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Modal interpretations of QM have the welcome consequence that 
un i t a r i ly  evo lved  pos t -measu remen t  s tates  which supe rpose  
e igenstates  of the anticipated pointer  observable  can represent  
devices  registering determinate measurement  outcomes. Albert  
and Loewer  have c la imed that modal  in terpre ta t ions  cannot 
account for the outcomes of "error-prone" measurements.  But 
Alber t ,  Loewer ,  and their  commenta to r s  have not a lways  
apprecia ted the relat ion of  measurement  error  to the Alber t -  
Loewer  problem. I argue that measurement  error is nei ther  
n e c e s s a r y  nor  su f f i c i en t  to gene ra t e  the A l b e r t - L o e w e r  
p rob lem,  and use the Arak i -Yanase  theorem to show that 
measurements of  a large class of  observables,  i f  they are error- 
free, are beset by the Albert-Loewer problem. 

Key words: modal interpretations,  measurement problem, Albert ,  
imper fec t  measurement .  

1. THE MEASUREMENT P R O B L E M  

According to a standard quantum mechanics (QM) text, a 
physical  system possesses a determinate value for a magnitude 
A "if, and only if, the [quantum] state of the physical system is 
represented by an eigenfunction tai> of  the Hermitean operator 
A associated with A" [27; 19, 26, 29]. Call this pr inciple  of  
determinate  value assignment  the eigenvector/eigenvalue link. 
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quantum measurements  don't  have outcomes.  The problem 
persis ts  when thc s impl i fy ing  assumpt ions  cons t ra in ing  the 
measurement model just discussed are relaxed [9]. 

Recognizing this problem, von Neumann[32]  responded 
by invoking the deus ex machina of measurement collapse,  a 
sudden, i rreversible,  discontinuous change of  the state of  the 
measured system to an eigenstate of  the observable measured. 
So, for example,  a collapse episode would instantly change the 
supe rpos i t ion  Y-i ci loi>lpi> to an O ® P eigenstate; collapse to the 
e igensta te  Ion>Ipn> occurs with probabil i ty lcn 12. Many texts 
accord this "Collapse Postulate" axiomatic status, but they do not 
thereby repair the conceptual damage it does. Perhaps the most 
unse t t l ing  impl ica t ion  of  the Co l l apse  Pos tu la te  is that  
laboratory tests of  the empirical adequacy of QM succeed only if 
the fundamental dynamical law of  the theory breaks down. 

2. MODAL I N T E R P R E T A T I O N S  

All that is familiar. Presently growing in notoriety, an 
elegant family of interpretations of QM which I'll call m o d a l  
interpretations purport to evade the measurement problem by 
main ta in ing  the universa l i ty  of  Schr6dinger  evolu t ion ,  and 
revising the e igenvector /e igenvalue  link [10,14,15,20,24,25].  A 
stock example of a modal interpretation exploits a theorem von 
Neumann attributes to Schmidt. According to this theorem, any 
vector  Iq ' s r>  in the tensor product space H s ® H r admits  a 
decomposition of the form 

lq'sr> = Y~i cilai>lbi >, 

where {ci} are complex coefficients, {lai>} and {Ibi>} are sets of 
o r thogona l  vec to r s  on H s and H r r e spec t ive ly ,  and the 
summation index i does not exceed the dimensional i ty  of  the 
smaller factor space. If the set {lci 12} is non-degenerate ,  then 

this polar decomposition of l~s r>  is unique. 1 
M o d a l  i n t e r p r e t a t i o n s  2 r e p l a c e  the  o r t h o d o x  

e igenvector /e igenvalue  link with the fol lowing semantic  rule: 

MSR: If  Ikusr> = ]Li c i l a i> lb i>  is the unique polar 
decomposit ion of the state of  a composite S + R 
system, then subsystem S has a determinate value 
for each H s observable with eigenbasis  {lai>}, and 

subsystem R has a determinate value for each H r 
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QM texts standardly assert that quantum states, governed by the 
time dependen t  Schr6d inger  Equat ion ,  evolve un i t a r i ly .  
Unfortunately,  the conjunct ion of unitary dynamics and the 
eigenvector/eigenvalue link fails to account for measurement 
phenomena. In an ideal von Neumann measurement [32,12] an 
object system S is coupled to a recording apparatus R. 
Associated with the systems are Hilbert spaces H s and H r . 
Consider non-degenerate object observable O,  with eigenbasis 
{Ioi>} and eigenvalues {oi}, on H s and pointer observable P, with 

eigenbasis {Ipi>} and eigenvalues {Pi}, on H r . Suppose that S's 
pre-measurement state is an eigenstate Ion> of O,  and that R's 
initial state is some apparatus "ready" state lp0>. In the tensor 
product Hilbert space H s ® H r, an ideal O by P measurement  
unfolds as follows: 

Ion>lp0> ---> lon>lPn>. (1.1) 

Let U I v N  represent an H s ® H r operator which is a unitary 
extension of the map (l .1).  In (1.1) the pre-measurement 
composite state is an O ® I r (I r the identity operator for H r) 
e igensta te  associated with the e igenvalue  On; the post- 

measurement composite state is an I s ® P eigenstate associated 
with the e igenvalue  Pn.  The evolution operator U I v N  
replicates the object observable 's  pre-measurement  value in 
the pointer  observable ' s  pos t -measurement  value,  and so 
conforms to intuitive measurement desiderata. 

U IvN falters when asked to work on an object system 

whose premeasurement state is the superposition t~s>  = Y~i ci Ioi>. 
Because unitary operators are linear, 

UlvN(l~tS>lp0 >) = Zi ci UIvN(IOi>lp0>). (1.2) 

Specifying U l v N ' S  action on Ioi>lp0>, (1.1) generates the post- 
measurement composite state 

tWsr> = ~i ci Ioi>lpi>. (1.3) 

lqssr> is not an eigenstate of the pointer observable I s ® P. By 
the eigenvector/eigenvalue link, the pointer observable has no 
determinate value. Crudely put, the pointer doesn't  point. 
According to one version of the measurement problem, if the 
Schr6dinger Equation governs, measurement evolutions,  and if 
the e i g e n v e c t o r / e i g e n v a l u e  l ink governs  the de te rmina te  
observable values characterizing quantum systems, then most 
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observable  with eigenbasis  {Ibi>}. Icn 12 gives the 
probabi l i ty  that these observables '  actual values  
are the eigenvalues associated with lan>lbn>.  

Express ing modal semantics  in terms of  the densi ty  matr ix 
fo rma l i sm makes  the i r  f ami ly  r e semblance  to o r thodox  
e igenvector /e igenvalue  semantics more perspicuous [31]. The 
density matrix W s representing the reduced state of subsystem 
S of  a composite  S + R system may be obtained from the 
composi te  state I~t'sr> by "tracing out" over the degree(s) of  
freedom pertaining to the "remainder" system R. Where {Ixi> } is 

a complete orthonormal basis spanning H r, 

W s --- Y-i <xil vs r><vsr l  xi>. (2 .1)  

The reduced state W s encodes Iv s r> ' s  statistical implications for 
observables pertaining to S alone: for each observable Q on H s, 
T r ( Q W S )  = <hvsrlQ ® l r l v s r > .  While  the composi te  state 
determines a unique reduced state for each of its component  
systems, the converse does not hold. Now, W s is an operator 
whose eigenbasis  is the complete orthonormal basis furnishing 
the polar  decomposition of I'q'sr> and whose eigenvalues are the 
squared norms of  the expansion coeff ic ients  of the po la r  
decomposition. If this set is non-degenerate, the operator W s is  
non-degenera te  as well.  We may express  the consequences  
modal semantics hold for subsystem S as follows: 

( M S  R S )  If W s is the non-degenerate reduced state of a 
quantum system S, and W s has eigenvectors {lai>} with 

e i g e n v a l u e s  {lcil2}, then S has a determinate value for 

each H s observable with eigenbasis {lai>}. The probabili ty 
an observable determinate on S has as its actual value the 
eigenvalue associated with lan> is Icn 12. 

Orthodox semantics assign S a determinate value for an 
observable  if and only if S's reduced state is a pure state, 
represented by a projection operator rr s, an extremal member of  
the set of  density operators.  Observables containing ~t s in their 
s p e c t r a l  r e s o l u t i o n s  are d e t e r m i n a t e ,  a c c o r d i n g  to the 
e i g e n v e c t o r / e i g e n v a l u e  l ink.  The modal  semant ics  extend 
orthodox semantics to systems whose states W s aren't pure. An 
impure W s cannot be identified with a projection operator, but it 
may be associated with a set of  projection operators {hi} which 
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provide its spectral  resolution.  Observables  containing {rci} 
their spectral resolutions are determinate, according to (MSRS).  
Thus we may express both orthodox and modal semantics in 
terms of the spectral  resolut ions  of the densi ty  opera tors  
r epresen t ing  the s ta tes  of  quantum sys tems .  On both 
interpretat ions,  it is necessary that an observable  determinate 
on a system with reduced state W s have in its spectra l  
resolut ion the projectors  in W S's spectral  resolution.  But 
e igenvec to r / e igenva lue  semant ics  add i t iona l ly  requi re  W s to  
be a pure state, so that it coincides with its spectral resolution. 

Not on ly  do moda l  s e m a n t i c s  seem a na tu ra l  
generalization of orthodox semantics, modal semantics also deal 
e legant ly  with the unitar i ly evolved pos t -measurement  states 
which confounded the e igenvector /e igenvalue link. Recall  the 
post -uni tary-measurement  composite  state Iq 'sr> = Y~i ci Ioi>lpi>,  
which induces the reduced apparatus state W r = E l  lci 12 lpi><pil-  
Accord ing  to (MSR),  the observab les  de te rmina te  on the 
apparatus system are H r observables conspiring in IVsr>'s  polar  
decomposi ton,  observables  whose e igenbas is  d iagonal izes  w r  
By the modal  semantics ,  then, the poin ter  observable  P i s  
determinate  on the apparatus system after measurement ,  and 
the Born Rule furnishes a probabi l i ty  d is t r ibut ion over  its 
possible values. The ignorance interpretation of mixtures also 
essays this pattern of  value assignment to subsystems of  the 
composite  system. But so doing, the ignorance interpretat ion 
implies that the composite state is the mixture 

w s r  = Y~i Ici 12 Ioi><oil ® tpi><Pi t, 

a mixture empir ica l ly  d is t inguishable  from the system's  true 
pure state IV sr>.  Modal in terpreta t ions  avoid this debacle  
because their value assignments are not only compatible with 
the attribution of the pure state IVsr> to the composite system, 
they're also derived from that pure state attribution! Thus 
would  the Moda l  I n t e r p r e t a t i o n  e x p l a i n  what  t e x t b o o k  
i n t e r p r e t a t i o n s  can not:  how m e a s u r e m e n t  i n t e r a c t i ons  
obedient  to the laws of  quantum dynamics issue determinate  
o u t c o m e s  c o r r a b o r a t i n g  the p r e d i c t i o n s  o f  the quan tum 
s ta t i s t ica l  a lgor i thm.  

3. THE A L B E R T - L O E W E R  P R O B L E M  

Albert  and Loewer cOntend that modal  in terpreta t ions ,  
h o w e v e r  m a r v e l l o u s t y  they  accoun t  for  m o d e l  pos t -  
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measurement states such as i~psr>, are stymied by the post- 
measurement  states of  actual laboratory devices [1-3]. The 
coupl ing  U I v N  establishes a perfect  cor re la t ion  be tween  
pointer eigenstates and orthogonal states of the object system. 
This,  Alber t  and Loewcr  contend,  requires  e r ro r - f ree  
measuring devices,  and even "the more expensive sorts of  
. . .measuring deviccs" [1] will introduce some noise into the 
measurement process. A utopian device for m e a s u r i n g ~ ( z ) ,  
the z-component of spin on a spin 1/2 system, will have two 
indicator states, I"+"> (signalling the +1/2 value of ¢~(z)), and 
I"-"> (signalling the -I/2 value). I"+"> and I"-"> comprise the 
e igenbas i s  of  the poin ter  obse rvab le  P .  The utopian 
measu remen t  e v o l u t i o n  will  co r re la te  these e igens t a t e s  
perfectly with ~(z)  eigenstates I+> and I->. When the initial state 
of  the object system is I~> = al+> + bl->, an ideal spin 
measurement develops as follows: 

(al+> + bl->)lp0> ---> al+>l"+"> + bl->l"-"> = 1~>. (3.1) 

But in "in a real measurement, there is always some probability 
of the measuring device making an error." So after an error- 
prone (and ergo realistic) spin measurement, the state of  the 
composite system will be not I¢~> but 

I~'> = a'l+>l"+"> + b'l->l"-"> + cl+>l"-"> + dl->l"+">. (3.1') 

where "the components I->1"÷"> and I÷>1"-"> represent errors"[2]. 
Now the rub for modal interpretations is that in virtue of 

Schmidt 's theorem, I@'> will admit of a polar decomposition in 

terms of some bases {11">, hi.>} on H s and {IU>,ID>} on H r. {11">,1,1.>} 
will be the basis of a component of spin cr(z ')  different from 
~ ( z ) ,  and {IU>,ID>} the basis of some observable P '  on the 
apparatus system which is different from P, and whose physical 
in terpreta t ion is unclear.  (MSR) impl ies  that t h e s e  
observables--and not t h e G ( z )  observable we take ourselves to 
be measuring, and not the pointer observable we look to in 
measur ing i t--are the observables  which have de terminate  
values when ]~'> represents the composite system. The Albert- 
Loewer  cri t icism is that, interpreting actual postmeasurement  
states like I@'>, modal semantics "fail to assign a definite position 
to the pointer which is supposed to register the measurement 
outcome" [1] and so offer us "no guarantee that measurements 
will have definite outcomes" [3]. Slavish adherence to modal 
semantic rules in the face of realistically error-prone devices 
allots the "wrong" observables determinate values. 3 
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4. M O D E L L I N G  DEVICE ERROR:  ROGUE H A M I L T O N I A N S  

Albert  and Loewer submit the generic poss ib i l i ty  that 
real world measurement evolutions leave apparatus systems in 
reduced states which aren't diagonal ized by the eigenbasis  of  
the ant icipated pointer  observable.  Call interact ions issuing 
such states A L - p r o n e .  Alber t  and Loewer  mot iva te  the 
possibil i ty of AL-prone measurements by an intuitive appeal to 
device error. Modal proponents were quick to point out that 
measurements  can be e r ror -prone  in Alber t  and Loewer ' s  
intuitive sense without being AL-prone, that is, without visit ing 
indeterminate  poin ter  observables  on measurements  moda l ly  
described. To model situations in which "the pointer registers 
["+"] when the value of [spin] is actuallly [-]" [11] Bub summons 
rogue measuremen t  Hami l ton ians  which,  gove rn ing  er rant  
measurement  in teract ions ,  leave devices  in mis lead ing ,  but 
nevertheless determinate,  indicator states. For instance, a rogue 
evolut ion  opera tor  U e  might a n t i - c o r r e l a t e  spin and poin ter  
e i g e n s t a t e s :  

Ue(t+>lp0>) = I+>I"-">, (4.1) 

Ue(I->lp0> ) = I->r'+">. (4.2)  

Performed on a spin system with initial state al+> + bl->, the 
mis f i r ing  measurement  dr iven by this rogue Hami l ton ian  
issues the post-measurement composite  state 

I~> = al+>l"-"> + bl->l"+">. (4.3) 

The eigenbasis {t"+">,l"-">} of the anticipated pointer observable 
P furnishes a polar decomposition of I_(17._>. (MSR) therefore allots 
P a determinate value. Its value is "+" when the spin of the 
object system is -, but still the apparatus registers an outcome. 
"How else could the instrument err," Bub asks Albert  and 
Loewer, "if  it registers at all?" 

In a s imi la r  vein, Healey [21] offers  " A l m o s t - O "  
measurements,  unitary extensions of the map 

Ini>lp0> ---> lni>lpi>, (4.4) 

where {Ini>} are eigenstates of an observable "close to" the 
anticipated object  observable O in that <niloi> = ~Sij. Acting on 
the initial object state 
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I~ s> = Y-i ci Ioi> = 2ij ci <njloi>lnj>, (4.5) 

(4.4) issues the post measurement composite state 

I-.W- st> = Y-ij ci <njloi> Inj>lpj>. (4.6) 

In (4.6), the pointer observable P gives the polar decomposition 
of t~___sr>. Thus (MSR) attributes P a determinate value, even 
though the interact ion fails to correlate P ' s  e i g e n s t a t e s  
perfectly with O ' s .  Almost-O measurements  comprise  a 
par t i cu la r ly  we l l -behaved  class of rogue measurements .  
Because <ni loj> = 8ij, the r.h.s, of (4.6) indicates that P is not 
only determinate but also manifests  statistics which very 
nearly reproduce the O measurement statistics implicit in the 
initial object state. 

Albert and Loewer worry that modal in terpreta t ions  
cannot expect Nature to leave laboratory devices in states 
diagonalized by just the right apparatus observable. Bub's and 
Healey's  error-prone devices misfire,  but they misfire so 
providentially that they are left in reduced states diagonalized 
by just the right apparatus observable. Albert and Loewer may 
well ask: Why should we expect all imperfect devices to misfire 
in exact ly  this way'?! Offer ing  these coope ra t ive ly  
uncooperat ively  devices in response to the Alber t -Loewer  
argument, Bub and Healey seem to miss its point. But 
identifying the uncooperative situations as situations in which 
the device errs by recording the wrong value, Albert and 
Loewer invi te  Bub and Healey to miss their point. Identifying 
error-prone measurements  with respect to what the device 
r e g i s t e r s  enables a modal proponent to incorporate her own 
criterion of observable dcterminateness in an account of device 
error. And an account of device error predicated on modal 
semant ics- - th is  is essentially what Bub and Healey of fe r - - i s  
unlikely to threaten modal interpretations. 

5. ERROR:  THE MISTRANSCRIPTION OF PROBABILITIES  

I propose to cull from the quantum theory of 
measurement a notion of measurement error which does not 
p r e s u p p o s e  any p a r t i c u l a r  a c c o u n t  of o b s e r v a b l e  
determinateness .  Suspending the intui t ive desideratum that 
measu remen t s  should c o m m u n i c a t e  p r e - i n t e r a c t i o n  objec t  
observable  values to pos t -measurement  pointer  observable  
values, what do we expect of measurement? Van Fraassen 
suggests that "the most general not ion of measurement  



Albert-Loewer Problem 335 

requires . . . only that we be able to infer from information of 
outcomes to information of the measured system's initial state" 
[30]. A sort of transcription criterion serves to capture this 
intuition. Let IV> be an arbitrary premeasurement object state. 
Then what Busch, Lahti and Mittlestaedt [12] call the probabi l i t y  
reproducibi l i ty  condi t ion (PR) requires the coupling U between 
object system S and recording device R (initially in ready state 
Ip0>) to transcribe the probability distribution tv>  defines for 
the object observable O to the probability distribution the post- 
measurement composite state U(Iv>lp0>) defines for the pointer 
observable I s ® P. Where W r  is the reduced apparatus state 
induced by U(Iv>Ip0>), we can express (PR) as follows: 

The quadruple <H r, Ip0>, P, U> satisfyies PR for O if and 
only if, for any initial object state IV>, 

Tr(Iv><Vloi><oil) = Tr (Wrlpi><Pi I) (PR)  

In an interaction satisfying (PR), if the initial object state 
assigns object eigenvalue On probability ICn 12, then the final 
apparatus state will assign pointer  value Pn the same 
probability. We can infer IV> from pointer statistics, and so 
satisfy van Fraassen's intuitive desideratum. 

Biasch, Lahti and Mittelstaedt offer (PR) as a necessary, 
but not sufficient,  condition for measurement.  They would 
supp lement  (PR) by an "objec t i f ica t ion"  requ i rement ,  a 
criterion of observable determinateness by whose lights the 
pointer observable designated in a PR-satisfying interaction is 
determinate. But in the last section, we saw how, in the context 
of the Albert-Loewer problem, relying on an objectif icat ion 
requirement  to characterize measurement  error runs us in 
dialectical circles. It may be more strategic in that context to 
cha rac te r i ze  measu remen t  error  with respect  to (PR) 
unsupplemented. Thus I suggest we take quadruples <H r, Ip0>, P, 
U> fulfilling (PR) for O to be error-free O - m e a s u r e m e n t s ,  and 
take quadruples  fa i l ing (PR) to be e r r o r - p r o n e  0 - 
m e a s u r e m e n t s .  (Fine [18] develops a formal account of quantum 
measurement  which encompasses both error-free and error- 
prone measurements . )  The approach I suggest  not only 
liberates our notion of measurement error from preconceptions 
about observable determinateness ,  but also answers to the 
i n t u i t i v e l y  cons t i t u t ed  examples  of m e a s u r e m e n t  e r ror  
canvassed so far: Albert  and Loewer 's  er ror-prone spin 
measurement (3.1') fails to transcribe probabilities unless it so 
happens both that lal 2 = la'l 2 + Idl 2 and that Ibl 2 = Ib'l 2 + Icl 2. 
Bub's rogue evolution (4.1-4.3) fails to transcribe probabilit ies 
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unless lal 2 = Ibl 2. And Healey's almost-O measurements (4.4-4.6) 
fail to transcribe probabil i t ies unless lci 12 = ~ j  Icj<nitoj>l  2. For 
a rb i t ra ry  in i t ia l  ob jec t  s tates ,  these in tu i t ive ly  e r ro r -p rone  
interact ions fail to transcribe probabi l i t ies ,  and so they fail  
(PR).  

AL-prone  measurements  leave  appara tus  sys tems  in 
states not d iagonal ized  by the eigenbasis  of  the ant ic ipated 
po in te r  observable ,  which are states from which (MSR S )  
withholds determinate pointer  values. Bub and Healey offer 
examples  of  measurements  which are error-prone,  insofar  as 
they violate (PR), but not AL-prone. In the next section, I 'll 
offer examples  of  measurements which are AL-prone but not 
e r r o r - p r o n e .  

6. GUM DISEASE 

A theorem due to Beltrametti ,  Cassinell i ,  and Lahti  [8] 
characterizes the unitary evolutions sat isfying (PR). Where O 
is discrete and P is discrete  and non-degenera te ,  (PR) is 
fulfilled if and only if U is a unitary extension of the mapping 

Ioij>lp0> ---> Iqij>lpi>, (6 .1)  

where j is a degeneracy index and {Iqij>} are a set of  unit 
vectors orthogonal in that index. Call such evolutions N o r m a l  
Unitary Measurements  or NUMs. Some special cases of NUMs 
meri t  our attention. In one special  case, the {Iqij>} are 
or thogonal  in the first  index as well;  they compr ise  an 
orthonormal set of  vectors, eigenvectors of  some observable Q 
on H s. Such a NUM will leave the composite system in a state 
which perfectly correlates Q eigenstates with eigenstates of  the 
p o i n t e r  o b s e r v a b l e  P .  These s t rong  s ta te  c o r r e l a t i n g  
measurements leave the apparatus system in a reduced state W r 
diagonalized by P, and leave the object system in a reduced state 
W s diagonalized by Q;  (MSR) deems Q and P determinate on S 
and R respectively. Another special kind of NUM occurs when 
the {Iqij>} are identical with eigenvectors {Ioij>} of the object 
observable  O.  The ideal von Neumann measurement (I .1)  is an 
example of such a NUM. But the {Iqij>} in (6.1) aren't required 
to be orthogonal in i. For a non-degenerate object observable O ,  
the most general sort of  unitary measurement takes the form 

Ioi>lp0> ---> Iqi>lPi> 
{/qi>} a non-orthogonal set o f  unit vectors. 

(6 .2)  
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Call this most general class of NUM interactions, interactions 
c o n f o r m i n g  to the templa te  (6.2),  general  unitary 
measurements, or GUMs. 4 

Subject S in initial state Y~i ciloi> to a GUM: 

Y'-i ciloi>lp0 > ---> Zi cilqi>lpi> = t"t">. (6.3) 

Because the {qi>} are non-orthogonal, {lpi>} does not furnish a 
polar decomposit ion of l'ff">. (MSR) does not attribute the 
apparatus a determinate value for the pointer observable P,  and 
the measu remen t  has no o u t c o m e - - t h e  very d i f f i cu l ty  
emphasized by Albert and Loewer. We can conclude that GUMs 
are AL-prone. Satisfying (PR), GUMs are not error-prone. Thus 
it is not necessary for an interaction to be AL-prone that it be 
e r r o r - p r o n e .  

7. THE ARAKI-YANASE THEOREM 

I have argued that the class of measurements to which 
Albert, Loewer, and some of their commentators direct their 
r e m a r k s - - t h e  class of e r ro r -prone  m e a s u r e m e n t s - - n e i t h e r  
contains "nor is contained in the class of measurements to which 
Albert, Loewer, and their commentators should direct their 
remarks-- the  class of AL-prone measurement interactions. I 
will close by discussing an ironic implication of the Araki- 
Yanase theorem: there exist a large class of observables whose 
error-free measurements are necessarily AL-prone. 

When von Neumann showed how to construct an ideal 
unitary measurement  <H r, Ip0>, P, U> for any discrete object 
observab le ,  he did not take cons t ra in t s  on a l lowable  
interactions, such as conservation laws, into account. Wigner 
[33] argued by means of an example that conservation laws 
make the ideal measurement  of certain object observables 
impossible;  Araki and Yanase [4] generalized this result. In 
what follows, I sketch a simple version of their theorem, and 
extract its consequences for the Albert-Loewer problem. 5 

Let object observable M be discrete and non-degenerate, 
and let the composite quantity L = L1 ® I + I ® L2 be conserved. 
(Because L for the composite system is the sum of L for each 
subystem, Araki and Yanase call it an "additively conserved 
quantity".) As a constant of the motion, L commutes with 
composite system evolution operator U. An ideal measurement 
of M by P will unfold as follows: 



338 

U(Imi>lp0>) = Imi>lpi> 

Claim: (7,1) is possible only if IL l ,  M] = 0. 

Proof: 

<mil<p01 L Imj>lp0> 
= <mil<p01 U-1UL Imj>lp0> 

= <mil<p01 U-1LU Imj>lp0> 

Ruetsche 

(7.1) 

= <mil<pil L Imj>lpj>. 

The calculation above implies that, if L is conserved, 
possible only if 

<mil<p01 L tmj>lp0> = <mil<pi I L Imj>lpj>. (7.2) 

Rewrite L as L1 ® I + I ® L2. The l.h.s, of (7.2) becomes 

<milLllmj><p01p0> + <mitmj><p01L21p0>, (7.3) 

and the r.h.s, becomes 

<milLllmj><pilpj> + <milmj><pilL21pj>. (7.4) 

(U unitary) 

([U,L] = 0) 

(by 7.1) 

(7.1) is 

For i~j, (7.5) holds only if: 

<mifLllmj> = 0. (7.6) 

That is, only if [M,L1]  = 0. Therefore, if L is conserved, (7.1) is 
possible only if M commutes with L1 .  In other words, an ideal 
measurement of  M is possible only if [ M , L 1 ]  = 0. This is what 
was claimed. 

The argument that a measurement of M is possible only if 
M commutes with all additively conserved quantities applies as 
well to strong state correlating measurements. But it is blocked 
for (GUM)s. For these, not all of  the orthogonality relations 
invoked to write the 5ij 's  in (7.5) obtain. It follows from the 
Araki-Yanase theorem, then, that if an object observable M 

<milLllmj> + 5ij<p01L21p0> = 5ij<milLllmj> + ~Sij<pilL21pj>. (7.5) 

Use (7.3), (7.4), and the orthogonality of  {lpi>} and {lmi>} to 
rewrite (7.2) as 
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fails to commute with an addit ively conserved quantity of the 
c o m p o s i t e  m e a s u r e m e n t  sys t em,  the on ly  P R - s a t i s f y i n g  
measurements of  M available are GUMs. (Using a result of  Fine 
[I8], Hellman [23] makes a terminological variant on this point. 
For further discussion,  see ref [28].) But these measurements 
are AL-prone.  In the context of  measurements of  quanti t ies 
sub jec t  to the A r a k i - Y a n a s e  theorem,  the demand  that  
measurements  be free from error generates the Alber t -Loewer  
p r o b l e m .  

8. CONCLUSION 

I mean these remarks  to d i sen tangle  the d ia lec t i ca l  
situation surrounding the Albert -Loewer problem. But I direct 
them also against  a misconcept ion  which seems to arise 
concerning that problem. According to the misconception,  the 
Albe r t -Loewer  problem looms when something  goes wrong:  
when an instrument misfires,  or when the apparatus system 
becomes entangled with its environment in such a way that the 
ant ic ipated pointer  observable  fails  to d iagonal ize  W r This 
misconcept ion tempts us to dismiss  AL-prone  interact ions as 
conceptua l ly  uninteres t ing  cont ingent  compl ica t ions .  Others 
have addressed this misconcept ion.  Elby [16] conjures "the 
p rob lem of  ta i ls"  for  measurement s  whose  ou tcomes  are 
regis tered  ei ther  d i rec t ly  or indi rec t ly  in the pos i t ions  of  
systems. A standard example is a Stern-Gerlach measurement in 
which the posi t ion of  a s p i n - l / 2  par t ic le  shot through an 
inhomogeneous magnetic field functions as a record of its spin 
in the direction of the field's inhomogeneity. Let the field be 
inhomogeneous in the z direction, and let I~0(z)>, the wave 
packet descr ibing the premeasurement posi t ion of  the local ized 
particle,  be centered at z=0. Interaction with the magnetic field 
shifts the wave packet of a spin up particle so that it 's centered 
at z=L and shifts the wave packet of  a spin down particle so that 
it's centered at z = -L. Call the shifted wave packets I~+(z)> and 
I~-(z)> respectively.  If I~0(z)> has significant tails (that is, if 
~,0(z) is non-zero for Izl > L), I~+(z)> and I~,-(z)> will not, strictly 
speaking,  be or thogonal ,  and so cannot by modal  l ights be 
eigenstates of  a determinate pointer observable. Elby points out 
that the logical structure of QM gives us every reason to suppose 
that I~0(z)> will have tails. Even if at some instant the particle's 
wave packet  is confined to a finite region, the Schr6dinger  
equation implies  that an instant later,  that wave packet  will 
have infinite tails. 6 So QM itself implies that the archetypical 
S te rn -Ger lach  measurements  d i scussed  in every in t roduc to ry  
quantum course are subject  to the A lbe r t -Loe w e r  problem.  
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Dickson [16] casts this argument in a more general form to 
conclude that QM itself implies that a class of "typical" 
m e a s u r e m e n t s ,  a c lass  i n c l u d i n g  the S t e r n - G e r l a c h  
measurement, are subject to the Albert-Loewer problem. 

The un i t a ry  opera to r  d r i v i n g  the S t e r n - G e r l a c h  
measurement sketched above acts as follows: 

USG(I+>I~0(z)>) = I+>l~+(z)> (8.t) 

USG(I->I~0(z)>) = I->~-(z)> (8.2) 

If <~-(z)l~+(z)> , 0, the measurement is AL-prone. According to 
the theorem of Busch, Casinelli and Lahti [8], if <~-(z)I~+(z)> ~: 0, 
the measurement fails (PR) as well. Typical Stern-Gerlach 
measurements are not only AL-prone, but also error-prone. 
I've argued here that there exist a class of measurements which 
are error-free but AL-prone. Even in a benign universe of 
perfect ly isolated,  f lawlessly accurate devices,  error-free  
measurements  of certain observables are available only if 
they're AL-prone. The presence of AL-prone interactions is 
secured not by the familiar and uninteresting phenomenon of 
bad luck, but by physical law. 
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NOTES 

1. States with non-unique polar decompositions present 
modal interpretations with a special set of difficulties 
[5,15,20]. As these are not the difficulties with which I am 
here concerned, I will confine my attention in what 
follows to states whose polar decompositions are unique. 

2. Neither Healey nor van Fraassen (among prominent modal 
proponents) offer interpretations justly encapsulated by 
MSR. The following discussion is nevertheless pertinent to 
their interpretations because those interpretat ions 
generally agree with the valuations offered by MSR at the 
close of measurement-type interactions, and so confront 
some variant of the Albert-Loewer problem. 

3. There's a consensus emerging that the strongest modal 
response to Albert and Loewer takes to heart their 
insistence on describing the measurement interaction 
realistically. Dropping the idealization that S and R are 
hermetically isolated from their environment, modal 
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p r o p o n e n t s  c i te  d e c o h e r e n c e  accoun t s  o f  quan tum 
m e a s u r e m e n t  [34]  to con t end  tha t  e n v i r o n m e n t a l  
interactions leave the apparatus in a reduced state nearly 
diagonal ized by the eigenbasis  of  the anticipated pointer  
observable.  Such an apparatus, modal defenders maintain, 
will have a determinate value for an observable  "close 
enough"  to the a n t i c i p a t e d  p o i n t e r  o b s e r v a b l e  for  
exper imenta l  prac t ice  to f lourish.  Bacc iaga lupp i  and 
Hemmo [7] provide a splendid review of this literature; see 
also [6,13,15,22]. I intend my remarks here as a prelude to 
these decoherence discussions:  modal  defenders  should,  
after all,  be clear on what problem their  appeal to the 
environment is intended to solve. 

4. It must be acknowledged that cal l ing these interact ions 
"measurements"  is conten t ious .  Those  who sub jec t  
measurements  to an ob jec t i f i ca t i on  requ i rement  which 
GUMs fail would object to the characterization. A defense 
of GUMS might appeal to a long and apparently respectable 
history of treating them as measurements.  For  example,  
the opening chapter  of Landau and Lifshi tz 's  text [26] 
r emarks - -a lmos t  in pass ing- - tha t  most actual measurement  
in terac t ions  take the form (6.1) but fail to cor re la te  
orthogonal  object  states with dist inct  "reading" states of  
the i n s t r u m e n t - - i n  o the r  words ,  that  mos t  ac tua l  
measurements are GUMs. Given the weight of tradition and 
practice, I 'm inclined to believe that the onus is on those 
who would append an objec t i f ica t ion  cr i te r ion  to their  
notion of  measurement to explain why it 's permissable to 
thereby disqual i fy  a large class of  in teract ions  hi therto 
recognized  as measurements .  

5. In a discussion which is not an explici t  reaction to the 
Albert-Loewer problem, Healey [20] allows that the Araki- 
Yanase theorem limits the class of  observables for which 
what  he cal ls  M-sui tab le  in terac t ions  exist .  (In my 
vocabulary,  M-suitable interactions are nei ther  error- nor 
A L - p r o n e - - t h e y ' r e  the "good" measurement s  of  which 
moda l  i n t e rp re t a t i ons  make good sense . )  H e a l e y ' s  
semantics prevent him from appealing to GUMs for error- 
free measurements of observables subject  to Araki-Yanase  
l imitat ions.  Rather, he would minimize these l imitat ions 
by recognizing that no apparatus is ever truly isolated. 

6. It is probably worth mentioning that, introducing his 
modal interpretation, Kochen [24] calculates in detail  how 
it would describe the unfolding of  a realistic Stern-Gerlach 
measurement.  He concludes that, except in cases of  near- 
exact degeneracy, the bases he privileges on the apparatus 
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system approach the anticipated pointer basis very 
rapidly. (Rcfs. [6] and [16] reach similar conclusions.) 


