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Abstract. Precise asymptotic formulae are obtained for the expected number of 
k-faces of the orthogonal projection of a regular n-simplex in n-space onto a randomly 
chosen isotropic subspace of fixed dimension or codimension, as the dimension n 
tends to infinity. 

1. Introduction 

Let 7" be an n-dimensional regular simplex in euclidean space •". We project T" 
orthogonally into a randomly chosen d-dimensional linear subspace with isotropic 
distribution and denote by Efk(l-I d T") the expected value of the number fk of k-faces 
of the projection. Here d e {1 . . . . .  n - 1} and k ~ {0, 1 . . . . .  d - 1} are given integers. 
We are interested in an asymptotic formula for Efk(Hd T') when the dimension n 
tends to infinity. This question, for the special case k = 0, was posed some years 
ago by J. E. Goodman and R. Pollack and was reported to one of us by P. 
Mani-Levitska. An answer is given by the following theorem. 

Theorem 1. For any given integers 0 < k < d < n - 1, 

2 d (  d ) k  + 1 Ta- n)ta-1)/2 EA(rId T") ~ - ~  #(T k, 1Xn log 

as n tends to infinity. 

Here f l(T k, T d- 1) denotes the internal angle of the regular (d - 1)-simplex T ~- t 
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at one of its k-dimensional faces (see Section 3 for more information on this 
constant). 

The question posed by Goodman and Pollack is part of a general program, 
which may be sketched as follows. Every configuration of n + 1 numbered points 
in general position in R d is affinely equivalent to the orthogonal projection of the 
set of numbered vertices of a fixed regular simplex T ~ c R" onto a unique 
d-dimensional linear subspace of R ~ (for a closely related assertion, see p. 121 of 
[7]). This fact induces a one-to-one correspondence between the (orientation- 
preserving) affine equivalence classes of such configurations and an open dense 
subset of the Grassmann manifold of oriented d-spaces in R". Since the Grass- 
mannian carries a unique rotation-invariant probability measure, Goodman and 
Pollack propose to use the correspondence in order to introduce a natural 
probability measure on the space of affine equivalence classes of configurations of 
the type above. This opens the way to treat various questions on probabilities of 
special configurations or on expectations of random variables associated with 
them. As one example, Goodman and Pollack mention a fresh approach to the 
classical Sylvester problem (see the Remark at the end of Section 3) and propose 
its generalization to probabilities of order types in higher dimensions. Inde- 
pendently, versions of the "Grassmann approach" were proposed by Vershik, see 
[13] and [12]. Vershik and Sporyshev [141, [15] used it to obtain an asymptotic 
upper estimate for the average number of steps required by a version of the simplex 
algorithm, when the number of variables tends to infinity while the number of 
constraints is fixed. 

Theorem 1 has a (simpler) counterpart in which the projection is onto subspaces 
of fixed codimension: 

Theorem 2. For any given inte#ers 0 < k < n - d, 

~= fk(T  n) 
+ 

as n tends to infinity. 

It is not difficult, by means of some integral geometry, to derive a general 
expression for the expectation Efk(rlaP ), where P is an arbitrary convex polytope 
in R". We do this in Section 2, thus generalizing results of Miles [8]. This expression 
involves internal and external angles of the polytope P. As these are spherical 
volumes, an explicit computation will be impossible in almost any concrete 
higher-dimensional case (except for the cube); hence even for regular simplices we 
have to be satisfied with asymptotic expressions. The theorems are proved in 
Section 3. 

In the course of the proof it turns out that the expected number of facets of 
the orthogonal projection of an n-dimensional regular simplex onto an isotropic 
d-dimensional random su_bspace of R" coincides with the expected number of facets 
of the convex hull of n + 1 independent and normally distributed random points 
in ~ .  While we have no explanation for this fact, it allows us to deduce our 
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asymptotic formula of Theorem 1 from a result by Raynaud [9] concerning convex 
hulls of normally distributed random points. 

2. Expected Face Numbers of Random Projections 

We begin with some preliminaries. By R" we denote the n-dimensional euclidean 
vector space and by G(n, CO the Grassmannian of d-dimensional linear subspaces 
of R", endowed with the usual topology. The (unique) rotation-invariant prob- 
ability measure on G(n, d) is denoted by Yd. For L ~ G(n, d), let I-I L be the orthogonal 
projection from R" onto L. 

A polytope in R" is the convex hull of a nonempty finite set of points. The set 
of k-dimensional faces of a polytope P is denoted by ~(P) ,  and fk(P) = card ~ ( P )  
is the number of k-faces. 

By an isotropic random d-subspace we understand a random variable, defined 
on some probability space, with values in G(n, cO and with probability distribution 
va. Let A be such a random d-subspace, and let P be a given n-polytope in R". 
We denote the projection 17 A by Ha, thus I'IdP is a random polytope and fk(IIdP) 
is an integer-valued random variable for any k ~ {0, 1 . . . . .  d - 1}. Its expectation 
is given by 

Efk(HdP) = f~ fk(HzP) dvd(L). 
(n. d) 

(i) 

By integrating relation (3.1) in [4] (with different notations) we obtain 

Efk(I-IdP)= ~ ?"-d'"(P,F), (2) 
F~fk(P) 

where ?"-d.n(p, F) is a Grassmann angle as defined by Griinbaum. Using formulae 
of spherical integral geometry, we can express this Grassmann angle in terms of 
internal and external angles. For (nonempty) faces F, G of P, let fl(F, G) be the 
internal and let y(F, G) be the external angle of G at its face F (see Chapter 14 of 
[3]). By definition, fl(F, F) = y(F, F) = 1 and fl(F, G) = y(F, G) = 0 if F ¢ G. 
McMullen [6] defined 

@r(F, G ) : =  2 fl(F, jr)y(jr, G) 

and deduced (p. 257) from results by Santal6 [11] that 

?,-n.,(p, F) = 2 ~ ~n-I-2~(F,.P). (3) 
s>O 

The formulation in [6] is in terms of polyhedral cones. In our case, these results 
have to be applied to cone(0, P - z), where z is a point in the relative interior of 
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the face F. From (2) and (3) we get 

Efk(IIdP ) = 2 ~, ~ ~ ~(F, G)7(G, P). (4) 
s>_O F~.~'~P) G~.~d-I-2s(P) 

Another representation can be obtained by using McMullen's bilinear angle 
sum relations. If Theorems 1 and 2 of [6] are applied to the image of cone(0, P - z) 
under the orthogonal projection with kernel aff(F -- z) (compare Section 2 of [6]), 
we obtain 

(I),(F, P) = 1 
r = k  

and 

n 

(-- 1)'~,(F, P) = O. 
r = k  

Together with (3) this yields 

~,- a.,(e. F) = 1 - 2 ~ ~d + 1 + 2~(F. P) 
s > O  

and hence 

Ef~(IIdP ) = f~(P) - 2 ~ ~ ~ //(F, G)?(G, P). 
s>_0 FE..~k(P) G~.~',/+l+2s(P) 

(5) 

Formula (4) for the case k = d - 1 (where no internal angles # 1 occur) and 
formula (5) for the case d = n - 1 (where no external angles ~ 1 occur) were 
already obtained by Miles [8, p. 234]. 

3. Regular Simpliees 

Now we turn to the special case where P is an n-dimensional regular simplex T". 
Let Fe  ~rk(T" ) be a k-dimensional face of T", where k e  {0 . . . . .  n - 1}. The set of 
exterior unit normal vectors to T" at some relatively interior point of F is an 
(n - k - 1)-dimensional regular spherical simplex lying in an (n - k - 1)-dimen- 
sional great subsphere $,-k-1 of the unit sphere of R". Its spherical edge-length 
is equal to the angle between the exterior normal vectors of two distinct facets of 
T", which is given by arccos(-1/n).  By v(m, o~) we denote the m-dimensional 
spherical measure of a regular spherical simplex in S m of edge-length ~, and 
to m = 2n (m+ 1)[2/F((m + 1)/2) is the total measure of S". Thus the external angle of 
7" at its k-face F is given by 

v(n - k - 1, a rccos( -  l/n)) 
?(F, T ' ) =  (6) 

O)n--k- 1 
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F o r  the internal angle of T ~ at the k-face F we obta in  

v(n - k - 1, a r c c o s ( 1 / ( k  + 2)) )  fl(F, r " ) =  (7) 
fDn-k-  1 

In the following we consider  T k, for k < n, as a face of  T". 
First  we t reat  the case k = d - 1 of  Theo rem 1. In  this case, (4) reduces to 

Let  m >_ 2. I f  

Efd_,(IIaT")= 2 ( n + l )  d ~(T d- 1, T.). (8) 

then a formula  going back to Ruben  [10] (see Section 3.3 of  [51 and p. 283 of [2] 
for shor t  proofs) says tha t  

where 

v(m_l,a) 1 f~ e_,~( l_l__f;:,,, )m e dt, 

--COS a ) 112" 
Am(a) -- 1 + ( m - -  i)-cos 

F o r  m = n - d + 1 and cos a = - 1/n, c o n d i t i o n  (9 )  is satisfied, hence 

,,Ta_l, T., = ~ f foo e_at~( ~ ~ \.-a+, \x/~f'_ e-'ds) dt, 

which gives 

Y[a-l(17dT")=2(n+dl)~ffooe-daq~(t)'-a+'dt 

with 

e-at~{~p(t)'-a+' + [1 -- q~(t)] ~-d+l} dt (10) 

t 
1 e -  e 

~ o ( t ) - =  ~ _ oo ds. 

1 
- - -  < cos a < 0, (9) 

m - 1  
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The right-hand side of (10) is precisely expression (1.13) in [9], with N replaced 
by n + 1 and n replaced by d. There it represents the expected number of facets 
of the convex hull of n + 1 random points in R a, chosen independently according 
to a normal distribution. The asymptotic behavior of (t0) for n ~ oo was estab- 
lished by Raynaud. (More details of the necessary estimations can be found in 
Appendix II of [1], where an extension is treated. For a different approach, see 
[15].) From his result, we conclude that 

Efa_ t(He T" ) .,~ 2a (z~ log n) (a-1)/2 (11) 

For arbitrary k e {0 . . . . .  d - 1 }, we see from (4) that 

/ n  + 1 "~f d - 2s'X k 
Efk(FIeT") = 2 ~ o [ , d -  2s )~k  + I  ) f l (T ,  Ta- 2"- I)y( Ta-2"- I, T"). 

Now we observe that here the number of nonzero summands does not depend on 
n and that 

2[n  + 1 "~ , T d _ 2 ~ _  1 2 e-zs 
~ d -  2s) 7t , T") ' :  x / d _  2s 

_ _  (It log n) (e- 2~- 1)/2 

for n -* oo, by (8) and (11) with d replaced by d - 2s. It follows that the term with 
s = 0 is dominating, which completes the proof of Theorem 1. 

For the proof of Theorem 2 we use (5), where we replace d by n - d. Thus we 
obtain 

= - 2  d - 2 s  - 1 k + 1 f l(Tk'  

Here the number of nonzero summands does not depend on n. Further, 
7(T m, T") < 1 and ]/(T k, T m) _< 2 k-*, hence fl(T k, T "-k+2s+ 1) _< c .2 - "  with a con- 
stant c independent of n. Since the binomial coefficients in the last sum are bounded 
by fixed powers of n, Theorem 2 follows immediately. 

Remark. If four random points are chosen in the plane, what is the probability 
that they form a convex quadrilateral, that is, that none of the points lies inside 
the triangle formed by the other three? If the points are independently and 
uniformly distributed inside a given convex domain K, then this question is the 
classical problem of Sylvester. The probability p(K) of obtaining a quadrilateral 
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in this case satisfies 

35 
< p(K) _< 1 -- - -  = 0.7048, 

12r~ 2 

with equali ty on the left if K is a tr iangle and on the right if K is an ellipse, and 
only in these cases. 

G o o d m a n  and Pol lack suggested a reformulat ion of Sylvester 's  original ques- 
t ion which does not  require the points  to lie inside a preassigned region, but  
instead uses the probabi l i ty  measure  for 4-point  configurat ions described in the 
introduct ion.  In other  words,  and  extended to higher dimensions,  we ask  (for 
example)  for the probabi l i ty  p,+ 1 that  the o r thogona l  project ion 17,_ 17" of the 
n-dimensional  regular  simplex on to  an isotropic r a n d o m  hyperp lane  has n + 1 
vertices. Since I I , _  1 T" has either n or  n + 1 vertices, 

n(1 - P,,+I) + (n + 1)p,,+l = Efo(n._~Tn) 

= fo(T")-  2 ~ fl(F, T") 
Fe,~o(T") 

2(n + 1)v(n -- 1, ~/3) 
= (n + 1) -- 

(Dn- 1 

by (5) (or an easy direct a rgument)  and  (7). This  yields 

Pn+l = 1 
2(n + 1)v(n -- 1, ~/3) 

('On- 1 

Especially, 

6 
p ,  = 3 - - arccos ½ = 0.6490, 

/z 

as a l ready compu ted  by G o o d m a n  and Pollack.  
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