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Modal interpretations of QM have the welcome consequence that
unitarily evolved post-measurement states which superpose
cigenstates of the anticipated pointer observable can represent
devices régistering determinate measurement outcomes. Albert
and Loewer have claimed that modal interpretations cannot
account for the outcomes of "error-prone” measurements. But
Albert, Loewer, and their commentators have not always
appreciated the relation of measurement error to the Albert-
Loewer problem. I argue that measurement error is neither
necessary nor sufficient to generate the Albert-Loewer
problem, and wuse the Araki-Yanase theorem to show that
measurements of a large class of observables, if they are error-
free, are beset by the Albert-Loewer problem.
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1. THE MEASUREMENT PROBLEM

According to a standard quantum mechanics (QM) text, a
physical system possesses a determinate value for a magnitude
A "if, and only if, the [quantum] state of the physical system is
represented by an eigenfunction laj> of the Hermitean operator
A associated with A" [27; 19, 26, 29]. Call this principle of
determinate value assignment the eigenvector/eigenvalue link.
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quantum measurcments don't have outcomes. The problem
persists when the simplifying assumptions constraining the
measurement model just discussed are relaxed [9].

Rccognizing this problem, von Necumann (32] responded
by invoking the deus ex machina of measurcment collapse, a
sudden, irreversible, discontinuous change of the state of the
measurcd system to an cigenstate of the observable measured.
So, for example, a collapse episode would instantly change the
superposition X ¢ loi>Ipi> to an O ® P cigenstate; collapse to the
cigenstatc lop>lpp> occurs with probability Icnlz. Many texis
accord this "Collapse Postulate” axiomatic status, but they do not
thereby repair the conceptual damage it docs. Perhaps the most
unsettling implication of the Collapse Postulate is that
laboratory tests of the cmpirical adequacy of QM succeed only if
the fundamental dynamical law of the thcory breaks down.

2. MODAL INTERPRETATIONS

All that is familiar.  Presently growing in notoriety, an
clegant family of interpretations of QM which I'll call modal
interpretations purport to cvade the mcasurement problem by
maintaining the universality of Schrodinger evolution, and
revising the eigenvector/eigenvalue link [10,14,15,20,24,25]. A
stock example of a modal interpretation exploits a theorem von
Necumann attributes to Schmidt.  According to this theorem, any
vector I¥ST> in the tensor product space HS ® HT admits a
decomposition of the form

WS> = §; cilap>lbi>,

where {cij} arc complex cocfficients, {laj>} and {lbj>} are sets of
orthogonal vectors on HS and HY respectively, and the
summation index i does not cxceed the dimensionality of the
smaller factor spacc. If the set {lcilz} is non-degencrate, then
this polar decomposition of 'WST> is unique.!

Modal interpretations?  replace the orthodox
eigenvector/eigenvalue link with the following semantic rule:

MSR: If I¥ST> = ¥ cilaj>Ibj> is the unique polar
decomposition of the state of a composite S + R
system, then subsystem S has a determinate value
for each HS observable with eigenbasis {laj>}, and
subsystem R has a determinate value for each HF
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QM texts standardly asscrt that quantum states, govemned by the
time dependent Schrodinger Equation, evolve unitarily.
Unfortunately, the conjunction of unitary dynamics and the
cigenvector/eigenvalue link fails to account for measurement
phenomena. In an ideal von Neumann mecasurcment [32,12] an
object system S is coupled to a rccording apparatus R.
Associated with the sysiems are Hilbert spaces HS and HF.
Consider non-degencratc object observable O, with cigenbasis
{loji>} and eigenvalues {o0j}, on HS and pointer observable P, with
cigenbasis {lpj>] and ecigenvalues {pj}, on HT. Suppose that §'s
pre-measurement state is an cigenstate lop> of O, and that R's
initial statc is somc apparatus "ready” state Ip0>. In the tensor
product Hilbert space HS® ® HT an ideal O by P measurement
unfolds as follows:

fop>lp0> ---> lop>lpp>. (L)

Let UlyN represent an HS ® HT operator which is a unitary
extension of the map (1.1). In (1.1) the pre-measurement
composite state is an O ® IV (IT the identity operator for HT)
cigenstate associaled with the cigenvalue op; the post-
measurement composite stale is an IS ® P cigenstate associated
with the cigenvalue pp. The ecvolution operator Uly N
replicates the object observable’s pre-measurement value in
the pointer observable's post-measurcment value, and so
conforms to intuitive mecasurcment desiderata.
UJIyN falters when asked to work on an object system

whose premcasurement state is the superposition WS> = Xj ¢ loj>.
Because unitary opcerators are linear,

UryN(y$>Ip0>) = % ci UryN(loj>Ip0>). (1.2)

Specifying UJyN's action on loj>p0>, (1.1) generatcs the post-
measurement composite state

WST> = ¥ ¢j loj>Ipi>. (1.3)

{¥ST> is not an cigenstatc of the pointer obscrvable IS ® P. By
the eigenvector/eigenvalue link, the pointer observable has no
determinate value. Crudely put, the pointer doesn’t point.
According to one version of the measurement problem, if the
Schrodinger Equation governs measurcment cvolutions, and if
the eigenvector/eigenvalue link governs the determinate
observable values characterizing quantum systems, then most
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observable with ecigenbasis {lbj>}. lcpl? gives the
probability that these observables' actual values
are the eigenvalues associated with lan>lbp>.

Expressing modal semantics in terms of the density matrix
formalism makes their family resemblance to orthodox
cigenvector/eigenvalue semantics more perspicuous [31]. The

density matrix WS representing the reduced state of subsystem
S of a composite § + R system may bec obtained from the
composite state WS> by "tracing out” over the degree(s) of
freedom pertaining to the "remainder” system R. Where ({Ixj>} is

a complete orthonormal basis spanning HF,
WS = i <xjl ¥SI><¥ST) x>, (2.1

The reduced state W§ encodes [WST>'s statistical implications for
observables pertaining to S alone: for cach observable Q on HS,
Tr(QWS) = <¥STQ @ ITIyST>, While the composite state
determines a unique rcduced state for each of its component

systems, the converse does not hold. Now, WS$ is an operator
whose eigenbasis is the complete orthonormal basis furnishing

the polar decomposition of 1¥ST> and whose eigenvalues are the
squared norms of the expansion cocfficients of the polar

decomposition. If this set is non-degenerate, the operator W38 is
non-degenerate as well. We may express the consequences
modal semantics hold for subsystem S as follows:

(MSRS) If WS is the non-degencrate reduced state of a
quantum system S, and WS has ecigenvectors {laj>} with
cigenvalues {icilz}, then S has a determinate value for
cach HS observable with cigenbasis {laj>). The probability
an observable decterminate on S has as its actual value the
cigenvalue associated with lap> is lcni2.

Orthodox semantics assign S a determinate value for an
observable if and only if S's reduced state is a  pure state,
represented by a projection operator n8, an extremal member of
the set of density operators. Observables containing n8 in their
spectral resolutions are determinate, according to the
cigenvector/eigenvalue link. The modal semantics extend
orthodox semantics 10 systems whose states WS aren't pure. An
impure WS cannot be identified with a projection operator, but it
may be associated with a set of projection operators {mj} which
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provide its spectral resolution. Observables containing {mj}

their spectral resolutions are determinate, according to (MSRS).
Thus we may express both orthodox and modal semantics in
terms of the spectral resolutions of the density operators
representing the states of gquantum systems. On both
interpretations, it is necessary that an observable determinate
on a system with reduced state W S have in its spectral
resolution the projectors in W S's spectral resolution. But
eigenvector/eigenvalue semantics additionally require WS to
be a pure state, so that it coincides with its spectral resolution.
Not only do modal semantics seem a natural
generalization of orthodox semantics, modal semantics also deal
elegantly with the unitarily evolved post-measurement states
which confounded the ecigenvector/eigenvalue link. Recall the
post-unitary-measurcmenl composite state WS> = 3 ¢j loj>lpi>,
which induces the reduced apparatus state WT =3 1c312 Ipi><pil.
According to (MSR), the observables determinate on the
apparatus system are HP obscrvables conspiring in I¥SF>'s polar
decompositon, observables whose eigenbasis diagonalizes WT,
By the modal semantics, then, the pointer observable P is
determinate on the apparatus system after measurement, and
the Born Rule furnishes a probability distribution over its

possible values. The ignorance interpretation of mixtures also
essays this pattern of valuc assignment to subsystems of the
composite system. But so doing, the ignorance interpretation

implies that the composite state is the mixture
WST = 51 ;12 loj><ojl ® Ipj><pil,

a mixture empirically distinguishable from the system's true

pure state [P ST>, Modal interpretations avoid this debacle
because their value assignments are not only compatible with
the attribution of the pure state WS> to the composite system,
they'rec also derived from that pure state attribution!  Thus
would the Modal Interpretation explain  what textbook
interpretations can not: how measurement interactions
obedient to the laws of quantum dynamics issue determinate
outcomes corraborating the predictions of the quantum
statistical algorithm.

3. THE ALBERT-LOEWER PROBLEM

Albert and Loewer contend that modal interpretations,
however marvellously they account for model post-
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measurement states such as [¥WST>, are stymied by the post-
measurcment states of actual laboratory devices [1-3]. The
coupling UjyN establishes a perfect correlation between
pointer eigenstatcs and orthogonal states of the object system.
This, Albert and Locwer contend, rcquirecs error-free
measuring devices, and cven "the more cxpensive sorts of
...measuring devices” [1] will introducc some noise into the
measurement process. A utopian device for measuring o(z),
the z-component of spin on a spin 1/2 system, will have two
indicator states, [I"+"> (signalling the +1/2 value of o(z)), and
["-"> (signalling the -1/2 wvalue). I1"+"> and I"-"> comprise the
eigenbasis of the pointer observable P. The utopian
measurement cvolution will correlate these cigenstates
perfectly with o(z) cigenstates |+> and I->. When the initial state
of the object system is l¢> = al+> + bl->, an ideal spin
measurement develops as follows:

(al+> + bl->)Ip0> ---> al+>1"+"> + bl->"-"> = [d>. (3.1)

But in "in a rcal measurement, there is always some probability
of the measuring device making an ecrror.” So after an ecrror-
prone (and ergo realistic) spin measurement, thc state of the
composite system will be not 1®> but

1> = al+>1"+"> + b'l->1"-"> + cl4+>1"-"> + dI->1"+">. 3.1

where "the components [->1"+"> and I+>|"-"> represent errors"[2].

Now the rub for modal interpretations is that in virtue of
Schmidt's theorem, I®'> will admit of a polar decomposition in
terms of some bases {IT>, N>} on HS and {IU>,D>} on HF. {IT>,l>)
will be the basis of a component of spin o(z') different from
6(z), and (IU>,ID>} the basis of somec obscrvable P' on the
apparatus system which is different from P, and whose physical
interpretation is unclear. (MSR) implies that these
observables--and not the 6(z) obscrvable we take ourselves to
be measuring, and not the pointer observable we look to in
measuring it--are the obscrvables which have determinate
values when |®'> represents the composite system. The Albert-
Loewer criticism is that, interpreting actual postmeasurement
states like I®'>, modal semantics "fail to assign a definite position
to the pointer which is supposed to register the measurement
outcome” [1] and so offer us "no guarantee that measurements
will have definite outcomes" [3]. Slavish adherence to modal
semantic rules in the face of realistically error-prone devices

allots the "wrong" observables determinate values.3
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4. MODELLING DEVICE ERROR: ROGUE HAMILTONIANS

Albert and Loewer submit the generic possibility that
real world measurement evolutions leave apparatus systems in
reduced states which arcn't diagonalized by the eigenbasis of
the anticipated pointer observable. Call interactions issuing
such states AL-prone. Albert and Locwer motivate the
possibility of AL-prone mecasurements by an intuitive appeal to
device error.  Modal proponcnts were quick to point out that
measurements can be error-prone in  Albert and Loewer's
intuitive scnse without being AL-prone, that is, without visiting
indeterminate pointer observables on measurements modally
described. To model situations in which "the pointer registers
["+"] when the value of [spin] is actuallly {-]" [11] Bub summons
rogue measurement Hamiltonians which, governing errant
measurement interactions, leave devices in misleading, but
nevertheless determinate, indicator states. For instance, a rogue
evolution operator Ue might anti-correiate spin and pointer
cigenstates:

Ue(H>Ip0>) = 14>1"-">, 4.1
Ug(l->1p0>) = 1->I"+">. (4.2)

Performed on a spin system with initial state al+> + bl->, the
misfiring mecasurement driven by this rogue Hamiltonian
issucs the post-mcasurement composiic state

1> = al4>1"-"> + bl->I"+">, 4.3)

The eigenbasis (I"+">,1"-">} of the anticipated pointer observable
P furnishes a polar decomposition of |©>. (MSR) therefore allots
P a determinate value. Its valuc is "+" when the spin of the
object system is -, but still the apparatus registers an outcome.
"How else could the instrument ecrr,” Bub asks Albert and
Loewer, “if it registers at all?”

In a similar vein, Healey [21] offers "Almost-O "
measurements, unitary cxtensions of the map

Inp>ip0> ---> Inp>lpi>, (4.4)
where (Inj>) are eigenstates of an observable "close 10" the

anticipated object observable O in that <njloj> = §j. Acting on
the initial object state



334 Ruetsche

hyS> = 3 ¢j loj> = Xjj ¢j <njloi>Inp>, (4.5)
(4.4) issues the post measurcment composite state
1YSTs> o 2ij ci <njloj> Inj>Ip;>. (4.6)

In (4.6), the pointer observable P gives the polar decomposition
of I¥S>,  Thus (MSR) attributes P a determinate value, even
though the interaction fails to correlate P's eigenstates
perfectly with O''s, Almost-O  mcasurements comprise a
particularly well-behaved <class of rogue measurements.
Because <njloj> = Sij, the r.h.s. of (4.6) indicates that P is not
only determinate but also manifests statistics which very
nearly reproduce the O mcasurement statistics implicit in the
initial object state.

Albert and Locwer worry that modal interpretations
cannot expect Nature to Icave laboratory devices in states
diagonalized by just the right apparatus observable. Bub's and
Healey's error-prone devices misfire, but they misfire so
providentially that they are left in reduced states diagonalized
by just the right apparatus obscrvable. Albert and Loewer may
well ask: Why should we expect all imperfect devices to misfire

in  exactly  this  way?! Offering these cooperatively
uncooperatively devices in  responsc to the Albert-Loewer
argument, Bub and Hecalecy seem to miss its point. But

identifying the uncoopcrative situations as situations in which
the device errs by recording the wrong value, Albert and
Loewer invite Bub and Healey to miss their point. Identifying
error-prone measurements with respect o what the device
registers enables a modal proponent to incorporatc her own
criterion of obscrvable dcicrminatecness in an account of device
error. And an account of device error predicated on modal
semantics—this is essentially what Bub and Healey offer—is
unlikely (o threaten modal interpretations.

5. ERROR: THE MISTRANSCRIPTION OF PROBABILITIES

I propose to cull from the quantum theory of
measurement a notion of measurement error which does not
presuppose any particular  account of observable
determinateness. Suspending the intuitive desideralum that
measurcments should communicate pre-interaction object
observable wvalues to post-measurcment pointer observable
values, what do we cxpect of measurcment? Van Fraassen
suggests that "the most gencral notion of measurement
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requires . . . only that we be able to infer from information of
outcomes to information of the measured system's initial state”
[30]. A sort of transcription criterion serves to capture this
intuition. Let ly> be an arbitrary premeasurement object state.
Then what Busch, Lahti and Mitilestacdt [12] call the probability
reproducibility condition (PR) requires the coupling U between
object system S and rccording device R (initially in ready state
Ip0>) to transcribe the probability distribution ly> defines for
the object observable O to the probability distribution the post-
measurement composite state U(ly>1p0>) defines for the pointer
observable IS ® P. Where WT is the reduced apparatus state
induced by U(ly>Ip0>), we can express (PR) as follows:

The quadruple <HT, Ip0>, P, U> satisfyies PR for O if and
only if, for any initial object statc hy>,
Tr(ly><yloj><oijl) = Tr (WTlpi><pjl) (PR)

In an interaction satisfying (PR), if the initial object state
assigns object ecigenvalue on probability lcnlz, then the final
apparatus state will assign pointer value pp the same
probability. We can infer ly> from pointer statistics, and so
satisfy van Fraassen's intuitive desideratum.

Busch, Lahti and Mitelstacdt offer (PR) as a necessary,
but not sufficient, condition for measurcment. They would
supplement (PR) by an ‘“objectification” requirement, a
criterion of observable determinatencss by whose lights the
pointer observable designated in a PR-satisfying interaction is
determinate.  But in the last section, we saw how, in the context
of the Albert-Loewer problem, relying onm an objectification
requirement to characlerize measurement crror runs us in
dialectical circles. It may bc more strategic in that context (o
characterize measurement error with respect to (PR)
unsupplemented. Thus I suggest we take quadruples <HF, Ip0>, P,
U> f{ulfilling (PR) for O 10 be error-free O-measurements, and
take quadruples failing (PR) to be error-prone o -
measurements. (Finc {18] develops a formal account of quantum
measurement which encompasses both error-free and error-
prone mcasurements.) The approach 1 suggest not only
liberates our notion of measurement crror from preconceptions
about observable determinateness, but also answers to the
intuitively constituted examples of measurement error
canvassed so far: Albert and Loewer's error-prone spin
measurement (3.17) fails to transcribe probabilities unless it so
happens both that lal2 = 1212 + Id2 and that 1bi2 = 1b12 + o2,
Bub's rogue evolution (4.1-4.3) fails to transcribe probabilities
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unless 1al2 = Ibl2. And Healey's almost-O measurements (4.4-4.6)
fail to transcribe probabilities unless lciiz =Zj !cj<niioj‘>!2. For
arbitrary initial object states, these intuitively error-prone
interactions fail to transcribe probabilities, and so they fail
(PR).

AL-prone measurements leave apparatus systems in
states not diagonalized by the cigenbasis of the anticipated
pointer observable, which are states from which (MSRS)
withholds determinate pointer valuecs. Bub and Healey offer
examples of measurements which are error-prone, insofar as
they violate (PR), but not AL-pronc. In the next section, ['ll
offer examples of measurements which are AL-prone but not
error-prone.

6. GUM DISEASE

A theorem due to Beltrametti, Cassinelli, and Lahti [8]
characterizes the unitary evolutions satisfying (PR). Where O
is discrete and P is discrete and non-degenerate, (PR) is
fulfilled if and only if U is a unitary extension of the mapping

lojj>Ip0> ---> lgipipi>, (6.1)

where j is a degeneracy index and (ligjj>} are a set of unit
vectors orthogonal in that index. Call such evolutions Normal
Unitary Measurements or NUMs. Some special cases of NUMs
merit our attention.  In one special case, the ({lgjj>} are
orthogonal in the first index as well; they comprise an
orthonormal set of vectors, eigenvectors of some observable
on HS, Such a NUM will leave the composite system in a state
which perfectly correlates Q eigenstates with eigenstates of the
pointer observable P. These strong state correlating
measurements leave the apparatus system in a reduced state WT
diagonalized by P, and leave the object system in a reduced state
WS diagonalized by Q; (MSR) deems Q and P determinate on S
and R respectively. Another special kind of NUM occurs when
the {lgjj>} are identical with eigenvectors ({lojj>} of the object
observable O. The ideal von Neumann measurement (1.1) is an
example of such a NUM. But the {igij>} in (6.1) aren't required
to be orthogonal in i. For a non-degencrate object observable O,
the most general sort of unitlary measurement takes the form

loi>lp0> ---> Igj>Ipi> (6.2)
{/qi>} a non-orthogonal set of unit vectors.
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Call this most general class of NUM interactions, interactions
conforming to the template (6.2), general unitary
measurements, or GUMs.4

Subject S in initial state ¥ cjloi> 10 a GUM:

Zi cilop>Ip0> ---> 35 cilgi>ipp> = ¥, (6.3)

Because the {qi>} are non-orthogonal, {lpi>} does not furish a
polar decomposition of [¥'>. (MSR) does not attribute the
apparatus a determinate value for the pointer observable P, and
the measurement has no outcome—the very difficulty
ecmphasized by Albert and Loewer. We can conclude that GUMs
arc AL-prone. Satis{ying (PR), GUMs arc not ecrror-prone. Thus
it is not necessary for an intcraction to be AL-prone that it be
crror-prone.

7. THE ARAKI-YANASE THEOREM

1 have argued that thce class of measurcments to which
Albert, Loewer, and some of their commentators direct their
remarks—the class of ecrror-prone measurements—neither
contains mor is contained in the class of measurements to which
Albert, Loewer, and their commentators should direct their
remarks—the class of AL-prone measurement interactions. 1
will close by discussing an ironic implication of the Araki-
Yanase theorem: there cxist a large class of observables whose
error-free measurements arc necessarily AL-prone.

When von Neumann showed how to construct an ideal
unitary measurement <HT, Ip0>, P, U> for any discrete object
observable, he did not take constraints on allowable
interactions, such as conservation laws, into account. Wigner
[33] argued by means of an example that conservation laws
make the ideal measurement of certain object observables
impossible; Araki and Yanase [4] generalized this result. In
what follows, I sketch a simple version of their theorem, and

extract its consequences for the Albert-Loewer problem,5

Let object observable M be discrete and non-degenerate,
and let the compositc quantity L =L1 ® I + I ® L2 be conserved.
(Because L for the composite system is the sum of L for each
subystem, Araki and Yanase call it an "additively conserved
quantity".) As a constant of the motion, L. commutes with
composite system ecvolution operator U. An ideal measurement
of M by P will unfold as follows:
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U{imi>Ip0>) = Imj>Ipi> (7.1)

Claim: (1.1) is possible only if [L1, M] = 0.

Proof:

<mjl<p0l L tmj>Ip0>
= <mil<p0l U~1UL Im;j>Ip0> (U unitary)
= <mji<p0l U-1LU Imj>Ip0> (IU,L) = 0)
= <mjl<pjl L Imj>Ipj>. (by 7.1)

The calculation above implies that, if L is conserved, (7.1) is
possible only if

<mijl<p0l L imj>lp0> = <mjl<pii L lmj>lpj>. (7.2)
Rewrite L as L1 ® 1 +1® L2, The Lhs. of (7.2) becomes
<mjlLlimj><p0ip0> + <mijimj><pOiL2Ip0>, (7.3)
and the r.h.s. becomes
<mj/Llimj><pijlpj> + <mjlmj><pjlL.2Ipj>. (7.4)

Use (7.3), (7.4), and the orthogonality of {lpi>} and {Imj>} to
rewrite (7.2) as

<mj/L1limj> + 8ij<pOIL21p0> = §jj<mjlL1limj> + ij<pilL.2lpj>. (7.5)
For i#j, (7.5) holds only if:
<mi§Lllmj> =0. (7.6)

That is, only if (M,L1] = 0. Therefore, if L is conserved, (7.1) is
possible only if M commutes with L1. In other words, an ideal
measurement of M is possible only if [M,L1] = 0. This is what
was claimed.

The argument that a measurement of M is possible only if
M commutes with all additively conserved quantities applies as
well to strong state correlating measurements. But it is blocked
for (GUM)s. For these, not all of the orthogonality relations
invoked to write the &ij's in (7.5) obtain. It follows from the
Araki-Yanase theorem, then, that if an object observable M
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fails to commute with an additively conserved quantity of the
composite measurement system, the only PR-satisfying
measurements of M available are GUMs. (Using a result of Fine
[18], Hellman [23] makes a terminological variant on this point.
For further discussion, see ref [28].) But these measurements
are AL-prone. In the context of measurements of quantities
subject to the Araki-Yanase theorem, the demand that
measurements be free from error generates the Albert-Loewer
problem.

8. CONCLUSION

I mean these remarks to disentangle the dialectical
situation surrounding the Albert-Loewer problem. But I direct
them also against a misconception which seems to arise
concerning that problem. According to the misconception, the
Albert-Loewer problem looms when something goes wrong:
when an instrument misfires, or when the apparatus system
becomes entangled with its environment in such a way that the
anticipated pointer observable fails to diagonalize WT. This
misconception tempts us to dismiss AL-prone interactions as
conceptually uninteresting contingent complications. Others
have addressed this misconception. Elby [16} conjures "the
problem of tails" for measurements whose outcomes are
registered either directly or indirectly in the positions of
systems. A standard example is a Stern-Gerlach measurement in
which the position of a spin-1/2 particle shot through an
inhomogeneous magnetic field functions as a record of its spin
in the direction of the field's inhomogeneity. Let the field be
inhomogeneous in the z direction, and let |E0(z)>, the wave
packet describing the premeasurement position of the localized
particle, be centered at z=0. Interaction with the magnetic field
shifts the wave packet of a spin up particle so that it's centered
at z=L and shifts the wave packet of a spin down particle so that
it's centered at z = -L.. Call the shifted wave packets IE+(z)> and
[E-(z)> respectively. If 1€0(z)> has significant tails (that is, if
£E0(z) is non-zero for Izl > L), IE+(z)> and 1E-(z)> will not, strictly
speaking, be orthogonal, and so cannot by modal lights be
eigenstates of a determinate pointer observable. Elby points out
that the logical siructure of QM gives us every reason to suppose
that 1£0(z)> will have 1ails. Even if al some instant the particle's
wave packet is confined to a finite region, the Schrbdinger
equation implies that an instant later, that wave packet will
have infinite tails.6 So QM itself implies that the archetypical
Stern-Gerlach measurements discussed in every introductory
quantum course are subject to the Albert-Loewer problem.
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Dickson [16] casts this argument in a more general form to
conclude that QM itself implies that a class of “typical”
measurements, a class including the Stern-Gerlach
measurement, are subject to the Albert-Loewer problem.

The wunitary operator driving the Stern-Gerlach
measurement sketched above acts as follows:

USG(+>IE0(z)>) = l>lE+(2)> (8.1)

UsG(->150(2)>) = |-E-(z)> (8.2)

If <€-(z)IE+(z)> # 0, the mecasurement is AL-prone. According to
the theorem of Busch, Casinelli and Lahti [8], if <E-(2)iE+(z)> # 0,
the measurcment fails (PR) as well. Typical Stern-Gerlach
mecasurements are not only AL-prone, but also error-prone.
I've argued here that there exist a class of measurements which
are error-frec but AL-prone. Even in a benign universe of
perfectly isolated, flawlessly accurate devices, error-free
measurements of certain  observables are available only if
they're AL-prone. The presence of AL-prone interactions is
secured not by the familiar and uninteresting phenomenon of
bad luck, but by physical law.
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NOTES

L.

States  with  non-unique polar  decompositions present
modal interpretations with a special set of difficulties
[5,15,20]. As these are not the difficulties with which I am
here concerned, I will confine my attention in what
follows to states whose polar decompositions are unique.
Neither Healey nor van Fraassen (among prominent modal
proponents) offer interpretations justly encapsulated by
MSR. The following discussion is nevertheless pertinent to
their interpretations because those interpretations
generally agree with the valuations offered by MSR at the
close of measurement-type interactions, and so confront
some variant of the Albert-Loewer problem.

There's a consensus cmerging that the strongest modal
response to Albert and Loewer takes to heart their
insistence on describing the measurement interaction
realistically.  Dropping the idealization that S and R are
hermetically isolated from their environment, modal
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proponents cite decoherence accounts of quantum
measurement [34]to contend that environmental
interactions leave the apparatus in a reduced state nearly
diagonalized by the eigenbasis of the anticipated pointer
observable. Such an apparatus, modal defenders maintain,
will have a determinate value for an observable "close
enough” to the anticipated pointer observable for
experimental practice to flourish. Bacciagaluppi and
Hemmo [7] provide a splendid review of this literature; see
also [6,13,15,22]). I intend my remarks here as a prelude to
these decoherence discussions: modal defenders should,
after all, be clear on what problem their appeal to the
environment is intended to solve.

4. It must be acknowledged that calling these interactions
"measurements” is contentious. Those who subject
measurements o an objectification requirement which
GUMs fail would object to the characterization. A defense
of GUMS might appeal to a long and apparently respectable
history of treating them as measurements. For example,
the opening chapter of Landau and Lifshitz's text [26]
remarks—almost in passing—that most actual measurement
interactions take the form (6.1} but fail to correlate
orthogonal object states with distinct "reading” states of
the instrument—in other words, that most actual
measurements are GUMs. Given the weight of tradition and
practice, I'm inclined to believe that the onus is on those
who would append an objectification criterion to their
notion of measurement to explain why it's permissable to
thereby disqualify a large class of interactions hitherto
recognized as measurements.

5. In a discussion which is not an explicit reacuon to the
Albert-Loewer problem, Healey [20] allows that the Araki-
Yanase theorem limits the class of observables for which
what he calls M-suitable interactions exist. (In my
vocabulary, M-suitable interactions are neither error- nor
AL-prone—they're the “good” measurements of which
modal interpretations make good sense.) Healey's
semantics prevent him from appealing to GUMs for error-
free measurements of observables subject to Araki-Yanase
limitations.  Rather, he would minimize these Ilimitations
by recognizing that no apparatus is ever truly isolated.

6. It is  probably  worth mentioning that, introducing his
modal interpretation, Kochen [24] calculates in detail how
it would describe the unfolding of a realistic Stern-Gerlach
measurement. He concludes that, except in cases of near-
exact degeneracy, the bases he privileges on the apparatus
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system approach the anticipated pointer basis
rapidly. (Refs. [6] and ([16] reach similar conclusions.)

Ruetsche
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