of  a polyhedral set P is constructed by triangulating 
all of  its 2-faces, then 3-faces, and so on, using the triangulations of  the facets 
of  a face to triangulate that face. Indeed, if the boundary complex ~ ( F )  of  a 
face F has been triangulated to give a complex A ( ~ ( F ) ) ,  then the complex 
corresponding to {conv(v u T) l T e A ( ~  (F))} gives a triangulation of  F, where 
v is some vertex of  F. (It may be that F has no vertices. However, by [17, 2.5.6, 
2.4.6], any polyhedral set P has a representation P = L i +  ( L n  P),  where L is a 
linear subspace, L ± is its orthogonal complement, and L c~ P is a polyhedral set 
all o f  whose faces have at least one vertex. We may then triangulate L n  P instead 
of P.) 

A more detailed discussion of this triangulation procedure is given in [6], with 
a more rigorous discussion of the triangulation of polyhedral sets that are 
unbounded. 

Cones. Recall that a polyhedral cone is said to be pointed if  it has a vertex. If  
a cone A is pointed, its vertex is a unique apex point, and is denoted ap A. The 
set of extreme rays of  A, denoted by extr A, is the set of  rays from the origin that 
are parallel to unbounded edges of A. 

3. Geometric Lemmas 

The main lemma of  this section, Lemma 3.4, provides the basis for the new results 
on k-sets, order k Voronoi diagrams, and polytope separation that are given in 
this paper. 

For a simple example of  this lemma, see Fig. 1. The site q is the closest point 
in polygon P to line h. The halfplane h + does not contain P. The lemma states 
that under these conditions, the normal vector c to h is contained in the cone A 
between rays r2 and r3. Also, h+c  A~,, where A~ is the region spanned by 
sweeping clockwise from r4 to rl. That is, A~ is the union of  two halfplanes 
defined by lines normal to r2 and r3. 

These assertions will next be put in a more formal setting. 
For a pointed polyhedral cone C with a = ap C, let 

and I~  

C,_,= U h~+.-~,~ 
c¢C,c#a 

C~-- N h~*_~,o. 
cE C, c~ a 
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1'4 

1"3 

Fig. 1. A line h and polygon P. 

Let Cu and C,~ denote the corresponding closed versions of  these regions. 
The regions C~ and C,~ have a simple representation in terms of  a finite 

number of  halfspaces: 

Lemma 3.1. 

and 

For a pointed polyhedral cone C with a = ap C, 

C u  = 0 hb+a 
b~extr C 

A h:,o. 
b~extr C 

Proof Omitted. 

For a d-polytope p c  E a (i.e., with d =d im P), let the outer cones of  P, or 
ocone P, be the collection of cones {Cql q e vert P}, where 

C q = { x e E a l ( x - q ) . ( y - q ) < _ O  for all y e P } .  

Cq may also be characterized as q + ccVq, where Vq is the (unbounded) Voronoi 
region of  q with respect to vert P, and cc Vq is the characteristic cone of  V s. 
Cq contains those "points at infinity" for which q is the nearest point in E It 
is not hard to show that when p c  E d is a d-polytope, the cones in ocone P are 
pointed. Note that ap Cq = q. 

Lemma 3.2. For any d-polytope p c  E a, 

[,,J (C - a p  C) = Ea. 
C ~ ocon e P 

Proof. Obvious. 
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Lemma 3.3. For a d-polytope P c Ea and C e ocone P, i f  b ~ extr C and q = ap C, 
then hb.~ = att F, for  some facet  F o f  P that contains q. 

Proof. Omitted. 

The lemma is a special case of  the fact that C is dual to coneq P, the set of  
rays starting at q that pass through points of  P. The lemma can be readily proven 
using an argument analogous to the proof  of [  17, 3.4.4]. See also Lemma 5.1 below. 

The above lemmas may be combined in the main lemma of  this section, which 
shows that any halfspace not intersecting a polytope P is contained in the union 
of a small number  of  halfspaces, each halfspace associated with a facet of  P. 

Lemma 3.4. I f  P o E  a is a d.polytope and h is an oriented hyperplane with 
h + n P = 0 ,  then for  some C ~ A(ocone P),  h + c C~ = Ub~xtrch~. ,pc .  Each such 
hb, apc= aft F, for  some facet  F o f  P that contains ap C. 

Proof. I f  h + n  P = 0 ,  there is another hyperplane h ,  with the same normal 
vector but with h + c  h .  and h ,  n P = q  for some q ~ vert P. By Lemma 3.2, the 
normal to h and h ,  is contained in some C - q with C ~ ocone P, hence in some 
C ' -  q for C '  ~ A(ocone P). By definition, h .  c C ' .  The remaining assertions are 
restatements of  the previous lemmas. [] 

4. Probabilistic Lemmas 

This section gives a theorem stating that in certain situations, a random sample 
can be used as an estimator for certain populations that are determined by the 
sample itself. This seemingly specious result follows from the fact that for a fixed 
subset R '  of  a random sample R, the other samples R \ R '  are chosen independently 
of  R'. For example,  the remaining r - 3  samples are chosen independently of  the 
first three samples chosen. 

After an aside on random sampling, a simple example of  the theorem is given. 
The theorem is then stated and proven in generality sufficient for the purposes 
of  this paper.  Some corollaries follow. 

A note re sampling: in this paper  we will frequently consider r random draws 
from a set o f  size s, with s >> r. The r random samples are chosen with replacement, 
but it will be assumed that IRI, the number  of  distinct sample elements chosen, 
is equal to r. Since s >> r, this condition will be true with high probability. In 
other words, R is a multiset with r elements and probably r distinct elements. 
Furthermore, generally only an upper bound on IRt is needed. Thus this assump- 
tion of  r = IR 1 will not affect the results obtained, and the fact that R is a multiset 
and not a set will be ignored hereafter. 

As a simple example of  Theorem 4.1 below, consider a set S of  s points on 
a line. Suppose a random sample R c S of size r is taken. What is the probability 
that the intervals between consecutive points of  R contain few points of  S? For 
such an interval I, the fact that r -  2 random samples did not come from I would 
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seem to give some evidence that I contains few points of S. Indeed, if I is a 
fixed interval with [I c~ S[>_ as, the probability that r - 2  random draws do not 
pick a point in I c~ S is no more than (1 - a )  r-2. If we consider N fixed intervals 
all with at least as points of S, the probability is no more than N(1 - a )  r-2 that 
at least one will contain no points of a random draw of  r - 2  points. This follows 
from the fact that the probability of the union of a set of events is no more than 
the sum of  the probabilities of the events, even if the events are dependent. Now 
let ~R be the set of  open intervals defined by pairs of  points of  R. Let X c ~=R 
be the set of such intervals that contain at least as points of  S. The number N 
of intervals in X is no more than the number of intervals in ~:a, which is O(r2). 
As in the above discussion for fixed intervals, the probability is no more than 
N ( 1 - a ) ' - 2 = O ( r : ) ( 1 - a )  "-2 that there is some interval in X that does not 
contain a point of R. This follows from the fact that each interval in X is fixed 
with respect to the sample points that do not define it. Setting O(r2)(1 - a ) ' -2  < 1/2 
and solving for a shows that there is a value of a that is O(log r / r ) ,  such that 
the above probability is below 1/2. That is, the chance is at least 1/2 that every 
consecutive interval defined by R contains fewer than sO(log r/r)  points of S. 

In this paper, this sort of argument is applied in a variety of ways, to the 
sampling of points, hyperplanes, and simplices. In order to simplify the derivation 
of  results for these applications, and also demonstrate the essential character of  
the technique, Theorem 4.1 is stated and proven in fairly general terms. In the 
theorem, the elements of  S are not single points, but sets of points. Rather than 
the set of  intervals on a line, the geometric regions considered will be members 
of a family ~, which in applications may be open balls, simplices, halfspaces, 
cones, and so on. The notion of "the interval defined by two points" is generalized 
to that of"regions in ~: defined by an i-tuple of S" using a collection of mappings 
from S i to ~:. The quantity that the random sample is used to estimate is not the 
number of  elements of S in a given region in ~, but rather the number of elements 
of S having nonempty intersection with a given region. 

It will be helpful to have the following definitions. 
For a set X and integer i, let X i denote the set of i-tuples of X. For an integer 

n, let n denote the set of integers { 1 , . . . ,  n}. Let b(j; t, a) denote the probability 
o f j  successes out of  t Bernoulli trials with probability of success a, that is, 

b(j; t, a ) = ( ~ ) a J ( 1 - a )  t-j. 

For region A and for B a set of regions (subsets) of E a, let # (A, B) denote 
the number of  elements of  B that have nonempty intersection with A. 

Theorem 4.1. Let S and ~ be sets of regions of E d, with IS[ = s. For fixed integers 
i and n, let Vk, k e n ,  be a collection of mappings from S j to ~. Let R be a random 
sample of S, of  size r, and let ~:1~ denote 
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the union o f  the images o f  R ~ under the vk's. Then for integer m and ot ~ [0, 1] with 
m < - ( r - i ) a ,  

Prob{3A e ~rR with # (A, R) -< m and # (A, S) > as} <- O(r  ~) Y~ b( j ;  r -  i, a) ,  
j--< ra 

(<_) 

as r - ,  oo. Similarly, for  integer m and a e [0, 1] with m >- ( r - i )a, 

Prob{3A~ ~:R with # ( A ,  R)>_m and # ( A ,  S)<as}_< O(r  i) ~, b( j ;  r - i ,  a) ,  
j ~ m  

(>__) 

as r - ,  oo. 

The example above is an instance of this theorem where m = 0, using the 
inequality ( - ) .  

When m is much larger than the mean at, the binomial tail ~j~m b(j;  r -  i, a)  
can be made very small. (A similar statement is true for m << at.) In this case, 
the chance is very small that # (A, R) is a poor  estimator for # (A, S) for A~ JR. 
In other words, with high probability, every # (A, R) is a good estimator of  
# (A, S), in terms of the given choices of m and a. 

Proof. Only the inequality ( - )  of  the theorem is proven below. The other 
inequality can be proven analogously. 

The result follows from the facts that the probability of  a union of events is 
no more than the sum of  the probabilities of  the individual events, and that for 
random events X and Y, Prob{X and Y}-< Prob{X given Y}. In order to use 
these facts rigorously, an inequality somewhat different from ( - )  will be proven. 
Let the elements of R be numbered from 1 through r. Let v~, for k ~ n, map 
tuples in r i to ~:, defined by v~(~,)= i / k ( ( R ~ . t , . . .  , R.r,)), where T : ( T I . . .  Ti)Er i. 
Then 

Prob{3A ~ ~R with # (A, R) -< m and # (A, S) > as} 

= Prob{3¢ e r', 3k  ~ n with # (z,~(~), R) <- m and # (~,~(~,), S) > as}, 

since the two events are logically equivalent. 
The facts above imply that 

i Prob{3¢ e r ,  3k  e n with # (~,[(¢), R) < m and # (v},(~), S) > as} 

< ~,~,kE. Prob{ # (z,[(z), R)-< m and # (~,~(¢), S) > as} 

< nlri[ n~ax Prob{ # (l,~,(~), R) < m given # (~,~,(¢), S) > as}. 
• r E r  • k E I I  
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It suffices to bound Prob{ # (vL(~-), R) -< m given # (v~,(7"), S) > as}, for any given 
z ~ r i and k ~ n. Let R' denote the set of samples indexed by numbers in ~. Since 
the samples not indexed by a number in • are chosen independently of  those 
that are indexed in that way, the chance that a given region in R \ R '  has nonempty 
intersection with v'k(z) is # (v~(~-), S)/s,  and the chance that # (V'k(~'), R)  =j  is 
b(j; r -  i, # (V'k(~'), S ) /  S). The probability that the number of  samples intersecting 
v~(1-) is no more than m is ~m,~ b(j;  r - i ,  # (v'k('r), S ) / s ) .  That is, 

Prob{# (v'k(~'), R)<_ m} = • b(j;  r -  i, #(vL(r), S) /s ) .  
j ~ m  

For ~" with # (v~,(~-), S) / s  > as, the bound 

b(j; r -  i, a) > b(j; r - i, # (v'k(~'), S ) / s )  

follows from the facts that the derivative of b(j;  r - i , / 3 )  with respect to /3 is 
negative for 13 > j / ( r - i ) ,  and that 

j / ( r -  i) <-- m/ ( r - -  i) <-- at < # (v'k(~'), S) /s .  

Therefore 

Prob{#(v~(~-), R)_< m given #(V'k(Z), S ) >  as} < - Z b(j; r - i ,  a).  
j<-m 

The result follows. [] 

The following corollary is used to prove the results on arrangement searching 
and polytope separation that are given in this paper. It is a generalization of  
Lemma 7.1 of  [6]. 

Corollary 4.2. Using the terminology of Theorem 4.1, 

Prob{:lA e ~R with # (A, R) = 0 and # (A, S) > as} <- O(r')(1 - a)r-',  

for fixed i and n. For suitable a = O(log r/ r), this probability is no more than 1/2. 

Proof. Use Theorem 4.1 with m = 0, in the (---) case. The estimate for a follows 
using elementary approximations. [] 

The following corollaries to Theorem 4.1 are used to prove the new results on 
k-sets and order k Voronoi diagrams that are given here. 

Corollary 4.3. Using the terminology of Theorem 4.1, 

Prob{3A ~ 3~R with # (A, R)>- m and # (A, S) < s / ( r -  i)}-< O ( / ) ( e / m )  m, 
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for fixed i and n, when ra and r/ m 2 are sufficiently large. Here e is the base of  the 
natural logarithm. 

Proof. The application of  Theorem 4.1 in the (->) case, and with a = 1 / ( r -  i), 
bounds the above probability by 

O(r') Z 
j ~ m  

Note that 

when j-> 1, so that 

b(j; r -  i, 1 / ( r -  i)). 

b ( j + l ; r - i ,  1 / ( r - i ) )  1 
b(j; r - i ,  1~(r- i ) )  j + l  

b(j; r - i ,  1 / ( r - i ) )<-b(m;  r - i ,  1 / ( r - i ) ) ( l  + O(1/m)) ,  
j ~ m  

as m ~ oo. To bound b(m; r -  i, 1 / ( r -  i)), the Poisson approximation [20, 6.4-49] 

b(ra; r -  i, 1 / ( r -  i)) = (e-P pm/m !)(1 + O(m2/r)) = ( e - l / m  !)(l + O(m2/r)) 

applies, since m 2< - r -  i and p = ( r -  i ) ( 1 / ( r -  i)) = 1. Since 

m! = 2~/2-~m(m/e)m(1 + O(1/m))  

by Stiriing's formula, the result follows for m and r i m  2 sufficiently large. [] 

Corollary 4.4. Using the terminology of  Theorem 4.1, 

Prob{3Ae ~:R with # (A, R)<- m and # (A, S ) >  as} <- O(/)e-"r(eetr/ra) ", 

as r--> oo, for fixed i and n, and for 1/ m2 c~, m, and ar/  m sufficiently large. 

Application of  Theorem 4.1 gives that the above probability is bounded Proof. 
by 

O(r') ~ b(j; r -  i, a). 
j ~ ra  

To bound the binomial tail ~j~m b(j; r - i ,  a) ,  the Poisson approximation 

e-a(r-i)(Ot (r 
b(j; r -  i, or) = - i))J(1 + O(j2a)) 

j~ 
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may be applied, for  jEot--~ m2ot < 1. As ar/rn-~oo, the sum 

( a ( r - i ) )  ~ (ar)___f (a_~r)~'(l+ o ( m y ~  
o~j~-,, j!  -<o~j<-E,. j! - m! \ k a r l / "  

The result follows by using Stirling's approximation to m!. 
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[] 

5. A Sharper Bound for k-sets when d = 3 

Let ScEd be a set of s sites. If S ' c S  has IS ' l=k and S ' = h + n S  for some 
hyperplane h, then S' is a k-set of S. Call a j-set of  S a ( -k ) - se t  if j -  < k, This 
section gives a proof of  an asymptotic upper bound for gk,3(S), the maximum 
total number of (-<k)-sets of any set of s sites in three dimensions. As in [13], 
it is assumed without loss of  generality that the sites are in general position, that 
is, no four are coplanar. Also, since the bound proven is not O(s 3) for k = fl(s) ,  
there is no loss of  generality in assuming that k = o(s). 

The approach used here is to show that the number of (-<k)-sets of S can be 
related to the number of ( - j , ) - s e t s  of some R c S, for suitable j , .  This is done 
by using the fact that if R is chosen at random, there is a nonzero probability 
that R will satisfy certain conditions, roughly that I h +n  RI/r  provides a good 
estimator for Ih+n SI/s, for every oriented plane h. As discussed in Section 1.2, 
in order to prove a result of  this kind using the techniques of  Section 4, it will 
be necessary to introduce a collection of r °(~) regions associated with R, that 
"bracket" every halfspace in an appropriate sense. Specifically, the j.separating 
cones of  R will be used. This construction may be regarded as a generalization 
of the outer cone construction of Section 3. 

For R c E a, the j-separating cone family of R, or sconej R, is the collection 
of all cones C associated with some R'  c R and q E R \ R '  satisfying the conditions 
that IR'I =j ,  and that there is some odefited hyperplane h with q e h n R and 
h + n  R = R'. The associated cone C is defined as the set of rays f r o m q  that are 
normal to a hyperplane that separates R' and R \ R ' .  That is, C is the set of  all 
x E E d with 

and also 

Equivalently, 

( x - q )  . ( y -q )>-O  for all y ~  R', (*) 

( x -  q)" ( y -  q) -- 0 for all y ~ R \R ' .  (**) 

Note that ocone P = sconeo vert P, for a polytope P. The following lemma is an 
analog of  Lemma 3.3. 
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LemmaS.1. Let  R ~ E 3 in general position, and C ~ sconej R. Then for  b ~ extr C 
and q = ap C, the plane hb.q = aft T, where T c R, IT I = 3, and q ~ T. Also, 

j~lh~,qnRl>j-2. 

Proof. By [17, 2.6.2], a facet of C has the form hy_q.q n C, for some y e R \ {q} .  
By [17, 2.6.4], an edge of  C is the intersection of  two facets of C. For every 
b e extr C, therefore, there are Yl,  Y2 c R \ { q }  with b + q c hyl_q,q n hy~_q,q. That 
is, (y~ - q) • Ub = 0 for i = 1, 2 and Ub ~ b, so that y l ,  Y2 e hb.q. Since q ~ hb.q, and 
Y~, )2, and q are not collinear by the assumption that R is in general position, 
it follows that hb.q = aft{q, y~, )'2} = aft T. 

From the definition of sconej R, it follows that 

IK~,~nR'I=j+I and IK~,~nR\R'I=r-j, 
since q+  b c C. The above discussion shows that Ihb, q n R I = IT1 = 3, with q c T. 
The bound j--> Ih~,q n RI->j-  2 follows. [] 

Lemma 5.2. 

and 

For R c E 3 in general position, and C c A(sconej R), 

I C ~ n R l < - j  

I C , ~ n R I > - j - 6 .  

Proof  For C c sconej R, associated with j-set R' and site q, the definition of 
sconej R implies that for all x e C, h+x_q,q ~ R c R' .  Therefore, for C s scon% R, 
ICungl-<j.  Since C ' e A ( s c o n e j R )  satisfies C ' c  C for some C e s c o n e j R ,  it 
follows that C ' c  C~, and [ C ' n R ] < - j .  

The relation [C,~ n R [ - > j - 6  follows from Lemma 3.1, which states that C,~ = 
nbeextrchb+q. By Lemma 5.1, ]h].q n R I - > j - 2 ,  for b c extr C. Since lextr C] = 3 
for C ~ A(sconej R), the relation follows. [] 

Lemma 5.3. Let  R c E 3 in general position. I f  h is an oriented plane with 

Ih+ n R l > j ,  

then h+D C~,  for  some C e A(scone~ R) .  Similarly, i f  h is an oriented plane with 
I h+ n R[ <A then h + c C~,  for  some C e A(sconej R). 

Proof. Suppose h is an oriented plane with Ih+n Rl>j. Let a normal to h be 
• hy, q C h  , q ~ R ,  [h~,qnRl<-j, and y. Then there is a translation hy q of  h with + + 

[/~,q n R[ >j .  It is easy to show that there is a small perturbation y '  of  y such 
that h f ,  q n R = { q } ,  [ h ~ , q n R i = j ,  and also h + q n R C _ h ~ , q n R  and h~,qcaRc_ 
h'y,q N R. The  existence of  this R' = h~-,,q n R implies that there is an associated 
C e A(sconej R). The other conditions satisfied by hty, q imply that y + q e C, so 
that h + D h:q ~ Cn.  

A similar argument shows that if h is an oriented plane with Ih + n R[ <A then 
h + c  C~, for some C c A(sconej R). [] 
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Lemma 5.3 provides a useful bracketing of every halfspace between C,~ and 
C~, for some C ~ sconej R. The next lemma shows that sconej R for random R 
is likely to have Cn and C .  with proportions of S that reflect the proportion of  
R that they contain. 

Lemma 5.4. SupposeSc E 3 ingeneralposition, with IS I = s. Let R c Sbea random 
draw of size r. Then there is an integer j . =  O(log r / log log r), and a value 
a .  = O(log r/ r) such that, with probability at least 1/2, it holds that for every 
C ~ A(sconej. R), 

and 

ISnf~l~s/(r-7) 

ISn C~l--- o,,s. 

This implies that there exists a subset R c S such that A(sconej, R) satisfies these 
conditions. 

Proof. It suffices to show that for random R c S, 

Prob{:lC e sconej. R with ISn  C,~]<s/(r-7)}  ( n )  

and 
Prob{3C ~ sconej, R with ]Sn  C~, I > a,s}  ( u )  

are each less than 1/4. 
First consider probability (n) .  By Lemma 3.1, each C,~ = nb~extrC h÷b,q, where 

q = ap C. For  C e A(sconej. R), extr C contains three rays. By Lemma 5.1, each 
ray in extr C is normal to aft T, where T c  R has q e  T and ITI=3. Therefore, 
each C,~ for C e A(sconej. R) is defined by seven sites in R. 

To apply Corollary 4.3, take i of  that corollary as 7, and n = 1, so that a single 
map v from S 7 to cones in E a is to be defined, with all regions C,~ for 
C =A(sconej .  R) in v(R7). TO define v in this way, let B =  (q, xl, x2,Yl,y2, 
Zl, z2) ~ S 7, and let C be the cone with apex q and with extreme rays normal to 
aft{q, xl,  xz}, aft{q, yl ,  Y2}, and aft{q, zl, z2}. Then v(B) is the region C,~. (To 
make the orientation o f  these normals precise, choose the normal to aft{q, x~, x2} 
as the cross product ( x t - q ) x ( x 2 - q ) ,  and so on.) Let ~R = v(RV). Then the 
above discussion shows that every C,, for C ~ A(sconei. R) is in ~R. By Lemma 
5.2, also IC,~ n RI---j,-6. It follows from Corollary 4.3 that 

Prob{3a  ~ ~FR with IA n R[ >-j. - 6 and [ a n  sl < s~ (r + 7)} 

<_ O( r7)( e/  ( j ,  - 6))J* -6, 

as r--> oo, assuming that j , -  6 and r / ( j , -  6) 2 are sufficiently large. Under such 
conditions, then, 

Prob{::l C ~ sconej. R with IS n CnI < s / ( r - 7 ) }  ~ O(r7)(e/ ( j .  - 6 ) )  j*-6. 



210 K.L. Clarkson 

A similar argument using Corollary 4.4 shows that 

Prob{::l C e sconej, R with IS c~ CuT > ct,s} <- O(rT)e-~*'(ea.r/(j, - 6)) J*-6, 

as r ~ ~ ,  for sufficiently large 1 / ( j ,  - 6)2a , ,  j ,  - 6, and a .  r~ ( j ,  - 6). 
Simple manipulations show that for suitable j ,  = O(log r/log log r) and a ,  = 

O(log r/r), the two bounding expressions above are each less than 1/4, and 
the conditions on r, a , ,  and j ,  are satisfied. The two probabilities are then less 
than 1/4, and the lemma follows. [] 

Lemma 5.5. Suppose R c E 3. Then the number of cones in A(sconej R) is O(rj 6) 
as r,j~oo. 

Proof. Since each C ~ scone s R is a cone in E 3, the number of cones in A(C) = 
lextr C 1-2. By Lemma 5.1, each extreme ray of C is normal to an orientation 
of hT=aff  T, where T c  R, ITI=3, T 3 a p  C, andj>- lRnh~l>-j -2 .  (It can be 
assumed that j < r/2, so that the orientation of hT is uniquely determined.) A 
given triple contains only three possible apex points, and for a given apex point, 
corresponds to at most two sets R'  defining a cone. (Let T={q, "l,x:}. If  
th~c~Rl=j, then R ' = h ~ R .  If [h~-nRt=j-2  , then R'=h~-~Rw{x~,x2}.  
If lh~-nRl=j-1, then either R'=(h~-c~R)u{x~} or R'=(h~c~R)u{x2}.) 
Therefore 

IA(sconej R)I = Y~ lextr C I -  2, 
C ~ s c o r l ¢  1 R 

which is no more than six times the number of triples in 

{T[ T c  R, ITt =3 , j> - IR  n h~l>-j-2}. 

These triples T are closely" related to the f - se t s  of  R, for j'<-j. Indeed, if 
Ih~n RI =j', then cony T is a facet of  cony/~c~  R, and hr'~ c~ R is a ( j '+3) - se t  
of  R. Since cony/Y~n R has O(j) facets, the number of  triples contained in the 
set defined above is O(j)g~.3(r) = O(j)O(rjS), by [5]. Therefore, the number of  
cones in A(sconejR) is bounded by O(rj6),  as r ~ .  [] 

Now to put these results together. 

Theorem 5.6. Let gk,3(S) denote the maximum total number of (<-k)-sets of any 
set of s sites in E 3. Then gk.3(S) = O( sk 2 tog 8 s/ log log s)6). 

Proof. Let S c E 3 of  size s. Suppose some R c S of  size r = s /k  is chosen that 
satisfies the conditions of  Lemma 5.4, with j ,  and a ,  as in that lemma. Let h be 
an oriented plane defining a ( -  k)-set Sh of  S. It must be the case that I h + c~ R I---j,. 
If  Ih+c~Rl>j,, then by Lemma 5.3, h+~C,~, for some C c A ( s c o n e j ,  R). By 
the assumption about R, ISn C, t>-s / ( r -7 )> k, and h cannot define a ( - k ) - s e t  
of S. Since [h+c~Rl<--j,, by Lemma 5.3 we have h + c C , ,  for some C ~  
A(sconej R). Therefore h + c~ S = h + n C~ n S, and Sh is a (--<k)-set of  C~ r~ S. By 
the assumption about R, IS c~ C . I - - -a , s  = sO(log r~ r), so we have 

gk.~( S) = IA(sconej, R) I gk.3( sO(log r~ r) ). 
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By Lemma 5.5, 

[A(sconej. R) I = O(rj .  6) = O(r(log r / log log r) 6) = O(s/k(log s / log log s)6), 

and by [9], 

gk,3( sO(log r/ r) ) = O( ( sO(log r/ r) )2 k ) = O(k3(log s)2). 

The result follows. [] 

6. Constructing Order k Voronoi Diagrams 

A random sampling approach may be used not only to bound the number of  
k-sets, but also to determine all of  them. This will be illustrated with the example 
of order k Voronoi diagrams in the two-dimensional case. Let S c  E 2 be a set of 
s sites for which an order k Voronoi diagram is desired. For ease of  exposition, 
it will be assumed that no four of the sites of  S are cocircular. 

To apply random sampling, it will be helpful to use the relationship between 
a k-VoD (order k Voronoi diagram) and the k-sets of a set of  sites on a paraboloid 
in three dimensions. This relationship will be used to reduce the k-VoD construc- 
tion problem to that of computing all Vk(S')-triples, for a set S ' c  E 3 related to S. 

A Vk(S')-triple, for S ' c  E a, will be defined as a set T c  S' with ITI=3 and 
with hT = aft T having an orientation for which Ih~n S'I-- k. As discussed in the 
last section, these triples are closely related to k-sets, and correspond to extreme 
rays of  certain cones in sconej S', f o r j  = k, k +  1, k+2 .  Their relevance to k-VoD 
construction is discussed in the following lemma. 

Lemma 6.1. Construction of  the k-VoD of a set S c  E 2 is equivalent, up to 
O(sk)-time, to the determination of all Vk_~( S')-triples and Vk_2( S')-triples, where 
y: E2-~ E 3 by y((x, y)) = (x, y, x2+y2), and S'= y(S). 

(In fact the mapping 3' is not unique in this regard: see [12], [23], and [2].) 

Proof. It is well known that every vertex v of  a k-VoD is the center of some 
circle C~ inscribed on three sites, such that the circle contains within it k -  1 or 
k - 2  sites, and all such circles correspond to k-VoD vertices. The mapping y 
has the property that for any circle C c E 2, the set y ( C )  is contained in a plane 
h = a f f y ( C ) ,  indeed y ( C ) = h n y ( E 2 ) ,  and the open disk D bounded by C 
satisfies y ( D ) =  h + n  y(E2). It follows that for every vertex v of  the k-VoD of 
S, the sites y(Co n S) are Vm(S')-triples, where m = k -  1 or k - 2 .  

Given a suitable representation of the k-VoD of S, the triples Co n S are readily 
found, yielding the V,,(S')-triples in the O(sk)-time necessary to report them. 
(By [21], there are O(sk) such triples.) Given the V,,(S')-triples, for m = k - 1 ,  
k - 2 ,  the triples of  the form ConS,  and the vertices of  the k-VoD of S, are 
immediately known. It remains to show that adjacency relations between the 
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vertices can be determined quickly using the triples Cv n S. It is well known that 
there is an edge between vertices v and v' itt the triples Con  S and C~,n S have 
two sites in common. Suppose the sites of  S are numbered Sl through S,, and 
each vertex v has triple S,, Sb, $c, with a < b < c. Then if a radix sort is applied 
to the set of  all ordered triples, over all vertices, of  the form (S,,  Sb, So), 
(Sb, So, S,),  and (S,, So, Sb), then triples for vertices with an edge between them 
will be adjacent on the sorted list. [] 

Hereafter, the problem considered will be that of  finding Vk(S')-triples, for 
S ' =  3,(S), S c  E 2, The general approach for this problem will be to use the 
separating cone construction to divide and conquer. Suppose values r, j . ,  and 
or. are chosen as in Lemma 5.4, with r -  7 < s/k~ Let R c S' satisfy the conditions 
of  Lemma 5.4. The set R can be found by repeatedly sampling S', testing each 
time for the satisfaction of  the conditions until successful. This will take two 
trials, on the average. 

With such a subset R available, the problem of determining Vk(S')-triples can 
be reduced to that of determining Vk(S'n C~)-triples, for all C ~ A(sconej.  R). 
As in the proof  of Theorem 5.6, suppose h is an oriented plane such that 
[h+c~ R [ > j . .  Then h n S' is not a Vk(S')-triple, since, by Lemma 5.3, h+D C,~ 
for some C eA(scone j ,  R), and by the assumption about R, [S 'n  C,~[- > 
s / ( r - 7 ) > k .  On the other hand, if th+nR[<-j.,  then h+cC~,  for some 
C ~ A ( s c o n e j .  R), so that if hc~S' is a Vk(S')-triple, then it is a Vk(S'n C~)- 
triple. The converse does not necessarily hold, however, so if ho n S' is some 
Vk(S'n C~)-triple, it must be tested that h ~ c  C~. This may be readily done in 
constant time. 

A function for computing Vk(S')-triples using these ideas is sketched in the 
pseudocode in Fig. 2. In the function, it is assumed that S '=  3'(S) for some 
S c  E 2. Note that by Lemma 6.1, when s<_k(r-7), the Vk(S')-triples can be 
readily found given the ( k +  1)-VoD of S. 

One key step of the function is left unresolved: How is A(sconej .  R) to be 
computed? The following lemma, with Lemma 6.1, shows that this step may be 
reduced to the construction of  a few order = j ,  Voronoi diagrams. 

Lemma 6.2. Computation of  A(sconek S') is no harder than computation of all 
Vm( S')-triples, for m = k, k - 1, k -2.  That is, given all such triples, the cones in 
A(sconek S') can be found in O(1) time per cone. 

Proof By Lemma 5.1, every extreme ray of a cone in A(sconek S') corresponds 
to a V,,(S')-triple, for some m = k, k - 1 ,  or k - 2 .  It suffices to show that the 
adjacency relations between edges of cones in sconek S can be determined from 
these triples. Note that all triples associated with the extreme rays of  a given 
cone C contain ap C. Furthermore, by the proof  of  Lemma 5.1, any two edges 
bounding the same facet of  C have associated triples that share not only ap C, 
but another site as well. Therefore, a radix sort like that described in the proof 
of  Lemma 6.1 will yield the adjacency relations for extreme rays in O(1) time 
per ray. As discussed in the proof of Lemma 5.5, this implies that O(1) time is 
needed per cone in A(sconek S'). [] 
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function Find_Triples ( k : integer; S' : Set_of_Sites) 
return Set_of_Triples; 

co r is a (sufficiently large) constant, and S '=  T(S) for some S c  E 2 oe ;  

s~lS' l ;  
if s -< k(r - 7) then Determine the Vk (S')-triples by finding the (k + 1)- VoD of S 

using the [4] procedure; 
else 

repeat 
Choose random sample R c S' with [RI= r; 
Construct A(sconej, R); 

until VC E A(sconej, R), [S 'n Cd<-ot,s and [S 'n C,~t>-s/(r-7); 
for C ~ A(seonej, R) flo 

Output those triples T in Find_Triples(S'n C~) with hT =at t  T satisfying 
h ~ c  C~; 

od; 
fi; 
end function Find_ Triples; 

Fig. 2. Function Find_Triples for finding Vk(S')-triples. 

Lemmas 6.1 and 6.2, together with the above discussion, imply the following. 

Lemma 6.3. The function Find_Triples determines all Vk(S')-triples when k and 
S' are input. 

Lemma 6.4. The function Find_Triples requires O(sl+~k) time to determine the 
Vk( S')-triples of  s sites S'. The constant factor of  this asymptotic bound depends on e. 

Proof. The work performed at each call is as follows: if s<_k(r-7) ,  then a 
(k + 1)-VoD of no more than k ( r - 7 )  sites is constructed using the [4] algorithm. 
This requires no more than (k 2 log 2 k)O(r  2 log 2 r) time, as r-~ oo. If  s > k ( r - 7 ) ,  
then the time required includes that for computing a constant number of order 
O(j , )  Voronoi diagrams of r sites, requiring O(rj 2 log r) time, using the [21] 
algorithm. The number of  cones of A(sconej, R) is asymptotically the same as 
the size of  such diagrams by Lemmas 6.1 and 6.2, and so is O(rj,). The expected 
time required to check that a sample R satisfies the conditions of Lemma 5.4 is 
therefore sO(q , )  = sO(r log r). The number of  recursive calls to the function is 
also IA(sconej, R)I = O(rj ,) ,  and the size of each input to a recursive call is 
sot, = sO(log r/r). To test that each triple T has hr  = aft T satisfying h~-c C~, 
the time required is sO(log r /r )k  for each of the O(rj,) recursive calls, or 
O(rj,)sO(log r / r )k=skO( log  ~ r). Putting these facts together the time t(s) 
required by the algorithm satisfies the recurrence 

t( s) <-- skO( r log r)+ O( r log r)t( sO(log r/ r) ), 
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when s >  k ( r - 7 ) ,  with 
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t(S) <-- (k  s log 2 k )O(r  2 log 2 r), 

when s -  < k ( r - 7 ) .  These asymptotic bounds are as r ~ .  It is readily seen that 
the depth D of  this recurrence is O(log(s /k ) / log(r / log  r)), and that the solution 
t(s) is bounded by 

which is 

skO(r log r)(log r)S<°+l)+ (k s log s k )O(r  2 log 2 r)(r log r) °, 

skO(r  log r ) ( s /k)  o0oglog,/log r) + k 2 logs k O ( s / k )  l+o0oglog r/log r), 

or O(s~+~k) time, as s--> oo, where the constant factor of this asymptotic bound 
depends on e. [] 

7. Searching Arrangements 

In this section an algorithm for searching arrangements is given. The algorithm 
constructs a data structure so that given a query point a, the cell containing a 
can be found quickly. 

Some simple facts about arrangements will be useful. Every k-face f of Ms is 
determined by a partition of  S into sets S~, S~, and Sf,  with 

A simple arrangement is one for which every intersection of  k hyperplanes is a 
( d - k ) - f l a t ,  for l < - k - < d + l .  (Following [14], the empty set is a ( -D-f ia t ,  by 
convention.) A k- face f of  a simple arrangement satisfies I = d - k. Furthermore, 
if g is a ( k -  D-face that is a facet o f f ,  then S o = S~u {h}, for some hyperplane 
h, and if h ~ S f ,  then S~" = S~\{h} and S~" = S~7. An analogous relation holds if 
h S;. 

Edelsbrunner et al. [14] give an algorithm for determining from S the facial 
structure of  Ms, that is, the faces of  Ms and their containment relations. Given 
this information, A(Ms) may be determined by the algorithm of Section 2 in time 
linear in the complexity of  the facial structure of  Ms. 

An algorithm for searching arrangements results from the following fact: 

Lemma 7.1. Let R c S be a random sample of  a collection of  hyperplanes S in E d. 
Then with probability at least 1/2, every simplex in A(MR) is cut by sO(log r/ r) 
hyperplanes of  S, where r= IR[, s = IS I. A simplex will be said to be cut by a 
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hyperplane if the hyperplane has nonempty intersection with the relative interior of 
the simplex, but does not contain that interior. 

Proof. This lemma is an application of Corollary 4.2. The set S of  that corollary 
corresponds to the collection of hyperplanes S. The integer i of  that lemma takes 
the value d ( d + l ) .  A collection of  mappings v will be defined here so that a 
region that is the relative interior o f  a region in A(MR) is an element of  ~;R. The 
result follows from Corollary 4.2, given that the collection of  mappings is so 
defined. 

It will be convenient to index the mappings v as two collections va, m,d" and 
v~,m.a,, for O<-m<-d and l<-d'<-d. That is, the number n of  mappings is 
2d(d + 1). The definition of  a given mapping will ensure that a certain kind of  
region from A(MR) is included in ~R. For example, the definition of  the map 
Vd, m,d will ensure that all regions that are the relative interiors of  (bounded) 
m-simplices are included in ~:R. The map Vd.m.d' will ensure that the relative 
interiors of  (unbounded) m-cones of  A(MR) are present in ~R. The mappings 
Vd.m,d' and v~,m,d,, for d ' <  d, are included to account for regions of  A(MR) that 
are present when the arrangement MR is degenerate, as occurs when the set of  
normals to the hyperplanes in R has affine dimension d' .  

Consider first Vd.m,d, which will be defined so that relint X is included in ~:R, 
where X is an m-simplex in A(MR). How is X determined by the hyperplanes 
of R ? Each vertex of X is the intersection of d hyperplanes, and X has m + 1 
vertices. Therefore, if I e S ~, consider the leading (m + 1)d places of  I to be m + 1 
groups of  d hyperplanes, and define Vd, m,d(I) to be the interior of the simplex 
whose vertices are the intersections of the groups of  hyperplanes. Note that the 
hyperplanes in I need not be distinct. I f  one group of d hyperplanes does not 
intersect in a point, or if the intersection points all lie in a flat of  dimension less 
than m, define Vd,,,~d(I) to be the null set. With this definition of lJd.m,d , any 
m-simplex interior in A(Mn) will be present in ~R. 

It will hereafter be convenient to refer to the leading j places of  a tuple I ~ S i 
as I~j. 

Now suppose X ~ A(MR) is unbounded, and is the result of  the triangulation 
of an unbounded cell of  MR that has a vertex. Then X is a cone, and is an 
m-simplex in a generalized sense. That is, X is the convex hull of  a single point 
together with m "points at infinity." Such a point at infinity can be considered 
to be the endpoint of  a 1-flat that is the intersection of  d - 1 hyperplanes. For 
[ i • S ,  consider ]~d+m(d-1) to be a group of  d hyperplanes, followed by m groups 
of d - 1 hyperplanes. Define V~,,~d(I) to be the region that is the relative interior 
of the cone whose apex is the intersection of  the group of d, and whose extreme 
rays are parallel to the intersections of  the groups of  d - 1 hyperplanes. As before, 
if the result is ill-defined or degenerate, map  to the null set. 

Finally, suppose X ~ A(MR) is an unbounded region that is the result of  the 
triangulation of  a cell in MR that has no vertex. Such cells occur when the set 
of normals to the hyperplanes in R has affine dimension d '  with d ' <  d. In this 
case, as discussed in Section 2, there is a linear subspace L of  dimension d '  such 
that every cell P in MR has a representation P =  L~+(Lc~ P), where L n  P has 
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a vertex. Indeed, L may be taken as the linear closure of the set of  normals to 
the hyperplanes in R. The regions in A(MR) have the form LI+C,  where C is 
a simplex in a triangulation of L c~ P for some P e AR. If v e vert L c~ P, then 
v + L ± is a ( d -  d')-flat that is the intersection of  d' hyperplanes in R. 

To define Vd, m,a,(I), for d ' <  d, let I ~  S ~, and consider I ' =  l ~ ( m + l ) a ' .  Let L be 
the linear closure of the set of normal vectors to hyperplanes in I'. If  d' # dim L, 
take the value of  Vd, m.a'(I') to be the null set. If  d'  = dim L, consider the tuple 

I"= L n  I '=  ( L n  l 1 . . . .  , L n  I(,,,+l)a'). 

Apply Va,.~a, to I" in the natural way in L (rather than Ea'), and take va.,,,,a,(I) 
to be L±+ V a, ,,,,d,( l"). With such regions included in ~R, the regions of A(MR) 
that result from the triangulation of  some L n  P will be contained in ~:R, when 
the polyhedral set Lc~ P is bounded. The mappings v'a,,,.a,(I), for d ' <  d, can be 
defined in an analogous way, handling the case where the polyhedral set Lc~ P 
is unbounded. 

By including these different mappings, all possible sets from A(MR) will be 
contained in ~:R. As mentioned, the number of these mappings is 2d(d + 1) and 
they are defined on S a(a+l). The lemma follows. [] 

Suppose query point a ~ A~ A(MR), and A is cut by a set of hyperplanes S*. 
I f  it is known which cell of  Ms. contains a, then the cell of  Ms containing a may 
be readily determined. This suggests the following arrangement searching 
algorithm: to build a search tree for a set of hyperplanes S, take a random sample 
R and compute A(MR). Determine if every simplex in A(MR) is cut by sO(log r/r) 
hyperplanes of  S. If not, take another sample, repeating until this condition is 
satisfied, in O(1) expected trials. For each simplex A~ A(MR), determine the 
hyperplanes of  S that cut A, and recursively build a search tree for them. Given 
a query point a, determine the simplex of A(MR) containing a in its relative 
interior, and search the tree associated with the hyperplanes cutting A(MR). 

A space and time bound for this algorithm follow from bounds on the number 
of  chitdren of  a node in a constructed search tree, and the number of  hyperplanes 
associated with each child. The above lemma gives the latter, and the following 
lemma gives the former: 

Lemma 7.2. When an arrangement MR of r hyperplanes is given a triangulation 
A(MR) using the inductive method of  Section 2, IA(MR)I= O(ra), as r-~oo, for 
fixed d. 

Proof. We first prove the lemma for simple arrangements, and then show that 
nonsimple arrangements require no more simplices to triangulate. 

A proof  of  the lemma for simple arrangements stems from this observation: 
the number of  simplices in the triangulation given by the described inductive 
procedure is at most twice the total number in the triangulations of  the (d - 1)- 
faces, since each (d - 1)-face is a facet of  at most two d-faces. This number, in 
turn, is at most four times the total number of  simplices in triangulations of the 
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(d-2)- faces ,  since in a simple arrangement a (d -2 ) - f ace  is a facet of at most 
four ( d -  1)-faces. Indeed, from the facts given about simple arrangements, it 
follows directly that a k-face is a facet of at most 2(d - k) of the (k+  1)-faces. 
The lemma follows immediately for simple arrangements, using the O(r d) bound 
on the number of vertices of an arrangement in E a [14]. 

For nonsimple arrangements, it is enough to show that for any nonsimple 
arrangement ~/s, there is another one ~¢s" such that IA( s)l-< IA( s,)l. The 
arrangement ~/s, will be "almost" simple, that is, all k hyperplanes of S' have 
intersection with dimension at most d -  k. If  a set of k hyperplanes have an 
intersection of  dimension less than d - k, then their intersection is empty, so the 
above bounding argument for simple arrangements will apply to ~gs'. The arrange- 
ment ~s ,  is obtained by perturbing, one by one, any hyperplanes of S that meet 
"redundantly," that is, where k hyperplanes meet at a j-flat, with j > d - k  
Suppose h is a hyperplane of such a group, and f is a face of  ~ s  for which h 
is supporting. Since h meets other hyperplanes redundantly, it may be that if h 
were removed from S, then f would be unchanged. In this case, a small perturba- 
tion of h would yield some hyperplane h' that either does not touch f (when 
h' r~f = O) or cuts f in two (when h' c~f # O). In either situation, the triangulation 
of the result requires as many simplices as does the triangulation off i  It may be 
h is not redundant for f, so that removal of h from S results in the alteration of 
face f. In this case, a sufficiently small perturbation of h results in a new face f '  
with the same facial structure as f, and requiring as many simplices to triangulate. 

This completes the argument for nonsimple arrangements, and for this 
lemma. [] 

By choosing a sufficiently large value of r, the two lemmas and the discussion 
above yield the following: 

Theorem 7.3. A data structure for searching an arrangement of s hyperplanes in 
d dimensions can be constructed in O(s a+~) expected time and O(s a+e) worst-case 
space, so that queries may be answered in O(log s) time, as s-->oo, for fixed d and 
for any fixed e > O. 

8. Determining the Separation of Polytopes 

Recall that the separation of two polytopes is the minimum distance from a point 
of one to a point of the other. These points need not be vertices. Two points 
realizing the separation of  two polytopes will be termed a separation pair. In this 
section an algorithm is given that determines a separation pair for two polytopes 
A, B c E d in expected time O(Ivert A I ta/2j + lver t Bt td/2]). 

From Section 2 recall that IS(P) denotes the boundary complex consisting 
of the facets of  a polytope P, and their faces. The algorithm begins as follows. 
The random samples R A C A m ( ~ ( A ) )  and R B C A m ( ~ ( B ) )  are chosen, where 
Am(~(P))  denotes the set of simplices of  maximal affine dimension in A(~(P) ) .  
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After this choice of sample, a separation pair (a, b) is determined recursively for 
A' = cony RA and B' = cony Ra. 

By the Upper Bound Theorem [22], the number of facets of A' is O(rtd/zJ), 
where rA = tRal. The proof of that theorem implies that the number of simplices 
in A(~(A'))  is bounded by O(rt't/2J), so this fact and the analogous bound for 
B' give a bound on the size of the input for computing a separation pair of A' 
and B'. 

The usefulness of the separation pair of A' and B' is due to the following 
simple lemma, observed by Dobkin and Kirkpatrick [10]: 

Lemma 8.1. I f  a c A ' and b ~ B' are a separation pair for convex sets A ' and B', 
then h~-b,a is a supporting hyperplane of  A' and h~-b,b is a supporting hyperplane 
of  B'. 

Proof Omitted. 

Note also that no point pairs in/~+-b,a and /~-b,b are closer together than a 
and b. As a result, a separation pair for A and B is either (a, b), or a separation 
pair of A and B"=conv(Bnh+_b.b),  or of B and A"=conv(Ac~h=_b,~). (See 
Fig. 3. The samples RA and R8 are shown in heavy lines. The polygons A' 
and B' are darkly shaded, the polygons A" and B" are lightly shaded.) 

As implied by I~mma 8.2 below, with a probability at least 1/2, the number 
of simplices of A,,(~(A)) having nonempty intersection with h2-b.~ is 
nAO(log rA/rA), where nA = IAm(~(A))I. Therefore, with probability at least 1/2, 
A,,(~(A")) will have nAO(Iog rA/rA) simplices. An analogous relation holds for 
B". Since the probability of choosing a sample RA with these properties is at 
least 1/2, an average of two trials suffices to find such a sample. Testing whether 
or not RA and R~ satisfy these relations requires O(na+na)  time, since for a 
given sample, each simplex in Am(~(A)) and Am(~(B)) must be tested for 
intersection with the appropriate halfspace. Thus expected O(nA+ nn) time is 
sufficient to find suitable samples RA and RB. 

A t 
i 

...... ~,,~.~i~ 

i a 

A 

V 

Fig. 3. A separation pair for two polygons. 
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Lemma 8.2. Given a d-polytope P ~  E d with boundary complex ~ ( P ) ,  let R c  
A m ( ~ ( P ) )  be a random sample o f  size r. With probability at least 1/2, i f  h is a 
hyperplane with cony R r~ h + = 0 ,  then the number o f  simplices o f  A m ( ~ ( P ) )  
having nonempty intersection with h + is IAm(~(P)) lO( log  r / r), as r-~ oo. 

Proof. This lemma is an application of  Corollary 4.2, with the set S of  that 
corollary taken to be A m ( ~ ( P ) )  in this case. It will be shown that the appropriate 
value for the integer i is in this case d + 1. The main idea is to apply the outer 
cone construction to conv R. 

First suppose that d = dim R, so that the cones in ocone conv R are pointed. 
From Lemma 3.4, for some C e A(ocone conv R) it holds that h + c C~. Since 
C~ is the union of d open halfspaces defined by facets of  cony R, the lemma 
follows for the d = dim R case by showing that with probability at least 1/2, 
every such halfspace has nonempty intersection with an O(log r~ r) fraction of 
the simplices of  S = A m ( ~ ( P ) ) .  I f  a collection of  mappings is defined on S i such 
that these halfspaces are included in JR ,  then the lemma will hold, at least in 
the case where d = dim R. 

Each halfplane determined by a facet of  conv R is the affine closure of  d 
vertices of  conv R. The orientation of such a halfplane h ,  can be determined by 
choosing another vertex v of  conv R, and requiring that v ~/~,. To apply Corollary 
4.2, it is thus necessary to define a collection of mappings on S i so that included 
in this collection are all possible, ways of obtaining d + 1 vertices from at most 
d + 1 (d - 1)-simplices. 

Such patterns of choices will be encoded as follows. Suppose the vertices of 
each simplex in S are numbered from 1 to d. Let J denote a ( d + l ) - t u p l e  
(Jl . . . .  , Ja+l), for k = 1 , . . . ,  d + 1, where Jk denotes an ordered pair (Jk.~, Jk.2), 
with 1 < Jk,~ --< d and 1 < Jk,2 < d + 1. Let J*  denote the collection of all such 
(d + 1)-tuples, with the condition that all ordered pairs in a tuple J are distinct. 
Then J e J*  defines a way of choosing d + 1 vertices from the simplices in I ~ S i. 
That is, for choice k of  a vertex, pick the vertex numbered Jk,1 from I ~ .  The 
distinctness condition implies that d + 1 vertices will be picked. 

The collection J* contains all possible patterns of  choice of d + 1 vertices from 
a given I ~ S i. Every J e J* defines a mapping vj from S ~ to the set of  open 
halfspaces in Ea: given I e S  ~, choose the vertices from the simplices in I as 
indicated by J. The value of v j ( I )  is then the halfspace defined by these d + l  
vertices, as indicated above. The affine closure of  the first d bounds the halfspace, 
and the last vertex determines the orientation. ( I f  the affine dimension of  the set 
of  chosen vertices is not d, map I to the null set.) 

With the mappings uj so defined, Corollary 4.2 can be applied to show that 
when d = dim R, then with probability 1/2 the conditions of  the lemma obtain 
for an arbitrary halfspace h +. However, it may be that d > d i m  R. Such an 
occurrence would be strong evidence that most simplices of  S are contained in 
aft R. Then the outer cone construction may be applied to cony R, relative to 
aft R, to show that the half-flat h + c~ aft R is contained in the union of dim R 
half-flats contained in aft R. Since 

h + c (Ed \a f f  R) u (h + n aft R), 
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it suffices to show that with probability at least 1/2, few simplices of S intersect 
a region of  the form (Ee \a f f  R ) u  h~-, where h~" is a half-flat of  aft R that is 
bounded by the affine closure of a facet of  cony R. 

To allow for d > dim R in the application of  Corollary 4.2, it is thus sufficient 
to define a collection of  mappings re, jr,  0 <- d' <- d, where J~' encodes a pattern 
of choices of d ' + l  vertices from the first d ' +  1 simplices in some I s  S i, and 
those vertices define a region as follows: let V denote the set of d ' +  1 vertices, 
let V ' c  V denote the set of the first d'  vertices, and let v denote the last vertex. 
Then map I to the region 

(Ee \a f f  V) u h~-, 

where ho is the half-flat of  aft V bounded by aft V', and oriented so that v ~ h~. 
With ue,,sg' so defined, sufficient regions are included in S~R to allow the 

application of Corollary 4.2 to prove the lemma. The integer n of that corollary 
is in this case bounded by d(d + 1) d+l. [] 

All of the subproblems implied by the above sketch of the algorithm may be 
solved recursively, with the recursion terminating by using a "brute force" 
approach for suitably simple polytopes. I f  T(nA, nz) is the expected time 
necessary to determine a separation pair for polytopes A and B with nA = 
IAm(~(A))I and nn = IAm(~(n))l, then 

T(nA, nB)< O(nA + riB) 
W O(r[A d/2] log rA+ r td/2j log rB) 

+ O(nA log rA/rA+ nu log ra/ra) 

+ T(O(r[Ad/2J), O(rtBa/2J)) 

+ T(nA, nBO(1og rB/r~)) 

+ T(nAO(log rA/rA), nn). 

The first term in the bound is the time necessary to manipulate the triangulations 
of the polytopes, assuming that the facial lattices of the polytopes are given as 
input. The first term also bounds the expected time necessary to find suitable 
random samples, as described above. The second term is the time needed to 
determine the convex hulls of  sets of O(rA) and O(rB) points, the number of 
vertices in the simplices of  RA and Re [25]. (It is assumed that d > 1.) The third 
term is the time needed to compute the facial lattices of  the trangulations of A" 
and B": since each simplex in A(~(A") )  is the result of  cutting a simplex in 
Am(~(A))  by a hyperplane, the cost of  computing Am(~(A")) is constant per 
simplex, with the constant dependent on the dimension. The remaining terms 
bound the time necessary for the recursive computation of  separation pairs. 

The asymptotic bounds depend on rA or rB, as appropriate, as well as the 
dimension. 

With sample sizes rA= n~ a and rB= n~ a, the result is an algorithm that 
requires O(nA+nn) expected time. By the Upper Bound Theorem [22], 
nA = O(Ivert A[ td/2J) and nn = O(Ivert B[ td/2j ), yielding the following theorem. 
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Theorem 8.3. The separation of two polytopes A, B c E d may be computed in 
expected time O(Ivert AI [d/2j +[vert BILd/2J), where the expectation is with respect 
to the random behavior o f  the algorithm. 

9. Conclusions 

The approach to geometric computations described here has several advantages: 
it is general, and applies to many problems and to higher dimensions; it is simple, 
and yields algorithms that may be practical, and are at least not baroque; and it 
is flexible, and yields various tradeoffs by simply altering the sample size. 

Several natural question's are associated with the k-set bound given here. The 
new bound, and earlier bounds for the planar case, suggest the conjecture that 
gk.d(S) = O(std/2Jkrd/21). Suppose it can be shown that for some C independent 
of s and k, gk.d(S)= O(std/2JkC). Then the proof techniques given here readily 
yield the result g~d( s )=  O(sLd/2Jkrd/21)O(s~), for any fixed e > O. 
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