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Abstract. We present an efficient algorithm for planning the motion of a convex 
polygonal body B in two-dimensional space bounded by a collection of polygonal 
obstacles. Our algorithm extends and combines the techniques of Leven and Sharir 
and of Sifrony and Sharir used for the case in which B is a line segment (a "ladder"). 
It also makes use of the results of Kedem and Sharir on the planning of translational 
motion of B amidst polygonal obstacles, and of a recent result of Leven and Sharir 
on the number of free critical contacts of B with such polygonal obstacles. The 
algorithm runs in time O(knA6(kn) log kn), where k is the number of sides of B, n 
is the number of obstacle edges, and A,(q) is an almost linear function of q yielding 
the maximal number of connected portions of q continuous functions which compose 
the graph of their lower envelope, where it is assumed that each pair of these 
functions intersect in at most s points. 

1. Introduction 

Let B be a convex po lygona l  objec t  having k vertices and  edges,  free to move 
( t ransla te  and  rota te)  in an open  two-d imens iona l  space V b o u n d e d  by  a co l lec t ion  
o f  po lygona l  obs tac les  ( "wa l l s " )  having a l together  n corners.  The  p rob l e m s tud ied  
in this p a p e r  is to p lan  au tomat i ca l ly  a con t inuous  obs tac le -avo id ing  mot ion  o f  
B be tween  any two specif ied initial  and  final p lacements ;  see Fig. 1.1. 

This  p rob lem was first cons ide red  by  Schwartz  and Shar i r  [SS],  who present  
an O ( n  ~) a lgor i thm for its so lu t ion  (which appl ies  to nonconvex  po lygona l  moving  
objects  as well).  Since then this classical  " p i a n o - m o v e r s "  p rob l e m had  been 
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the Digital Equipment Corporation, and the IBM Corporation. 
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Fig. i.i.  An instance of the motion-planning problem. 

studied extensively, and several efficient algorithms had since been developed 
for certain special cases of it [BZ], [LS1], [LS2], [KS], [KLPS], [OY], [OSY1], 
[OSY2], [SIS]. 

The algorithm developed in this paper is based on a generalization and 
combination of the algorithms developed by Leven and Sharir [LS1] and by 
Sifrony and Sharir [SIS] for the case in which B is a line segment. The Leven- 
Sharir algorithm partitions the (three-dimensional) space FP of free placements 
of B (also known as the free configuration space of B) into simple, openly disjoint 
and connected cells, and then determines the adjacency between these cells. This 
yields an abstract representation of FP by a connectivity graph whose nodes are 
these cells and whose edges connect pairs of adjacent cells. Once the cells 
containing the specified initial and final placements of B are determined, the 
motion-planning problem is then reduced to a simple graph searching. 

The second algorithm [SIS] also reduces the problem to a combinatorial graph 
searching, but uses a different graph, called the vertex graph, whose nodes are 
the corners of FP, and whose edges connect pairs of corners that are adjacent 
along edges of FP, or along some additional auxiliary arcs in FP. 

Our algorithm constructs an "intermediate" kind of graph, which we call an 
edge graph; its nodes are edges of the boundary of FP and its edges connect 
pairs of adjacent FP-edges (in a sense to be defined more precisely below). Our 
algorithm begins (as in [LS1]) by restricting the motion of B to be purely 
translational at some fixed orientation 0. This motion has only two degrees of 
freedom, so that it is easier to calculate its associated restricted two-dimensional 
space FPo of free placements (a task which has already been carried out in [KS]; 
see also [BZ], [KLPS], and [LS2]), and to represent it as the union of two- 
dimensional polygonal regions having simple shape. Each such region can be 
given a discrete combinatorial labeling that does not depend continuously on 0. 
Roughly speaking, we represent FPo by a graph VGo, whose nodes are the corners 
of FPo, and whose edges connect pairs of adjacent corners. The nodes of VGo 
are given discrete combinatorial labels (that do not depend continuously on 0). 

Next we observe that this combinatorial description of FPo will not change 
as O varies slightly, unless O is one of finitely many critical orientations, at which 
some critical condition, which affects the combinatorial structure of FP~, occurs. 

As it turns out, the most complex of these critical orientations are those at 
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which the object B makes three simultaneous contacts with the obstacles, without 
penetrating into any obstacle. If B is a line segment (a "ladder") ,  then it is shown 
in [LSI] that the total number of  such critical placements of  B is O(n2), which 
consequently leads to an O(n 2 log n) algorithm for the desired motion planning. 
If B is a convex k-gon which is free only to translate in V but not to rotate, then 
the motion-planning problem becomes simpler and can be accomplished in time 
O(kn log kn) [LS2], [KS], [KLPS], [BZ]. This follows from the property, which 
is proved in [KS] and will be used below, that the number of  placements of  B 
(all having the same given orientation) at which it simultaneously touches two 
obstacles, without penetrating into any obstacle, is O(n) (provided that B and 
the obstacles are in "general position"; see [KS] and below). If B is also allowed 
to rotate, then the corresponding critical orientations are much harder to analyze. 
Since each contact of  B with the walls is a contact of  either a corner of B with 
a wall edge or an edge of B with a wall corner, a crude and straightforward 
upper bound on the number of  these critical placements of  triple contact of  B 
is O((kn)3). Moreover, if B is nonconvex, then there are cases where the number 
of these critical placements of B is indeed f~((kn)3). However, a recent result of 
Leven and Sharir [LS3] shows that if B is convex, then the number of these 
critical orientations is only O(knA6(kn)), where A~(q) is the maximal number of  
connected portions of  the graphs of q continuous functions which compose the 
graph of  their lower envelope, where it is assumed that each pair of  these functions 
intersect in at most s points. It is shown in [Sz] that As(n) = O(n log* n) (where 
log* n is the length of  the smallest exponential tower 2 2--2 exceeding or equal to 
n). A better asymptotic bound is given in [HS] for the case s = 3  and in [Shl]  
for larger values of  s. These better bounds are roughly of  the form 
O(na(n)°~")'-3)), where a (n )  is the functional inverse of  Ackermann's function, 
and is extremely slowly growing. In short, for a fixed s, As(n) is nearly linear in 
n, although, as is shown in [HS] and [Sh2] one has A~(n) =f~(nat(s-l)/21(n)), so 
that As(n) is superlinear in n for s >-3. 

Using these bounds together with the techniques of [LS1], [SIS], [KLPS], and 
[KS], we next extend each node in VGo, by varying 0, into a node which represents 
an edge of  FP, and then construct an edge graph EG which represents adjacency 
of  such edges along the boundary of  FP. All this finally yields a motion-planning 
algorithm for a convex polygonal object B which runs in time O(knA6(kn) log kn). 
This algorithm is being implemented on an IBM robot RS/2, and its experimental 
results will be described in a forthcoming paper. 

This paper is organized as follows. In Section 2 we describe the recursive 
discrete representation of  FP by its associated edge-graph EG, as outlined above. 
In Section 3 we discuss the algorithmic details involved in the construction of  
EG, and in its use for actual motion planning. 

2. Discrete Recursive Representation of the Free Configuration Space 

Let B be a bounded convex k-sided polygonal body, whose interior is nonempty. 
B is free to move (translate and rotate) in a bounded two-dimensional open 
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region V having a polygonal boundary with n corners altogether. We assume 
that this boundary can be partitioned into a collection of  pairwise disjoint simple 
closed polygonal curves (which we calll "walls");  the "wall region" V" can then 
be partitioned into a collection of  convex polygonal regions having pairwise 
disjoint (and nonempty) interiors. Note that these assumptions exclude degener- 
ate configurations in which a wall is just an isolated corner or an isolated segment, 
or in which a wall corner is adjacent to more than two wall edges. 

Let P be an arbitrary fixed reference point in the interior of B, and let Q be 
an arbitrary corner of B. Each placement Z of  B in the plane can be represented 
by the parameters (X, 0), where X is the position of P, and where 0 is the 
orientation of  the vector PQ. 

As in [SS], we define a free placement (X, 0) of  B to be a placement at which 
B is fully contained within V; a semifree placement (X, O) of  B is defined to be 
a placement at which B may touch some walls, but not penetrate into the interior 
of  the wall region V ~. The set FP of  all free placements of B is an open 
three-dimensional manifold, and the set SFP of all semifree placements is closed. 

As in [LS3], we assume that the moving object B and the obstacles are in 
general position. Roughly speaking, this means that (i) there does not exist a 
placement of  B in which it meets four independent constraints involving contacts 
with obstacles; and (ii) there do not exist two placements of  B with the same 
orientation such that B meets at each of  them three independent constraints 
involving contacts with obstacles (see [LS3] for more detail). We also assume 
for simplicity that no wall edge is horizontal; this can always be enforced by an 
appropriate rotation of  V. 

Since the motion of  B has three degrees of  freedom, we first analyze, as in 
[LS1], only purely translational motion of  B (involving just two degrees of 
freedom), and only then treat the case of general motion of B, including rotation. 
This will enable us to obtain recursively a combinatorial representation of each 
cross-section of  FP at a fixed 0, from which we will then construct a certain 
discrete graph which represents the entire space FP in a "connectivity preserving" 
manner, and which allows us to reduce the motion-planning problem to a discrete 
problem of  path searching through that graph. (Our method can be regarded as 
a hybrid of  the two techniques presented in [LS1] and [SIS], in a sense that will 
become clear later on. An attempt at direct generalization of  the technique of  
[LS1] has led to certain technical difficulties that we have not been able to 
overcome.) 

2.1. The Case of Translational Motion of B 

Definition 2.1. 

(a) [LS3] A (potential) contact pair 0 is a pair ( W, S) such that either W is 
a wall edge and S is a corner of  B, or W is a wall corner and S is a side 
of  B. In the first case we call the pair a contact pair of type I and in the 
second case a contact pair of  type II. 
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(b) A contact pair of  type I l l  is a pair O = ( W, S) where W is a wall corner 
and S is a corner of  B. 

(c) An actual obstacle contact (i.e., a contact of  B with an obstacle) is said 
to involve the contact pair O = (W, S) if this contact is of  a point on S 
against a point of  W, and furthermore if this contact is locally free, i.e., 
the inner angle of  B at S lies entirely on the exterior side of  W if S is a 
corner of  B, and the entire angle within the wall region V " at W lies 
exterior to B if W is a wall corner. 

(d) (See [KS].) Let A be one of  the convex polygonal obstacles into which 
V c is decomposed.  The expanded obstacle A* associated with A for a given 
orientation 0 of  B is the pointwise vector difference A - B o ,  where Bo is 
the standard placement of  the moving object B in which P lies at the 
origin, rotated by 0. A0* is also a convex polygonal region whose sides are 
vector (Minkowski) differences of  the form W - S where ( W, S) is a contact 
pair o f  type I or II,  and whose vertices have a similar representation for 
contact pairs (W, S) of  type III.  

It follows from the results of  [KS] that the restricted free configuration space 
FPo, which is the space of all free placements of  B having orientation 0, can be 
represented as the complement of  the union 

Ko= C_~ (A,):= C~ (A,- Be), 
i = 1  i = 1  

where A1, . .  •, A,, are the convex polygonal regions into which V ¢ is decomposed. 
See Fig. 2.1 for an illustration of Ko and of FPo. The boundary of Ko (and also 
of FP o) thus consists of  a collection of polygonal curves having finitely many 
corners. An edge of the boundary of K0 is a connected portion of an edge of an 
expanded obstacle induced by a type I or a type II contact pair, and each vertex 
of Ko is either a (convex) corner of  an expanded obstacle induced by a type I l I  
contact pair, or a (nonconvex) intersection point of  two sides of  different expanded 
obstacles, each induced by a contact pair of  type I or of  type II. 

The nonconvex corners of  the boundary of K~ are the locations of  the reference 
point P at semifree placements in which B (at orientation 0) makes two distinct 

Fig. 2.1. K. and FP.. 
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obstacle contacts simultaneously (in each of  which either a corner of  B touches 
a wall edge or a side of  B touches a wall corner). 

It is shown in [KS] (see also [KLPS] and [LS2]) that, for each fixed orientation 
0 of  B, the number  of  nonconvex corners of  Ke is only O(n)  (actually it is only 
O(m)). An algorithm for the calculation of  FPo, which makes use of  this property, 
is presented in [KS]; its t ime complexity is O(kn log 2 kn), which has later been 
improved to O(kn log kn) is [LS2], using a different approach involving general- 
ized Voronoi diagrams (and also in a recent paper  [BZ] that uses a line-triangle 
representation of the moving object). 

The first step of our algorithm is to use the results of  [KS] or of  [LS2] to 
obtain a decomposit ion of  FPo into connected components,  and to represent 
each such component  Q by a discrete connected graph whose nodes are the 
corners of  Q, each of which is given a discrete combinatorial labeling that does 
not depend continuously on 0. (This differs from the approach used in [LS1], 
namely to partition FPo into trapezoidal cells, and to establish adjacency of these 
cells in FPs, obtaining in this way a connectivity graph CGo whose connected 
components  correspond in a 1-1 manner to the connected components  of  FPo. 
Although this approach can be used in our case as well, it creates technical 
difficulties when we attempt to extend these cells into three-dimensional cells as 
we add the degree of  freedom of  rotation. We therefore prefer to use the approach 
mentioned above, which is more similar to that of  [SIS].) 

More precisely, let Co = Co(O) be the collection of  all convex and nonconvex 
corners of  K~ (and also of  FPo). Define a vertically maximal corner of  FPo to 
be a convex corner u of  Ko which has the largest y-coordinate among all points 
of  Ke in a sufficient small neighborhood of  u. For each such vertically maximal 
corner u, we introduce an auxiliary corner u*, which is the unique point of  the 
boundary of  FPo that lies directly above u and is such that the open segment 
uu* is wholly contained in FPo. (Note that since V is assumed to be bounded, 
FPo is also bounded,  and u* thus always exists and is well defined.) Let C*= 
C*(O) denote the set of  all such auxiliary corners. 

Next define a vertex graph VGo, whose set of  nodes is C = C(O) = Cou  C*, 
and whose edges either connect pairs of  adjacent corners (including auxiliary 
ones) along edges of  FPo, or connect vertically maximal corners u to their 
associated auxiliary corners u*~ C*. 

For certain critical values of  0, the boundary of  FPo may contain a corner u 
for which the intersection of  FPo with any sufficiently small neighborhood of  u 
is disconnected; this would be the case if at orientation 0 a corner of" B touches 
a wall corner, while B also makes another contact with the walls, which corre- 
sponds to a convex corner of  K~ also lying on another edge of Ko. (Note that 
more degenerate double contacts, in which, say, two convex corners of  Ko touch 
one another,  are ruled out by our assumptions that the obstacles are in general 
position; see also [LS3].) In these cases split u into two distinct corners, one for 
each connected component  of  FPo n N, for an aribtrarily small circular neighbor- 
hood N of  u, and then connect each of these split corners u' to its two adjacent 
comers  along the two rays bounding the component  Q'  of  FPo associated with 
u'. The split corner u'  will be regarded as lying only on the boundary of  Q', and 
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Fig. 2.2, FPo and VGo. 

not on the boundary of the other components of  FPo which lie near u. (Note 
that, assuming general position of the obstacles, such a corner u cannot be 
vertically maximal.) 

In the following subsection we will consider general motion of B including 
rotation. It is important for analysis of such general motion that VGo does not 
depend continuously on 0, but rather remains invariant except at certain finitely 
many critical orientations, to be defined below. For this reason we assign discrete 
combinatorial labelings to each node (and thus also to each edge) of  VGo in the 
following simple manner: each convex corner of  Ko is labeled by the type I I I  
contact pair that induces it; each nonconvex corner is labeled by the two contact 
pairs (of type I or II)  that induce it: and each auxiliary corner u* is labeled as 
an auxiliary corner associated with the type I I I  contact pair that induces the 
vertically maximal corner u to which u* corresponds. It is easily checked that 
these labelings uniquely define the corresponding corners of  FPo (at a given 
orientation 0). This labeling scheme turns VGo into a discrete structure, clearly 
not depending continuously on 0. 

Theorem 2.1. Two corners u, v ~ C belong to the same connected component of 
VGo if and only if they lie on the boundary of the same connected component of FPo. 

Proof. I f  the edge (u, v) belongs to VGo then by definition u and v lie on the 
(boundary of  the) same connected component  of  FPo. Thus the "only i f"  part 
of  the theorem follows by transitive closure. As to the " i f "  part, it is clearly true 
in the case in which u and v lie on the same connected component  of  the boundary 
of a connected component  Q of FPo. If  Q has more than one boundary component,  
then we let A~ (resp. A~) denote the set of all nodes in VGo reachable from u 
(resp. from v) by a path in VGo. We claim that both A~ and Av contain corners 
lying on the (unique) exterior boundary E of  Q, so that the preceding argument 
implies that A,  = A~, or, in other words, u and v lie in the same connected 
component  of  VGo. Indeed, suppose that A, contains no corner of  E. Let z ~ An 
be the corner with highest y-coordinate.  It is then easy to show that z is a vertically 
maximal corner. (This is because z lies on an interior boundary of  Q, and if the 
upward-directed vertical ray from z did not contain free positions sufficiently 
near z, then it would have to intersect the boundary component  containing z at 
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a point having larger y-coordinate than z, contradicting our choice of  z. This 
argument is easy in 2-space; a more general argument for higher-dimensional 
space is given in Section 3 of  [SIS].) But then VGo contains the edge (z, z*), and 
z* has larger y-coordinate than z, a contradiction which completes the proof of 
the theorem. [] 

2.2. The Case of a General Motion of B 

We now turn to the general case in which B can both translate and rotate. To 
do so we first consider how the combinatorial characterization of  FPo, provided 
by the graph VGo, changes as 0 varies. 

Definition 2.2. An orientation 0 of  B is called a critical orientation, if one of  the 
following conditions occurs: 

(i) There exists a semifree placement of  B at orientation 0 at which either 
it makes simultaneously three distinct obstacle contacts involving contact 
pairs of  types I or II, or it makes simultaneously two obstacle contacts, 
one involving a contact pair of type III and another involving a contact 
pair of type I or II. In other words, either three edges of expanded 
obstacles meet at the same nonconvex corner of  Ko, or a convex corner 
of  Ko meets another edge of  Ko (see Fig. 2.3(a) and (b)). 

(ii) There exists a vertically maximal convex corner u of  Ko whose associated 
auxiliary corner u* coincides with a (convex or nonconvex) corner of Ko 
(see Fig. 2.3(c)). 

(iii) (a) Two adjacent edges of  Ko become collinear (Fig. 2.3(e)), or 
(b) an edge of  Ko becomes horizontal (see Fig. 2.3(d)). 

Lemma 2.1. The vertex graph VGo does not change as 0 varies in a sufficiently 
small neighborhood of any noncritical orientation. Furthermore, for each such 
sufficiently small neighborhood, the connected component Q( A, O) of FPo, corre- 
sponding to a fixed connected component A of VGo, varies continuously (in the 
Hausdorff topology of sets) with 0. 

Proof. First observe that as long as condition (iii)(a) does not arise, each edge 
or a convex corner of  an expanded obstacle, corresponding to some contact pair 
O, continues to appear on the boundary of  that obstacle, and varies continuously 
with 0. Moreover, the intersection between any two such edges (belonging to 
different expanded obstacles) is transversal, unless either these edges become 
collinear, or they meet at an endpoint of  one of  them. Hence as long as conditions 
(i) and (iii) do not arise, each such intersection is transversal, and thus also varies 
continuously with 0. Also, as long as no three edges of  expanded obstacles meet 
at the same nonconvex corner of  Ko, and no convex comer of  Ko meets an edge 
of  that set, it follows that as we vary 0, each nonconvex corner of  Ko, formed 
by intersection of  edges corresponding to two contact pairs O1, O2, will continue 
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to appear  on the boundary of Ko, continue to be induced by the same two contact 
pairs, and vary continuously with 0. It follows that as 0 varies slightly, no 
connected subcomponent  of  FPo (or even no component  of the boundary of FPo) 
shrinks to a point and disappears, no such component  newly appears,  no two 
such components merge into a single component,  nor does such a component  
split into two subcomponents.  Furthermore, each connected component  of  the 
boundary of FP, retains the same combinatorial representation as a circular 
sequence of  convex and nonconvex corners induced by the same combinations 
of  contact pairs, and each of these corners varies continuously with 0. This also 
implies that each connected component  of  FPo varies continuously with 0. 

To complete the proof  of  the lemma, let u be a vertically maximal corner of  
Ko. First note that as long as we do not cross any critical orientation, u remains 
vertically maximal as 0 varies. Also, as long as condition (ii) does not arise, the 
auxiliary corner u* associated with u remains on the same edge of  K,  between 
the same two vertices of  VGo, and varies there continuously with O. All these 
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observations clearly imply that VGo remains constant as 0 varies through non- 
critical orientations. I~ 

Critical orientations of  type (i) were analyzed in [LS3], where it was shown 
that there are at most O(knA6(kn)) such orientations. Section 3 presents an 
algorithm for the calculation of  these orientations, which runs in time 
O( knA6( kn ) log kn ). 

Critical orientations of  type (iii) are trivial to analyze. In fact, there are only 
O(kn) such orientations, whose calculation is straightforward. 

Finally, critical orientations of  type (ii) require involved analysis, similar to, 
but somewhat  simpler than that in [LS3]. This analysis will be presented in 
Section 3 below, where we show that the number  of  such critical orientations is 
also at most O(knA6(kn)), and that they can also be calculated in time 
O( knA6( kn ) log kn ). 

Suppose then that we have calculated all these critical orientations, and sorted 
them in circular order. Let T denote the sorted collection of all such orientations. 

Let 00 be a noncritical orientation, and let u be (the discrete labeling of) a 
corner in VGo,,. We will associate with u a lifespan Lu = (01,02), which is the 
maximal (open) interval containing 00 such that u ~ VGo for all 0 e (01,02), and 
such that u does not become coincident with any other corner of  VGo for any 
such 0. We also associate a similar lifespan interval Le c L~ c~ L~ with each edge 
e = (u, v) of  VGoo, defined in a similar manner. We call the pair (u, Lu) an extended 
corner, and the pair (e, Le) an extended edge. 

We next construct an (extended) edge graph EG, whose nodes are all these 
extended corners, and each of  whose edges connects an extended corner (u, L,)  
to another extended corner (v, Lv), if (u, v) is an edge of VGo for some 0 e Lu c~ Lv 
(i.e., if  the life span of  the edge (u, v) is nonempty).  

The graph EG is used to represent FP as follows. For each (label of  a) corner 
of  some Ko, the node (u, Lu) of  EG represents an edge of the boundary of FP 
which consists of  all placements Z = (X, 0) of  B such that 0 c L, and such that 
at placement Z either B makes a double contact involving the two contact pairs 
inducing u, if u is a nonconvex corner of  Ko, or B makes an obstacle contact 
involving the type I I I  contact pair inducing u, if u is a convex corner of  Ko; if 
u is an auxiliary corner, then (u, L~) represents an arc along a face of  FP, 
consisting of  placements (X, 0) at which B makes a single obstacle contact 
induced by some contact pair of  type I or II, such that X lies directly above the 
convex corner of  K0 inducing u. 

It is also worth noting that by definition each edge e of  FP is the intersection 
of two surfaces bounding FP, and is thus the locus of  placements Z of B at 
which it satisfies two independent constraints involving contacts with obstacles. 
Hence at these placements either B makes two distinct contacts with the walls, 
involving two distinct contact pairs O1 = ( W~, SO, 02 = ( IV,, S.,) of  type I or II, 
or it makes a single contact o f  one of its corners S against a wall corner W, i.e., 
involving the type I I I  pair O = ( W, S). It follows that e must correspond to some 
edge of  EG defined either in terms of the nonconvex corner labeled by O~, 02, 
or  by the convex corner labeled by O, except in degenerate situations in which 
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all placements along e have the same orientation 0; these can arise in certain 
degenerate situations, including, e.g., the following cases (see Proposition 2.1 of  
[LS3]): 

(a) W~, W2 are both wall corners and Si = $2 (see Fig. 2.4(a)); 
(b) W1, W2 are both wall corners and St, $2 are parallel sides of B; 
(c) W~, W2 are parallel wall edges (see Fig. 2.4(b)); 
(d) W~ is a wall edge and $2 is a side of B parallel to W~. 

Nevertheless, we will show that the edges of FP that are represented as nodes 
of EG are sufficient for adequate representation of FP 

The edges of EG also have natural interpretation in terms of FP. Let ~: = 
[(u, L~), (v, L~)] be an edge of EG, and let e~, e~ denote the two edges of FP 
corresponding to (u, L~) and (v, Lv), respectively. Then ~: represents adjacency 
of  e~ and ev along a face f of  FP; more precisely, for each 0 ~ L(,.~}, the cross 
section o f f  at 0 contains a straight segment whose endpoints are (labeled by) u 
and v. An exception is when v = u*; then ~: represents in a similar manner 
adjacency of  e~ and e~. along an auxiliary "vertical" surface inside FP. 

We claim that EG captures the connectivity of  FP in the following sense: 

Proposition 2.1. 

(a) To each connected component A of EG there corresponds a unique connected 
component Q of FP, such that the nodes in A represent precisely those edges 
of FP which bound Q (and which do not lie in a single 0 cross section of FP). 

(b) Each connected component of FP has at least one bounding edge that is 
represented by a node of EG. 

Proof. The proof  of  (b) is straightforward. Indeed, let Q be a connected com- 
ponent of FP, and let Z = (X, 0) ~ Q. The cross section Qe = Q c~ FPo of Q contains 
X and has thus nonempty interior. Since V is assumed to be bounded, so must 
be 00. Thus Q8 has a bounded polygonal boundary, which therefore must contain 
at least one nonconvex corner u of  Ks (e.g., choose u t9 be the corner of Q0 
with the largest y-coordinate). But then it is clear that (u, Lu) is a node of  EG 
which represents an edge of  Q. 
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The proof  of  (a) consists of  two parts. In the first part we argue that if (u, Lu), 
(v, Lv) are two adjacent nodes of  EG, then they represent edges of  FP which 
bound the same connected component.  This claim follows immediately from 
definition of EG. Thus it follows by transitive closure that all the nodes in a 
connected component  of  EG represent edges of  FP bounding the same connected 
component  of  FP. 

The second part proves the converse statement, namely that any pair of  edges 
of  FP which bound the same connected component  of  FP, and neither of  which 
is contained in a single 0 cross section of  FP, are represented by nodes of  EG 
which belong to the same connected component  of  this graph. The proof  of  this 
statement consists of  the following steps. 

The set of  all critical orientations partitions the angular space into disjoint 
open noncritical intervals. By our assumptions that B and the obstacles are in 
general position, it follows that at each critical orientation only a single criticality 
occurs. Define a decomposition of FP into disjoint connected cells as follows. 
Let I be a noncritical interval, and let A be a connected component  of  VGo for 
any (hence all) 0 c L The cell c = c(l, A) of FP associated with I and A is defined 
a s  

c(/, A) = {(X, 0): 0 ~ I, X ~ Q(A, 0)}, 

where, as above, Q(A, 0) is the (unique) connected component  of  FPo whose 
boundary corners appear  in A. 

It is clear that the cells defined in this manner are open, connected, and 
pairwise disjoint, and that the union of  their closures covers the entire space FP. 

Two cells c = c(l, A), c'= c(I', A') are called adjacent if the intervals/ ,  I '  have 
a common endpoint 0* and there exists a free placement (X*, 0") ~ FP lying in 
the closures of  both cells c, c'. 

Now let Z = (X, 0), Z = (X' ,  0') be two free placements lying the same con- 
nected component  of  FP, and let p(t) be a continuous path in FP connecting 
these two placements. Without loss of  generality we may assume that p( t )  crosses 
between the cells of  FP as defined above only finitely often, intersecting each 
cell boundary transversally, and in fact enters each such cell at most once. Let 
c ~ , . . . ,  ct be the sequence of  cells traversed by p(t) in this order. It is then clear 
that each pair of  cells c~, c~+~ in this sequence are adjacent in the sense just 
defined. Conversely, if c, c' are adjacent cells then one can show that there exists 
a free motion of B from any placement in c to any placement in c', which is 
contained in the union of the closures of  these two cells and which intersects the 
boundary between c and c' transversally at a single point. (To show this, one 
has to move B from a placement in c (or in c') to a free placement (X*,  0") 
lying in both closures of  c and of c'; to argue that such a motion is always 
possible without having to enter other cells, we use a straightforward generaliz- 
ation of  the argument given in Section 2.2 of  [LS1]; in fact, as argued there, the 
required motion can be achieved by a pure rotation around (X*,  0").) 

We can therefore define a connectivity graph CG, whose nodes are the cells in 
the above decomposit ion of  FP, and whose edges connect pairs of  adjacent cells. 
The above argument then implies that two cells c, c' lie in the same connected 
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component  of  CG if and only if they are contained in the same connected 
component  of  FP. 

To establish our claim it is thus sufficient to prove that: 

(a) The boundary of each cell c of  FP contains at least one edge which is 
contained in an edge e, represented by some node (u, L,)  of  EG. 

(b) I f  two cells c = c(I, A), c ' =  c(l', A') of FP are adjacent, and if (u, Lu), 
(v, L~) are two nodes of  EG whose corresponding edges eu, ev intersect 
the boundaries of  c, c' respectively, then they lie in the same connected 
component  of  EG. Moreover, the same property also holds if c = c'. 

To prove property (a), let c = c(I, A) be such a cell of  FP, and let u be a node 
in A. Then, for any 0 e I, u represents a corner of the connected component  
Q = Q(A, O) of FPo. It thus follows by definition that I is a subset of  L, and 
that e~ has the desired property. 

As to property (b), we first claim that, given two adjacent cells c = c(I, A), 
c' = c ( l ' ,  A'), there exists a node (w, Lw) of EG representing an edge of FP which 
meets the boundaries of  both c and c'. Indeed, let 0* be the common endpoint 
of  I and I ' .  By assumption, 0* involves only one criticality. If  this criticality 
does not affect the components A, A' of  VGo, then clearly they must be equal, 
and any corner w in A = A' yields a node (w, Lw) of EG with the desired property. 

Suppose next that at 0* a criticality which affects A or A' occurs. Let Q =  
Q(A, O) for 0E I (resp. Q'-- Q(A', 0') for 0 '~ I ' )  be the connected component  
of  FPo (resp. of  FPo,) represented by A (resp. by A'). Note that both Q and Q' 
are bounded polygonal regions, so that the exterior boundary of each must have 
at least three corners. Furthermore, each criticality can affect at most two corners 
of  Q (resp. of  Q'). Indeed, the only type of criticality that might affect three 
corners of, say, Q is that in which three edges of  K0 meet at a common point at 
0 = 0". But this can affect three corners of  Q only if Q is bounded by just these 
three edges, and thus shrinks to a point as 0 ~  0"; this however is impossible 
because then c and c' could not have been adjacent in FP. 

These arguments are easily seen to imply that A and A' must share a common 
node w which is not affected by the critical change occurring at 0", and it then 
follows by definition that (w, Lw) meets the boundaries of  both c and c', as 
asserted. It is thus sufficient to prove the secon claim in (b), because the first 
claim will then follow by combining the facts that (u, Lu) and (w, L.,) (as edges 
bounding c) lie in the same connected component  of  EG, and that (v, L~,) and 
(w, Lw) (as edges bounding c') also lie in the same connected component  of  EG. 

Thus let (u, L.) ,  (w, Lw) be two nodes in EG representing edges of  FP both 
meeting the boundary of  the same cell c = c(/, A). Then it follows from Theorem 
2.1 that u and w belong to the same connected component  of  VGo, for each 
0 ~ / ,  so that, by definition, (u, L,)  and (w, Lw) belong to the same connected 
component  of  EG. The proof  of  (b), and hence also of  part (A) of  our proposition, 
is thus completed. [] 

Definition 2.3. Using the observations made in the proof  of  (B) above, we can 
also define a map ~ ( Z )  which maps each Z c FP to a node of EG representing 
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an edge o f  FP which bounds the connected component  of  FP containing Z. 
Specifically, given any free placement Z = (X, 0) of  B, we can translate B upward 
from Z (i.e., in the positive y direction) until it reaches a new placement 
Z *  = (X*,  0) at which it makes contact with an obstacle. I f  this contact involves 
a contact pair of  type I I I ,  or consists of  two simultaneous contacts involving 
pairs of  types I or II, then X* is a corner of  FPo, and we let ~ ( Z )  be the node 
of  EG induced by that corner. Otherwise, we continue to translate B from Z*  
leftward, maintaining the obstacle contact that involves the same contact pair, 
until we reach a placement Z * * =  (X**, 0) for which X** is a corner of  FPo, 
and then continue as above. Again, the fact that FPo is bounded implies that Z*,  
Z**,  and thus also ~ ( Z ) ,  are always well defined. 

We thus obtain the following main theorem of  this section: 

Theorem 2.2. Let Z, Z '  c FP be two free placements of B. Then there exists a 
collision-free motion of B from Z to Z'  if and only if the nodes qb(Z), ~(Z' )  of EG 
as defined above belong to the same connected component of EG. 

3. Algorithmic Details 

We now turn to describe an efficient implementation of  our motion-planning 
solution. We first present an algorithm that computes VGo for any fixed O; this 
is an expansion of  the algorithm described in [KS] for the calculation of FP in 
the case of  purely translational motion of a convex polygonal body amidst convex 
polygonal obstacles. In the next subsection we show, in a manner  similar to 
[LS3], that the number  of  critical orientations of  type (ii) is O(knA6(kn)). We 
follow with a detailed description of the algorithms that find all critical orienta- 
tions, and then construct the extended edge graph EG. Finally, using these 
structures, we show how to plan continuous obstacle-avoiding motion of B 
between any specific initial and final placements. 

3.1. Constructing VGo 

Let 0 be a noncritical orientation. The following algorithm constructs VGo in 
four stages. The first three stages produce FPo in essentially the same manner  as 
in [KS], and the additional fourth stage computes VGo from FPo. 

(a) For each of the  convex polygonal obstacles A into which V" is decomposed 
(see Subsection 2.1), calculate the expanded obstacle A* = A -  Bo in t ime linear 
in the sum of  the number  of  corners of  A and of B (using, e.g., the technique 
of  [GRS];  note that the number  of  comers  of  A* is also bounded by that sum 
[GRS]).  Thus the total number  of  convex corners of  all the expanded obstacles 
is O(km + n) and they can all be calculated in time O(km + n), where m is the 
number  of  the convex subparts of  V', and k, n are as above. Since m <- n we can 
denote this complexity as O(kn). However, if m << n then O(kn) may be a gross 
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overestimation of the actual complexity of the expanded obstacles at any given 
0. See below for a discussion on how this observation affects the overall complexity 
of  our algorithm. 

(b) Calculate the boundary of  Ko, which is the union of all these expanded 
obstacles. To do this we use a technique due to [OWW] which calculates the 
boundary of  the union of  several superimposed polygonal planar regions in time 
O((n + t) log n), where n is the number of line segments constituting the boun- 
daries of  these regions, and t is the number of intersections between these 
segments. We combine this technique with the following divide-and-conquer 
approach: 

1. Recursively find 
[m/2J 

G= U (A,)*, 
i = l  

H = 0 (A,)*. 
i =  Lm/2+U 

2. Find the contour of Ko = G u H using the technique of  [OWW]. 

Since each point of  intersection of  the boundaries of G and H must lie on the 
boundary of  their union, it follows by a theorem proved in [KS], that the number 
of  these intersection points is only O(m),  so that step 2 of the above algorithm 
runs in time O(kn log kn), and thus the entire algorithm runs in time O(kn log- 
kn log m). 

(c) Find the connected components of FPo and represent them as an "inclusion 
tree", each of whose nodes is a connected component of the boundary of FPo, 
as follows [KS]. Note that FPo is a general, possibly disconnected polygonal 
planar region, whose components need not be simply connected. However, since 
0 is assumed to be noncritical, each connected component of the boundary of 
FPo must be a closed simple polygonal path. In the inclusion tree that we construct 
each node represents a simple connected component of this boundary, and such 
a component (72 is a child of another C~ if C2 is contained in C~, and the region 
between them is either contained entirely within FPo or is disjoint from FPo. The 
root of  the inclusion tree is a nominal "infinite boundary" consisting of all points 
at infinity. Each connected component C of  FPo is represented in the inclusion 
tree by the node which represents the exterior polygonal boundary of  C, and by 
all children of  that node (if any), which represent the connected components of  
the interior boundary of  C. The entire tree is easily calculated in time O(kn log kn), 
using a straightforward sweeping technique (see [KS] for more details). 

(d) Finally we construct VGa from FPo as follows. Initially, we take all corners 
of FPe to be vertices of VGo, and connect them in VGo along edges of FPo. 
Then, sweeping a vertical scan line across the plane, we can easily calculate the 
auxiliary corner associated with each vertically maximal corner of Ks, in overall 
time O(kn log kn). We then add each of these auxiliary corners u* as a vertex 
of  VGo, split the edge e of  FPo containing u* into two subsegments at u*, remove 
e from VGo, and finally connect u* to the vertically maximal corner u that 
induced it, and to the two endpoints of e. 
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Clearly, the time complexity of  the entire algorithm is O(kn log kn log m). 

Lemma 3.1. The vertex graph VGo is planar, has O(kn) edges and corners, and 
each vertex in VGo is incident to at most three edges. 

Proof. The planarity follows immediately from the fact that FPo is planar and 
the added vertical segments which emanate upward from vertically maximal 
corners do not intersect any other segment except at a vertex of VGo. The number 
of  comers  and edges of  FPo is O(kn) and the number  of  auxiliary comers  does 
not exceed the number O(kn) of convex corners of  FPo, and each such auxiliary 
corner adds two edges of  VGo. Hence VGo has O(kn) edges and corners. Finally, 
it is plain that each vertex in VGo is incident to two edges, except for the vertically 
maximal vertices and their corresponding auxiliary vertices, each being incident 
to three edges. [] 

3.2. The Number of Critical Orientations of Type (ii) 

We next turn to the problem of estimating the number  of  critical orientations of 
type (ii). Recall that these orientations arise when the auxiliary corner u* associ- 
ated with a vertically maximal corner u of  Ko coincides with a convex or a 
nonconvex corner of  Ko. Also recall that a vertically maximal corner u is induced 
by a contact pair O = ( W, S), where W is a wall corner and S a corner of  B such 
that u has the largest y-coordinate among all points of  Ko in a sufficiently small 
neighborhood of u. 

The number  of  critical orientations 0 at which such u lies immediately below 
a convex corner u of  Ko is O(k:n 2) and a superset of  these orientations, also of  
size O(k2n2), can be calculated in a straightforward manner  by iterating over all 
O(k2n 2) possible two contact pairs of  type III.  We thus proceed to estimate the 
number  of  critical orientations at which u lies directly below a nonconvex corner. 

Let u be such a fixed vertically maximal corner induced by a type I I I  contact 
pair O = ( W, S). For each contact pair O, = ( W~, S~) of  type I or II,  and for each 
0 define the function Goo,(O) to be the distance along the vertical ray from the 
corner u upward to its intersection with the edge induced by the pair O~ if such 
an intersection exists, and +co otherwise. 

Let H = 110o, denote the domain of definition of Goo,(O). Note that H need 
not in general be connected, but, as in [LS3], we have: 

Lemma 3.2. Iloo, consists of at most four subintervals. 

Proof. Fix the corner S of  B at the wall corner W and let B rotate about that 
common corner. Each point X in B then traces a circular arc, denoted by C×, 
about  W. Suppose first that S~ is a corner of  B (and that W, is a wall edge). It 
is clear that Goo,(O) is defined in this case if and only if the vertical ray emanating 
upward from Sj intersects W~, and that Goo,(O) is equal to the length of the 
vertical segment from Sj to the intersection point of  this ray with W~. Similar 
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considerations apply when St is a side of B (and WI is a wall corner). In this 
case Goo,(O) is defined if and only if the vertical ray emanating downward from 
Wt intersects S~, and as before Goo,(O) is then equal to the distance between 
Wt and the intersection point of that ray with S~. 

Thus Goo,(O) is defined for orientations 0 of B that fulfill the following three 
conditions: 

(1) The corner u induced by O exists and is vertically maximal. 
(2) B can make at orientation 0 an obstacle contact involving the contact pair 

Ot = ( Wt,  Sl). 
(3) The vertical ray emanating upward from u intersects the expanded obstacle 

edge induced by O~. 

Thus the domain of Goo,(O) is the intersection of the three domains It, /2, 
/3 satisfying respectively these three conditions. 

A necessary condition for It ,  the domain of  orientations for which u exists 
and is vertically maximal, to be nonempty is that W itself be vertically maximal, 
in the sense that it is the point with the largest y-coordinate among all points of 
V" in some small neighborhood of W. Assuming that this is the case, it is then 
clear that the angular interval where u exists and is vertically maximal must be 
contained in the interval of orientations of B whose corresponding positions of 
P on the circle Ce lie in the upper half of that circle. It is also clear that the 
domain of orientations at which a contact induced by O is possible, is an angular 
interval whose length is equal to the exterior angle at W minus the angle of B 
at S. Thus Ii is an angular interval of length less than or equal to 7r (see Fig. 3.1(a)). 

It is also clear that /2, the domain of orientations at which the contact Oi is 
possible, is an angular interval whose length is equal either to the exterior angle 
of  B at $1 minus ~ if St is a vertex of B, or to ~r minus the convex angle at W~, 
if WI is a wall corner. Thus the intersection of  I~ and /2 is an angular interval 
of  length strictly less than ~- (see Fig. 3.1(b)). 

As to /3, suppose first that W~ is a wall edge. Let I~ (resp. 12) be a vertical ray 
emanating from the rightmost (resp. leftmost) endpoint of W~ downward, and 
consider the infinite trapezoidal strip bounded by W1, l~, and 12. It is easily 
checked that 13 consists of these orientations of B at which S~ lies within that 
trapezoid, or, in other words, each connected component of I3 corresponds to a 
connected component of  the intersection of Cs, with this trapezoid. Thus in this 
case 13 consists of  at most three subintervals (see Fig. 3.1(c)). Furthermore, if I3 
does consist of three subintervals, then each of them has length at most zr. 

Suppose next that WI is a corner, and let 11 be a vertical ray emanating from 
W~ downward. Then I3 consists of  these orientations of B at which the side St 
intersects It. Here two conditions need be met simultaneously. First, W~ must 
lie above the line containing S~ and W, W1 must lie on different sides of this 
line, and second, the two endpoints of  $1 must lie on different sides of  il. As to 
the first condition, it is easily checked that it can be expressed as a linear inequality 
in sin O and cos 0 of  the form p s i n ( 0 -  a ) >  q, where p and q are both positive, 
and can therefore have a solution set consisting of  at most one angular interval 
of  length at most ¢r (see Fig. 3.1(d)). The second condition can change from 
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(a) (b) 

(c) 
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(d) 

Fig. 3.1 
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t 

being true to being false or vice versa whenever one of  the endpoints o f  S~ crosses 
the line containing l~. Thus there are at most four orientations at which the 
second condition can change, again yielding at most two angular intervals at 
which this second condition can hold. Thus, intersecting the first interval with 
the latter two, we conclude that I~ consists of  at most three angular intervals in 
this case too, where each of  these subintervals is of  length at most ¢r. 

It follows that both cases I~ c~ I 2 (h/3 consists o f  at most three angular intervals. 
Transforming these intervals to the range 0-< 0 <- 27r, we conclude that the domain 
1-Ioo, of  Goo,(O) consists of  at most four subintervals in this linearized range. 
This completes the p roof  of  the lemma. [] 

If  IIoo, is indeed not connected we will consider each connected portion of 
Goo,(O) as a separate partially defined function and will still have at most O(kn) 
such functions for each fixed contact pair O. 

We next define the lower envelope of  the set of  functions Goo, for O: 

XFo(0) = min Goo,(O). 
i 

Note that if I is a (maximal) interval over which ~ o  is attained by a single 
function Goo,, then for each 0 e I the auxiliary corner u* lies on the expanded 
obstacle edge induced by Oi. Furthermore, each breakpoint 0 on the envelope 
• o(0)  (i.e., a point at which Wo(0) is attained simultaneously by two functions 
Goo,, Goo,) is an orientation in which the edge of  Ko containing u* changes 
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(from the one labeled by O~ to that labeled by Oi); conversely, every such change 
in the edge containing u* corresponds to a breakpoint  of  Wo(0). 

Next we show that each pair o f  the functions Goo, intersect in at most four 
points: 

Lemma 3.3. Let 0 = ( W, S) be a contact pair inducing a vertically maximal corner 
u and let 0~, 02 be two other distinct contact pairs. Then there are at most four 
orientations 0 in which u lies directly below the nonconvex corner formed by the 
intersection of  the expanded obstacle edges induced by O~ and 02, respectively. 

Proof. Follows immediately from the analysis in [SS] and Lemma 2.2 in [LS3]. 
Specifically, consider the curve Yo, o2 traced by S as B makes simultaneously two 
obstacle contacts involving the pairs O~ and 02. As shown in [SS], this curve is 
either a straight segment or part of  an ellipse or part of  a quartic algebraic curve. 
The desired placement at which u lies directly below the intersection point of  
the edges induced by O~ and 02 is the intersection between this curve and the 
vertical line emanating upward from W. Since Yo, o, is at most quartic there are 
at most four such intersections. [] 

It therefore follows (see [At]) that the number of  breakpoints along • is at 
most A6(kn ). TO see this, it suffices to show that each pair gi -- Goo,, gj = Goo, 
of these partial functions can alternate along the lower envelope ~ o  at most 
seven times. Indeed, the two extreme portions in such an alternation can occur 
within the symmetric difference of  the domains of  gi and of g~ (observe that this 
symmetric difference consists of at most two intervals, on each of  which just one 
of these functions is defined), and at most five additional alternating portions of  
the graphs of g~, gj can occur along the lower envelope within the intersection 
of the domains of  these two functions, because gi and gj must intersect between 
each pair of  such adjacent alternating occurrences, and by Lemma 3.3 only four 
such intersections can occur. Since the number of  vertically maximal corners is 
at most O(kn),  we have in summary. 

Theorem 3.1. The total number o f  critical orientations of  type (ii) is at most 
O(knA6(kn)). 

An efficient procedure for calculating these orientations will be described in the 
following subsections. 

3.3. Calculation of  All Critical Orientations 

We now proceed to describe a collection of algorithms that actually calculate all 
critical orientations. For each wall edge W we denote its two endpoints as WL 
and WR, so that the wall region lies to the left of  the oriented segment WLWR. 
Similarly, for each side S of  B, we denote its endpoints by SL and SR, so that B 
lies to the right of  the oriented segment SLSt~. 
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Calculation of  Type (i) Critical Orientations. This phase extends and provides 
more detail of the procedure briefly outlined in [LS3]. We recall some definitions 
and lemmas from [LS3] to be used in the description of this phase. 

Definition 3.1 [LS3]. 

(a) The tangent line T of a contact pair O = ( W, S) of type I or of type II is 
either the line passing through W if W is a wall edge or the line passing 
through W and parallel to S if W is a wall corner (note that in the second 
case T depends on the orientation of B). 

(b) Let O~, 02 be two contact pairs for which there exists a (unique) placement 
Z = (X, 0) of B at which it makes simultaneously two obstacle contacts 
involving O~ and 02, respectively. We say that 02 bounds O~ at the 
orientation 0 if B* = conv(Sl u $2) always intersects W2 as we translate B 
from Z along the tangent T1 in the direction of the intersection point zt2 
of Tt and T2, until the last placement at which $1 still touches W~. 

(c) Let Ot =(W1,S1) be a contact pair. If W~ is a wall edge (and S~ is a 
corner of B), the two contacts of $1 against the two endpoints of Wl will 
be called endpoints of (the edge induced by) O1. If W~ is a wall corner, 
we define the endpoints of (the edge induced by) O1 in a symmetric manner 
as contacts of the endpoints of S~ against W~. 

(d) We will say that at orientation 0, O2 bounds O1 toward an endpoint E of 
the edge induced by O~, if the translation of B from Z as in (b) above 
terminates at the contact E. 

Proposition 3.1 [LS3]. I f  at some placement Z = (X, 0), B makes simultaneously 
two obstacle contacts involving the contact pairs 0~, 02, then either O~ bounds 02 
at 0, or 02 bounds O~ at 0, except in the degenerate case where the tangents T~, 
T2 are coincident or parallel 

Let Oi be any contact pair and let E be one of its endpoints. Consider all 
contact pairs that bound O~ (at any orientation 0) toward E. For each such 
contact pair 02 we define a bounding function Fo, o,(O), over the domain of 
orientations 0 of B in which 02 bounds Ol toward E, to be the distance of the 
endpoint of W~ at which the contact E is made from the contact point of S~ and 
WI, if O~ is a contact pair of type I, or the distance of the endpoint of S1 involved 
in E from the contact point of S~ and W~, if O~ is a contact pair of type II. 

We partition the collection of bounding functions {Fo, o,} of O~ into two classes 
AL(O~), AR(O~) so that for all functions Fo, o, in AL, Oi bounds O~ toward the 
endpoint WL of Wj (or SL of S~) whereas for all functions in AR, Oi bounds O1 
toward the other endpoint of Wj (or of S~). Note that there may exist a contact 
pair O~ for which a bounding function Fo, o, appears in both collections AL, AR, 
but then these two functions will have openly disjoint domains of definition 
[LS3]. Also the domain of definition of each Fo, o, consists of at most five 
connected intervals [LS3]. If the domain of such a Fo, o, is not connected, we 
regard this function as several (<--5) distinct partially defined functions having 
connected (and pairwise openly disjoint) domains (see [LS3]). 
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We are now in position to describe the collection of procedures which compute 
all the type (i) critical orientations. 

Step 1: Find All Bounding Functions. For every two contact pairs 0~ = ( Wi, S~), 
Oj = ( Wj, ~) ,  each being either of type I or of type II, find the range of orientations 
(which can be empty) in which Oi bounds Oj toward a specific endpoint E of 
Oj. Split the resulting bounding function Fojo, into (at most five) "subfunctions", 
and add these functions, together with additional information concerning their 
parameters and domains of definition, to the appropriate collection AL(Oj) or 
AR(O~). (As mentioned above, for certain pairs 0 ,  0~ of contact pairs, functions 
Fo, o, may be added to both AL(Oj), AR(Oj).) 

The results of [LS3] reviewed above clearly imply that the storage required 
up to this point does not exceed O(kEn2). Each bounding function (for two fixed 
contact pairs) can be processed in O(1) time, and thus Step 1 can be performed 
in time O(k2n2). 

Our next step is to find, for each of the O(kn) contacts pairs O, the lower 
envelope 

qtL;o(0) = min{Foo,(O): Foo, ~ At(O)}, 

and the corresponding envelope WR'~O for the collection AR(O). 
It was shown in [LS3] that each type (i) critical orientation 0 is one of the 

three following kinds: 

(1) 0 is the orientation of an intersection point of two functions Foo, and 
Foo, lying along some lower envelope xttE; o. 

(2) 0 is the orientation of an intersection point of some function Foo, on W L;o 
and a transformation of a function Foo, lying along qtR: o (Foo, is shifted 
and reflected so that both functions measure distance from the same 
endpoint of O). 

(3) There exist three contact pairs Or, 02, 03, such that OI bounds 02 (toward 
an endpoint E2), 02 bounds 03 (toward an endpoint E3), and 03 bounds 
O~ (toward an endpoint E~) at 0, and the envelopes ~e,~o,, xF~;o_., ~e~;o, 
are attained at 0 by the functions Fo~o,, Fo, o., F~o3, respectively. 

Step 2: Calculate Lower Envelopes. The following algorithm for calcuiating the 
lower envelopes is adapted from [At]. Since both kinds ofenvelopes are calculated 
in much the same way, we will describe below only the calculation of the lower 
envelopes xItL;o for the collections AL(O). 

(1) Fix a contact pair O, and partition AL(O) into two disjoint subsets A~., 
A~. of roughly equal size. 

(2) Compute recursively the two lower envelopes 

~'(0) = min{Foo,(O): Foo, ~ Ak}, 

• "(0) = min{Foo,(O): Foo, ~ A[}. 

Each of these recursive calculations will have produced a sequence of 
angular intervals in each of which the corresponding partial envelope is 
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attained by a single bounding function; we refer to the endpoints of these 
intervals as breakpoints along the corresponding envelope. 

(3) Merge these two sequences of intervals to obtain a refined sequence F of 
angular intervals. For each refined interval I ~ F there exist unique contact 
pairs O', O" with Foo, e A~, Foo°e A~, such that ¢Y'(O) = Foo,(O), ~"(0) = 
Foo,,(O) for each 0~ I, By the analysis of [LS3] the two functions Foo, 
and Foo. intersect in at most four points (some of which may not belong 
to I), which can be calculated as the roots of some quartic polynomial. 
Each of these intersections which lies in I is clearly a breakpoint of 

= ~L;o, and every breakpoint o f ~  is either of this kind, or is a breakpoint 
of ~t" or of ~t'". Thus we can calculate ~ from the merged sequence F in 
time proportional to the number of intervals in F, which, by [LS3], is 
O(A6(kn)). Thus the total time required by Step 2, when repeated for each 
contact pair O and extended to calculate also lower envelopes of the form 
xI" R,o, is O(knA6(kn) log kn). 

Remark. At the bottom level of the recursion, when the collection of bounding 
functions consists of just a single function, the sequence of breakpoints that has 
to be generated simply consists of the two endpoints of the domain of definition 
of that function. Thus, some of the breakpoints in the final envelope q~ will 
represent endpoints of such domains. 

The output of this step consists of O(kn) sorted lists of critical orientations, 
where each list represents the breakpoints along a single lower envelope qtL:O 
or ~R;o. We denote by CbL(O) (resp. OR(O)) the list representing ~L.o (resp. 
~R.O) for a contact O. For each such list ~e(O) ,  the procedure also produces 
an associated list Me(O) of the bounding functions attaining the corresponding 
envelope on the sequence of intervals delimited by the orientations in q)E(O). 

By now we have found (a superset of) all critical orientations 0 of type (i) in 
which B can make simultaneously (at a free placement) obstacle contacts involv- 
ing three distinct contact pairs O,, O2, 03, such that two of these pairs, say 02 
and 03, bound the third one O, toward the same endpoint of O,, i.e., such that 
the bounding functions Fo, o2 and Fo, o~ belong to the same collection AL(O,) or 
AR(O,) and meet one another at 0 along the corresponding lower envelope. 
(Note that not all orientations corresponding to envelope breakpoints necessarily 
yield free critical contacts of B. However, subsequent steps of the algorithm will 
be able to detect such spurious breakpoints and discard them; see below for more 
details.) 

Step 3: Calculate the Second Kind of  Type (i) Critical Orientations. These are 
orientations 0 at which B makes simultaneously, at some free placement, obstacle 
contacts involving three distinct contact pairs O,, 02, O3, such that two of them, 
say 02 and 03, bound O,, but with Fo, o~ belonging to AL(O,) and Fo, o, belonging 
to AR(O,) at 0. Calculation of such orientations is easy and proceeds as follows: 

(1) For each contact pair O, merge the two lists ~PL(O) and ~PR(O) of 
breakpoints to obtain a refined sorted list of angular intervals delimited 
by these breakpoints. 
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(2) For each such refined interval I, there exist unique functions Foo, ~ AL(O), 
Foo~ ~ A R(O) which attain ~L;o and ~R~O, respectively, over / .  Calculate 
the (at most four) intersections between these two functions and add those 
intersections that lie in I to the output list of new critical orientations. 
(Note that in this calculation Fooe has to be shifted and reflected into the 
coordinate frame in which Foo, is defined, so that both functions will 
measure the distance from the same endpoint of O.) 

Clearly, Step 3 runs in O(knA6(kn)) time. 

Step 4: Calculate the Third Kind of Type (i) Critical Orientations. Finally, we 
calculate the third and most complex kind of critical orientations. At each such 
orientation 0, B can make simultaneously a free triple contact involving three 
distinct contact pairs Oi, O2, O3, such that Fo, o~eA~,(01), F~o,  e Ae,(O2), 
F~o,  ~ A~3(O3), where El e {L, R} for i = 1, 2, 3 (and such that all these functions 
lie on the corresponding lower envelopes). In other words, no two of  these contact 
pairs simultaneously bound the third one. 

To find these orientations we first merge all lists OL(O), OR(O), for all contact 
pairs O, to obtain a single sorted list • consisting of  O(knA6(kn)) refined 
noncritical intervals delimited by all these breakpoints. Each interval I in • has 
the property that each envelope ~E;o is attained over I by a single bounding 
function Foo,. 

Step 4 processes the intervals in • in order, maintaining a priority queue Q 
of  potential critical orientations of  the kind we seek, and a map ~ *  which maps 
each pair (O, E)  of  a contact pair O and endpoint E to the contact pair O' for 
which g'E;o = Foo, over the currently processed interval of O. This procedure 
runs as follows: 

(1) Starting at the initial interval Io, we first initialize the value of ~*  for Io, 
and then construct a list A of potential triple contacts of  the third kind 
induced by the various lower envelopes over Io, as follows. For each 
contact pair Oi, and each El c {L, R}, find the (unique) contact pair 02 
such that ~E,;o, = Fo, o,_ over I0 (using the map ~*) .  For each E2~ {L, R} 
find the (unique) contact pair 03 such that ~e~:o:. = Fo~o~ over Io. Finally, 
for each E3~{L, R} fP]: which ~e~;o3= Fo~o , over Io, add the item 
(O1, O2, 03, El ,  E2, E3) to A. Clearly, A consists of at most O(kn) items. 

(2) Next initialize the priority queue Q as follows. For each item 
(OL, O2, O3, El ,  E2,//3) in A, calculate the (at most four) orientations at 
which a triple contact involving the pairs Oi, 02, 03 can be made such 
that at this contact O2 bounds Oi toward E~, 03 bounds O2 toward E2, 
and Oi bounds O3 toward E3. Orientations of  this kind that belong to Io 
are immediately added to the output list of  critical orientations, whereas 
all the others are added to Q, each tagged by the corresponding item 
(o l , . . . . ,  E~). 

(3) Next we process the remaining intervals in • in order. Let I be the interval 
presently being processed, let I '  be the preceding interval, and let 0 be 
the common endpoint of  I '  and I. By our assumptions at most one triple 
contact can occur at 0. Suppose this contact involves three individual 
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contact pairs O~, 02, 03 such that, say, 02 and 03 both bound O~ toward 
its L endpoint. Then the only envelope for which the bounding function 
attaining it changes from I '  to I is *L;o,-  Thus if we were to calculate (in 
the manner described above) a list A of  potential triple contacts from the 
envelopes over I, we would have obtained the same list that would be 
obtained from the envelopes over I ' ,  with the exception of contacts 
involving O~ (more precisely, contacts corresponding to items of the form 
(O~, O', O", L, E' ,  E")). But there are clearly only O(1) items of  this form, 
and they can all be computed in O(1) time using the map ~*  (for the 
interval I )  as in (1) above. We therefore proceed as follows: 

(i) Update the value of  ~*(O~, L), obtain the O(1) new potential triple 
contacts arising from this change, and insert the corresponding critical 
orientations into Q. (Optionally, we may also choose to delete the 
O(1) entries from Q that were obtained using the old value of  
~ * ( O i ,  L).) 

(ii) Remove from Q all entries whose orientations lie in I. Let 
(~  (O, O', O", E, E' ,  E")) be an entry removed from Q. We check 
whether this contact is still valid, in the sense that the present value 
o f ~ *  satisfies xF*( O, E) = 0', ~*( 0', E')= 0", and ~F*(O", E")= O. 
If  so, add this entry to the output list. 

This concludes the description of  Step 4. Its time complexity is clearly 
O(knA6(kn) log kn). Therefore all critical orientations of  type (i) can be calculated 
in time O(knAo(kn) log kn). 

Step 5: Calculation of Type (ii) Critical Orientations. These orientations are 
calculated in a similar (and simpler) manner to the calculation of type (i) 
orientations. Recall that a type (ii) orientation 0 is one in which a vertically 
maximal corner u of  Ko induced by a type IIl  contact pair O = (W, S) lies 
immediately below another (convex or nonconvex) comer  u* of  that set. If  u* 
is convex, then u* is induced by another contact pair (W~, $1) of  a wall corner 
W~ and a corner Sm of  B. In this case 0 can be found by intersecting the circle 
at radius ISS~[ about W with the vertical ray dcP, cending from W~. There are at 
most two such intersections, and for each of  these intersection points Z we obtain 
a corresponding critical orientation 0, at which the segment SS~ on B becomes 
parallel to WZ. It is therefore clear that the total number of  such critical orienta- 
tions is at most O(k2n2), and t h a t ,  by repeating the above procedure for every 
two type I l l  contact pairs ( W, S), ( W~, S~), we obtain in time O(k2n 2) a superset 
o f  the set containing all these critical orientations. 

If  the comer  u* is nonconvex, then we have to apply the techniques described 
in Subsection 3.3 to calculate the corresponding critical orientations. Specifically: 

(1) For each type III contact pair O=(W,S)  and for each contact pair 
Oi = ( W~, Si) of  type ! or II, find (in constant time) the domain of definition 
and other parameters o f  the function Goo,(O). (Recall that this function 
measures, for each orientation 0, the vertical distance between the corner 
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(2) 

(3) 

u of  Ko induced by O and the edge e of  that set induced by O~, whenever 
this distance is well defined and u lies below e.) 
Calculate the lower envelope ~ o  of  the functions Goo,, over all contact 
pairs Oi, using the procedure as applied in Step 2 to the functions Foo,. 
This produces a list To of  critical orientations, each representing a break- 
point along ~ o .  By the results in Subsection 3.2, To consists of  at most 
O( Ar( kn ) ) orientations. 
Finally, we can merge To with the previously calculated list of potentially 
critical orientations 0 at which u lies below another convex corner of Ko. 
We can determine whether any such latter orientation 0 is indeed critical 
by testing whether it represents a point actually lying on the envelope ~ o ,  
and discard 0 if it is found not be critical. 

Clearly, Step 5 of our algorithm requires O(knA6(kn)log kn) time. 

Step 6: Calculation of Type (iii) Critical Orientations. Recall that this type of 
critical orientation arises when two adjacent edges of Ko become collinear, or 
when an edge of Ko becomes horizontal. As noted in Subsection 2.2, there are 
at most O(kn) orientations of the first kind that are not also type (i) critical 
orientations, and, assuming general position of the walls (so that no wall edge 
is horizontal), there are at most O(k) orientations of the second kind. All these 
orientations are trivial to calculate in time O(kn) (note that as before this 
calculation produces a superset of  the required critical orientations, because not 
all these orientations necessarily arise in semifree critical contacts of B). 

3.4. Constructing the Edge-Graph EG 

By now we have calculated a set T of size O(knhr(kn)) that contains all the 
critical orientations of all three types. Suppose that T is sorted in ascending 
order, and assume without loss of  generality that 0 = 0 is not an oreintation in T. 

As in Section 2, we represent each node ~" of  the graph EG by a pair (u, L~), 
where L. = (0, ,  02) is the angular lifespan of  ~, and where u is the (discrete 
labeling of  the) corner of  VGo, for 0 e L., that lies on the edge of  FP represented 
by ~¢. 

The calculation of  EG will be accomplished in a manner similar to that of  
[LS1]. That is, we process critical orientations in increasing order, maintaining 
the "cross-section" graph VGo and use it to update EG at each critical orientation. 
At each such orientation 0 we determine those nodes of  EG whose lifespan 
terminates at 0 (these are nodes whose corresponding corners have to be deleted 
from VGo), and the new nodes whose lifespan starts at 0. Nodes of the first kind 
will already have been stored in EG, and we update their lifespan by adding 0 
as its terminal orientation. Nodes of the second kind are added to EG, with 0 
as the initial orientation of their lifespan, and with the corresponding terminal 
orientation being presently left undefined. EG is also augmented by edges 
connecting the nodes just inserted with nodes already present in EG, as described 
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in Subsection 2.2 (note that these edges correspond to new edges in VGo,, for O' 
slightly larger than 0). 

To initialize EG we first calculate the graph VGo=o. For each corner u of this 
graph we create a corresponding initial node in EG whose label contains u, but 
with both initial and terminal lifespan orientations left undefined. 

Our algorithm has thus the following structure: 

(1) Merge all the various lists of critical orientations into a single sorted list 
T consisting of  0 < 0 ~ < 0 , < . - - < 0 w < 2 r r  (where w=O(knh6(kn))). 
(Without loss of  generality we assume that 0 is not a critical orientation.) 

(2) Compute VGo for 0 = 0. Copy VGo into EG, expanding the label of  each 
corner and edge of  VGo by two (presently undefined) entries for the two 
delimiting orientations of the lifespan of the resulting node or edge of EG. 

(3) For each critical orientation 0i, i = 1 , . . . ,  w, do: 
(a) Determine the changes that VGo undergoes as 0 crosses 0i from smaller 

to larger orientations. 
(b) Let v ~ , . . . ,  vt be the corners and e~, . . . ,  em be the edges of  VGo that 

disappear as 0 crosses Oi. Remove them from VGo, and assign 0,. as 
the terminal lifespan orientation of the corresponding nodes and edges 
in EG. 

(c) Let v* . . . .  , v* be the corners newly appearing in VG~ after 0 crosses 
0~, and let e * , . . . ,  e* be the new edges in that graph. Add these 
elements to VGo, and add the corresponding nodes and edges to EG 
with 0i as their initial lifespan orientation (and with their terminal 
lifespan orientation presently left undefined). 

(4) {At the end of  the above main loop the nodes and edges of  EG whose 
terminal iifespan orientation is still undefined are in 1-1 correspondence 
with the initial nodes and edges of EG, as created in step (2) above from 
the initial graph VGo=o.} 

This final step in the construction of  EG simply identifies these two 
types of  nodes. Specifically, for each node (u, (0~,ll))  of  EG whose 
terminal lifespan orientation is still undefined, find the corresponding 
node (u, (fl, 02)) of  EG whose initial lifespan orientation is undefined 
and merge them into the single node (u, (0r, 02)). (Note that there are 
only O(kn) such pairs of nodes.) 

Remark. In step (3)(a) we can first check whether the criticality that is supposed 
to happen at 0 actually arises in VGo; otherwise 0 is a spurious critical orientation 
which we can simply discard. (For example, if 0 is an orientation at which B 
makes three obstacle contacts simultaneously, then, if this is really a free triple 
contact then for 0' near 0 the boundary of Ko, must contain edges induced by 
all these three contacts, and we can easily check whether this is the case from 
the current value of VGo.) 

We can now state our main result. 

Theorem 3.2. The graph EG has at most O(knA6(kn)) nodes and edges. The 
algorithm just described computes EG in O( knAr( kn ) log kn ) time. 
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Proof. Let 0o be a critical orientation in T, and let ( 0o -  e, 0o+ e) be a sufficiently 
small interval in which only 0o is critical. As in Section 2, we also make the 
simplifying assumption that only one critical contact of  B occurs at 8o. (See also 
a discussion on this assumption in [LS3]. An exception are orientations of  type 
(iii)(b), at each of which up to O(n) different expanded obstacle edges become 
simultaneously horizontal; see below for the special treatment of  these orienta- 
tions.) The changes that occur in VGo (and induce similar changes in EG) as 0 
varies from 0o-  e to 0o + e depend on the type of criticality that arises at 0o: 

(a) Suppose first that 0o is a critical orientation of type (i) at which three 
edges of  Ko become concurrent at some nonconvex corner of Ko. Then VGo can 
change in one of the following ways: either 

(i) one corner of  this graph disappears and is replaced by two new corners 
connected by a new edge (see Fig. 3.2(a)); or 

(ii) two adjacent corners of VGo merge and form a new corner, and the edge 
connecting them disapppears (see Fig. 3.2(a)); or 

(iii) a small connected component  of VGo consisting of just three corners 
shrinks to a single isolated corner and then disappears (see Fig. 3.2(b)); 
or, finally, 

(iv) a new connected component  of VGo newly appears, first as an isolated 
corner and then expands to a triangle (see Fig. 3.2(b)). 

Since, by the arguments in Subsection 3.1, the degree of each vertex of  VGo 
at any noncritical 0 is at most three, it follows that in each of these cases step 
(3) of  the algorithm newly generates or modifies only a small fixed number of 
nodes and edges of EG as a result of  these changes in VGo at 0 = 0o. 
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(b) Next, suppose that 0o is a critical orientation of type (i) at which a convex 
corner of  Ko comes to lie on an edge of Ko. In this case VGo can change in one 
of  the following ways: either 

(i) one convex corner of  that graph disappears and is replaced by two new 
nonconvex corners; these corners lie in the interior of a former edge of  
VGo, and now split that edge into two new edges of  that graph, each 
delimited by one of  these new corners (see Fig. 3.3(a)); or, conversely, 

(ii) two nonconvex corners u, v of  VGo merge into a new convex corner w; 
furthermore, w becomes adjacent to one neighbor u' of  u and to one 
neighbor v' or v, and the two remaining neighbors s, t (of  u and v resp.) 
become adjacent to one another (see Fig. 3.3(a)). 

Thus in each of  these cases EG undergoes only O(1) changes at 0o. 
Since there are at most O(knA6(kn)) critical oreintations of  type (i), the total 

number  o f  new nodes and edges added to EG at these orientations is also bounded 
by O(knA6(kn)). 

(c) Next,  suppose that 0o is a critical orientation of  type (ii), in which a 
vertically maximal corner u of  Ko comes to lie directly below another corner v 
of  Ko (i.e., the associated auxiliary corner u* coincides with v). In this case u* 
changes its location from one edge (or portion of  an edge) vw~ of  Ko to an 
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adjacent one vw2. Consequently the two former edges vu*, u*w~ of VGo have 
to be merged into a single edge vw~, whereas the edge vw2 is split into two new 
edges vu*, u'w2. (See Fig. 3.3(b); note that the new edge vu* is a portion of an 
expanded obstacle edge induced by a contact pair different from that inducing 
the previous edge vu*.) Again only O(1) changes have to be made at 0o in the 
graphs VGo and EG. 

(d) Finally, suppose 00 is a critical orientation of type (iii). Suppose first that 
00 is of subtype (iii)(a), i.e., a side S of B at orientation 00 becomes parallel to 
a wall edge W. Let WL, WR be the endpoints of W and let SL, SR be the endpoints 
of S. Without loss of generality suppose that for 0 slightly less than 0o, Ko has 
two adjacent edges induced respectively by the contact pairs ( WL, S), ( W, SL), 
and that these edges become collinear at 0o, and, for 0 slightly larger than 00, 
are replaced by two other edges induced respectively by the pairs (W, SR), 
(WR, S). 

Consequently, for arbitrarily small e > 0, all the vertices and edges of VGo_~ 
that include ( WL, S) or ( W, SL) in their label terminate at 0, and corresponding 
new vertices and edges that include ( W, SR), ( WR, S) in their label show up in 
VGo÷~. The rest of the vertices and edges of both VG graphs remain unchanged. 
Since there are at most O(kn) edges and vertices including these pairs in their 
label in VGo_~ (resp. VGo÷~), and the degree of each of these vertices is at most 
three, the number of edges and vertices removed from (resp. added to) VGo and 
EG at each critical orientation of type (iii)(a) is at most O(kn). Since there are 
at most O(kn) critical orientations of this type, the total number of modifications 
of VGo and of EG at these orientations is at most O(k2n2). 

Next, suppose that 0o is of subtype (iii)(b), i.e., a side S of B becomes horizontal 
(with B lying above S) at 00. Let SL, SR be the endpoints of S. Then without 
loss of generality we can assume that for 0 slightly less (resp. larger) than 00, SL 
is lower (resp. higher) than SR. Then for 0 slightly less then 0o, Ko contains at 
most O(n) vertically maximal corners induced by contact pairs of the form 
(W, SL), which cease to be vertically maximal as 0o is crossed, and have to be 
replaced by another set of at most O(n) adjacent corners induced by correspond- 
ing pairs of the form (W, SR) which newly become vertically maximal. Thus, 
arguing as above, at most O(n) changes are required in the graphs VG~ and EG 
at each of the O(k) critical orientations of type (iii)(b), thus the total number 
of graph modifications at these orientations is only O(kn). 

This completes the proof of the first part of Theorem 3.2. 

Analysis of the Time Complexity of the Algorithm. We have already shown that 
the preliminary stages of our procedure, which calculate all critical orientations, 
require O(knA6(kn)log kn) time. As to the complexity of the main part of  the 
algorithm described in this subsection we argue as follows. 

In step (1) we merge O(kn) sequences of critical orientations, each having 
length at most O(A~(kn)); this is easily accomplished in time O(knA6(kn) log kn). 

Construction of VG,=o in step (2) can be accomplished, e.g., in time 
O(kn log 2 kn) using the algorithm described by [KS]. 

As to step (3), it processes O (knA6(kn)) critical orientations. At each orientation 
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0i of type (i) or (ii) it has to perform only O(1) updating operations on the 
graphs VGe and EG, each of  which can be accomplished in time O(log kn). 

If Oi is a critical orientation of  type (iii)(a), let e~, e2 be the two adjacent 
expanded obstacle edges that become collinear at 0~ and are then replaced by 
two other edges, e3, e4 (see the paragraph (d) in this proof). Then it is easily 
checked that the boundary of FPo varies continuously with 0 (in the Hausdorf[ 
topology of  sets), and also all the vertices of VGo vary continuously with 0 near 
O~. It follows that the combinatorial changes that VGo undergoes at 0~ are just 
changes of  the labels of  all vertices of VGo that lie on e~ u e2 before crossing 0; 
(and become points on eaLge 4 after crossing 0i), and of  their incident edges. 
Since VGo contains at most O(kn) such vertices and edges, and since they can 
all be accessed in total O(kn log kn) time using our representation of  this graph, 
we can update VGo (and EG) during processing of  the O(kn) orientations of 
type (iii)(a) in overall time O(k2n 2 log kn). 

Finally, if 0~ is a critical orientation of  type (iii)(b), let S be the side of B that 
becomes horizontal at 0~, and let SL, SR be its endpoints. As in the above 
discussion, to update VGo at 0~, one has to remove from this graph the auxiliary 
corners corresponding to all previous vertically maximal corners induced by 
contact pairs of the form ( W, SL), and also remove all their incident edges, and 
then add new auxiliary corners corresponding to new vertically maximal corners 
induced by pairs of the form ( W, SR), and also add their incident edges. Since 
these new auxiliary comers are not yet present in VGo, we need to create them 
and locate them on the boundary of Ko in order to determine their adjacent 
vertices along this boundary. This can be accomplished by a standard and 
straightforward line-sweeping technique, running in time O(kn log kn). Since the 
number of type (iii)(b) orientations is only O(k),  processing of these orientations 
at Step (3) of the algorithm requires only O(k2n log kn) time. 

In the final step (4), all we need to do is to pair each vertex ~: = (u, (f/, 0~)) of 
EG whose initial lifespan orientation is undefined, with a corresponding vertex 
~ '=  (u, (0~, fl))  having the same label u and an undefined terminal !ifespan 
orientation. For each such pair we form a new vertex ~* = (u, (01, 02)) of  EG 
and merge the two lists of  edges incident to ~¢, ~¢' to a single list for ~¢*. Since 
there are only O(kn) such pairs of  vertices, this merging can be trivially accom- 
plished in O(kn) time. Hence the time required by the algorithm is at most 
O(knA6(kn) log kn), as asserted. This completes the proof of the theorem. [] 

Remarks. (1) As noted earlier, when m << n (where m is the number of convex 
polygonal regions into which the polygonal obstacles are partitioned) the com- 
plexity of  VGo for any fixed 0 is only O(km+n) which can be significantly 
smaller than O(kn). We can exploit this fact to obtain a better bound on the 
complexity of  our algorithm as follows. 

For each of  the O(kn) contact pairs O = ( W, S) let Jo denote the angular 
interval of  orientations 0 of  B at which an obstacle contact induced by O is 
possible (in the sense of  Definition 2.1(c)). The O(kn) endpoints of these intervals 
partition the angular space of  orientations into O(kn) disjoint intervals I~, 
I 2 , . . . , / , .  It follows from the arguments of  [GRS] that within each of  these 
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intervals/ j  the set o f  possible obstacle contacts (in the sense of  Definition 2.1(c)) 
remains constant, and that there are at most km+ n such contacts. Hence the 
number of  pairs of  contact pairs that can induced a double contact of  B with an 

orientation in lj is at most ( k%+ n) = O( ( km + n )2). Moreover, as we cross from 

lj to the next interval lj,÷~, only one contact pair can induce a new obstacle 
contact, thus the number  of  new possible pairs of  contacts within I~÷~ is only 
km+ n, and, repeating this argument over all intervals L, we obtain that the 

total number  of  double contacts of  B is at most +(km+n)O(kn)= 

O((km+ n)kn). 
For each contact pair O, let to denote the number of bounding functions Foo, 

appearing in the envelopes ~L;o, ~R;O. Then the combinatorial complexity of  
~,;o, ~R:o is O(A6(to)), so that the total number of type (i) critical orientations 
is F~ o A6(to) which, as can be easily verified (using the bound in [Shl]) ,  is 
O((km+ n)A6(kn)). 

Similar arguments apply to all other types of  critical orientations, and therefore 
imply that the complexity of  our algorithm is at most O((km + n)A6(kn) log kn). 

(2) The example given in [LS3] can be used to show that the combinatorial 
complexity of  FP can be ll(k~n "~) in the worst case, so that our algorithm is close 
to being optimal among algorithms that calculate the entire space FP. See also 
a related result by O'Rourke [OR] for the case of  a moving line segment. 

3.5. Actual Motion Planning 

Once EG is available, actual motion planning between any two given placements 
of  B can be easily accomplished, as follows. Let Z = (X, 0), Z ' - -  (X ' ,  0') be two 
given free placements of  B. We first calculate the nodes qb(Z), ~(Z') of  EG 
(where d9 is the map defined in the paragraph following the proof  of  Proposition 
2.1). It is easy to calculate these nodes in O(kn) time in a straightforward manner  
following the definition o f ~ .  Next, determine by simple graph searching whether 
d~(Z) and dp(Z') belong to the same connected component  of  EG (this can be 
accomplished in time O(knA6(kn))). If  not, then by Theorem 2.2 no collision-free 
motion of  B between placements Z and Z '  is possible. Otherwise, let ~ =  
(~:, = qb(Z), ~2 , - - . ,  s e, = qb(Z')) be a path in EG connecting qb(Z) to qb(Z'). We 
transform 7r into a continuous semifree motion of  B from Z to Z '  as follows. 
First B is translated from Z to a placement on the edge ~, o f  FP, as in the 
definition of  the map qb. Then, for each i = 1 , . . . ,  t - 1 we choose some orientation 
0i in the lifespan of the edge (~i, ~+,) of  EG, and move B from its current position 
on ~:i to a position on ~:~÷, in two substeps: 

(a) First B is moved along the edge ~:~ until its orientation becomes equal to 
O~. The exact nature of  this motion depends on the type of corner u of  Ko 
that labels ~. For example, if u is a convex corner of  K,, induced by a 
contact pair ( W, S) of  type III,  then the required motion of  B is simply 
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(b) 

a rotation of  B about its corner S which remains touching the wall corner 
W. If  u is a nonconvex corner of Ko, induced by two contact pairs ( W1, S~), 
(W2, $2) of  type I or II, B has to glide as it maintains the two contacts 
of  S~ against W1 and of  $2 against W2. The resulting motion, known as 
a glissette, can be parametrized by a quartic polynomial equation (see 
[SS]). Finally, if u is an auxiliary corner v* corresponding to some convex 
corner v of  K0, let (W, S) be the contact pair inducing the edge of Ko 
containing u, and let ( W', S') be the type III pair inducing v. Then B has 
to move so that it maintains contact of  S against W while its corner S' 
remains covertical with (and above) the wall corner W'. This motion is 
clearly also a fourth-degree glissette (where we can think of S' as maintain- 
ing contact with the vertical ray emanating upward from W'). 
After B has reached orientation 0~, we next move it to the FP-edge ~:~÷l- 
By definition, VGo, contains an edge (u, v) where u (resp. v) is the label 
of  the corner of Ko that induces ~:i (resp. ~:i+~). Thus the required motion 
of  B can be accomplished by translating it along the straight boundary 
segment of  Ko, connecting u and v. 

Finally, after reaching the last edge ~:,, we complete the motion of  B by first 
moving it along ~:, until it reaches its final orientation 0' (as in (a) above), and 
then translate it back to Z '  by applying the reverse of the canonical translation 
used in the definition of the map ~.  

Remark. The motion of B described above is semifree rather than free. This is 
a consequence of our choice of representation of FP, and resembles the motion 
obtained for a moving line segment [SIS]. 
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