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Abstract. Mahler [7] and Fejes T6th [2] proved that every centrally symmetric 
convex plane body K admits a packing in the plane by congruent copies of K with 
density at least x/3/2. In this paper we extend this result to all, not necessarily 
symmetric, convex plane bodies. The methods of Mahler and Fejes T6th are construc- 
tive and produce lattice packings consisting of translates of K. Our method is 
constructive as well, and it produces double-lattice packings consisting of translates 
of K and translates of -K. The lower bound of x/3/2 for packing densities produced 
here is an improvement of the bounds obtained previously in [5] and [6]. 

1. Introduction and Preliminaries 

A convex body is a compact convex set with an interior point. A convex body is 
strictly convex if its boundary contains no line segment. Throughout this paper, 
K will denote an arbitrary convex body in the Euclidean plane E, unless otherwise 
specifically assumed. I f  S is a subset of  E, v is a vector in E, and r is a real 
number, then v + S denotes the set {v + x : x e S}, and rS denotes {rx : x ~ S}. We 
write - S  instead of (-1)S.  The set v + S  is called the translate of S by v. The 
area of S will be denoted by ]S], and, since each set considered here will be 
either a convex body or a polygon, the question of measurability need not be 
discussed. 

For any pair of  independent vectors u and v in E, the lattice generated by u 
and v is the set of vectors L ( u , v ) = { n u + k v : n  and k are integers}. The 
parallelogram spanned by u and v is called a basic parallelogram of the lattice. 

A packing of  the plane with copies of K is a family {Ks} of  convex bodies 
congruent to K whose interiors are mutually disjoint. A packing is a lattice packing 
if all of its members are translates of each other and the vectors of  the translations 
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Fig. 1. Lattice packing. 

form a lattice (see Fig. 1). A packing ~ is called a double-lattice packing if ~ is 
the union of two lattice packings ~o and ~ such that the 180 ° rotation about 
some point interchanges ~o and ~1 (see Fig. 2). Obviously, the lattice of 
translations of ~o is the same as that of ~ .  

Each packing is assigned a real number in the interval [0, 1], called the density 
of  the packing, which is, intuitively speaking, the percentage fraction of the plane 
occupied by the copies of  K. A general definition of the density of a packing 
involves the notion of limit and requires a detailed investigation of its existence 
and uniqueness (see Chapter III, Section 1 of [4]). However, for lattice packings 
and for double-lattice packings, the density is easily defined using the area of a 
basic parallelogram of the underlying lattice of  translations. If  ~ is a lattice 
packing with copies of  K, and if p is a basic parallelogram of the lattice of 
translations of ~,  then the density of ~ equals JKJ/Jp[. Similarly, if ~ = ~oW ~1 
is a double-lattice packing with copies of  K, and if p is a basic parallelogram 
for the lattice of translations of each of ~o and ~ t ,  then the density of ~ is 21K [/[p[. 

Note that the concepts of double-lattice packing and its density are affine- 
invariant, just as for lattice packings (see p. 26 of [10]). Specifically, let ~ be a 

Fig. 2. Double-lattice packing. 
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Fig. 3. Extensive parallelogram; a >- dr~2, b >- d2/2. 

double-lattice packing of  the plane with copies of  K and let A be an affine 
transformation of the plane. Then A(~ )  is a double-lattice packing of the plane 
with copies of  A ( K )  and the density of A(~ )  is the same as that of ~. 

A chord of  K is a segment whose endpoints lie on the boundary of K. A chord 
of  K is a diameter of K if it is at least as long as any chord parallel to it. If v 
is a unit vector, the length of  K in the direction of  v is the length of  the diameter 
of  K parallel to v. A polygon is inscribed in K if each of  its vertices lies on the 
boundary of  K. A parallelogram inscribed in K is extensive if the length of each 
of  its sides is at least one-half of the length of K in the direction of the side (see 
Fig. 3). Notice that extensive parallelograms are affine-invariant, i.e., if q is an 
extensive parallelogram inscribed in K and if A is an affine transformation of  
the plane, then A(q)  is an extensive parallelogram inscribed in A ( K ) .  

2. Double-Lattice Packings Generated by Extensive Parallelograms 

Assume that q is an extensive parallelogram inscribed in K, place the origin at 
one of  the vertices of  q, and let u and v be the vectors spanning q. For every 
pair of  integers i, j, and for e=O,  1, let K ~ ( i , j ) = 2 ( i u + j v ) + ( - 1 ) ~ K .  Observe 
that the family ~ = {K~( i , j ) }  is a double-lattice packing of  the plane with copies 
of  K, namely ~ =  ~o u ~1, where ~o = {K°( i , j )}  and ~1 = {K l(i,j)} (see Fig. 4). 
The lattice of  translations is generated by 2u and 2v, its basic parallelogram is 
p =2q,  and the density of  ~ equals 21Kt/[pl = tK[/2Iqt. We say that the double- 
lattice packing is generated by the extensive parallelogram q. 

Fig. 4. Double-lattice packing generated by an extensive parallelogram. 
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Fig. 5. A row of translates of K. 

Among all double-lattice packings of  the plane with copies of  K there exists 
one of  maximum density. This can be easily shown using a compactness-type 
argument. In this section we show how to construct such a packing. 

Theorem 1. I f  K is strictly convex, and if ~ is a maximum density double-lattice 
packing of the plane with copies of K, then ~ is generated by a minimum area 
extensive parallelogram inscribed in K. 

Proof. Let Ko E ~. Obviously, K0 touches another  member  of  ~. 

Case L Ko touches a translate of  Ko, call it K~. Let u be the vector of  the 
translation from Ko to K~. Since u belongs to the lattice of  translations of  ~ ,  
there is in ~ a " row"  Ro . . . .  K_2u  K_~ w K o u  K~ u K2- • • o f  translates of  Ko 
in which Ki+l = u + Ki (see Fig. 5). It follows that ~ is the union of  a sequence 
of  nonoverlapping rows {Rj} such that every other row is a translate of  Ro and 
each o f  the remaining rows is a translate of  - R o .  Since ~ is of  maximum density, 
two neighboring rows are as close to each other as is possible. This implies that 
K0 touches two copies of  K in each of  the two rows neighboring Ro. Each of  
these four  copies of  K is a translate of  - K o ,  and it is easy to notice that the 
points at which they touch K0 are vertices of  a parallelogram q inscribed in/Co. 
This parallelogram is extensive, and it generates the packing ~. 

Case IL Ko does not touch any translate of  itself in ~. In this case, Ko touches 
at least two translates of  - K o ,  say K_~ and K~. The vector of  the translation 
from K_~ to K~ belongs to the lattice of  ~ and it produces an "alternating 
row" • - • K_2u  K_t u Kow K~ u K 2 • • • in which each K2~ is a translate of  Ko 
and each K2i+i is a translate of  - K o  (see Fig. 6). Now the entire packing 
consists of  translates of  that one alternating row. In a similar fashion as in 
Case I we conclude that Ko touches four translates of  - K o ,  and, again, we find 
the extensive parallelogram q inscribed in Ko which generates ~. 

Since the density of  ~ depends only on the area of  q, and since that density 
is maximum, the area of  q is minimum among all extensive parallelograms 

Fig. 6. An alternating row. 
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inscribed in Ko, and the proof  is complete. However, it can be noticed now that 
the minimality of  the area of  q implies that the length of  one of the sides of  q 
actually equals one-half of  the length of  Ko in the direction of  that side. Therefore 
Ko actually touches a translate of  itself, and Case II is not possible at all. [] 

Remark 1. I f  K is not strictly convex, the conclusion of  the above theorem does 
not necessarily hold. However, in this case there exists a double-lattice packing 
with maximum density which is generated by a minimum-area extensive 
parallelogram inscribed in K. This can be obtained by approximating K with a 
sequence of  strictly convex bodies K,  and then selecting a convergent subsequence 
of  double-lattice packings. 

Remark 2. Theorem 1 and the above remark yield an algorithm for finding a 
maximum density double-lattice packing with copies of K which goes as follows. 
For any diameter d of K, find a pair of  chords parallel to d, each of length equal 
to one-half of  the length of d. These two chords define a parallelogram q(d) 
inscribed in K, which turns out to be extensive (see Lemma 1 of the following 
section). Now vary d and find a critical position of d = do such that q(do) is of 
minimum area. This minimum-area extensive parallelogram generates a maximum 
density double-lattice packing with copies of K. In general, locating the critical 
diameter do may be a problem, but in many special cases, as in the following 
examples, the diameter do is easy to find. 

Examples. An application of the algorithm described in Remark 2 to the case 
when K is a regular pentagon results in a double-lattice packing of density 
(5 -x /5 ) /3  =0.92131. . . ,  shown in Fig. 7. This packing may have the maximum 

Fig. 7. Maximum density double-lattice packing with regular pentagons. 
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Fig. 8. Maximum density double-lattice packing with regular heptagons. 

density among all, not necessarily double-lattice, packings with congruent regular 
pentagons. A similarly obtained double-lattice packing with congruent regular 
heptagons is shown in Fig. 8. This packing's density equals 0.8926..., and, again, 
this is possibly the maximum density of any packing with congruent regular 
heptagons. This conjecture implies the conjecture of Blind [1] which asserts that 
there exists a noncentrally symmetric convex body K whose maximum packing 
density is smaller than 0.9024 . . . .  The constant 0.9024... is conjectured by 
Reinhardt [8] to be the greatest lower bound for all maximum packing densities 
of the centrally symmetric convex plane bodies. This motivates the following. 

Problem. Let n->5 be an odd integer. Is the maximum density among all 
packings with congruent regular n-gons attained through a double-lattice 
packing? 

Note that if K is a regular polygon with an even number of sides, then, due 
to its central symmetry, the maximum density among all packings with copies 
of K is attained through a lattice packing, according to a well-known result of 
Fejes T6th [3] and Rogers [9]. 

3. Two Certain Types of Inscribed Extensive Parallelograms and 
a High-Density Packing Generated by One of Them 

We are now concerned with the extensive parallelograms inscribed in K with 
one pair of sides parallel to a given direction. In particular, we focus on the two 
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extreme cases: when the two sides are as short as possible, and when they are 
as long as possible. 

Lemma 1. Let v be an arbitrary direction and let d be the length of  K in the 
direction of  v. I f  c~ and c2 are two chords parallel to v and of  length d / 2  each, then 
the parallelogram whose opposite sides are these two chords is extensive. 

Lemma 2. Let v be an arbitrary direction, let kl and k2 be the lines of  support for 
K, parallel to v, and let w be the distance between these two lines. I f  e~ and e2 are 
two equal length chords parallel to v and such that the distance between the two 
lines defined by these chords equals w/2, then the parallelogram whose opposite 
sides are these two chords is extensive. 

We omit the very simple proofs of the above lemmas. 
For an arbitrary direction v, the parallelogram described by Lemma 1 is 

called the half-length parallelogram in the direction of v, and the one de- 
scribed by Lemma 2 is called the half-width parallelogram in the direction of  v 

(see Fig. 9). 

Theorem 2. For every direction v, the area of  either the half.length or the half-width 
parallelogram in the direction of  v, inscribed in K, is less than or equal to IKl/x/'3. 

Proof Let kt and k 2 be the two lines of  support for K, parallel to v, and let A~ 
and A2 be respective points at which k~ and k2 touch K. Let d be the diameter 
of  K parallel to v. Denote the endpoints of  d by B~ and B2 and let m~ and m2 
be parallel lines of  suppol~t of  K, touching K at BI and B2, respectively. The 
lines k~, k2, m~, and m2 bound a parallelogram containing K which we will 
assume is a square of side 4; this can be arranged through a suitable affine 
transformation of  the plane. Denote by L~, L2,/-,3, and L4 the vertices of the 
half-length parallelogram in K in the direction of  v, and let W~, W2, W3, and 
W4 be the vertices of  the half-width parallelogram in K in the direction of  v, as 
shown in Fig. 10. Let x be the length of the chord W1 W2 and let y be the distance 
between the lines of the chords L~L2 and LaL4. Obviously, each of the numbers 
x and y is between 2 and 4. The areas of the two extensive parallelograms 
L~L2L3L4 and W~ W2W3W4 are equal to 2y and 2x, respectively. Let D denote 

Fig. 9. 

W 

The half-length and the half-width parallelograms. 
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Fig. 1O. Constructing the dodecagon D inscribed in K. 

the dodecagon B~ WILIAIL2 W2B2 W3L3A2L4W4 which is inscribed in K. The area 
of  D is readily computed as follows: 

(1) The combined area of  the two triangles L1AIL2 and A2L3L4 equals 4 - y .  
(2) The combined area of  the two trapezoids L~LzW2WI and L3L4W4W3 

equals (x + 2)(y - 2)/2. 
(3) The combined area of  the remaining two trapezoids BIB2W2W~ and 

B1B2W3W4 equals 4+x .  

Thus the total area of  D equals 6 + xy/2. 
Let t = min(x, y). On one hand, the area of  one of  the two parallelograms in 

question equals 2t. On the other hand, the area of K is greater than or equal to 
that of /9 ,  since K contains D. Therefore IK[ > 6 + xy/2 > 6 + t2/2. It follows that 
IKl/2t>3/t+t/4,  and, since 3/t+t/4>x/3 for all t > 0 ,  we conclude that 
IKt/2t > x/3, which is equivalent to 2t < [Kl/x/g. [] 

Corollary. Every convex plane body K admits a double-lattice packing of the plane 
with density of at least x/3/2. 

Proof. By Theorem 2 there exists an extensive parallelogram q inscribed in K 
and with Iql -< (vr3/3)lKI • This parallelogram generates a double-lattice packing 
of  the plane with copies of  K, as described in Section 2. The density of this 
packing equals ]K[/2]q[ >v/3/2. [] 

Remark 3. In the proof  o f  Theorem 2, the direction v was chosen arbitrarily, 
and each of  the two extensive parallelograms constructed there had a side parallel 
to v. Therefore the above corollary can be strengthened somewhat by adding that 
one of  the basic vectors of  the translation lattice of  the double-lattice packing is 
parallel to the prescribed direction. In this phrasing, the inequality obtained for 
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Fig. 11. Maximum density (double-) lattice packing with regular dodecagons under the constraint 
that one basic translation is parallel to the central diagonal. Density: ,,~/2. 

the density is the best possible, as the example of the regular dodecagon shows, 
in which the prescribed direction is parallel to its central diagonal (see Fig. 11). 
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