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Abstract. Let S be a collection of n convex, closed, and pairwise nonintersecting 
sets in the Euclidean plane labeled from 1 to n. A pair of permutations 

{(it, i2 . . . . .  i,,-i, i,,), ( i,,, i,_ I . . . . .  i2, il) ) 

is called a geometric permutation of S if there is a line that intersects all sets of S 
in this order. We prove that S can realize at most 2 n -  2 geometric permutations. 
This upper bound is tight. 

I. Introduction 

Let S be a col lect ion o f  n convex,  closed, bounded ,  and pairwise nonintersec t ing  
sets in the Euc l idean  plane. We label the sets from 1 to n. A directed or undi rec ted  

line that intersects all sets is cal led a transversal o f  S. Since no two sets intersect  

each other,  a transversal  intersects S in a well-defined order.  In the case of  an 

undirected line, such an order  can be described by a pair  o f  permuta t ions ,  one  

being the reverse o f  the other. Such a pair  is called a geometric permutation o f  S. 
For  conven ience  we will represent  a geometr ic  permuta t ion  by any one  o f  its two 
permutat ions .  
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Computer Science Grant No. 1-6-44862. Work on this paper by the second author was supported by 
Office of Naval Research Grant No. N00014-82-K-0381, National Science Foundation Grant 
No. NSF-DCR-83-20085, and by grants from the Digital Equipment Corporation and the IBM 
Corporation. 
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Fig. i .  A set with 2 n - 2  geometric permutations. 

For example,  let S consist of  two equally large disks, labeled n - 1 and n, and 
n - 2  horizontal line segments, labeled from 1 to n - 2 .  The two disks are placed 
sufficiently close to each other such that their centers lie on a horizontal line h. 
The line segments are horizontal and lie above h such that their left endpoints 
lie sufficiently close to the boundary of the left disk and their right endpoints lie 
sufficiently close to the boundary of the right disk (see Fig. 1). The labels of  the 
line segments increase from the top downward. In this example the geometric 
permutations are 

(1,2, . . . , i ,n , i+l , i+2, . . . ,n-2,  n-1) for i=n-2, n-3,.. . ,O, 

and 

(n,n-2, n - 3 , . . . , i + l , n - l , i , i - 1 , . . . , 1 )  for i = 0 ,  1 , . . . ,  n - 2 .  

Thus, we see that n -> 4 sets can realize as many as 2n - 2  geometric permutations. 
It is readily verified that for n = 2 there is only one geometric permutation and 
that for n = 3 the maximum number  of  geometric permutations is three. 

The above example is taken from [KLZ] which also proves that ( 2 )  i s a n  

upper  bound on the maximum number of  geometric permutations realized by n 
convex nonintersecting sets. A proof  of  the same upper  bound can also be found 
in [KLL].  An upper  bound of  6n +6  on the number  of  geometric permutations 
has been shown recently in [W]. In this paper  we prove that the lower bound of 
2 n - 2  is in fact tight. 

2. The Upper Bound 

We derive the tight upper  bound on the maximum number  of  geometric permuta- 
tions by proving a sequence of  three lemmas. First we introduce a few definitions. 
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If a directed line f intersects all sets of $, then we say that ]" induces the 
permutation (i~, i 2 , . . . ,  i,) that gives the order of  sets a long/ .  Thus, the permuta- 
tion induced by the line that coincides with ]" but has opposite direction is 
(in, in_~, . . . ,  i~). Similarly, for an undirected transversal, t, we say that t induces 
the pair of permutations that represent the order in which it intersects S. A 
directed line f is said to be tangent to set i if f contains a point on the boundary 
of  i and i is contained in one of  the two closed half-planes defined by f. Call ]" 
left tangent to i if this closed half-plane lies to the left of 1. This definition implies 
the important fact that two nonintersecting convex sets have at most two common 
left tangents. 

For every angle c¢ ~ [0, 2¢r), we define f ( a )  as the unique directed line that 
satisfies the following three conditions: 

(i) a is the angle between the positive x-axis and T(a). 
(ii) No set of S is contained in the open half-plane to the left of  ]'(a). 

(iii) At least one set of S is contained in the closed half-plane to the left of f (a) .  

In Figs 1 and 2 lines ]'(ct) are shown for several angles a. It is clear from the 
definition of ]'(a) that if there is a directed transversal of  S with angle or, then 
]'(a) is the rightmost parallel transversal with this angle, that is, there is no 
transversal contained in the open half-plane to the right of  f (a) .  A line f ( a )  of  
S is said to be extreme if it is tangent to at least two sets of  S. For convenience, 
we also say that the undirected version of  an extreme line is extreme. The 
significance of extreme lines derives from the following result. 

Lemma 1. Every (undirected) transversal t o f  S can be moved continuously to an 
extreme line without ever changing the induced geometric permutation. 

Proof Let ao and a~ = no+ ~ be the angles of the two directed versions of  t. 
Line t can be translated continuously to coincide with ro = f(ao) or 11 = f(a~) 
without ever changing the induced geometric permutation. Let io be the set 
contained in the closed half-plane to the left of ]'o and let i~ be the corresponding 
set for ]'1 (see Fig. 2). We can assume that io and i~ are unique, otherwise, ~ or 
]'~ is an extreme line and we are done. 

r, 

t 
ro 

Fig. 2. Moving a transversal to an extreme position. 
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First we consider  the case that io ~ i~ and To meets il before io; thus, /'1 meets 
io before  i~ (see Fig. 2). Simultaneously,  rotate /.0 counterclockwise around io 
and f~ counterclockwise a round i~ keeping To parallel to f~ until ei ther fo is 
tangent  to some set other  than io or T~ is tangent to some set other  than i~. Let 
the lines which are rotat ions of  To and /.~ be labeled/.2 and f3, respectively. Lines 
/.2 and 13 are transversals of  S and induce the same geometric permutat ion as t. 
There  are four  possible cases: 

(i) Line /.2 is left tangent  to i~ and therefore  an extreme line. 
(ii) Line f3 is left tangent  to io and therefore  an extreme line. 

(iii) Line /.2 is tangent  to some set /2 o ther  than io and i~. Since /3 is to the 
left of  12 and intersects all sets in S, /'2 must be left tangent to i2 (see Fig. 
2). Thus, T2 is an extreme line. 

(iv) Line /'3 is tangent  to some set i2 o ther  than io and i~. Since /'2 is to the 
left of / '3  and intersects all sets in S, (~ must be left tangent to /2. Thus, 
/'2 is an extreme line. 

In the case where io ~" i~ and To meets i~ after io we do the rotation in clockwise 
order  and arrive at the same four  cases. If io = i~, then either order  leads to cases 
(iii) or (iv). []  

Thus, an upper  bound  on the number  of  extreme lines also puts an upper  
bound  on the number  of  geometric permutat ions.  To derive such an upper  bound,  
we associate S with a cyclic sequence of  integers. Let i(a) be the set contained 
in the closed half-plane to the left o f  l ( a ) - - i f  it is unique.  Since i (a) is unique 
unless / .(a) is tangent to at least two sets, i (a) is defined except for  at most a 
discrete number  o f  angles t~. We call the cyclic sequence 

~(S)  = ili 2 • . " i m 

the cycle of  S if: 

(i) iJ ~ !~+1, for  1 -<j-< m (where im+t = il), and 
(ii) the circle o f  angles can be part i t ioned into m intervals [a~, a~+~), for  

l<-j<-m and a,,+~ = c q ,  such that  i(a)=i~ if ac(ct i ,  aj+~). 

m is called the length of the cycle. The cycle o f  S can be constructed by rotating 
a directed line i" through all lines f ( a )  and by keeping track to which set /. is 
left tangent.  A new set is reached whenever  T passes an extreme line. Thus, m 
is also the number  o f  extreme lines o f  S. 

Below, we argue about  scattered subcycles o f  ~¢(S) which are cyclic sequences 
that  can be obta ined from ~ ( S )  by removing some o f  its members.  The  remaining 
integers appear  in the same order  as in ~ (S ) .  

Lemma 2. The cycle q¢(S) contains no scattered subcycle of  the form abab, with 
a # b .  
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Proof Assume that there is a subcycle o f  the form abab. Then there are angles 
a l  < a2 < a3 < a4 such that  

i (a l )  = a, i(a2) ----- h, i(ot3) = a, and i(ot4) = b. 

The definitions of  lines f(t~) and of  labels i(ot) imply that for each one o f  the 
open intervals (a~, a2), (a2,  or3), (a3,  am), and ( a 4 ,  Otl), there is a c o m m o n  left 
tangent o f  a and b whose angle is in this interval. However,  since a and b do 
not intersect, there are only two directed lines that are left tangent  to a and b, 
a contradiction. []  

Lemma 2 implies that if we remove all integers except for the a ' s  and the b 's  
f rom the cycle, then we get a cyclic sequence o f  the form 

a a . . . a b b . . .  

We call a cyclic sequence that satisfies Lemma 2 and has no two equal integers 
in consecutive posit ions an (n, 2)-Davenport-Schinzel  cycle or an (n, 2)-cycle, for 
short. Here, n refers to the largest number  o f  different integers that can occur  in 
the cycle. By construct ion o f  ~ (S) ,  there is a one- to-one correspondence between 
the extreme lines o f  S and the pairs o f  consecutive integers in the cycle. Con-  
sequently, an upper  bound  on the maximum length o f  an (n, 2)-cycle is also an 
upper  bound  on the max imum number  of  extreme lines. 

Lemma 3. l f  ili2. " " im is an ( n, 2 )-cycle, then m < - 2 n - 2 .  

Proof. The assertion is trivially true for n = 2. Assume inductively that Lemma 
3 holds for (n - 1, 2)-cycles. We prove below that every (n, 2)-cycle has an integer 
a that occurs at most  once. If  this is true, then we can delete a and get an 
(n - 1, 2)-cycle after possibly removing also the predecessor o f  a - - t h i s  has to be 
done  if  the predecessor  and the successor o f  a are the same. Thus,  every 
(n, 2)-cycle contains at most  two integers more than a longest (n-1, 2)-cycle which 
implies the assertion. 

To prove that there is always an integer a that occurs only once,  we assume 
that such an integer does not exist. Let ij = ik = b be two consecutive appearances  
of  an integer, b, such that k - j  modulo  rn is a minimum. By Lemma 2, any integer 
c that occurs in the circular interval iv+t, i i+2, . . . ,  ik_ I cannot  occur  outside this 
interval. Thus, c must occur  again within this interval which contradicts  the 
minimality o f  k - j .  []  

We have thus shown that 2n - 2 is an upper  bound  on the number  o f  extreme 
lines. By Lemma 1, this implies that 2n - 2  is an upper  bound  on the number  o f  
geometric permutat ions  o f  n convex, closed, bounded ,  and pairwise nonintersect- 
ing sets. I f  we reexamine the proofs  o f  Lemmas 1-3, we realize that the only 
place where we use that the sets are bounded  is where we assume that the lines 
l(ot) are well defined. They are well defined, however,  even when S contains 
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unbounded sets, provided there is no direction such that a transversal normal to 
that direction can be translated into this direction arbitrarily far without ceasing 
to be a transversal. For example, this is already the case when only one of  the 
sets in S is bounded. I f  this condition is not satisfied, then T(t~) is not defined 
in a few nondegenerate intervals of  angles a. All steps of  the above development 
go through if we treat such a nondegenerate interval in the same way as we treat 
a single angle where f ( a )  is not defined. Thus, we can dispense with the 
assumption that the sets are bounded altogether. This implies the main result of  
this paper.  

Theorem. For n >- 4, the max imum number o f  geometric permutations realized by 
n convex, closed, and pairwise nonintersecting sets in the plane is 2n - 2 .  For n = 1, 
2, 3 this max imum is equal to 1, I, 3, respectively. 

3. Discussion 

Lemma 3, the upper  bound on the length of  (n, 2)-cycles, can also be derived 
from the upper  bound, 2n - 1, on the length of  a so-called (n, 2) -Davenpor t -  
Schinzel sequence, as proved in [A]. This is a sequence made up of  at most n 
different integers that does not contain a scattered subsequence of  the form abab 
and does not contain a pair of adjacent integers that are equal. It is interesting 
to note that (n, 2)-cycles can be generalized to (n, 2s)-cycles, s -> 1, which contain 
no scattered subcycles of  the form abab.  • • ab of length 2s + 2. Upper  and lower 
bounds on the maximum lengths of  such cycles can be obtained by adapting the 
results in [HS], IS1], and [$2]. 

The number  of  geometric permutations of  a collection S of  n pairwise noninter- 
secting sets relates to the number  of  connected components of the interior of  the 
so-called stabbing region as introduced in [EMPRWW]. The stabbing region o f  
S is defined as the set of  all points that are dual to transversals of  S. For example, 
we can use the function that maps a point p = (Try, ~'2) to the nonvertical line 
y = ~ x -  zr2, and vice versa, to realize the duality. Notice that this function is a 
one-to-one correspondence between points and lines and that it associates vertical 
lines with points at infinity. Figure 3 shows the stabbing region of three line 
segments. For each line segment the region of points dual to lines that intersect 
it is a double wedge which is the area swept out by a rotating l ine--this  line 
corresponds to a point that moves along the line segment. Centers of  rotation 
are indicated by dots in Fig. 3. Since the duality function associates vertical lines 
with points at infinity, the double wedge corresponding to a bounded line segment 
does not contain a vertical line. The stabbing region is then the intersection of  
the double wedges that correspond to the line segments. We can see that the 
three double wedges in Fig. 3 correspond to pairwise nonintersecting line segments 
since no two double wedges share a common line. 

The region of  points dual to lines crossing a closed, compact  set is given by 
a convex and a concave function (it is the set of  points between those two 
functions including the points on the functions), and it is necessarily connected. 
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! 
Fig. 3. Stabbing region of three noninterseeting line segments. 

The so-called stabbing region is now the intersection of n such regions. Thus, it 
is the set of points below or on the lower envelope of n convex functions and 
above or on the upper envelope of n concave functions. This intersection is not 
necessarily connected. An extreme line is dual to a "breakpoint" on either 
envelope. Each connected component of the interior of the stabbing region has 
at least one such breakpoint in its boundary, unless it is unbounded. The upper 
bound on the number of extreme lines given in Lemmas 1-3 thus implies that 
the interior of  the stabbing region of  n convex and pairwise nonintersecting sets 
consists of at most 2n - 1 connected components--one more than the maximum 
number of  extreme lines since it is possible that the two unbounded components, 
if they exist, contain only one point dual to an extreme line. In [EMPRWW] it 
is proved that the interior of the stabbing region of  n line segments, intersecting 
or nonintersecting, consists of  at most n + 1 connected components. This implies 
that n nonintersecting line segments realize at most n geometric permutationsma 
result independently shown in [KLZ]. 

From the computational point of view it is interesting to ask how fast the 
geometric permutations of S can be computed. To answer this question, we 
assume that the sets in S are computationally simple, that is, we assume that: 

(i) The common tangents of two sets can be computed in constant time (this 
includes the two inner tangents of  the sets). 

(ii) Given an angle a and a set i, we can compute the directed line with angle 
a that is left tangent to i in constant time. 

(iii) Given a directed line, we can determine which one of  two sets it intersects 
first in constant time. 

With these assumptions, we can use the divide-and-conquer approach that was 
exploited in [EMPRWW] to compute transversals for line segments and general- 
ized in [AB] to arbitrary sets meeting some computational restrictions. Details 
about this approach can be found in those two papers. It leads to an algorithm 
that takes O(n log n) time to construct the stabbing region as defined above. 
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Each connected component represents an equivalence class of lines that define 
the same geometric permutat ionwexcept  for the two unbounded components 
which represent the same equivalence class, if they exist. To compute all geometric 
permutations of  $, we recursively store the permutation with its associated 
component.  A component of  the entire set is obtained as the intersection of two 
components computed recursively, and its permutation is obtained by merging 
the two permutations associated with the components. Using condition (iii), the 
merge step can be performed in linear time. Since the stabbing region consists 
of  at most 2 n - 1  connected components, this yields an O(n2)-time algorithm. 
The algorithm is optimal in the worst case since it produces up to quadratic output. 

Finally, there is the problem of generalizing the results to three and higher 
dimensions. It is shown in [W] that the number of geometric permutation defined 
by lines that intersect n convex sets in d->3 dimensions is O(n2d-2). A lower 
bound of l-~(n d-I)  is claimed in [KLZ]. 
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