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Abstract. We develop new data structures for solving various visibility and intersec- 
tion problems about a simple polygon P on n vertices. Among our results are a 
simple O(n log n)-time algorithm for computing the illuminated subpolygon of P 
from a luminous side, and an O(log n)-time algorithm for determining which side 
of P is first hit by a bullet fired from a point in a certain direction. The latter method 
requires preprocessing on P which takes time O(n log n) and space O(n). The two 
main tools in attacking these problems are geometric duality on the two-sided plane 
and fractional cascading. 

1. Introduction 

Visibil i ty and  in tersec t ion  p rob l ems  are among  the most  f u n d a m e n t a l  topics  in 
compu ta t i ona l  geometry .  In  this p a p e r  we invest igate  the fo l lowing  type  o f  
quest ion:  G iven  a s imple  po lygon  P and  a pa i r  (q, u) consis t ing  o f  a po in t  q and  
a d i rec t ion  u, imagine  that  we fol low the pa th  o f  a s t ra ight- l ine  ray F f rom q in 
the d i rec t ion  u. We wish to know the first in tersec t ion  ( if  any) o f  F with the 
b o u n d a r y  o f  P, or  the in tersec t ions  up  to a l imit  po in t  on the  ray,  or  all  the 
intersect ions.  See Fig. 1.1. In  pos ing  this ques t ion  we assume tha t  P is fixed once  
and for  al l ,  so we are  a l lowed  to do  p reprocess ing  on  it. 

As a w a r m - u p  we beg in  our  d iscuss ion  in Sect ion 2 by inves t igat ing the eas ier  
case where  q is confined to lie on a side of P ( the luminous  edge) .  We  give s imple  
me thods  for:  

1. C o m p u t i n g  the  i l l umina ted  subpo lygon  o f  P f rom the l uminous  edge  in 
O(n) space  and  O(n log n) t ime. 

* Bernard Chazelle wishes to acknowledge the National Science Foundation for supporting this 
research in part under Grant CCR-8700917. A preliminary version of this paper was presented at the 
First Annual ACM Symposium on Computational Geometry, June 1985. 
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Fig. 1.1 

2. Computing the first intersection of the boundary of P with a light-ray from 
the luminous edge in O(log n) time, given an O(n)-space data structure compu- 
table in O(n log n) time. 

3. Computing all the points of  the luminous edge that cast light on a particular 
point on the boundary of  P in O(log n) time, using an O(n)-space data structure 
which is computable in O(n log n) time. 

Problem 1 has been solved previously within these time bounds (see Section 2), 
but we believe that our solution is significantly simpler than the earlier ones. Our 
solutions to problems 2 and 3 improve on the previously known bounds. Another 
attractive aspect of our approach is the use of a common data structure for all 
three problems. 

In Section 3 we solve the significantly more difficult unrestricted version of the 
ray-shooting problem. Our solution computes the first intersection in O(log n) 
time, using a structure that takes O(n) space and O(n log n) preprocessing time. 
In the process of  describing our solution we develop some machinery that we 
expect to be useful in other geometric problems as well. 

Finally, in Section 4 we mention some extensions for computing more than 
the first intersection, or for dealing with objects more complex than a simple 
polygon. For instance, using our structures, we can compute all k intersections 
of  a line segment and a simple polygon P in time O((k+ 1) log(n/(k+ 1))). This 
problem for the case of  an infinite segment (a straight line) had been solved 
previously within the same time bound by Chazelle and Guibas [4]. 

One of  our main tools for these problems is the geometric duality on the 
two-sided plane (2SP) introduced by the kinetic framework [10]. This is a classic 
duality, together with the convention that oriented lines having the origin to their 
left dualize to points on the top surface, while lines having the origin to their 
right dualize to points on the bottom side. We refer the reader to that paper for 
details. A crucial property for us will be that in the 2SP boundaries of  convex 
polygons dualize to boundaries of convex polygons. The duality transform is 
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denoted by D, so for a point p, Dp will denote the dual oriented line, and for a 
line r, Dr will designate the dual point. 

2. The Use of Duality in Visibility Problems 

Let P = p~, P2, • • •, P~ be a simple polygon in the plane, and let e denote the edge 
piP2. Imagine that e is a luminous neon bulb, while the other sides of  P form 
opaque walls. This scenario raises a number of interesting questions (see Fig. 2.1): 

PI" Compute  the region of P illuminated by e. 
P2: Given a light-ray ~ starting on e, determine which point on the boundary 

of  P it illuminates (hits). 
P3: Given a point q on the boundary of P, find the points of e, if any, that 

shine light on q. 

As the above questions make clear, we assume that all points of  e emit light-rays 
in all directions toward the interior of  P. A minor technicality is to decide whether 
the endpoints of  an edge should be luminous. For convenience we assume that 
they are not, which means that no edge can emit light behind. Should we like to 
relax this assumption we can always create edges of  infinitesimal length at the 
endpoints, and, by this (rather devious) way, support  vertex-visibility in addition 
to edge-visibility. 

Our investigation of the three problems above is based on the observation that 
lines, and not points, are the primitive objects to consider in visibility questions. 
Since points are intuitively easier to grasp than lines, such questions are advan- 
tageously recast in dual space, where the roles of  points and lines are interchanged. 
For problem P1, O(n log n) solutions were recently discovered independently 
by Lee and Lin [11] and E1 Gindy [7]. Both algorithms are fairly involved and 

q 

Fig. 2.1 
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entail substantial overhead, in part because of their reliance on dynamic search 
structures. As we will see, by using duality, we can obtain a single algorithm that 
not only produces the visibility region in O(n log n) time but also allows us to 
solve problems P2 and P3 in O(n) space and O(log n) response time. 

We will identify a light-ray ~ with its supporting oriented line r. Each such 
line dualizes to a point p = Dr in the dual plane. It is easy to check that the 
collection of all oriented lines intersecting the segment e and (locally) directed 
toward the interior of P dualizes to a double wedge Ie. This double wedge is 
delimited by the lines Dp, and D~2 (recall that e = PIPE) and is the one (of the 
two possible double wedges formed by Dp~ and Dp:) not containing the origin. 
We let L denote the line supporting e. See Fig. 2.2. On the 2SP this double wedge 
is actually a convex polygon consisting of  one wedge on the top and the opposite 
wedge on the bottom. Points on the top wedge correspond to rays passing to the 
left of the origin, while those on the bottom correspond to rays passing on the right. 

Why is/~ convex? This is actually a consequence of some very general duality 
theorems. We can, however, see it directly by noting that if rl and rE are any two 
rays cutting e and directed into the same half-plane, then any ray r between rl 
and r2 will also cut e and be directed toward the same half-plane. Here by 
"between" we mean that t passes through the intersection of  r~ and r2 and is 
contained in the wedge cut by e which they form. See Fig. 2.3. 

For a point p e/~ we define f(p) to be the edge(s) of  P hit by the light-ray 
Dp. The function f defines a partition S(Ie) of  the wedge Ie into the subregions 
where f is constant: two points p, q are in the same region of  S(/~) if f (p) = f (q ) .  

Fig. 2.3 
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Lemma 2.1. Each region of the subdivision S(le) is a convex polygon. 

Proof. Let p, q be two points in /e with f ( p ) = f ( q )  = {g}, an edge of  P. Let 
A = e n Dp, B = e c~ Dq, and I = Dp ~ Dq (on the 2SP the intersection I is always 
well defined). It is geometrically obvious that any light-ray passing through I 
and crossing the segment AB will hit the edge g first. In dual terms, any convex 
combination r = A p + ( 1 - h ) q ,  Ae[O, 1], of  p and q satisfies f ( r )={g} .  Thus f 
defines at most n - 1 two-dimensional convex regions which together subdivide 
the convex wedge I~, It follows that each region must be a convex polygon 
(in the 2SP sense, of course). [] 

2.1. Computing the Subdivision S(I~) 

As we will see below, the subdivision S(Ie) provides the essential information 
we need to know in order to solve problems P1-P3. In this section we concentrate 
on how to compute it efficiently. We use a divide-and-conquer technique based 
on the polygon-cutting theorem of Chazelle [1]. This theorem states that, with 
O(n log n) preprocessing, it is possible to determine two vertices Pi and pj of  P 
such that the diagonal PiPj lies fully in P and subdivides P into t w o  simple 
polygons each with at most [2n/3]  + 1 vertices. This assumes that P has more 
than three vertices. Once the preprocessing is complete, the cost of computing 
the separating diagonal is linear, and it remains so as we apply the subdivision 
recursively to the subpolygons created. For example, this preprocessing could be 
the computation of a triangulation of P. Then each separating diagonal can be 
found by searching for the centroid of a free tree, which takes linear time. See 
[1] for details. 

If P is a triangle, S(I~) is trivially computed in constant time. If P has more 
than three vertices, we determine the separating diagonal p~pj and decompose P 
into two other polygons, P1 and P2. Without loss of generality we assume that 
e is an edge of  P1. We now compute recursively the subdivision $1 associated 
with illuminating P~ from e, and the subdivision $2 associated with illuminating 
P2 from pip~. Let R be the region of  $1 which corresponds, via the function f,  to 
the edge PIP1. In other words, R is the locus of  the duals of  all rays in P~ emanating 
from e and hitting p~pj. A crucial observation is that 

S(le) = S1 w (R n S2), 

meaning that by clipping $2 to within R and adding this refinement of  R to S~, 
we obtain S(Ie). So, the desired subdivision S(Ie) is obtained from S~ by simply 
subdividing one of its regions. See Fig. 2.4. 

We can carry out the above construction in O(n) time. Why is that so? Let 
us start out by triangulating each region of  $2. Since these regions are convex, 
we can do this in time linear in the size of $2, which is O(n). Indeed, it trivially 
follows from Euler's relation and convexity that the description size of  all the 
convex subdivisions S~ is O(n). Next, we locate an arbitrary starting vertex of  R 
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Fig. 2.4 

in this triangulation and proceed to walk around R while computing all the 
intersection points of edges of $2 and R. From there a simple depth-first search 
toward the interior of R allows us to construct R c~ $2. By convexity, the boundary 
of R intersects no edge of $2 more than twice, therefore the total complexity of 
the clipping operation is still O(n), which establishes our claim. 

Since the merge part of this divide-and-conquer algorithm is linear, the 
balanced decomposition provided by the polygon-cutting theorem leads to 
the following result: 

Lemma 2.2. It is possible to compute the convex subdivision S( Ie) associated with 
illuminating the simple polygon P from edge e in O( n log n) time and O( n ) space. 

As we already observed, if F is the number of nonempty regions in the 
subdivision, its complete description size is O(F). The regions correspond to the 
sides of P that receive some light from the luminous side (see also Section 2.2). 
The quantity O(F) is also a bound on the size of the illuminated subpolygon of 
P from the luminous side e. 

Another O(n log n) algorithm can be derived by starting out with a triangula- 
tion of P, and then considering the triangles one at a time, starting with the 
triangle containing the luminous edge. At each step we add a new triangle A 
having one side in common, say d, with a previously handled triangle. The rays 
reaching d (a diagonal of P) from e form a convex polygon V in the dual plane. 
They will now be subdivided into one or two groups, according to which other 
side of A they exit from. Dually, the polygon V will be cut into two subpolygons 
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by the line which is the dual of the new vertex of A. We can compute the final 
subdivision by continuing in this way and paying an O(log n) line/convex polygon 
intersection cost per triangle added. 

2.2. Solving the Visibility Problems 

In this subsection we show how problems P1-P3 can be solved using the sub- 
division S( Ie). 

Theorem 2.3. Computing the subpolygon of P illuminated from a luminous edge 
can be done in O(n log n) time and O(n) space. 

Proof An edge g of  P is, possibly partially, illuminated by e if and only if it 
is associated with a nonempty region R of S(Ie). To determine which part of g 
is illuminated, we examine its associated region R. Let Dt be the dual point of  
the line i supporting side g (in some orientation). Any line passing through Dt 
and cutting through R dualizes to an illuminated point of g, and vice versa. It 
easily follows that the two lines passing through Dt and tangent to R are the 
duals of  the two points A and B which delimit the visible part of  g. (Why cannot 
Dt be in the interior of R ?) Occasionally R will have an edge collinear with DA 
(or De). In this case A (or B) will be an endpoint of g. Both A and B can be 
determined in time linear in the size of R and therefore this information can be 
collected for all edges of P in O(n) time. To form the illuminated region of P 
from e we just join the endpoints of consecutive visible segments as they occur 
on the edges around P. See Fig. 2.1. [] 

Theorem 2.4. Problem P2 can be solved in O(log n) time by using an O(n) space 
data structure computable in O(n log n) time. 

Proof As we have already seen, a light-ray from e becomes a point in Ie in the 
dual plane, and the region it lies in S(Ie) directly tells us the edge of P that it 
hits. A straightforward calculation gives us the intersection point in constant 
time. Using an optimal point location algorithm, e.g., [6], the entire process can 
be carried out within the bounds stated by the theorem. [] 

Theorem 2.5. Problem P3 can be solved in O(log n) time by using an O(n) space 
data structure computable in O( n log n) time. 

Proof A point q on an edge g of P is illuminated from e if and only if the line 
Dq intersects the region R associated with g. By duality, the line Dq passes 
through the point Dr, where l is the line supporting g. It is easy to check that 
the two intersection points A and B of Dq with the boundary of  R are the duals 
of the two lines defining the visibility wedge from e to q. Consequently, intersecting 
these two lines with e will provide us with the subsegment of e illuminating q. 
Since the intersection of  a 'convex polygon and a straight line can be computed 
in logarithmic time, the theorem follows. [] 
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Natural extensions of  the previous algorithms allow us to handle the case 
where the neon light does not coincide with an edge of  P but corresponds to a 
line segment s lying inside the polygon. In this case we simply extend the segment 
s so as to split P into two subpolygons for wh.~ch the previous techniques directly 
apply. (The fact that now only a contiguous portion of e is light-emitting 
introduces no difficulties.) 

We may also wish to consider problem P2 for the case where the light-ray 
comes toward P from infinity. For this situation we start by forming the convex 
hull of  P. The difference between P and its convex hull is a collection of simple 
polygons ("bays") ,  each containing exactly one edge not in P. We preprocess 
these polygons for illumination from their special edge not in P. To discover now 
which side of  P the ray ~ intersects, we first compute in O(log n) time the initial 
point o f  contact between ~ and the convex hull of  it'. I f  this point is on an edge 
of  P we are done. Otherwise we are in an instance of problem P2 for one of  the 
preprocessed polygonal bays. Since the total size of  all these polygons is O(n), 
we have shown that: 

Theorem 2.6. There exists an O(n) space data structure representing a simple 
n-gon P that allows us to compute in O(log n) time the point on the boundary of P 
illuminated by a light-ray coming from infinity. This data structure can be built in 
O(n log n) time. 

3. The General Ray-Shooting Problem 

In the previous section we discussed a number  of  instances of  the shooting 
problem: preprocess a simple polygon P so that given a pair (q, u) consisting of 
a point q and a unit vector u, we can efficiently determine the first point on P 
to be hit by the ray from q in the direction u. This point, if it exists, is denoted 
by o-P(q, u). Problem P2 and its variants for which we have already presented 
solutions make essential use of  the restriction that q is constrained to lie on some 
straight line. To solve an unrestricted instance of  the shooting problem we can 
proceed as follows. 

First we assume that q lies in the polygon P. If  not, the same convex hull and 
polygonal bay trick we used in the previous section can be employed to reduce 
the problem to the case where q is interior to some polygon, or to an instance 
of  the problem covered by Theorem 2.6. 

As in Section 2, we apply the polygon-cutting theorem recursively to decompose 
P into a balanced tree T of  polygons. Each node v e T is associated with a 
polygon P(v) and a cutting edge e(v), which is a diagonal of  P separating the 
two polygons associated with the offspring of  v. I f  v~ and v2 are the nodes 
corresponding to these two children, then we know that the sizes of  P(vO and 
P(v2) are roughly in a ratio between ½ and 2, and each is no more than roughly 
two-thirds the size of  P(v). The leaves of  T are associated with triangles, and 
the set of  all leaves constitutes a triangulation of  P. The following lemma, whose 
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proof is straightforward, can form the basis of a recursive algorithm for computing 
o'P(q, u). See Fig. 3.1. 

Lemma 3.1. Let v~ and v2 be the two children of  v, and assume that q lies inside 
P( vi). The point o, P ( q, u) lies in P( v2) if and only if the ray from q in the direction 
u intersects e(v)  at some point p and q lies on the segment po'e~')(p, - u ) .  I f  this 
holds, then ire(q, u) = o'P<v2~(p, u); else trP(q, u )= trP~P(q, u). 

This immediately suggests a recursive algorithm, shoot(v, point, dir) for com- 
puting the point tr P(~)(point, dir). The algorithm is initially called with v = x, the 
root of  T, point = q, and dir = u. If v is a leaf, compute trP~)(point, dir) directly, 
return the point found, and stop. Else let v~, v2 be the two children of  v. By 
induction, point lies in P(v).  Perform a planar point location to decide if point 
lies in P(vO or P(v2); without loss of generality let us assume that the former is 
the case. Let p denote the intersection of  e(v) and the ray from point in the 
direction dir. If p exists, then use the algorithm of problem P2 to compute 
p'= crP(VP(p,-dir). If  the segment pp' contains point, then call shoot( v~, p, dir), 
or more simply, use the algorithm of  problem P2 to complete the computation. 
If p does not exist, or point is outside pp', then call shoot(v~, point, dir). 

The preprocessing required by the procedure shoot involves setting up the tree 
T, organizing each P(v)  for efficient planar point location, and applying the 
preprocessing of  P2 to P(v~) and P(v2) with respect to e(v), for each node v E T 
and children v~, v2. A straightforward analysis shows that all this needs O(n log n) 
space. Once these structures are in place, which with a bit of care takes O(n log n) 
time, the procedure shoot can be computed in time O(log 2 n). It corresponds to 
a walk down T, where at each step we may need to do a point location and solve 
an instance of  P2. 
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This fairly naive implementation can be refined to save a factor of log n in 
both space and query time. These refinements require some novel structures, 
which we describe next. 

3.1. Some Mathematical Preliminaries 

The key observation we make use of is that at each node v ~ T the whole visibility 
structures of P(v~) and P(vz) with respect to e(v) are not really needed. The 
useful information is whether we can shoot directly from e(v) through e(v~) or 
e(v2) without hitting the intermediate portion of the polygon. This information 
can be encoded for all possible shooting rays with a simpler structure than an 
arbitrary planar subdivision. By formalizing this observation and using the 
fractional cascading technique of Chazelle and Guibas [4] we are able to avoid 
the cost of repeated planar point locations. 

Our first task is to augment the tree T into a graph T* by the addition of 
certain edges. This augmentation process was introduced in [3] and this is the 
place to which we refer the reader for details of this procedure. We add an edge 
between all pairs of nodes (v, w) such that e(v) is an edge of the boundary of 
P(w). Note that if this condition holds, then v is necessarily an ancestor in T of 
w. Figure 3.2 depicts (schematically) a polygon P hierarchically subdivided by 
the polygon-cutting theorem and the associated tree T. Figure 3.3 also shows the 
additional edges thrown in to form T*. (Note that we have displayed only the 
top part of the tree, since leaves do not correspond to triangles.) If  v~ is a child 
of  v, then e(v) is clearly on the boundary of P(v~), so the edges of T trivially 
satisfy the condition to be in T*J 

Let us assign levels to the tree T, where the root is given level 0 and a child 
is at a level one higher than its parent. Thus in our figures levels increase 
downward, and higher levels occur lower on the page (reader beware!). 

Fig. 3.2 

i Unfortunately we might now use the word edge both for a diagonal of P and for an edge of T*. 
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Lemma 3.2. A node v in T at level I has 

(i) for each level l' smaller than l at most one T* edge going to an ascendant 
node at level l', and 

(ii) for each level l' larger than l at most two T* edges going to descendant 
nodes at level l'. 

Therefore each node o fT*  has degree at most O(log n), and all o fT*  has size O( n ). 

Proof. Parts (i) and (ii) are immediate consequences of  the recursive nature of  
the splitting process. Adding these to the fact that the decomposition is balanced, 
we find that the degree of each node is O(log n). Since T* is obtained from the 
corresponding structure for the left and right subtrees of T by the addition of 
one new node and O(log n) new edges, the size of T* follows a recurrence of  
the form S (m)  <- S(m')  + S(m - m') + c log m, where c is a constant, S(constant) = 
O(1), and m' and m - m '  are within a fixed ratio of each other. As is well known, 
any function obeying such a recurrence is of the order of O(m).  [] 

It may be interesting to note that T* can be a nonplanar graph. Figure 3.3 is 
in fact an example, as it contains a K5 among the nodes 1, 6, 7, 8, and G. (The 
graph can actually contain a Km for m-- l ) ( log  n).) Incidentally, from now on 
we enforce the convention that for each node v of T, the left son v~ will be that 
associated with the polygon which is locally left of e(v), and similarly, the right 
son v2 will be associated with the polygon locally to the right. This definition is 
ambiguous when e(v) is horizontal, in which case we let v~ be the son correspond- 
ing to the subpolygon below e(v). Figure 3.2 was drawn following that convention. 
One advantage of this convention is that the two possible descendants of  a node 
v mentioned in Lemma 3.2(ii) can be unambiguously described as the left 
descendant o f  v at level l' and the right descendant of  v at level I'. 

The edges (v, w) of  T* define the pairs of  cutting diagonals (e(v),  e(w)) of  
the polygon about which we want to know the collection of all rays cutting both 
e(v) and e(w) but avoiding the polygon P between these diagonals. If v is higher 
in T than w then v is an ancestor w and e(v) is a bounding edge of P(w).  
Assume (without loss of  generality) that after P(w) is cut by e(w), the edge e(v) 
belongs to the polygon P(z)  associated with the right son z of  w. Both e(v) and 
e(w) are boundary edges of  P(z),  and P(z)  lies in the part of P between them. 
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What kind of object is the collection of rays cutting two sides of  a polygon while 
avoiding the others? 

We saw in Section 2 that conditions of  the form "ray F cuts segment s," or 
"ray F avoids segment s"  both dualize to conditions requiring that the dual point 
Dr be in a certain double wedge. Thus, under duality, the condition that a ray 
cuts two sides of  a polygon, but not any of the others, maps to a condition that 
the dual point has to be in the intersection of a set of  double wedges, which is 
a convex polygon. 

Therefore with each edge (v, w) of  T* we can associate a dual convex polygon 
V(v, w), called a visibility polygon, that denotes, in dual form, the collection of 
all lines cutting e(v) and e(w) but not the portion of P between e(v) and e(w). 
Of course, V(v, w) may be empty. In the notation V(v, w) we always assume 
that v lies at a lower level than w in T, that is, v is higher up in the tree. We 
also follow the same convention whenever we refer to an edge (v, w) of  T*. The 
dual of  V(v, w) (clipped between e(v) and e(w)) is called the hourglass at (v, w): 
it is bounded by two subsegments of  e(v) and e(w), called the exit sides, and 
two concave polygonal curves joining them, whose vertices are certain reflex 
vertices of  P(z) (Fig. 3.4). A line traverses the hourglass freely, that is, does not 
intersect the boundary of P between the exit sides if and only if its dual point 
lies in V(u, w). In this regard there is an equivalence between the hourglass and 
the visibility polygon. The equivalence is not complete, however, because of the 
exit sides, which are not encoded anywhere in the visibility polygon. 

For convenience, let us choose as the dual transform D a degenerate polarity 
with the center at infinity. (This makes inclusion-testing slightly easier to discuss.) 
The point p:(a, b) maps to the line Dp: y=ax+b and the line r: y=ax+b is 
sent to the point Dr: ( - a ,  b). (Reader, beware: this duality is not involutory.) In 
this way, we have two seemingly distinct cases: compare Figs. 3.4 and 3.5. (Labels 
refer to vertices on the left and the corresponding edges on the right.) In the 2SP 
these two cases are actually similar. 

To determine whether a ray F traverses an hourglass freely, we can check 
whether the ray cuts across both exit sides and the dual of  F lies in the visibility 

f?, I \ / r ~ / :  

D 
',1 elz) : 

e(w)~ \ / :,(v) ,, / exit sidel ~'~ 

Fig. 3.4 
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polygon. The latter can be accomplished by means of  two binary searches with 
respect to the x-coordinate of  the point Dr. What do we mean by this? Let the 
term upper (resp. lower) boundary refer to the polygonal line running clockwise 
(resp. counterclockwise) from the leftmost to the rightmost vertex of  the polygon 
(in the bounded case). Because of the monotonicity of the upper and lower 
boundaries we can determine their edges right above or below Dr in O(log n) 
time, using binary search. The unbounded case can be treated similarly. The 
innocent-looking fact that the binary searches always involve the same search 
key turns out to be of critical importance later, when the technique of fractional 
cascading is brought in to accelerate the searches. As a data structure, a visibility 
polygon is represented as a set of two arrays, each listing the vertices of the upper 
or lower boundaries. 

Lemma 3.3. For a node w in T consider all dual polygons V(v, w) in which e(v) 
is a diagonal bounding P(z),  where z is a child of w. The total size of  all these 
visibility polygons is at most proportional to the size of P(z).  

Proof. These are all distinct regions of the subdivision associated with illumi- 
nating P(z)  from e(w), as discussed in Section 2. [] 

The lemma shows that all the visibility polygons associated with T* edges 
whose lower end-nodes are on a particular level of  T* have total size O(n),  
and, consequently, all the dual polygons together have total size O(n tog n). 
(By "lower end-nodes" we mean nodes of  higher level.) 

3.2. The Improved Algorithm 

We begin by describing an algorithm which uses the new structures but still takes 
on the order of  n log n space and log 2 n query time. Then we show how to cut 
down each of  these by a log n factor, applying incremental transformations to 
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the data structure. For the sake of  efficiency, we assume a representation of T* 
based on four types of  adjacency lists. Let v be a node of  T*. 

(i) The list L(v) contains the left descendants of v, that is, nodes w in the 
left subtree of  v such that the edge (v, w) is in T*, arranged in order of 
increasing levels in T. 

(ii) The list R(v) contains the right descendants of  v, that is, nodes w of the 
right subtree of  v such that (v, w) is in T*, arranged in order of  increasing 
levels in T. 

(iii) Let vl (resp. v2) be the left (resp. right) child of  v in T. The edges (u, v) 
of  T* fall in two categories: the set Ut(v) contains the ancestors u of  v 
such that e(u) is a bounding edge of  the polygon P(v~); similarly, the 
set Ur(v) contains the ancestors u of  v such that e(u) is a bounding edge 
of P(v2). Both sets are stored as lists arranged in order of  descending 
levels in T. 

In addition, associated with each edge (v, w)~ T* we have the visibility polygon 
V(v, w) mentioned in the previous section. We also have preprocessed for point 
location the triangulation of P formed by the leaves of  T. 

In what follows we assume that q and tre(q, u) lie in different triangles of 
the above triangulation, otherwise ray-shooting is trivial. Let a and/3 be the two 
leaves of  T associated with the triangles containing q and o, e(q, u), respectively. 
The assumption above implies that the leaves ct and/3  are distinct, so we can 
turn our attention to a third node, t, defined as their nearest common ancestor. 
The node t has a simple geometric interpretation. It is the lowest-level node 
whose associated diagonal e(t) is cut by the segment s = qtre(q, u). To see this, 
we begin with the case where t is the root, for which our claim is obviously true. 
I f  t is not the root, then s lies entirely in, say, P(vO, where v~ and v2 are the 
two children of  the root. But in that case, the polygon P(v2) is irrelevant, which 
means that the same argument can be made all over again, now substituting v~ 
for the root. The claim follows by induction. 

The paths in T from t to ot and/3 also have illuminating geometric interpreta- 
tions. From the standpoint of t the leaves a and/3  play similar roles; what we 
say next of/3 applies verbatim to a as well. Consider the path w0, w~ , . . . , / 3  in 
T from w0 = t to/3, and assume that w~ is not a leaf. The path itself does not tell 
the whole story, but it contributes nodes to a certain path of  T*, called the ~3-path, 
that has a compelling interpretation. From now on let F denote the ray from q 
in direction u. I f  the dual of  ~ lies inside V(wo, w~), the ray shoots through e(w~), 
and we make (Wo, w~) the first edge of  the/3-path.  I f  not, then we try V(wo, w2), 
where w2 is the unique child of  w~ in T that is connected to Wo in T*. ( I f  w~ is 
not a leaf, then by definition T* must have an edge connecting Wo to a child of  
w~ .) I f  again the dual of  ~ does not lie in V(wo, w2), the ray does not shoot freely 
from e(t) to e(w2), so we must try V(wo, w3), and so on. At some point, unless 
we reach/3 (in which case the single edge (Wo,/3) constitutes the/3-path) ,  we 
will have a positive test, one where the dual of  ~ is found to lie in some V(wo, Wh). 
Then we will make (Wo, wh) the first edge of the/3-path.  We now play the same 
game at Wh which we did at Wo. The only ambiguity to resolve is whether the 
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left or right child of wh should be considered. With our convention on the left/right 
orientation o f  the tree, it suffices to see if F shoots through e(wh) from left to 
right or the other way around. Continuing in this vein, we iterate through this 
process until we reach the leaf/3. Figure 3.6 illustrates this process: the/3-path 
consists of (Wo, w2), (w2, w3), (w3, wr), etc. 

We are now ready to describe the ray-shooting algorithm: it has three parts 
or phases. In a start-up phase we perform a point location to determine which 
triangle of the triangulation contains q, which gives us access to the leaf a. Then 
we go through a root-finding phase, which takes us from a to t, the nearest 
common ancestor of  a and/3. Finally, we enter a descending phase which tracks 
down the/3-path and leads us to/3. Let us now give the details of these operations. 

The Ray-Shooting Algorithm 

1. Start.Up Phase. In O(log n) time we determine the triangle P(a) that 
encloses q, using any one of  the optimal point-location algorithms. We 
check whether the ray ~ exits P ( a )  via an edge of  P. I f  so, we return the 
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edge in question and terminate the algorithm. Otherwise, we enter the 
following two phases. 
Root-Finding Phase. Starting from t~, we climb up the tree T to t by 
following a path of  edges in T*. The details are as follows. Let e(v) be the 
boundary edge of  the triangle P ( a )  through which the ray F exits the 
triangle. This completes the initialization of  the following iterative pro- 
cedure. We are in possession of a diagonal e(v) that we know the ray 
cuts across. Let v~ (resp. v2) be the left (resp. right) child of  v and let j be 
a variable which can take on the value 1 or 2. I f  the ray F crosses e(v) from 
P(v2) to P(vl) then set j = I, otherwise, set j = 2. To implement this test, 
we check the equivalent condition (to j = 1) that t~ is a descendant of  v2 
in T, which can be done by checking that v2 precedes a in preorder and 

precedes v2 in postorder. This being done, we scan the list Ul(v) i f j  = 1, 
or Ur(v) if j = 2 ,  until a node u is found such that F freely traverses the 
hourglass at (u, v). We implement the test by checking whether the dual 
o f  F lies in V(u, v). I f  there is no such node, the current node v is t and 
the procedure terminates. Otherwise, we reset the variable v to the node u 
and apply the procedure over again. 
Descending Phase. We are now ready to trace down the f l-path and 
discover the terminal triangle P(/3) and, in the process, the edge of P hit 
by the ray. The procedure has already been sketched out, so we just give 
a few complementary facts. Starting from t, we proceed toward infinity in 
the direction u, following the ray F from the initial position e(t)c~ ~. Once 
again we need a directional variable j = 1, 2. I f  the last edge (t, v) traversed 
in the previous phase was in the list R(t), then we initialize j to 1 (meaning 
left), otherwise we set j  = 2 (meaning right). Set v = t and begin the following 
iteration. I f  j =  1 (resp. j = 2 )  scan the list L(v) (resp. R(v)) until a node 
w is found such that the dual of  ~ lies in V(v, w). I f  no such node w exists, 
then the last node reached is the leaf /3  and we are done. Otherwise, we 
update  j by checking the left (resp. right) child w~ (resp. w2) of  w: the 
value o f j  should be such that the diagonal e(w) effectively separates e(wj) 
and e(v) from each other. Checking vertex labels around the boundary  of 
P allows us to perform this test in constant time. Our convention on left/right 
orientation also allows us to do the checking by geometric means. Once j 
has been updated,  we set the variable v to w and iterate through this process. 

The algorithm can be regarded as a divide-and-conquer method, and its 
correctness is easily shown by induction on the number  of  levels in the tree. For 
reasons we have already discussed the storage requirement is O(n log n). To 
answer a query involves a single point location followed by a climb up and down 
the tree. At most  a constant number  of  nodes are examined per level o f  the tree 
and each examination involves checking whether a point lies inside a convex 
polygon of size O(n), which can be done in O(log n) time. Since the tree is 
balanced,  the query t ime amounts to O(log 2 n). It seems at first that we have 
only succeeded in trading a reasonably simple algorithm for a more complicated 
one with no gain in efficiency. The new data structure is perhaps not too attractive, 



Visibility and Intersection Problems in Plane Geometry 567 

/ 

J 
e 

/ /  / x x x  

e(v) 

Fig. 3.7 

but it is flexible. We modify it in several ways. To begin with, we must eliminate 
its redundancy. The visibility polygons share many edges and there is no need 
to represent each edge separately. 

Look at Fig. 3.7. We take three nodes of T such that the three edges 
(u, v), (u, w), and (v, w) are in T*. The delimiting sides of the hourglass at (u, v) 
are obtained from those of the hourglasses at (u, w) and (v, w) by drawing the 
two common tangents shown, and then dropping the edges replaced by the 
tangents. In the dual plane this means that the boundaries of  V(u, w) and V(v, w) 
intersect in exactly two points (the duals of the tangents), and that V(u, v) = 
V(u, w) n V(v, w). On the basis of this observation we can prove: 

Lemma 3.4. The total number of distinct edges occurring in all the visibility polygons 
stored in the data structure is O( n ). 

Proof. Assume that the lemma is true for the two subtrees of the root x of T. 
The result will follow if we can show that x introduces only O(log n) new edges. 
Indeed, the total number of distinct visibility edges will then be linear, by the 
same recurrence used in the proof  of Lemma 3.2. 

All visibilities of  the form V(x, u) arise for subpolygons bounded by e(x) on 
one side and there can be at most two such subpolygons per level, one to the 
left and one to the right of  e(x). Assume now that we have already handled the 
visibilities V(x, z) for right subpolygons, starting from the leaves and proceeding 
up to node Wo. Let v be the father of Wo and assume that v is not the root. Let 
us ask how many new edges the visibility V(x, v) can introduce. 

Let w be the highest node (lowest-level) of  T such that e(w) separates e(x) 
from e(v) around the boundary of  P. If there is no such node, then e(x) and 
e(v) are two adjacent edges of  a triangle and V(x, v) is of  constant size. If w is 
defined, it is a descendant of  both x and v and it is obviously unique. I f  V(x, v) 
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is nonempty, then neither are V(x, w) and V(v, w), and we have the situation 
depicted in Fig. 3.7 (with u = x ) .  The only new vertices which V(x, v) may 
introduce are the duals of  the two common tangents of  the concave chains 
bounding V(x, w) and V(v, w): these create at most four new edges. The two 
new cross-tangents also give rise to at most four new edges, which makes a total 
of  eight newcomers. This accounting shows that we are introducing only a constant 
number of  new vertices per level, so the total number  of  new vertices introduced 
by considering visibilities involving the root diagonal is O(log n). [] 

Lemma 3.4 says that although the visibility polygons have a total of  O(n log n) 
edges, the number  of  distinct edges is only O(n). To take advantage of this fact, 
the obvious thing to do is to store each distinct edge of  the visibility polygons 
only once. But where? Answer: as close to the root as possible. Actually, we do 
not quite do that. To give a precise definition of  our edge allocation strategy we 
need a partial order among edges of  T*: an edge (v, w) precedes an edge (v', w') 
if v is an ancestor of  v' in T, or v = v' and w is an ancestor of  w'. 

We are now ready to make holes in the boundary of  each visibility polygon 
V(v, w) and create a trimmed boundary V*(v, w). We use a coloring scheme to 
specify the holes. Initially, every edge of T* has its own distinct color which is 
also the color of  the boundary of its visibility polygon. At the end, every visibility 
polygon will have its boundary colored in various ways. The monochromatic  
polygonal lines in which the boundary is partitioned are called strands. A strand 
of  V(v, w) whose color remains what it was initially is called resident: it is stored 
entirely in the tr immed boundary V*(v, w). A nonresident strand of V(v, w) is 
stored in the tr immed boundary V*(x, y) associated with the unique T* edge 
(x, y) of  the same color. Let vl, v2,. • . ,  ~)k be the vertices of  a nonresident strand 
from left to right (strands will always be monotone in the x-direction2). To 
preserve consistency we store the edge (vl ,  Ok) in V*(v, w), but since it may not 
be on the boundary of any visibility polygon we call it a ghost. Before we elaborate 
on the implementation of  the data structure it is best to describe the coloring 
process of  V(v, w). 

Initially, the entire boundary is monochromatic.  Let e be an edge of the upper 
boundary of V(v, w). We define the signature of  e to be the vertex of P whose 
dual is the line of  support  of  the segment e. Let p be an arbitrary point of  e 
(distinct from an endpoint). Because of the tree structure of  T the set of  T* 
edges which precede (v, w) is totally ordered. Among those edges let E be the 
subset o f  edges whose visibility polygons have a bounding edge f on their upper 
boundaries such that (i) p lies on the edge f and (ii) e and f have the same 
signature. Because of the total order in E, we can identify a first edge (x, y). Our 
strategy is to color p after (x, y). Needless to say, lower boundaries are colored 
just the same way. 

The coloring scheme is almost saying "color every visibility edge after its highest 
occurrence in the tree," although not exactly, because a given edge may be broken 

2 We are gliding over the fact that visibility polygons may wrap around infinity and come back; 
this may disturb our argument a little but not enough to warrant a separate discussion. 
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up into several parts. It is easy to see that two visibility polygons may have 
collinear edges without common edges (Fig. 3.8). This means that strands do not 
have to be edge sequences of  the visibility polygons: they may run between points 
which are not vertices of  the visibility polygons. For example, in Fig. 3.8 the 
upper boundary with edges labeled a, b, 3, 4, 5, c may have a strand running from 
point A to point B, although these points are not vertices of the visibility polygon 
in question. Lemma 3.4 tells us that we could opt for the simpler strategy of  
storing every edge as high in the tree as we can and still ensure linear space. 
Why do we not do that? The reason is that we cannot afford duplication of  points 
(the reader may not be able to appreciate this fine point now, so be patient). 
With our scheme, if we were to pick a vertex u of P and consider all the trimmed 
boundary edges with u for signature, we would find that, of  course, all these 
edges are collinear, but most important, no two of them overlap (outside of  their 
endpoints). This property is crucial to ensure logarithmic query time. 

The data structure used to represent a trimmed boundary consists of  two 
arrays, one for the upper boundary and the other for the lower one. The arrays 
are sequences of records: regular records store edges of resident strands, and 
ghost records store the edges into which nonresident strands are reduced along 
with pointers to the T* edges where they are effectively stored (Fig. 3.9). Actually, 
ghosts simply point to the first element of  the trimmed boundary to which they 
correspond. The size of  the resulting data structure is proportional to the total 
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number of distinct visibility edges plus the number of ghost records plus n. We 
know from Lemma 3.4 that the number of distinct edges is O(n). How about the 
number of  ghosts? It is easy to prove that a given trimmed boundary has O(log 2 n) 
ghosts. As it turns out, this upper bound would be sufficient for our purposes 
later, although it would require a little extra work from us. But we can do better, 
as our next result shows. 

L e m m a  3.5. The number of ghost records in any given trimmed boundary is 
O(log n).  

Proof. Without loss of generality let us restrict our attention to the upper 
boundary of the visibility polygon V(v, w). Let C be the corresponding (upper) 
boundary of the hourglass at (v, w). Imagine rolling an infinite line L around C 
clockwise to that L traverses the hourglass freely at all times. The rotational span 
of  L is less than ~r, so let L(O) denote the line L for a given angular slope 0; we 
choose a reference system so that 0 ~ [0, 7r). Let H be the set of hourglasses at 
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edges of T* that precede (v, w). For a given 0, let v(O) be the set of hourglasses 
of H which are traversed freely by L(O) and have C n L(O) on their upper 
boundaries. The number of ghosts in the trimmed upper boundary at (v, w) 
cannot exceed 1 plus the number of changes in the function v(O), as 0 varies 
from 0 to ~'. Let (x,y) be an edge of T* that contributes an entry to v(O). A 
simple case-analysis shows that if x is an ancestor of v in T, then y is an ancestor 
of v or v itself. This implies that the hourglasses in Uo<_0<,~ ~,(0) have a total of  
O(log n) distinct exit diagonals (there may be more exit sides since one diagonal 
can contribute many of  them). We call these diagonals candidates. Of course, 
this still leaves open the possibility of  O(log 2 n) hourglasses in Uo~o<,~ v(O). To 
see that this cannot be the case, observe that L(O) can intersect a given candidate 
diagonal, and be a line of  visibility between C n L(O) and that diagonal, over at 
most two angular intervals. This implies that the number of value changes in the 
function v is at most proportional to the number of candidate diagonals, which 
proves the lemma. [] 

Since T* has O(n) edges, an immediate corollary of the lemma is that the 
data structure requires O(n log n) storage. What progress have we made? 
Although the bound is still unsatisfactory there is cause for optimism. Indeed, 
the only snag in the way of a linear bound is the possibility of  having too many 
ghosts. But Lemma 3.5 shows that a given T* edge cannot have more than a 
logarithmic number of them. Pruning the bottom levels of the tree T will take 
care of this problem, as we shall see later. (This can be avoided, as it turns out, 
but pruning is in general a good, practical idea, anyhow.) Our new data structure 
still supports ray-shooting queries. The algorithm is only slightly more compli- 
cated. The one significant difference is that whenever a search lands in a ghost 
record, we must carry it on in the trimmed boundary to which it points. This 
time around, by definition, the search will succeed. The query time is trivially 
O(log 2 n). 

The first item on the agenda is to cut down the query time to O(log n). To 
speed up the query-answering process, we rely heavily on a technique for iterative 
searching called fractional cascading [4]. We assume that the reader is familiar 
with this technique. The bulk of the ray-shooting algorithm involves iterated 
dictionary look-ups in O(log n) catalogs. In the fractional-cascading terminology 
a catalog is the name given to a sorted linear list. In this case, the catalogs are 
the trimmed upper and lower boundaries associated with the edges of  T*. To 
simplify our discussion, we deal only with trimmed upper boundaries and treat 
V*(v, w) as though it consisted only of the trimmed upper boundary of  V(v, w). 
Of course, it is understood that whatever we say also applies to the trimmed 
lower boundaries. Because our data structure consists of  a collection of  catalogs 
associated with the edges of  a graph it is possible to apply fractional cascading 
to it. Technically speaking the association should involve the nodes of  the graph 
and not its edges. To overcome this difficulty we could modify T* by adding a 
dummy node in the middle of  each edge (v, w) and associating the trimmed 
upper boundary V*(v, w) with it. For consistency the original nodes of  T* are 
assigned empty catalogs. 
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There is still one problem: fractional cascading is most efficient when the 
underlying graph has bounded degree, which is not the case with T*. Let us 
return T* to the state in which it was prior to the addition of the dummy nodes. 
For each node v e T, consider the sets L(v) and R(v) in turn, and add respectively 
IL(v)[ and IR(o)I nodes. We describe the procedure on L(v) = (wl, w 2 , . . . ,  Wk). 
It involves replacing the edges (v, w l ) , . . . ,  (v, wk) by (v, zl), (zi, w~), and (zi, zi+l), 
for each i (1 < i <  k - 1 ) ,  and (Zk, Wk). See Fig. 3.10. Each node zi is brand-new: 
it is called the catalog node of  the T* edge (v, w~) and is assigned as catalog the 
trimmed upper boundary V*(v, wi). If V(v, w~) is empty, so is the catalog assigned 
to zj. All the other nodes are assigned empty catalogs. This takes care of the 
descendant neighbors of  v in L(v) and R(v), but we are not done yet. 

What about Us(v) and Ur(v)? We follow the same principle. Let w l , . . . ,  wk 
be the nodes of  Ul(v) u Ur(v) in decreasing order level-wise (i.e., in tree-ascending 
order), and let z~ be the catalog node of  the pair (w~, v). For each i ( 2 -  < i-< k), 
we remove the edge (z ,  v) and replace it by (z ,  zH) .  As usual, we denote edges 
by pairs indicating their natural top-down orientation. Thus, we refer to the edge 
(z ,  z~_~) and not (z~_l, zi) because w~ is an ancestor of  w~_~. Figure 3.11 shows 
the transformation of  T* along a path of  five nodes with the complete graph on 
it. Black dots represent catalog nodes with labels indicating their bijection with 
the edges of  T*. This transformation ensures that the resulting graph, denoted 
(3, has maximum degree four. 

How do we navigate in T*? To carry out our ray-shooting routine we need 
to be able to scan L(v) or R(v) as well as Ul(v) and U,(v) and interrogate the 
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trimmed boundaries stored at the catalog nodes of the corresponding edges. The 
nodes of  T* are nodes of  G but the converse is not true. However, to every edge 
(v, w) of  T* corresponds at least one path from v to w in G. Let L ( v ) =  
(w l , . . . ,  Wk) and let z~ be the catalog node of the T* edge (v, w~). The path 
zl, z2 , . . . ,  Zk in G can be thought of as a track. Tracks can be crossed by using 
byways--see paths marked with arrows in Fig. 3.11. To traverse an edge (v, w) 
of T* (and interrogate its visibility structure) we go from v to w in G by walking 
down a track first and then connecting to w via the appropriate byway. This 
allows us to carry out the descending phase in G with no difficulty whatsoever. 
The time taken to visit a given edge (v, w) of  T* is proportional to the level 
differential between v and w. To scan down L(v) is not as costly, however. We 
easily verify that to visit z l , . . . ,  zl (l--- k) in this order takes O(l) steps. Therefore 
we can carry out in G the entire descending phase of the ray-shooting algorithm 
while incurring the cost of only O(log n) catalog look-ups. Furthermore, the 
order of the nodes visited follows what is called a generalized path in the 
fractional-cascading terminology. This means that each node visited, except the 
first one, is adjacent to a node visited earlier. 

Now how about U~(v) and U,(v)? To traverse the byway from v upward is 
the equivalent in G of  scanning the union of Ul(v) and Ur(v). Appropriate 
labeling of  the nodes allows us to distinguish between Ut(v) and U,(v). Again, 
the complexity of scanning Ut (v) u U,(v) is essentially proportional to the number 
of T* edges examined. In other words, what we just said of the descending phase 
also applies to the root-finding phase. One final point: the pointers stored in the 
ghost records of  the catalogs should point not to the edges of  T* but to their 
associated catalog nodes in G. As it turns out, it is best to keep both T* and G 
around, Admittedly, there is no need for T* right now, but its time will soon come. 

What conclusions are we to draw at this point? The entire ray-shooting 
algorithm can be ported to the graph G augmented with its various catalogs. 
Assume the existence of  an oracle that provides a constant-time answer to any 
search which happens to land in a ghost record. Recall that when a search 
terminates in a ghost it must be pursued in the boundary list pointed to by the 
record in question. We are not quite ready to do this extra work in constant 
amortized time, so let us punt and assume that someone else will do the job for 
us at no cost. Then, nice things begin to happen. The work involved in answering 
a ray-shooting query fits squarely into the iterative search framework of fractional 
cascading and the speed-up technique can be applied. This cuts down the query 
time to O(log n). 

3.3. Giving Life to the Oracle 

It remains for us to dream up a method which answers oracle queries in constant 
amortized time and does not add too much storage. One problem is that the T* 
edges referenced by the ghost records of  a given trimmed boundary can be 
searingly random-looking (see the Appendix). To be sure, the edges hit by the 
oracle have their vertices on the path from the root of  T to the leaves a or/3.  
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There can be O(log 2 n) such edges, however, and if the oracle were to be asked 
to deal with an arbitrary subset of O(log n) of  them we would be in serious 
trouble. As a matter of  fact the best that fractional cascading could then offer 
would be O(log n log log n) query time, where the factor log log n comes from 
the logarithm of  the degree of the underlying graph. 

Fortunately, the power of fractional cascading has not been exhausted yet. 
Define the range of a catalog to be the interval formed by its smallest and largest 
key. The bounded degree condition can be relaxed into the following condition: 
given any node v and any real x in its range, the number of nodes adjacent to 
v in the catalog graph, whose ranges contain x, must be bounded above by a 
fixed constant. This condition is similar to the locally bounded degree condition 
of  [4], though slightly stronger. As is shown in [4], the results of  fractional 
cascading basically remain unchanged under this weaker assumption. 

How does this relate to our problem ? We know that the only edges interrogated 
by the oracle connect two nodes on the path ~r,, from the root to a, or on the 
path ¢r~ from the root to ft. Our plan is to interrogate every relevant edge along 
these paths before the oracle has a chance to do so. By "relevant" we mean edges 
whose visibility polygons have nontrivial information to offer. We will show that 
there are only O (log n) relevant edges (as opposed to a total of O (log 2 n)). Before 
going any further, let us define this notion of  relevance more precisely. 

Recall that we are dealing only with trimmed upper boundaries. An edge (v, w) 
of  T* is relevant if both v and w are nodes of  ~r~ u ir~ and the trimmed upper 
boundary V*(v, w) contains a regular edge which lies right above the dual of 
the ray ~. This edge is called the clue of (v, w) (when ~ is understood). To lie 
right above a point means that the point lies in the vertical strip defined by the 
endpoints of  the edge and below the line supporting the edge. Every regular 
visibility edge ever needed during ray-shooting is relevant, but the converse need 
not be true. 

In the case of  ~r~, we know the path ahead of  time, so we can compute the 
relevant edges and all their clues prior to the root-finding phase. In the case of 
~r~ we have to proceed incrementally. Every time we go from a node of  ~r, to 
one of  its children v we compute all the relevant edges of  T* of  the form (w, v) 
as well as their clues. As follows from an observation made in the proof  of  Lemma 
3.5, clues will thus be available before they are needed. Whenever we compute 
a clue, we stash it away along with the catalog node of  G corresponding to the 
edge in question. In this way, the oracle will get its desired answer by a simple 
look-up. 

Let us summarize what we are trying to do. For simplicity we can assume that 
we have two distinct data structures, (i) the augmented graph G and (ii) the 
graph T* augmented with special featureswyet to comemto support the computa- 
tion of  relevant edges and their clues. Prior to the root-finding phase, the clues 
of  all the relevant edges of  ~r,, are computed and stored in the corresponding 
catalog nodes of  G. In this way, the root-finding phase can proceed in G as 
described earlier. Every call on the oracle can be replaced by a simple reading 
of  the clue in the catalog node pointed to by the current ghost record. The 
descending phase is very similar. The only difference is that all the clues cannot 
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be computed ahead of time. Every time we descend to a new node v, all the clues 
of the relevant edges (w, v) are computed and stashed away in (3, right alongside 
the edges in question. As a matter for fact, for consistency, we can do the same 
thing for ~r, as well. Then, in all cases, we are repeatedly confronted with the 
following situation. Let v be our current node and let (wl,  w2 . . . . .  Wk) be the 
nodes of  Ut(v)w U,(v): identify the relevant edges among (wl,  v ) , . . . ,  ( W k ,  V)~,  

and compute and store their dues. 
To make this problem conform with the iterative framework of  fractional 

cascading, once again we transform T* by removing all the edges (w, v) which 
are not parent/child relationships and we attach to each node v a path of  k 
nodes, z ~ , . . . ,  zk. Each z~ is associated with the trimmed upper  boundary 
V*(w~, v) which forms its catalog. This gives us a valid catalog graph all right, 
but one quite undesirable in several ways. For one thing, we may not be able to 
afford the traversal of  z ~ , . . . ,  Zk-~ if, say, only zk is relevant (an abuse of  notation 
to say that (wk, v) is relevant). To avoid this problem, we take one bold step and 
break down the catalog of  each z~, that is, the trimmed upper boundary V*(w~, v). 
To do so, we remove all the ghosts from the list and make a separate catalog of  
each connected piece. Each new catalog is associated with a separate node z~ s). 
In this way we trade z~ and its catalog for a collection of  nodes z~ ~), z~2), . . . ,  whose 
catalogs partition the catalog of  zi. Finally, we put an edge between the nodes 
z~ a) and z) b) (i < j )  if there exists a real x in the range of  both nodes but not in 
the range of  any z~ c) such that i < ! <j .  We include z(0 n = v in this specification 
and assign the empty catalog to it with range equal to ~.  Admittedly, this 
transformation may sound a little mysterious. A picture will help (Fig. 3.12). Any 
node may have large degree but its local degree around a certain key does 
not exceed some constant. Note that there are no edges connecting the nodes 
associated with the catalogs coming from the same boundary list. 
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It is immediate to check that the graph satisfies the weaker degree condition 
stated earlier. We can therefore apply fractional cascading to it. The reader will 
recognize in this construction the so-called hive-graph of  Chazelle [2]. When 
answering a ray-shooting query, the nodes zi that are relevant correspond to the 
z{'s whose ranges include the x-coordinate of  the dual of  ~ (that is, the slope of 
~). Referring to Fig. 3.12, these are obtained by intersecting the horizontal 
segments with the vertical line x = a, where a is the x-coordinate of the dual of 
~. Fractional cascading will let us do that in a straightforward manner in time 
proportional to the total number of relevant nodes zi plus log n. Putting our 
results together, we have a ray-shooting algorithm that requires O(p + log n) time, 
where p is the number of  relevant edges in T*. How large can p be? 

Lemma 3.6. The number of  relevant edges with respect to a given ray-shooting 
query is O(log n). 

Proof. Recall that an edge (v, w) of  T* is relevant if both v and w are nodes 
of  z,~ or or# and the trimmed upper boundary V*(v, w) contains an edge that 
lies right above the dual of  ~. This puts an obvious upper bound of O(log 2 n). 
on p. Actually, if we substituted V(v, w) for V*(v, w) in the definition of relevance, 
this upper bound would be tight. This fact, which we leave as an exercise, shows 
that trimmed boundaries are good not only for the space they save but also for 
the ray-shooting time. To prove the lemma, we may restrict ourselves to the 
relevant edges along only one of  the two paths ¢r~ or z,,. Call this path ¢r and 
let p be the dual point of  ~. We assume that ~ is not parallel to the line passing 
between any pair of vertices of  P. This assumption--which can be easily relaxed--  
implies that p is not a vertex of  any visibility polygon. Recall that we took great 
pains to ensure that trimmed boundary edges with the same signature may not 
strictly overlap. This ensures that no two relevant edges joining nodes of ¢r can 
have clues with the same signature. 

We are now ready to collect the rewards of  our efforts. Let us say that a vertex 
t of  P is exposed if there exists a line segment parallel to ~ which contains t and 
traverses freely the hourglass of  a relevant edge of  T* from one exit side to the 
other (Fig. 3.13). It follows that p cannot exceed the number of  exposed vertices. 
But it is easy to see that there are only O(log n) exposed vertices. Why? Cut the 
boundary of  P at the endpoints of the cutting edges associated with the nodes 
o f  z,. This produces O(log n) connected polygonal pieces. Now assume that one 
of  these pieces contains two exposed vertices t and t'. Let AB and A'B' be the 
two segments that witness the "'exposedness" of  t and t', respectively. From 
elementary geometric considerations it is clear that the part of  the polygonal 
piece running between t and t' must contain one vertex among A, B, A', B' (Fig. 
3.14). Consequently, the polygonal piece in question is not connected, which 
produces a contradiction and proves our claim. [] 

All the pieces are now together. At long last, we have obtained an O(n log n)- 
size data structure for  ray-shooting in O(log n) time. To reduce the space 
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Fig. 3.13 

J r 

requirement to O(n) is not difficult. We can use a standard tree-pruning trick 
[13], [9]. Remove from T all the nodes with fewer than log n descendants and 
remove all the edges of  T* incident to these nodes. Since T is built from a 
balanced decomposition of P, this leaves us with a graph of O(n/log n) nodes. 
Following Lemma 3.2, this graph has at most O(n/log n) edges. To fit this new 
scenario entails modifying the data structure in a straightforward fashion. As we 
noticed previously, the only reason why we did not achieve linear storage earlier 
was the presence of ghosts. But, from Lemma 3.5, ghosts cost only O(log n) 
storage per edge of  the graph, therefore the reduced data structure requires O(n) 
storage. Of course, the only trouble is that instead of triangles, we must now deal 

Fig. 3.14 
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with polygons of O(log n) edges. But these are one-shot costs during ray-shooting 
(pun intended!). The overhead is O(log n) and does not add to the asymptotic 
complexity of the algorithm. 

The last point to address is the construction of the data structure. The simplest 
strategy is to triangulate the polygon and preprocess it for efficient planar point 
location. Then we build the (reduced version of the) graph T* and all the visibility 
polygons in full. If we proceed bottom-up we can use the fact that any visibility 
polygon is the intersection of two previously computed polygons A and B, and 
thus can be computed in time linear in the added size of A and B. This ensures 
that all the preprocessing so far can be done in O(n log n) time. Continuing in 
the same vein we can trim the visibility polygons by computing their signatures 
in a first stage. Then for each signature we sort the endpoints of the corresponding 
visibility edges (recall that all these edges are collinear). This allows us to break 
down each edge into intervals and color each interval appropriately. Replacing 
colors by pointers we obtain G and its catalogs in O(n log n) time. Fractional 
cascading takes linear time. Finally, each hive-graph can be computed in a 
sweep-line fashion in O(n log n) time. 

Theorem 3.7. There exists an O(n)-space data structure representing a simple 
polygon Pwhich can be computed in time O(n log n) and which, given a pair (q, u) 
of a point q and a direction u, can be used to find the first edge of P hit by the ray 
from q in the direction u in time O(log n). 

4. Extensions to Intersection Problems 

The previous result can be extended in two ways. First, having found the first 
intersection of P with the ray (q, u), we can proceed to find the next one in the 
same manner, by just decomposing the exterior of P into a number of simple 
polygons and applying the above preprocessing to each of these polygons. 
Thus in fact we have a technique for computing all k intersections between 
a line segment and a simple polygon in time O((k+ 1)log n). This algorithm is 
unlikely to be the method of choice, however. Indeed, there exists a much 
simpler linear-size data structure for this problem with query time 
O((k+ 1) log(n/(k+ 1))) [5]. 

Finally, we observe that our ray-shooting algorithm generalizes easily from 
simple polygons to arbitrary subdivisions of the plane into simply connected 
polygonal regions. How so? Break each cycle in the planar graph by duplicating 
vertices (Fig. 4.1). Perform this duplication process until the set of edges forms 
a single tree. Then perform a depth-first search traversal of the tree. Each edge 
is visited twice, so we will duplicate it on the second visit. Here duplication 
means the creation of an identical edge distinct from but very close to the original 
one. Figure 4.1 illustrates this two-stage process. The set of edges can be now 
made the boundary of a simple polygon (very thin, perhaps, but still . . .).  Another 
approach is to build separate shooting structures for each connected region of 
the subdivision, and then use point location to identify the region to which the 
ray-shooting query should be applied. 
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Fig. 4.1 
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Appendix 

We wish to show that the ghosts which appear in ray-shooting may point to 
almost arbitrary T* edges. Consider the polygon depicted in Fig. A.1 and its 
associated tree T. The vertical segments represent the cutting edges along a path 
from the root to some node down the tree. The nodes of the path are labeled 
1-12 in level-ascending order. Think of 1 as, say, the root diagonal and 12 as a 
node near the bottom of the tree. We have also drawn the path 1-12 with the 
edges connecting nodes of the path. Consider now a horizontal ray-shooting 
query. It may happen that the trimmed boundaries V*(7, 8), V*(9, 10), V*(11, 12) 
are interrogated during searches and that the desired answers (the dues) are the 
edges ea, eb, ec whose signatures are the vertices a, b, c, respectively. As it turns 
out, all three edges are ghosts: ea, eb, ec are actually stored in 
V*(1, 6), V*(2, 5), V*(3, 4), respectively. Notice that we have the complete graph 
on the nodes 1-7. The ghost edges have to be retrieved among some of the T* 
edges of this graph. To see how arbitrary this subset can be, observe that instead 
ofthe path 1, 2 , . . . ,  12 we could have a path or, 7, 8, 9, 10, 11, 12, where ¢r is any 
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p e r m u t a t i o n  o f  (1, 2, 3, 4, 5, 6). The  po in t  is that  by add ing  or  de le t ing  vertices 
to P we can bas ica l ly  force any  o rde r  we want  a m o n g  the cuts 1 , . . . ,  6. For  
example ,  we can  a lways  make  6 the root  o f  T by  add ing  sufficiently many  d u m m y  
vert ices a long  the  b o u n d a r y  enclos ing  the label  6 in Fig. A.1. 
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