
Discrete Comput Geom 4:551-581 (1989)

© 1989 Springer-Verlag New York

Visibility and Intersection Problems in Plane Geometry*

Bernard Chaze l le ~ and Leon idas J. G u i b a s 2

t Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

2 Department of Computer Science, Stanford University, Stanford, CA 94305, USA and
DEC Systems Research Center, Palo Alto, CA94301, USA

Abstract. We develop new data structures for solving various visibility and intersec-
tion problems about a simple polygon P on n vertices. Among our results are a
simple O(n log n)-time algorithm for computing the illuminated subpolygon of P
from a luminous side, and an O(log n)-time algorithm for determining which side
of P is first hit by a bullet fired from a point in a certain direction. The latter method
requires preprocessing on P which takes time O(n log n) and space O(n). The two
main tools in attacking these problems are geometric duality on the two-sided plane
and fractional cascading.

1. Introduction

Visibil i ty and in tersec t ion p rob l ems are among the most f u n d a m e n t a l topics in
compu ta t i ona l geometry . In this p a p e r we invest igate the fo l lowing type o f
quest ion: G iven a s imple po lygon P and a pa i r (q, u) consis t ing o f a po in t q and
a d i rec t ion u, imagine that we fol low the pa th o f a s t ra ight- l ine ray F f rom q in
the d i rec t ion u. We wish to know the first in tersec t ion (if any) o f F with the
b o u n d a r y o f P, or the in tersec t ions up to a l imit po in t on the ray, or all the
intersect ions. See Fig. 1.1. In pos ing this ques t ion we assume tha t P is fixed once
and for al l , so we are a l lowed to do p reprocess ing on it.

As a w a r m - u p we beg in our d iscuss ion in Sect ion 2 by inves t igat ing the eas ier
case where q is confined to lie on a side of P (the luminous edge) . We give s imple
me thods for:

1. C o m p u t i n g the i l l umina ted subpo lygon o f P f rom the l uminous edge in
O(n) space and O(n log n) t ime.

* Bernard Chazelle wishes to acknowledge the National Science Foundation for supporting this
research in part under Grant CCR-8700917. A preliminary version of this paper was presented at the
First Annual ACM Symposium on Computational Geometry, June 1985.

/

552 B. Chazelle and L. J. Guibas

Fig. 1.1

2. Computing the first intersection of the boundary of P with a light-ray from
the luminous edge in O(log n) time, given an O(n)-space data structure compu-
table in O(n log n) time.

3. Computing all the points of the luminous edge that cast light on a particular
point on the boundary of P in O(log n) time, using an O(n)-space data structure
which is computable in O(n log n) time.

Problem 1 has been solved previously within these time bounds (see Section 2),
but we believe that our solution is significantly simpler than the earlier ones. Our
solutions to problems 2 and 3 improve on the previously known bounds. Another
attractive aspect of our approach is the use of a common data structure for all
three problems.

In Section 3 we solve the significantly more difficult unrestricted version of the
ray-shooting problem. Our solution computes the first intersection in O(log n)
time, using a structure that takes O(n) space and O(n log n) preprocessing time.
In the process of describing our solution we develop some machinery that we
expect to be useful in other geometric problems as well.

Finally, in Section 4 we mention some extensions for computing more than
the first intersection, or for dealing with objects more complex than a simple
polygon. For instance, using our structures, we can compute all k intersections
of a line segment and a simple polygon P in time O((k+ 1) log(n/(k+ 1))). This
problem for the case of an infinite segment (a straight line) had been solved
previously within the same time bound by Chazelle and Guibas [4].

One of our main tools for these problems is the geometric duality on the
two-sided plane (2SP) introduced by the kinetic framework [10]. This is a classic
duality, together with the convention that oriented lines having the origin to their
left dualize to points on the top surface, while lines having the origin to their
right dualize to points on the bottom side. We refer the reader to that paper for
details. A crucial property for us will be that in the 2SP boundaries of convex
polygons dualize to boundaries of convex polygons. The duality transform is

Visibility and Intersection Problems in Plane Geometry 553

denoted by D, so for a point p, Dp will denote the dual oriented line, and for a
line r, Dr will designate the dual point.

2. The Use of Duality in Visibility Problems

Let P = p~, P2, • • •, P~ be a simple polygon in the plane, and let e denote the edge
piP2. Imagine that e is a luminous neon bulb, while the other sides of P form
opaque walls. This scenario raises a number of interesting questions (see Fig. 2.1):

PI" Compute the region of P illuminated by e.
P2: Given a light-ray ~ starting on e, determine which point on the boundary

of P it illuminates (hits).
P3: Given a point q on the boundary of P, find the points of e, if any, that

shine light on q.

As the above questions make clear, we assume that all points of e emit light-rays
in all directions toward the interior of P. A minor technicality is to decide whether
the endpoints of an edge should be luminous. For convenience we assume that
they are not, which means that no edge can emit light behind. Should we like to
relax this assumption we can always create edges of infinitesimal length at the
endpoints, and, by this (rather devious) way, support vertex-visibility in addition
to edge-visibility.

Our investigation of the three problems above is based on the observation that
lines, and not points, are the primitive objects to consider in visibility questions.
Since points are intuitively easier to grasp than lines, such questions are advan-
tageously recast in dual space, where the roles of points and lines are interchanged.
For problem P1, O(n log n) solutions were recently discovered independently
by Lee and Lin [11] and E1 Gindy [7]. Both algorithms are fairly involved and

q

Fig. 2.1

554 B. Chazelle and L, J. Guibas

0

bottom----" ----v
le

le

"""top

Dp z

Fig. 2.2

entail substantial overhead, in part because of their reliance on dynamic search
structures. As we will see, by using duality, we can obtain a single algorithm that
not only produces the visibility region in O(n log n) time but also allows us to
solve problems P2 and P3 in O(n) space and O(log n) response time.

We will identify a light-ray ~ with its supporting oriented line r. Each such
line dualizes to a point p = Dr in the dual plane. It is easy to check that the
collection of all oriented lines intersecting the segment e and (locally) directed
toward the interior of P dualizes to a double wedge Ie. This double wedge is
delimited by the lines Dp, and D~2 (recall that e = PIPE) and is the one (of the
two possible double wedges formed by Dp~ and Dp:) not containing the origin.
We let L denote the line supporting e. See Fig. 2.2. On the 2SP this double wedge
is actually a convex polygon consisting of one wedge on the top and the opposite
wedge on the bottom. Points on the top wedge correspond to rays passing to the
left of the origin, while those on the bottom correspond to rays passing on the right.

Why is/~ convex? This is actually a consequence of some very general duality
theorems. We can, however, see it directly by noting that if rl and rE are any two
rays cutting e and directed into the same half-plane, then any ray r between rl
and r2 will also cut e and be directed toward the same half-plane. Here by
"between" we mean that t passes through the intersection of r~ and r2 and is
contained in the wedge cut by e which they form. See Fig. 2.3.

For a point p e/~ we define f(p) to be the edge(s) of P hit by the light-ray
Dp. The function f defines a partition S(Ie) of the wedge Ie into the subregions
where f is constant: two points p, q are in the same region of S(/~) if f (p) = f (q) .

Fig. 2.3

Visibility and Intersection Problems in Plane Geometry 555

Lemma 2.1. Each region of the subdivision S(le) is a convex polygon.

Proof. Let p, q be two points in /e with f (p) = f (q) = {g}, an edge of P. Let
A = e n Dp, B = e c~ Dq, and I = Dp ~ Dq (on the 2SP the intersection I is always
well defined). It is geometrically obvious that any light-ray passing through I
and crossing the segment AB will hit the edge g first. In dual terms, any convex
combination r = A p + (1 - h) q , Ae[O, 1], of p and q satisfies f (r)={g} . Thus f
defines at most n - 1 two-dimensional convex regions which together subdivide
the convex wedge I~, It follows that each region must be a convex polygon
(in the 2SP sense, of course). []

2.1. Computing the Subdivision S(I~)

As we will see below, the subdivision S(Ie) provides the essential information
we need to know in order to solve problems P1-P3. In this section we concentrate
on how to compute it efficiently. We use a divide-and-conquer technique based
on the polygon-cutting theorem of Chazelle [1]. This theorem states that, with
O(n log n) preprocessing, it is possible to determine two vertices Pi and pj of P
such that the diagonal PiPj lies fully in P and subdivides P into t w o simple
polygons each with at most [2n/3] + 1 vertices. This assumes that P has more
than three vertices. Once the preprocessing is complete, the cost of computing
the separating diagonal is linear, and it remains so as we apply the subdivision
recursively to the subpolygons created. For example, this preprocessing could be
the computation of a triangulation of P. Then each separating diagonal can be
found by searching for the centroid of a free tree, which takes linear time. See
[1] for details.

If P is a triangle, S(I~) is trivially computed in constant time. If P has more
than three vertices, we determine the separating diagonal p~pj and decompose P
into two other polygons, P1 and P2. Without loss of generality we assume that
e is an edge of P1. We now compute recursively the subdivision $1 associated
with illuminating P~ from e, and the subdivision $2 associated with illuminating
P2 from pip~. Let R be the region of $1 which corresponds, via the function f, to
the edge PIP1. In other words, R is the locus of the duals of all rays in P~ emanating
from e and hitting p~pj. A crucial observation is that

S(le) = S1 w (R n S2),

meaning that by clipping $2 to within R and adding this refinement of R to S~,
we obtain S(Ie). So, the desired subdivision S(Ie) is obtained from S~ by simply
subdividing one of its regions. See Fig. 2.4.

We can carry out the above construction in O(n) time. Why is that so? Let
us start out by triangulating each region of $2. Since these regions are convex,
we can do this in time linear in the size of $2, which is O(n). Indeed, it trivially
follows from Euler's relation and convexity that the description size of all the
convex subdivisions S~ is O(n). Next, we locate an arbitrary starting vertex of R

556 B. Chazelle and L. J. Guibas

Fig. 2.4

in this triangulation and proceed to walk around R while computing all the
intersection points of edges of $2 and R. From there a simple depth-first search
toward the interior of R allows us to construct R c~ $2. By convexity, the boundary
of R intersects no edge of $2 more than twice, therefore the total complexity of
the clipping operation is still O(n), which establishes our claim.

Since the merge part of this divide-and-conquer algorithm is linear, the
balanced decomposition provided by the polygon-cutting theorem leads to
the following result:

Lemma 2.2. It is possible to compute the convex subdivision S(Ie) associated with
illuminating the simple polygon P from edge e in O(n log n) time and O(n) space.

As we already observed, if F is the number of nonempty regions in the
subdivision, its complete description size is O(F). The regions correspond to the
sides of P that receive some light from the luminous side (see also Section 2.2).
The quantity O(F) is also a bound on the size of the illuminated subpolygon of
P from the luminous side e.

Another O(n log n) algorithm can be derived by starting out with a triangula-
tion of P, and then considering the triangles one at a time, starting with the
triangle containing the luminous edge. At each step we add a new triangle A
having one side in common, say d, with a previously handled triangle. The rays
reaching d (a diagonal of P) from e form a convex polygon V in the dual plane.
They will now be subdivided into one or two groups, according to which other
side of A they exit from. Dually, the polygon V will be cut into two subpolygons

Visibility and Intersection Problems in Plane Geometry 557

by the line which is the dual of the new vertex of A. We can compute the final
subdivision by continuing in this way and paying an O(log n) line/convex polygon
intersection cost per triangle added.

2.2. Solving the Visibility Problems

In this subsection we show how problems P1-P3 can be solved using the sub-
division S(Ie).

Theorem 2.3. Computing the subpolygon of P illuminated from a luminous edge
can be done in O(n log n) time and O(n) space.

Proof An edge g of P is, possibly partially, illuminated by e if and only if it
is associated with a nonempty region R of S(Ie). To determine which part of g
is illuminated, we examine its associated region R. Let Dt be the dual point of
the line i supporting side g (in some orientation). Any line passing through Dt
and cutting through R dualizes to an illuminated point of g, and vice versa. It
easily follows that the two lines passing through Dt and tangent to R are the
duals of the two points A and B which delimit the visible part of g. (Why cannot
Dt be in the interior of R ?) Occasionally R will have an edge collinear with DA
(or De). In this case A (or B) will be an endpoint of g. Both A and B can be
determined in time linear in the size of R and therefore this information can be
collected for all edges of P in O(n) time. To form the illuminated region of P
from e we just join the endpoints of consecutive visible segments as they occur
on the edges around P. See Fig. 2.1. []

Theorem 2.4. Problem P2 can be solved in O(log n) time by using an O(n) space
data structure computable in O(n log n) time.

Proof As we have already seen, a light-ray from e becomes a point in Ie in the
dual plane, and the region it lies in S(Ie) directly tells us the edge of P that it
hits. A straightforward calculation gives us the intersection point in constant
time. Using an optimal point location algorithm, e.g., [6], the entire process can
be carried out within the bounds stated by the theorem. []

Theorem 2.5. Problem P3 can be solved in O(log n) time by using an O(n) space
data structure computable in O(n log n) time.

Proof A point q on an edge g of P is illuminated from e if and only if the line
Dq intersects the region R associated with g. By duality, the line Dq passes
through the point Dr, where l is the line supporting g. It is easy to check that
the two intersection points A and B of Dq with the boundary of R are the duals
of the two lines defining the visibility wedge from e to q. Consequently, intersecting
these two lines with e will provide us with the subsegment of e illuminating q.
Since the intersection of a 'convex polygon and a straight line can be computed
in logarithmic time, the theorem follows. []

558 B. Chazelle and L. J. Guibas

Natural extensions of the previous algorithms allow us to handle the case
where the neon light does not coincide with an edge of P but corresponds to a
line segment s lying inside the polygon. In this case we simply extend the segment
s so as to split P into two subpolygons for wh.~ch the previous techniques directly
apply. (The fact that now only a contiguous portion of e is light-emitting
introduces no difficulties.)

We may also wish to consider problem P2 for the case where the light-ray
comes toward P from infinity. For this situation we start by forming the convex
hull of P. The difference between P and its convex hull is a collection of simple
polygons ("bays") , each containing exactly one edge not in P. We preprocess
these polygons for illumination from their special edge not in P. To discover now
which side of P the ray ~ intersects, we first compute in O(log n) time the initial
point o f contact between ~ and the convex hull of it'. I f this point is on an edge
of P we are done. Otherwise we are in an instance of problem P2 for one of the
preprocessed polygonal bays. Since the total size of all these polygons is O(n),
we have shown that:

Theorem 2.6. There exists an O(n) space data structure representing a simple
n-gon P that allows us to compute in O(log n) time the point on the boundary of P
illuminated by a light-ray coming from infinity. This data structure can be built in
O(n log n) time.

3. The General Ray-Shooting Problem

In the previous section we discussed a number of instances of the shooting
problem: preprocess a simple polygon P so that given a pair (q, u) consisting of
a point q and a unit vector u, we can efficiently determine the first point on P
to be hit by the ray from q in the direction u. This point, if it exists, is denoted
by o-P(q, u). Problem P2 and its variants for which we have already presented
solutions make essential use of the restriction that q is constrained to lie on some
straight line. To solve an unrestricted instance of the shooting problem we can
proceed as follows.

First we assume that q lies in the polygon P. If not, the same convex hull and
polygonal bay trick we used in the previous section can be employed to reduce
the problem to the case where q is interior to some polygon, or to an instance
of the problem covered by Theorem 2.6.

As in Section 2, we apply the polygon-cutting theorem recursively to decompose
P into a balanced tree T of polygons. Each node v e T is associated with a
polygon P(v) and a cutting edge e(v), which is a diagonal of P separating the
two polygons associated with the offspring of v. I f v~ and v2 are the nodes
corresponding to these two children, then we know that the sizes of P(vO and
P(v2) are roughly in a ratio between ½ and 2, and each is no more than roughly
two-thirds the size of P(v). The leaves of T are associated with triangles, and
the set of all leaves constitutes a triangulation of P. The following lemma, whose

Visibility and Intersection Problems in Plane Geometry 559

P(v)
cr (p,u)

Fig. 3.1

proof is straightforward, can form the basis of a recursive algorithm for computing
o'P(q, u). See Fig. 3.1.

Lemma 3.1. Let v~ and v2 be the two children of v, and assume that q lies inside
P(vi). The point o, P (q, u) lies in P(v2) if and only if the ray from q in the direction
u intersects e(v) at some point p and q lies on the segment po'e~')(p, - u) . I f this
holds, then ire(q, u) = o'P<v2~(p, u); else trP(q, u)= trP~P(q, u).

This immediately suggests a recursive algorithm, shoot(v, point, dir) for com-
puting the point tr P(~)(point, dir). The algorithm is initially called with v = x, the
root of T, point = q, and dir = u. If v is a leaf, compute trP~)(point, dir) directly,
return the point found, and stop. Else let v~, v2 be the two children of v. By
induction, point lies in P(v). Perform a planar point location to decide if point
lies in P(vO or P(v2); without loss of generality let us assume that the former is
the case. Let p denote the intersection of e(v) and the ray from point in the
direction dir. If p exists, then use the algorithm of problem P2 to compute
p'= crP(VP(p,-dir). If the segment pp' contains point, then call shoot(v~, p, dir),
or more simply, use the algorithm of problem P2 to complete the computation.
If p does not exist, or point is outside pp', then call shoot(v~, point, dir).

The preprocessing required by the procedure shoot involves setting up the tree
T, organizing each P(v) for efficient planar point location, and applying the
preprocessing of P2 to P(v~) and P(v2) with respect to e(v), for each node v E T
and children v~, v2. A straightforward analysis shows that all this needs O(n log n)
space. Once these structures are in place, which with a bit of care takes O(n log n)
time, the procedure shoot can be computed in time O(log 2 n). It corresponds to
a walk down T, where at each step we may need to do a point location and solve
an instance of P2.

560 B. Chazelle and L. J. Guibas

This fairly naive implementation can be refined to save a factor of log n in
both space and query time. These refinements require some novel structures,
which we describe next.

3.1. Some Mathematical Preliminaries

The key observation we make use of is that at each node v ~ T the whole visibility
structures of P(v~) and P(vz) with respect to e(v) are not really needed. The
useful information is whether we can shoot directly from e(v) through e(v~) or
e(v2) without hitting the intermediate portion of the polygon. This information
can be encoded for all possible shooting rays with a simpler structure than an
arbitrary planar subdivision. By formalizing this observation and using the
fractional cascading technique of Chazelle and Guibas [4] we are able to avoid
the cost of repeated planar point locations.

Our first task is to augment the tree T into a graph T* by the addition of
certain edges. This augmentation process was introduced in [3] and this is the
place to which we refer the reader for details of this procedure. We add an edge
between all pairs of nodes (v, w) such that e(v) is an edge of the boundary of
P(w). Note that if this condition holds, then v is necessarily an ancestor in T of
w. Figure 3.2 depicts (schematically) a polygon P hierarchically subdivided by
the polygon-cutting theorem and the associated tree T. Figure 3.3 also shows the
additional edges thrown in to form T*. (Note that we have displayed only the
top part of the tree, since leaves do not correspond to triangles.) If v~ is a child
of v, then e(v) is clearly on the boundary of P(v~), so the edges of T trivially
satisfy the condition to be in T*J

Let us assign levels to the tree T, where the root is given level 0 and a child
is at a level one higher than its parent. Thus in our figures levels increase
downward, and higher levels occur lower on the page (reader beware!).

Fig. 3.2

i Unfortunately we might now use the word edge both for a diagonal of P and for an edge of T*.

Visibility and Intersection Problems in Plane Geometry 561

l

O E G H

Fig. 3.3

Lemma 3.2. A node v in T at level I has

(i) for each level l' smaller than l at most one T* edge going to an ascendant
node at level l', and

(ii) for each level l' larger than l at most two T* edges going to descendant
nodes at level l'.

Therefore each node o fT* has degree at most O(log n), and all o fT* has size O(n).

Proof. Parts (i) and (ii) are immediate consequences of the recursive nature of
the splitting process. Adding these to the fact that the decomposition is balanced,
we find that the degree of each node is O(log n). Since T* is obtained from the
corresponding structure for the left and right subtrees of T by the addition of
one new node and O(log n) new edges, the size of T* follows a recurrence of
the form S (m) <- S(m') + S(m - m') + c log m, where c is a constant, S(constant) =
O(1), and m' and m - m ' are within a fixed ratio of each other. As is well known,
any function obeying such a recurrence is of the order of O(m). []

It may be interesting to note that T* can be a nonplanar graph. Figure 3.3 is
in fact an example, as it contains a K5 among the nodes 1, 6, 7, 8, and G. (The
graph can actually contain a Km for m-- l) (log n).) Incidentally, from now on
we enforce the convention that for each node v of T, the left son v~ will be that
associated with the polygon which is locally left of e(v), and similarly, the right
son v2 will be associated with the polygon locally to the right. This definition is
ambiguous when e(v) is horizontal, in which case we let v~ be the son correspond-
ing to the subpolygon below e(v). Figure 3.2 was drawn following that convention.
One advantage of this convention is that the two possible descendants of a node
v mentioned in Lemma 3.2(ii) can be unambiguously described as the left
descendant o f v at level l' and the right descendant of v at level I'.

The edges (v, w) of T* define the pairs of cutting diagonals (e(v), e(w)) of
the polygon about which we want to know the collection of all rays cutting both
e(v) and e(w) but avoiding the polygon P between these diagonals. If v is higher
in T than w then v is an ancestor w and e(v) is a bounding edge of P(w).
Assume (without loss of generality) that after P(w) is cut by e(w), the edge e(v)
belongs to the polygon P(z) associated with the right son z of w. Both e(v) and
e(w) are boundary edges of P(z), and P(z) lies in the part of P between them.

562 B. Chazelle and L J. Guibas

What kind of object is the collection of rays cutting two sides of a polygon while
avoiding the others?

We saw in Section 2 that conditions of the form "ray F cuts segment s," or
"ray F avoids segment s" both dualize to conditions requiring that the dual point
Dr be in a certain double wedge. Thus, under duality, the condition that a ray
cuts two sides of a polygon, but not any of the others, maps to a condition that
the dual point has to be in the intersection of a set of double wedges, which is
a convex polygon.

Therefore with each edge (v, w) of T* we can associate a dual convex polygon
V(v, w), called a visibility polygon, that denotes, in dual form, the collection of
all lines cutting e(v) and e(w) but not the portion of P between e(v) and e(w).
Of course, V(v, w) may be empty. In the notation V(v, w) we always assume
that v lies at a lower level than w in T, that is, v is higher up in the tree. We
also follow the same convention whenever we refer to an edge (v, w) of T*. The
dual of V(v, w) (clipped between e(v) and e(w)) is called the hourglass at (v, w):
it is bounded by two subsegments of e(v) and e(w), called the exit sides, and
two concave polygonal curves joining them, whose vertices are certain reflex
vertices of P(z) (Fig. 3.4). A line traverses the hourglass freely, that is, does not
intersect the boundary of P between the exit sides if and only if its dual point
lies in V(u, w). In this regard there is an equivalence between the hourglass and
the visibility polygon. The equivalence is not complete, however, because of the
exit sides, which are not encoded anywhere in the visibility polygon.

For convenience, let us choose as the dual transform D a degenerate polarity
with the center at infinity. (This makes inclusion-testing slightly easier to discuss.)
The point p:(a, b) maps to the line Dp: y=ax+b and the line r: y=ax+b is
sent to the point Dr: (- a , b). (Reader, beware: this duality is not involutory.) In
this way, we have two seemingly distinct cases: compare Figs. 3.4 and 3.5. (Labels
refer to vertices on the left and the corresponding edges on the right.) In the 2SP
these two cases are actually similar.

To determine whether a ray F traverses an hourglass freely, we can check
whether the ray cuts across both exit sides and the dual of F lies in the visibility

f?, I \ / r ~ / :

D
',1 elz) :

e(w)~ \ / :,(v) ,, / exit sidel ~'~

Fig. 3.4

Visibility and Intersection Problems in Plane Geometry 563

0 , ' ~ 3 / /

~~t tsp

Fig. 3.5

polygon. The latter can be accomplished by means of two binary searches with
respect to the x-coordinate of the point Dr. What do we mean by this? Let the
term upper (resp. lower) boundary refer to the polygonal line running clockwise
(resp. counterclockwise) from the leftmost to the rightmost vertex of the polygon
(in the bounded case). Because of the monotonicity of the upper and lower
boundaries we can determine their edges right above or below Dr in O(log n)
time, using binary search. The unbounded case can be treated similarly. The
innocent-looking fact that the binary searches always involve the same search
key turns out to be of critical importance later, when the technique of fractional
cascading is brought in to accelerate the searches. As a data structure, a visibility
polygon is represented as a set of two arrays, each listing the vertices of the upper
or lower boundaries.

Lemma 3.3. For a node w in T consider all dual polygons V(v, w) in which e(v)
is a diagonal bounding P(z), where z is a child of w. The total size of all these
visibility polygons is at most proportional to the size of P(z).

Proof. These are all distinct regions of the subdivision associated with illumi-
nating P(z) from e(w), as discussed in Section 2. []

The lemma shows that all the visibility polygons associated with T* edges
whose lower end-nodes are on a particular level of T* have total size O(n),
and, consequently, all the dual polygons together have total size O(n tog n).
(By "lower end-nodes" we mean nodes of higher level.)

3.2. The Improved Algorithm

We begin by describing an algorithm which uses the new structures but still takes
on the order of n log n space and log 2 n query time. Then we show how to cut
down each of these by a log n factor, applying incremental transformations to

564 B. Chazelle and L. J. Guibas

the data structure. For the sake of efficiency, we assume a representation of T*
based on four types of adjacency lists. Let v be a node of T*.

(i) The list L(v) contains the left descendants of v, that is, nodes w in the
left subtree of v such that the edge (v, w) is in T*, arranged in order of
increasing levels in T.

(ii) The list R(v) contains the right descendants of v, that is, nodes w of the
right subtree of v such that (v, w) is in T*, arranged in order of increasing
levels in T.

(iii) Let vl (resp. v2) be the left (resp. right) child of v in T. The edges (u, v)
of T* fall in two categories: the set Ut(v) contains the ancestors u of v
such that e(u) is a bounding edge of the polygon P(v~); similarly, the
set Ur(v) contains the ancestors u of v such that e(u) is a bounding edge
of P(v2). Both sets are stored as lists arranged in order of descending
levels in T.

In addition, associated with each edge (v, w)~ T* we have the visibility polygon
V(v, w) mentioned in the previous section. We also have preprocessed for point
location the triangulation of P formed by the leaves of T.

In what follows we assume that q and tre(q, u) lie in different triangles of
the above triangulation, otherwise ray-shooting is trivial. Let a and/3 be the two
leaves of T associated with the triangles containing q and o, e(q, u), respectively.
The assumption above implies that the leaves ct and/3 are distinct, so we can
turn our attention to a third node, t, defined as their nearest common ancestor.
The node t has a simple geometric interpretation. It is the lowest-level node
whose associated diagonal e(t) is cut by the segment s = qtre(q, u). To see this,
we begin with the case where t is the root, for which our claim is obviously true.
I f t is not the root, then s lies entirely in, say, P(vO, where v~ and v2 are the
two children of the root. But in that case, the polygon P(v2) is irrelevant, which
means that the same argument can be made all over again, now substituting v~
for the root. The claim follows by induction.

The paths in T from t to ot and/3 also have illuminating geometric interpreta-
tions. From the standpoint of t the leaves a and/3 play similar roles; what we
say next of/3 applies verbatim to a as well. Consider the path w0, w~ , . . . , / 3 in
T from w0 = t to/3, and assume that w~ is not a leaf. The path itself does not tell
the whole story, but it contributes nodes to a certain path of T*, called the ~3-path,
that has a compelling interpretation. From now on let F denote the ray from q
in direction u. I f the dual of ~ lies inside V(wo, w~), the ray shoots through e(w~),
and we make (Wo, w~) the first edge of the/3-path. I f not, then we try V(wo, w2),
where w2 is the unique child of w~ in T that is connected to Wo in T*. (I f w~ is
not a leaf, then by definition T* must have an edge connecting Wo to a child of
w~ .) I f again the dual of ~ does not lie in V(wo, w2), the ray does not shoot freely
from e(t) to e(w2), so we must try V(wo, w3), and so on. At some point, unless
we reach/3 (in which case the single edge (Wo,/3) constitutes the/3-path) , we
will have a positive test, one where the dual of ~ is found to lie in some V(wo, Wh).
Then we will make (Wo, wh) the first edge of the/3-path. We now play the same
game at Wh which we did at Wo. The only ambiguity to resolve is whether the

Visibility and Intersection Problems in Plane Geometry 565

/ / / r ~ 6

Fig. 3.6

left or right child of wh should be considered. With our convention on the left/right
orientation o f the tree, it suffices to see if F shoots through e(wh) from left to
right or the other way around. Continuing in this vein, we iterate through this
process until we reach the leaf/3. Figure 3.6 illustrates this process: the/3-path
consists of (Wo, w2), (w2, w3), (w3, wr), etc.

We are now ready to describe the ray-shooting algorithm: it has three parts
or phases. In a start-up phase we perform a point location to determine which
triangle of the triangulation contains q, which gives us access to the leaf a. Then
we go through a root-finding phase, which takes us from a to t, the nearest
common ancestor of a and/3. Finally, we enter a descending phase which tracks
down the/3-path and leads us to/3. Let us now give the details of these operations.

The Ray-Shooting Algorithm

1. Start.Up Phase. In O(log n) time we determine the triangle P(a) that
encloses q, using any one of the optimal point-location algorithms. We
check whether the ray ~ exits P (a) via an edge of P. I f so, we return the

566 B. Chazelle and L. J. Guibas

.

.

edge in question and terminate the algorithm. Otherwise, we enter the
following two phases.
Root-Finding Phase. Starting from t~, we climb up the tree T to t by
following a path of edges in T*. The details are as follows. Let e(v) be the
boundary edge of the triangle P (a) through which the ray F exits the
triangle. This completes the initialization of the following iterative pro-
cedure. We are in possession of a diagonal e(v) that we know the ray
cuts across. Let v~ (resp. v2) be the left (resp. right) child of v and let j be
a variable which can take on the value 1 or 2. I f the ray F crosses e(v) from
P(v2) to P(vl) then set j = I, otherwise, set j = 2. To implement this test,
we check the equivalent condition (to j = 1) that t~ is a descendant of v2
in T, which can be done by checking that v2 precedes a in preorder and

precedes v2 in postorder. This being done, we scan the list Ul(v) i f j = 1,
or Ur(v) if j = 2 , until a node u is found such that F freely traverses the
hourglass at (u, v). We implement the test by checking whether the dual
o f F lies in V(u, v). I f there is no such node, the current node v is t and
the procedure terminates. Otherwise, we reset the variable v to the node u
and apply the procedure over again.
Descending Phase. We are now ready to trace down the f l-path and
discover the terminal triangle P(/3) and, in the process, the edge of P hit
by the ray. The procedure has already been sketched out, so we just give
a few complementary facts. Starting from t, we proceed toward infinity in
the direction u, following the ray F from the initial position e(t)c~ ~. Once
again we need a directional variable j = 1, 2. I f the last edge (t, v) traversed
in the previous phase was in the list R(t), then we initialize j to 1 (meaning
left), otherwise we set j = 2 (meaning right). Set v = t and begin the following
iteration. I f j = 1 (resp. j = 2) scan the list L(v) (resp. R(v)) until a node
w is found such that the dual of ~ lies in V(v, w). I f no such node w exists,
then the last node reached is the leaf /3 and we are done. Otherwise, we
update j by checking the left (resp. right) child w~ (resp. w2) of w: the
value o f j should be such that the diagonal e(w) effectively separates e(wj)
and e(v) from each other. Checking vertex labels around the boundary of
P allows us to perform this test in constant time. Our convention on left/right
orientation also allows us to do the checking by geometric means. Once j
has been updated, we set the variable v to w and iterate through this process.

The algorithm can be regarded as a divide-and-conquer method, and its
correctness is easily shown by induction on the number of levels in the tree. For
reasons we have already discussed the storage requirement is O(n log n). To
answer a query involves a single point location followed by a climb up and down
the tree. At most a constant number of nodes are examined per level o f the tree
and each examination involves checking whether a point lies inside a convex
polygon of size O(n), which can be done in O(log n) time. Since the tree is
balanced, the query t ime amounts to O(log 2 n). It seems at first that we have
only succeeded in trading a reasonably simple algorithm for a more complicated
one with no gain in efficiency. The new data structure is perhaps not too attractive,

Visibility and Intersection Problems in Plane Geometry 567

/

J
e

/ / / x x x

e(v)

Fig. 3.7

but it is flexible. We modify it in several ways. To begin with, we must eliminate
its redundancy. The visibility polygons share many edges and there is no need
to represent each edge separately.

Look at Fig. 3.7. We take three nodes of T such that the three edges
(u, v), (u, w), and (v, w) are in T*. The delimiting sides of the hourglass at (u, v)
are obtained from those of the hourglasses at (u, w) and (v, w) by drawing the
two common tangents shown, and then dropping the edges replaced by the
tangents. In the dual plane this means that the boundaries of V(u, w) and V(v, w)
intersect in exactly two points (the duals of the tangents), and that V(u, v) =
V(u, w) n V(v, w). On the basis of this observation we can prove:

Lemma 3.4. The total number of distinct edges occurring in all the visibility polygons
stored in the data structure is O(n).

Proof. Assume that the lemma is true for the two subtrees of the root x of T.
The result will follow if we can show that x introduces only O(log n) new edges.
Indeed, the total number of distinct visibility edges will then be linear, by the
same recurrence used in the proof of Lemma 3.2.

All visibilities of the form V(x, u) arise for subpolygons bounded by e(x) on
one side and there can be at most two such subpolygons per level, one to the
left and one to the right of e(x). Assume now that we have already handled the
visibilities V(x, z) for right subpolygons, starting from the leaves and proceeding
up to node Wo. Let v be the father of Wo and assume that v is not the root. Let
us ask how many new edges the visibility V(x, v) can introduce.

Let w be the highest node (lowest-level) of T such that e(w) separates e(x)
from e(v) around the boundary of P. If there is no such node, then e(x) and
e(v) are two adjacent edges of a triangle and V(x, v) is of constant size. If w is
defined, it is a descendant of both x and v and it is obviously unique. I f V(x, v)

568 B. Chazelle and L. J. Guibas

is nonempty, then neither are V(x, w) and V(v, w), and we have the situation
depicted in Fig. 3.7 (with u = x) . The only new vertices which V(x, v) may
introduce are the duals of the two common tangents of the concave chains
bounding V(x, w) and V(v, w): these create at most four new edges. The two
new cross-tangents also give rise to at most four new edges, which makes a total
of eight newcomers. This accounting shows that we are introducing only a constant
number of new vertices per level, so the total number of new vertices introduced
by considering visibilities involving the root diagonal is O(log n). []

Lemma 3.4 says that although the visibility polygons have a total of O(n log n)
edges, the number of distinct edges is only O(n). To take advantage of this fact,
the obvious thing to do is to store each distinct edge of the visibility polygons
only once. But where? Answer: as close to the root as possible. Actually, we do
not quite do that. To give a precise definition of our edge allocation strategy we
need a partial order among edges of T*: an edge (v, w) precedes an edge (v', w')
if v is an ancestor of v' in T, or v = v' and w is an ancestor of w'.

We are now ready to make holes in the boundary of each visibility polygon
V(v, w) and create a trimmed boundary V*(v, w). We use a coloring scheme to
specify the holes. Initially, every edge of T* has its own distinct color which is
also the color of the boundary of its visibility polygon. At the end, every visibility
polygon will have its boundary colored in various ways. The monochromatic
polygonal lines in which the boundary is partitioned are called strands. A strand
of V(v, w) whose color remains what it was initially is called resident: it is stored
entirely in the tr immed boundary V*(v, w). A nonresident strand of V(v, w) is
stored in the tr immed boundary V*(x, y) associated with the unique T* edge
(x, y) of the same color. Let vl, v2,. • . , ~)k be the vertices of a nonresident strand
from left to right (strands will always be monotone in the x-direction2). To
preserve consistency we store the edge (vl , Ok) in V*(v, w), but since it may not
be on the boundary of any visibility polygon we call it a ghost. Before we elaborate
on the implementation of the data structure it is best to describe the coloring
process of V(v, w).

Initially, the entire boundary is monochromatic. Let e be an edge of the upper
boundary of V(v, w). We define the signature of e to be the vertex of P whose
dual is the line of support of the segment e. Let p be an arbitrary point of e
(distinct from an endpoint). Because of the tree structure of T the set of T*
edges which precede (v, w) is totally ordered. Among those edges let E be the
subset o f edges whose visibility polygons have a bounding edge f on their upper
boundaries such that (i) p lies on the edge f and (ii) e and f have the same
signature. Because of the total order in E, we can identify a first edge (x, y). Our
strategy is to color p after (x, y). Needless to say, lower boundaries are colored
just the same way.

The coloring scheme is almost saying "color every visibility edge after its highest
occurrence in the tree," although not exactly, because a given edge may be broken

2 We are gliding over the fact that visibility polygons may wrap around infinity and come back;
this may disturb our argument a little but not enough to warrant a separate discussion.

Visibility and Intersection Problems in Plane Geometry

Q

b

l°
A 4 3

Fig. 3.8

569

up into several parts. It is easy to see that two visibility polygons may have
collinear edges without common edges (Fig. 3.8). This means that strands do not
have to be edge sequences of the visibility polygons: they may run between points
which are not vertices of the visibility polygons. For example, in Fig. 3.8 the
upper boundary with edges labeled a, b, 3, 4, 5, c may have a strand running from
point A to point B, although these points are not vertices of the visibility polygon
in question. Lemma 3.4 tells us that we could opt for the simpler strategy of
storing every edge as high in the tree as we can and still ensure linear space.
Why do we not do that? The reason is that we cannot afford duplication of points
(the reader may not be able to appreciate this fine point now, so be patient).
With our scheme, if we were to pick a vertex u of P and consider all the trimmed
boundary edges with u for signature, we would find that, of course, all these
edges are collinear, but most important, no two of them overlap (outside of their
endpoints). This property is crucial to ensure logarithmic query time.

The data structure used to represent a trimmed boundary consists of two
arrays, one for the upper boundary and the other for the lower one. The arrays
are sequences of records: regular records store edges of resident strands, and
ghost records store the edges into which nonresident strands are reduced along
with pointers to the T* edges where they are effectively stored (Fig. 3.9). Actually,
ghosts simply point to the first element of the trimmed boundary to which they
correspond. The size of the resulting data structure is proportional to the total

570 B. Chazelle and L. J. Guibas

6 7

i t ~

t

2
¢

/

/ •
/

/ i

b c

5 5

i 6

b_L e o _ L ~

2 7

/ \
I 8

Fig. 3.9

number of distinct visibility edges plus the number of ghost records plus n. We
know from Lemma 3.4 that the number of distinct edges is O(n). How about the
number of ghosts? It is easy to prove that a given trimmed boundary has O(log 2 n)
ghosts. As it turns out, this upper bound would be sufficient for our purposes
later, although it would require a little extra work from us. But we can do better,
as our next result shows.

L e m m a 3.5. The number of ghost records in any given trimmed boundary is
O(log n).

Proof. Without loss of generality let us restrict our attention to the upper
boundary of the visibility polygon V(v, w). Let C be the corresponding (upper)
boundary of the hourglass at (v, w). Imagine rolling an infinite line L around C
clockwise to that L traverses the hourglass freely at all times. The rotational span
of L is less than ~r, so let L(O) denote the line L for a given angular slope 0; we
choose a reference system so that 0 ~ [0, 7r). Let H be the set of hourglasses at

Visibility and Intersection Problems in Plane Geometry 571

edges of T* that precede (v, w). For a given 0, let v(O) be the set of hourglasses
of H which are traversed freely by L(O) and have C n L(O) on their upper
boundaries. The number of ghosts in the trimmed upper boundary at (v, w)
cannot exceed 1 plus the number of changes in the function v(O), as 0 varies
from 0 to ~'. Let (x,y) be an edge of T* that contributes an entry to v(O). A
simple case-analysis shows that if x is an ancestor of v in T, then y is an ancestor
of v or v itself. This implies that the hourglasses in Uo<_0<,~ ~,(0) have a total of
O(log n) distinct exit diagonals (there may be more exit sides since one diagonal
can contribute many of them). We call these diagonals candidates. Of course,
this still leaves open the possibility of O(log 2 n) hourglasses in Uo~o<,~ v(O). To
see that this cannot be the case, observe that L(O) can intersect a given candidate
diagonal, and be a line of visibility between C n L(O) and that diagonal, over at
most two angular intervals. This implies that the number of value changes in the
function v is at most proportional to the number of candidate diagonals, which
proves the lemma. []

Since T* has O(n) edges, an immediate corollary of the lemma is that the
data structure requires O(n log n) storage. What progress have we made?
Although the bound is still unsatisfactory there is cause for optimism. Indeed,
the only snag in the way of a linear bound is the possibility of having too many
ghosts. But Lemma 3.5 shows that a given T* edge cannot have more than a
logarithmic number of them. Pruning the bottom levels of the tree T will take
care of this problem, as we shall see later. (This can be avoided, as it turns out,
but pruning is in general a good, practical idea, anyhow.) Our new data structure
still supports ray-shooting queries. The algorithm is only slightly more compli-
cated. The one significant difference is that whenever a search lands in a ghost
record, we must carry it on in the trimmed boundary to which it points. This
time around, by definition, the search will succeed. The query time is trivially
O(log 2 n).

The first item on the agenda is to cut down the query time to O(log n). To
speed up the query-answering process, we rely heavily on a technique for iterative
searching called fractional cascading [4]. We assume that the reader is familiar
with this technique. The bulk of the ray-shooting algorithm involves iterated
dictionary look-ups in O(log n) catalogs. In the fractional-cascading terminology
a catalog is the name given to a sorted linear list. In this case, the catalogs are
the trimmed upper and lower boundaries associated with the edges of T*. To
simplify our discussion, we deal only with trimmed upper boundaries and treat
V*(v, w) as though it consisted only of the trimmed upper boundary of V(v, w).
Of course, it is understood that whatever we say also applies to the trimmed
lower boundaries. Because our data structure consists of a collection of catalogs
associated with the edges of a graph it is possible to apply fractional cascading
to it. Technically speaking the association should involve the nodes of the graph
and not its edges. To overcome this difficulty we could modify T* by adding a
dummy node in the middle of each edge (v, w) and associating the trimmed
upper boundary V*(v, w) with it. For consistency the original nodes of T* are
assigned empty catalogs.

572 B. Chazelle and L. J. Guibas

v ¥

Fig. 3.10

There is still one problem: fractional cascading is most efficient when the
underlying graph has bounded degree, which is not the case with T*. Let us
return T* to the state in which it was prior to the addition of the dummy nodes.
For each node v e T, consider the sets L(v) and R(v) in turn, and add respectively
IL(v)[and IR(o)I nodes. We describe the procedure on L(v) = (wl, w 2 , . . . , Wk).
It involves replacing the edges (v, w l) , . . . , (v, wk) by (v, zl), (zi, w~), and (zi, zi+l),
for each i (1 < i < k - 1) , and (Zk, Wk). See Fig. 3.10. Each node zi is brand-new:
it is called the catalog node of the T* edge (v, w~) and is assigned as catalog the
trimmed upper boundary V*(v, wi). If V(v, w~) is empty, so is the catalog assigned
to zj. All the other nodes are assigned empty catalogs. This takes care of the
descendant neighbors of v in L(v) and R(v), but we are not done yet.

What about Us(v) and Ur(v)? We follow the same principle. Let w l , . . . , wk
be the nodes of Ul(v) u Ur(v) in decreasing order level-wise (i.e., in tree-ascending
order), and let z~ be the catalog node of the pair (w~, v). For each i (2 - < i-< k),
we remove the edge (z , v) and replace it by (z , zH) . As usual, we denote edges
by pairs indicating their natural top-down orientation. Thus, we refer to the edge
(z , z~_~) and not (z~_l, zi) because w~ is an ancestor of w~_~. Figure 3.11 shows
the transformation of T* along a path of five nodes with the complete graph on
it. Black dots represent catalog nodes with labels indicating their bijection with
the edges of T*. This transformation ensures that the resulting graph, denoted
(3, has maximum degree four.

How do we navigate in T*? To carry out our ray-shooting routine we need
to be able to scan L(v) or R(v) as well as Ul(v) and U,(v) and interrogate the

2 2 . £

Fig. 3.11

I tracks

. bywoys

\

Visibility and Intersection Problems in Plane Geometry 573

trimmed boundaries stored at the catalog nodes of the corresponding edges. The
nodes of T* are nodes of G but the converse is not true. However, to every edge
(v, w) of T* corresponds at least one path from v to w in G. Let L (v) =
(w l , . . . , Wk) and let z~ be the catalog node of the T* edge (v, w~). The path
zl, z2 , . . . , Zk in G can be thought of as a track. Tracks can be crossed by using
byways--see paths marked with arrows in Fig. 3.11. To traverse an edge (v, w)
of T* (and interrogate its visibility structure) we go from v to w in G by walking
down a track first and then connecting to w via the appropriate byway. This
allows us to carry out the descending phase in G with no difficulty whatsoever.
The time taken to visit a given edge (v, w) of T* is proportional to the level
differential between v and w. To scan down L(v) is not as costly, however. We
easily verify that to visit z l , . . . , zl (l--- k) in this order takes O(l) steps. Therefore
we can carry out in G the entire descending phase of the ray-shooting algorithm
while incurring the cost of only O(log n) catalog look-ups. Furthermore, the
order of the nodes visited follows what is called a generalized path in the
fractional-cascading terminology. This means that each node visited, except the
first one, is adjacent to a node visited earlier.

Now how about U~(v) and U,(v)? To traverse the byway from v upward is
the equivalent in G of scanning the union of Ul(v) and Ur(v). Appropriate
labeling of the nodes allows us to distinguish between Ut(v) and U,(v). Again,
the complexity of scanning Ut (v) u U,(v) is essentially proportional to the number
of T* edges examined. In other words, what we just said of the descending phase
also applies to the root-finding phase. One final point: the pointers stored in the
ghost records of the catalogs should point not to the edges of T* but to their
associated catalog nodes in G. As it turns out, it is best to keep both T* and G
around, Admittedly, there is no need for T* right now, but its time will soon come.

What conclusions are we to draw at this point? The entire ray-shooting
algorithm can be ported to the graph G augmented with its various catalogs.
Assume the existence of an oracle that provides a constant-time answer to any
search which happens to land in a ghost record. Recall that when a search
terminates in a ghost it must be pursued in the boundary list pointed to by the
record in question. We are not quite ready to do this extra work in constant
amortized time, so let us punt and assume that someone else will do the job for
us at no cost. Then, nice things begin to happen. The work involved in answering
a ray-shooting query fits squarely into the iterative search framework of fractional
cascading and the speed-up technique can be applied. This cuts down the query
time to O(log n).

3.3. Giving Life to the Oracle

It remains for us to dream up a method which answers oracle queries in constant
amortized time and does not add too much storage. One problem is that the T*
edges referenced by the ghost records of a given trimmed boundary can be
searingly random-looking (see the Appendix). To be sure, the edges hit by the
oracle have their vertices on the path from the root of T to the leaves a or/3.

574 B. Chazelle and L. J. Guibas

There can be O(log 2 n) such edges, however, and if the oracle were to be asked
to deal with an arbitrary subset of O(log n) of them we would be in serious
trouble. As a matter of fact the best that fractional cascading could then offer
would be O(log n log log n) query time, where the factor log log n comes from
the logarithm of the degree of the underlying graph.

Fortunately, the power of fractional cascading has not been exhausted yet.
Define the range of a catalog to be the interval formed by its smallest and largest
key. The bounded degree condition can be relaxed into the following condition:
given any node v and any real x in its range, the number of nodes adjacent to
v in the catalog graph, whose ranges contain x, must be bounded above by a
fixed constant. This condition is similar to the locally bounded degree condition
of [4], though slightly stronger. As is shown in [4], the results of fractional
cascading basically remain unchanged under this weaker assumption.

How does this relate to our problem ? We know that the only edges interrogated
by the oracle connect two nodes on the path ~r,, from the root to a, or on the
path ¢r~ from the root to ft. Our plan is to interrogate every relevant edge along
these paths before the oracle has a chance to do so. By "relevant" we mean edges
whose visibility polygons have nontrivial information to offer. We will show that
there are only O (log n) relevant edges (as opposed to a total of O (log 2 n)). Before
going any further, let us define this notion of relevance more precisely.

Recall that we are dealing only with trimmed upper boundaries. An edge (v, w)
of T* is relevant if both v and w are nodes of ~r~ u ir~ and the trimmed upper
boundary V*(v, w) contains a regular edge which lies right above the dual of
the ray ~. This edge is called the clue of (v, w) (when ~ is understood). To lie
right above a point means that the point lies in the vertical strip defined by the
endpoints of the edge and below the line supporting the edge. Every regular
visibility edge ever needed during ray-shooting is relevant, but the converse need
not be true.

In the case of ~r~, we know the path ahead of time, so we can compute the
relevant edges and all their clues prior to the root-finding phase. In the case of
~r~ we have to proceed incrementally. Every time we go from a node of ~r, to
one of its children v we compute all the relevant edges of T* of the form (w, v)
as well as their clues. As follows from an observation made in the proof of Lemma
3.5, clues will thus be available before they are needed. Whenever we compute
a clue, we stash it away along with the catalog node of G corresponding to the
edge in question. In this way, the oracle will get its desired answer by a simple
look-up.

Let us summarize what we are trying to do. For simplicity we can assume that
we have two distinct data structures, (i) the augmented graph G and (ii) the
graph T* augmented with special featureswyet to comemto support the computa-
tion of relevant edges and their clues. Prior to the root-finding phase, the clues
of all the relevant edges of ~r,, are computed and stored in the corresponding
catalog nodes of G. In this way, the root-finding phase can proceed in G as
described earlier. Every call on the oracle can be replaced by a simple reading
of the clue in the catalog node pointed to by the current ghost record. The
descending phase is very similar. The only difference is that all the clues cannot

Visibility and Intersection Problems in Plane Geometry 575

be computed ahead of time. Every time we descend to a new node v, all the clues
of the relevant edges (w, v) are computed and stashed away in (3, right alongside
the edges in question. As a matter for fact, for consistency, we can do the same
thing for ~r, as well. Then, in all cases, we are repeatedly confronted with the
following situation. Let v be our current node and let (wl, w2 Wk) be the
nodes of Ut(v)w U,(v): identify the relevant edges among (wl, v) , . . . , (W k , V)~,

and compute and store their dues.
To make this problem conform with the iterative framework of fractional

cascading, once again we transform T* by removing all the edges (w, v) which
are not parent/child relationships and we attach to each node v a path of k
nodes, z ~ , . . . , zk. Each z~ is associated with the trimmed upper boundary
V*(w~, v) which forms its catalog. This gives us a valid catalog graph all right,
but one quite undesirable in several ways. For one thing, we may not be able to
afford the traversal of z ~ , . . . , Zk-~ if, say, only zk is relevant (an abuse of notation
to say that (wk, v) is relevant). To avoid this problem, we take one bold step and
break down the catalog of each z~, that is, the trimmed upper boundary V*(w~, v).
To do so, we remove all the ghosts from the list and make a separate catalog of
each connected piece. Each new catalog is associated with a separate node z~ s).
In this way we trade z~ and its catalog for a collection of nodes z~ ~), z~2), . . . , whose
catalogs partition the catalog of zi. Finally, we put an edge between the nodes
z~ a) and z) b) (i < j) if there exists a real x in the range of both nodes but not in
the range of any z~ c) such that i < ! <j . We include z(0 n = v in this specification
and assign the empty catalog to it with range equal to ~. Admittedly, this
transformation may sound a little mysterious. A picture will help (Fig. 3.12). Any
node may have large degree but its local degree around a certain key does
not exceed some constant. Note that there are no edges connecting the nodes
associated with the catalogs coming from the same boundary list.

I t
I t

(k l l / / i ' '

I I
q
I I

I I I
I I
I * I
I t I

I I

z

4" 42'

Fig. 3.12

576 B. ChazeUe and L. J. Guibas

It is immediate to check that the graph satisfies the weaker degree condition
stated earlier. We can therefore apply fractional cascading to it. The reader will
recognize in this construction the so-called hive-graph of Chazelle [2]. When
answering a ray-shooting query, the nodes zi that are relevant correspond to the
z{'s whose ranges include the x-coordinate of the dual of ~ (that is, the slope of
~). Referring to Fig. 3.12, these are obtained by intersecting the horizontal
segments with the vertical line x = a, where a is the x-coordinate of the dual of
~. Fractional cascading will let us do that in a straightforward manner in time
proportional to the total number of relevant nodes zi plus log n. Putting our
results together, we have a ray-shooting algorithm that requires O(p + log n) time,
where p is the number of relevant edges in T*. How large can p be?

Lemma 3.6. The number of relevant edges with respect to a given ray-shooting
query is O(log n).

Proof. Recall that an edge (v, w) of T* is relevant if both v and w are nodes
of z,~ or or# and the trimmed upper boundary V*(v, w) contains an edge that
lies right above the dual of ~. This puts an obvious upper bound of O(log 2 n).
on p. Actually, if we substituted V(v, w) for V*(v, w) in the definition of relevance,
this upper bound would be tight. This fact, which we leave as an exercise, shows
that trimmed boundaries are good not only for the space they save but also for
the ray-shooting time. To prove the lemma, we may restrict ourselves to the
relevant edges along only one of the two paths ¢r~ or z,,. Call this path ¢r and
let p be the dual point of ~. We assume that ~ is not parallel to the line passing
between any pair of vertices of P. This assumption--which can be easily relaxed--
implies that p is not a vertex of any visibility polygon. Recall that we took great
pains to ensure that trimmed boundary edges with the same signature may not
strictly overlap. This ensures that no two relevant edges joining nodes of ¢r can
have clues with the same signature.

We are now ready to collect the rewards of our efforts. Let us say that a vertex
t of P is exposed if there exists a line segment parallel to ~ which contains t and
traverses freely the hourglass of a relevant edge of T* from one exit side to the
other (Fig. 3.13). It follows that p cannot exceed the number of exposed vertices.
But it is easy to see that there are only O(log n) exposed vertices. Why? Cut the
boundary of P at the endpoints of the cutting edges associated with the nodes
o f z,. This produces O(log n) connected polygonal pieces. Now assume that one
of these pieces contains two exposed vertices t and t'. Let AB and A'B' be the
two segments that witness the "'exposedness" of t and t', respectively. From
elementary geometric considerations it is clear that the part of the polygonal
piece running between t and t' must contain one vertex among A, B, A', B' (Fig.
3.14). Consequently, the polygonal piece in question is not connected, which
produces a contradiction and proves our claim. []

All the pieces are now together. At long last, we have obtained an O(n log n)-
size data structure for ray-shooting in O(log n) time. To reduce the space

Visibility and Intersection Problems in Plane Geometry 577

Fig. 3.13

J r

requirement to O(n) is not difficult. We can use a standard tree-pruning trick
[13], [9]. Remove from T all the nodes with fewer than log n descendants and
remove all the edges of T* incident to these nodes. Since T is built from a
balanced decomposition of P, this leaves us with a graph of O(n/log n) nodes.
Following Lemma 3.2, this graph has at most O(n/log n) edges. To fit this new
scenario entails modifying the data structure in a straightforward fashion. As we
noticed previously, the only reason why we did not achieve linear storage earlier
was the presence of ghosts. But, from Lemma 3.5, ghosts cost only O(log n)
storage per edge of the graph, therefore the reduced data structure requires O(n)
storage. Of course, the only trouble is that instead of triangles, we must now deal

Fig. 3.14

578 B. Chazelle and L. J. Guibas

with polygons of O(log n) edges. But these are one-shot costs during ray-shooting
(pun intended!). The overhead is O(log n) and does not add to the asymptotic
complexity of the algorithm.

The last point to address is the construction of the data structure. The simplest
strategy is to triangulate the polygon and preprocess it for efficient planar point
location. Then we build the (reduced version of the) graph T* and all the visibility
polygons in full. If we proceed bottom-up we can use the fact that any visibility
polygon is the intersection of two previously computed polygons A and B, and
thus can be computed in time linear in the added size of A and B. This ensures
that all the preprocessing so far can be done in O(n log n) time. Continuing in
the same vein we can trim the visibility polygons by computing their signatures
in a first stage. Then for each signature we sort the endpoints of the corresponding
visibility edges (recall that all these edges are collinear). This allows us to break
down each edge into intervals and color each interval appropriately. Replacing
colors by pointers we obtain G and its catalogs in O(n log n) time. Fractional
cascading takes linear time. Finally, each hive-graph can be computed in a
sweep-line fashion in O(n log n) time.

Theorem 3.7. There exists an O(n)-space data structure representing a simple
polygon Pwhich can be computed in time O(n log n) and which, given a pair (q, u)
of a point q and a direction u, can be used to find the first edge of P hit by the ray
from q in the direction u in time O(log n).

4. Extensions to Intersection Problems

The previous result can be extended in two ways. First, having found the first
intersection of P with the ray (q, u), we can proceed to find the next one in the
same manner, by just decomposing the exterior of P into a number of simple
polygons and applying the above preprocessing to each of these polygons.
Thus in fact we have a technique for computing all k intersections between
a line segment and a simple polygon in time O((k+ 1)log n). This algorithm is
unlikely to be the method of choice, however. Indeed, there exists a much
simpler linear-size data structure for this problem with query time
O((k+ 1) log(n/(k+ 1))) [5].

Finally, we observe that our ray-shooting algorithm generalizes easily from
simple polygons to arbitrary subdivisions of the plane into simply connected
polygonal regions. How so? Break each cycle in the planar graph by duplicating
vertices (Fig. 4.1). Perform this duplication process until the set of edges forms
a single tree. Then perform a depth-first search traversal of the tree. Each edge
is visited twice, so we will duplicate it on the second visit. Here duplication
means the creation of an identical edge distinct from but very close to the original
one. Figure 4.1 illustrates this two-stage process. The set of edges can be now
made the boundary of a simple polygon (very thin, perhaps, but still . . .). Another
approach is to build separate shooting structures for each connected region of
the subdivision, and then use point location to identify the region to which the
ray-shooting query should be applied.

Visibility and Intersection Problems in Plane Geometry 579

Fig. 4.1

Acknowledgments

We wish to thank the anonymous referees for their useful comments and sugges-
tions.

Appendix

We wish to show that the ghosts which appear in ray-shooting may point to
almost arbitrary T* edges. Consider the polygon depicted in Fig. A.1 and its
associated tree T. The vertical segments represent the cutting edges along a path
from the root to some node down the tree. The nodes of the path are labeled
1-12 in level-ascending order. Think of 1 as, say, the root diagonal and 12 as a
node near the bottom of the tree. We have also drawn the path 1-12 with the
edges connecting nodes of the path. Consider now a horizontal ray-shooting
query. It may happen that the trimmed boundaries V*(7, 8), V*(9, 10), V*(11, 12)
are interrogated during searches and that the desired answers (the dues) are the
edges ea, eb, ec whose signatures are the vertices a, b, c, respectively. As it turns
out, all three edges are ghosts: ea, eb, ec are actually stored in
V*(1, 6), V*(2, 5), V*(3, 4), respectively. Notice that we have the complete graph
on the nodes 1-7. The ghost edges have to be retrieved among some of the T*
edges of this graph. To see how arbitrary this subset can be, observe that instead
ofthe path 1, 2 , . . . , 12 we could have a path or, 7, 8, 9, 10, 11, 12, where ¢r is any

580 B. Chazelle and L. J. Guibas

I

Z

I

II

Fig. A.I

p e r m u t a t i o n o f (1, 2, 3, 4, 5, 6). The po in t is that by add ing or de le t ing vertices
to P we can bas ica l ly force any o rde r we want a m o n g the cuts 1 , . . . , 6. For
example , we can a lways make 6 the root o f T by add ing sufficiently many d u m m y
vert ices a long the b o u n d a r y enclos ing the label 6 in Fig. A.1.

R e f e r e n c e s

1. Chazelle, B. A theorem on polygon cutting with applications, Proc. 23rd Ann. IEEE Syrup. Found.
Comput. Sci. (1982), 339-349.

2. Chazelle, B. Filtering search: a new approach to query-answering, SIAM Z Comput. 15 (1986),
703-724.

3. Chazelle, B. Computing on a free tree via complexity-preserving mappings, Algorithmica 2 (1987),
337-361.

4. Chazelle, B., Guibas, L. J. Fractional cascading: I. A data structuring technique, AIgorithmiea 1
(1986), 133-162.

5. Chazelle, B., Guibas, L. J. Fractional cascading: II. Applications, Algorithmica 1 (1986), 163-191.
6. Edelsbrunner, H., Guibas, L. J., Stolfl, J. Optimal point location in a monotone subdivision,

SIAM J. Comput. 15 (1986), 3t7-340.
7. El Gindy, H. A. An efficient algorithm for computing the weak visibility polygon from an edge

in simply polygons, unpublished manuscript, McGill University, 1984.
8. Guibas, L J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R. E. Linear-time algorithms for

visibility and shortest-path problems inside triangulated simple polygons, Algorithmica 2 (1987),
209-233.

9. Guibas, L. J., Hershberger, J. Optimal shortest-path queries in a simple polygon, Proc. 3rd Ann.
ACM Syrup. Comput Geom. (1987), 50-63.

Visibility and Intersection Problems in Plane Geometry 581

10. Guibas, L. J., Ramshaw, L., Stolfi, J. A kinetic framework for computational geometry, Proc. 24th
Ann. IEEE Symp. Found. Comput. Sci. (1983), 100-111.

tl. Lee, D. T., Lin, A. Computing the visibility polygon from an edge, unpublished manuscript,
Northwestern University, 1984.

12. Tarjan, R. E., Van Wyk, C. An O(n log log n)-time algorithm for triangulating simple polygons,
SIAMJ. Comput., 17 (1988), 143-178.

13. van Emde Boas, P., Kaas, R., Zijlstra, E. Design and implementation of an efficient priority
queue, Math. Systems Theory 10 (1977), 99-127.

Received June 14, 1986, and in revised form June 18, 1988, and January 18, 1989.

