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Abstract. It is proved that for any centrally symmetric convex polygonal 
domain P and for any natural number r, there exists a constant k = k(P, r) 
such that any k-fold covering of the plane with translates of P can be split 
into r simple coverings. 

I. Introduction 

A system of sets ,9 ° = (S,[i ~ I )  is said to form a k-foM covering of X if every 
element of X is contained in at least k members of 6". A 1-fold covering is called 
a simple covering or, briefly, a covering. 

In 1980 at a meeting on discrete geometry in Salzburg I proposed the 
following conjecture (See [4].) 

Conjecture 1.1. There exists a sufficiently large integer k such that an), k-foM 
covering of the plane with open unit discs can be decomposed into two simple 
coverings. 

Though many promising attempts have been made to attack this problem, 
Conjecture 1.1 is still unsettled. 

The main result of this paper  is the following. 

Theorem 1. Let P be an open domain bounded ~v a centrosymmetric convex closed 
polygon. Then there exists a natural number k = k( P) such that any k-fold covering 
of R 2 with translates of P can be decomposed into two simple coverings. 

As a matter  of fact, in Section 2 we shall prove this result in a slightly 
stronger form (see Theorem 3). 

Given any e >  0 and a system ,9 ° = {Si[i ~ I} of centrosymmetric sets, let 
(1 + e)5 ~ denote the set-system obtained from S ,¢ by replacing each S i by its 1 + e 
times larger homothetic copy centered at the same point. 

The following assertion is an immediate consequence of Theorem 1. 
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Corollary 1.2. Let D be an open domain bounded by a centrosymmetric convex 
closed curve (e.g., a circle), and let e> O. Then there exists a natural number 
k = k (D,  e) with theproperty that any k-foMplane covering ~ with translates of D 
can be decomposed into two parts ~ l  U ~2 such that (1 + e)~a and (1 + e ) ~  2 are 
simple coverings. 

However, a little better result can be established without using Theorem 1. 

Theorem 2. Let D c R" be an open domain bounded by a centrosymmetric convex 
closed surface, and let e> O. Then there exists a natural number k '  = k',( e) having 
the property that any k'-fold covering of R" with translates of D can be decomposed 
into two set-systems ~ l  u ~z such that ~1 and (1 + e ) ~  2 are simple coverings. 

Proof An easy compactness argument shows that it is sufficient to prove our 
statement for k '-fold coverings ~ =  {D, f i ~ I  } of an arbitrarily large cube 
C c R",  where I~f = II1 is finite. 

Suppose that the center of D is at 0, and let 0 < e < 1. Then there exists a 
norm 11"11 o n  R "  such that D =  ( x ~ R " l l l x l l < l } .  The n-dimensional space 
equipped with this norm is usually called a Minkowski space whose gauge body is 
D (cf. [8]). Let c i denote the center of D~, i.e., 1), = c, + D (i E I). Let us select a 
maximal subset J c I with the property that tic, - cfll >- e for any i, j ~ J. 

Given any x ~ C, put 

J ( x )  := ( j ~ J l x ~ n j } .  

Since cj + ½eD ( j  ~ J(x))  are pairwise disjoint subsets of x + 3D, we obtain 

I J ( x ) l  -< Vol . (~eO) = 

Thus, if k '  exceeds this value then ~1 := {Dili E l \ J }  forms a covering of the 
cube C. 

For any x ~ C, choose a D~ ~ ~x (i ~ J )  which contains x. By the maximal 
property of J,  now there exists a j ~ J such that lie, - eft[ < e. Then lix - cfll < 
II x - c,l[ + Ilc, - tilt < 1 + e, i.e., x is covered by cj + (1 + e)D. In other words, 
(1 + e ) ( ~ \ ~ l )  is a coveting of C, as desired. [3 

Essentially the same argument yields the following slight generalization of 
Theorem 2: Let D c R n be an open domain bounded by a centrosymmetric 
convex closed surface, let e > 0 and suppose that r >__ 2 is an integer. Then there 
exists a k ' =  k' .r(e ) (independent of D)  such that any k '-fold covering ~ of R ~ 
with translates of D can be decomposed into r parts ~1 u ~2 u - - .  u ~ such 
that ~1,(1 + e ) ~  2 . . . . .  (1 + e ) ~  are simple coverings. 

For more problems and results on multiple coverings consult [3], [4], [5]. 

2. Proof o|  'naeorem 1 

We shall reformulate our problem in a little more convenient dual form. 
Let vl, v 2 . . . . .  v, and 0 be the vertices of P (in cyclic order) and the center of 

P,  respectively: For  any x , y ~ R  2, let P(xy)  denote a congruent copy of P 
translated by xy. 
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Consider now a k-fold covering ( PjlJ ~ J ) of the plane with translates of P, 
where k will be specified later. Let c s. denote the center of Pj, i.e., Pj = P(Ocj). 
Using the fact that P is centrosymmetric, we obtain that, for any x E R 2 and 
j E J, x is covered by Pc if and only if cj ~ P(Ox). Thus, the number of cjs 
contained in P(Ox) is at least k. 

Let us divide the plane by straight lines into disjoint congruent squares (cells) 
of sides 

:= min min d(v~,vy,)  
d -  ' (1) 

where d(v r, r, vt) denotes the distance between v r and the line vsv t. Using standard 
compactness arguments, we can assume without loss of generality that 

(a) no straight line cicj (i --# j )  is parallel to any edge of P; 
(b) every cj is contained in the interior of some square of the above cell 

decomposition; 
(c) every cell contains only finitely many cjs. 

Since any translate of P has nonempty intersection with at most 
((maxd(v~, vs))/8 +2) 2 cells, we obtain that for every x ~ R  2 there is a cell S 
such that the number of cjs contained inP(0x)n  S is at least 

/( )2 
k '  := k82 maxd(vr,  v~)+26 . (2) 

Hence it is enough to prove the following. 

Theorem 1'. There exists a sufficiently large natural number k = k(  P ) with the 
property that any finite system of points ~ = { cili ~ I }  arranged in a square S of 
side ~ and satisfying (a) can be coloured by two colours (red and green) so that 
every translate of P cooering at least k '  members of c~ contains points of both colours 
(cf. 0) ,  (2)). 

The set of all points ci ~ 4,  for which there exists a vertex v, of P (1 < r < n) 
such that P(VrCi)N ~ = ~ ,  is said to be the boundary of cg and is denoted by 
BdCg. (Note that P(VrCi) is an open set.) For any c i ~ BdCg let 

type(c ) :=  

Let us define on BdCg a directed graph G in the following way. Two 
boundary points c,, cj ~ BdCg are connected by a directed edge (directed straight 
line segment) (c i, c)  ~ E(G) if and only if there exists a translate P of P with 
vertices 04, v~,..., v,' such that P 'Ncg = ~  and cj and c i are lying on two 
consecutive sides of P' ,  i.e., 

cj ~ [v~_l,v~], ci ~ [v~',v~+1] forsome r ( l_<r_<n),  (3) 

where the indices of v are taken mod n. Because of the choice of 8 (see (1)), all 
vertices of P ' ,  except perhaps o~', are outside S. It is also clear by property (a) that 
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if '  (the closure of P ' )  cannot contain any element of ~ distinct from c i and c s. 

Taking into account that the, vector czcj is in the, interior, of the convex cone 

v' v '= and v ' '  induced by the vectors ,+l , v,+lv, ",~,_1 = V, Vr-1, and these cones are 
openly disjoint for different rs, we obtain that the natural number r satisfying (3) 
is uniquely determined. Let type(c~, c j) := r. Obviously, 

type(c,,--~) ~ type(c ,)  n type( cj) forany(c , , - -~j )~  E(G) .  (4) 

Further, let 

: =  

Proposition 2.1. For any r (1 < r < n), the points belonging to E r form a simple 
directed chain, i.e, a sequence ( c~, c~ . . . . .  cj~(,)) such that 

r r ~ r < - <  • r (i) (c,, c,+1) E (0 _ t j ( r ) )  and E has no more elements; 

(ii) c~c ~ is in the interior o f  the convex cone of  the vectors v~+ lv~ and v~v~_ 1 i ~ + 1  

(0 < i < j(r~).  

Proof  Let r (1 < r < n) b e fixed and let (c~,c~, . . . ,c j  ~) be a maximal  sequence 
with the property that (c[, c r E ~ ,+x) ~ for every (0 _< i < j) .  It follows now from 
the definitions that there exist x~, x z . . . . .  x ~ ~ R 2 such that 

T r :=  P ( O r _ l C o ) U  P(vrxi) U P(,+1¢))  
o _ j  

(5) 

is disjoint from c~, but c" r E P(V,X/), hence T" (the closure of T ") contains i - 1, Ci 

C~, C~ ..... C; .  

Suppose, in order to obtain a contradiction, that there is an edge (c, c ~') E E ~ 
r < \{ (c  r, ci+1)10_ i <  j}.  Then one can find an x ~ R 2 satisfying P(UrX)N ~ = ~  

and c, c' ~_ff(VrX ). In view of assumption (a) and the fact that T r ~  ~ = 0 ,  we 
have x q~ T r. However, in this case P(  o~x )N  { c~, c~ . . . . .  c~ } ¢ ~ . This contradic- 
tion establishes (i). 

The second part of the statement is evident. [] 

Proposition 2.2. Let  I ~ >-- 2 and c ~ B d ~ .  Suppose that ( r, r + t . . . .  , s - 1, s } is 
a maximal  interval (mod n)  all of  whose elements belong to type(c). Then 

(i) There exist c i, cj ~ B d ~  such that (ci, c) ~ E ~, (c, c )  ~ E s. 
(ii) I f  s ~ r then c is the endpoint o f  E" and the initial point o f  E ~, i.e., 

_ r _ $ 

C - -  C ) ( r )  - -  C O. 

(iii) I f s ~ r , r + l  then E ' = O f o r a l l t E  { r + l  . . . . .  s + l } .  

Proof  Since 12 > 2, t y p e ( c ) ,  (1,2 . . . . .  n}. 
Part (i) is an immediate consequence of the maximality of { r, r + 1 . . . . .  s }. 
To prove (ii), suppose indirectly that there exists a c' ~ b d ~  such that, e.g., 

(c, c ~) ~ E ' .  Then c' ~ P(v,+tc ), contradicting r + 1 ~ type(c). 
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Assume finally that t - l ,  t, t + 1  ~ type(c),  but  E t 4 : O .  That  is, one can 
choose cg, c h ~ B d ~ ,  x ~ R 2 satisfying P ( v t x ) N  ~ = O  and Cg, c h ~ P (v t x  ). Ob- 
viously, c g, c h ~ f f(  v t_ lc)U P ( v , c ) U  f f(  vt+ lc), which implies that  c ~ P(  v,x ). This 
contradict ion proves  (iii). [] 

L e m m a  2.3 

Co,C1 . . . . .  c)o ~ co,c1 . . . .  2~ = C3o, .. , - 1  = = , . , c ) ~ . _ ,  c ~ , c ~  . . . . .  c)~.~ 

is a cyclically ordered sequence of  the elements of BdCK (c~.~ = Clo) having the 
following properties. 

(i) Every c ~ B d ~  occurs in A at least one and at most twice. 
(ii) I f  some c ~ BdCg occurs in A twice, then c is called a singular point and 

t ype (c )  = (r ,  r + ~n} for some 1 < r <_ n ( m o d n ) .  Moreover,  
type(c)  = type(c*)  for  any two singular points c, c* ~ BdCg. 

(iii) Connecting each pair of  consecutive elements of  A by a straight line 
segment, we obtain a closed polygon which does not intersect itself. (For the 
sake  of  simplicity, this polygon will also be denoted by h . )  

Proof  The  first par t  of (i) is obvious by  Proposit ion 2.2(i). 
for some i Let c ~ B d ~  and suppose without loss of  generality that  c = c/ 

(0 < i < j(1)) .  If  c '  and c"  are any two consecutive members  of  

a' ( , , __2 4 . . . .  - " "  "+1) = C i + l , . . . , C ) ( 1 ) - - C ; O ,  t d l , . . . , c j ( 2 )  = , C ) (n /2 )  , 

and e is a straight line through c parallel to VxV,= v,/2v,/2+ 1, then, by Proposi-  
tion 2.1(ii), d ( c " , e ) >  d (c ' , e ) .  Consequently,  the elements of h, are different 
f rom each other  and from c. Exactly the same can be said about  the sequence 

A" i , /2+1 =c~/2+Z,c~/2+2 c,/2+2 =c~/2+3 ,, 
= [ C ) ( n / 2 + l )  . . . .  ' d ( n / 2 + 2 )  ' ' ' ' ' C ) ( n )  

= c  l . . . .  ,c~_1). 

Since c can be identical with at most  one point  --~l'~t ~..,/2+ 1,~2 .n/2 + 1 ,. •., p c , / 2 .  ~ -  1), . . , /2 + t 
the second pa r t  of  (i) is also true. 

Fur thermore ,  if c =  c~ occurs in A twice then c = c " /z+l  for some 0 < j < 
J 

j ( n / 2 + l ) ;  hence, by (4), type(c)_~ { 1 , ½ n + l } .  It  is easily seen that  type(c)  
cannot  have  any other element, i.e., type(c)  = {1, ½n +1} .  T o  prove the second 
part  of  (ii), suppose  indirectly that  there is another  singular point  c* E Bd(~ with 
type(c*)  = {r ,  ½n + r},  r :#1, -~n + 1. Then  c* is an element of 

A m [C 1 C 1 _ 2 2 ~2 _ . . 3  , . n / 2  _ , . . . .  c n / 2 + l ]  
= \ i + 1 , ' ' ' ,  j ( 1 ) - - C o ' C l  . . . . .  t ' y ( 2 ) - - " O ' ' ' " " j ( n / 2 ) - - C ~ ) / 2 4 " l  j - 1  ] 

and all p o i n t s o f  thi_~sequence are contained in the convex cone determined by  
the vectors vlv  . and v2v I, whose apex is at c. Thus,  either P(v ,c*)  or P(Vr+n/2c* ) 
contains c, the desired contradiction. 

1 and Finally,  let c and c '  be any  two consecutive elements of  A, e .g . , c  = c~ 
c ' =  ci+ l l  ( 0 < i < j ( 1 ) ) . T h e n  there exists an X ~ R  2 satisfying c , c ' ~ P ( V l x )  and 
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P ( v ~ x ) n  C -- 0. The same argument as the one used in the proof of (i) shows that 
A' and A" cannot cross the edge (c, c'). On the other hand, both c and c' are 
situated outside the region T ~/2+1 (defined by (5)), and 

u <":+' 
n 1 2 + 2  j ( n i 2 + l ) ] "  

0 <__ h < _ j ( n / 2 +  1) 

From this, one can easily infer that the missing piece (c~) I 2 +  1, C ~ / 2 + 1  ,~ n /2  + 1 "~ > . . . , ' ' ' , ~ ] ( n / 2 + l ) ]  

of A cannot cross (c, c') either, which completes the proof of (ifi). 
Note, however, that A can "touch" itself. For example, it is possible that 

c ' - c  "/2*t and c - c  "/2+x for some O < h < j ( ½ n + l ) ,  i.e., (c,c'---~)~E 1 and --~ h - -  h + l  
(c', c) ~ E ' l Z  + k [] 

The following assertion is a simple corollary to Lemma 2.3(iii). 

Corollary 2.4. There exists a 2-colouring f of the boundary of ~ with black and 
white ( f :  B d ~  ~ { B, W )) such that there are no two consecutive black points and 
no three consecutive white points on A. 

Lemma 2.5. Let P' be any translate of P. Then P'  n B d ~  is the union of at most 
two intervals of consecutive elements of A. 

Proof. By the choice of 8 (see (1)), the square S ~ ~ is so small that it can 
intersect at most two sides of P '  ([v,', v~] and [v~, v~], say), and these two sides are 
necessarily consecutive. For a contradiction, assume without loss of generality 
that there are two edges (c,---~),(d,---,~') ~ E(G) crossing [v~', v~] such that c, d ~ e '  
and c', d '  $ P' .  By Proposition 2.1(ii) it is obvious that (c,--~),(d,---~) ~ E t u E 2 
U • • • U E "/2, i.e., all of c, c', d, and d '  are elements of the sequence 

' '  + ' )  
~tO = ( C o , C l  ' 1 " ' ' '  Cj(1) . . . .  j (2) - -  t ' O '  . . . .  t ' j ( n / 2 )  - -  

Let e denote a straight line through c10 parallel to [v,', v~]. Similarly, as in the 
proof of Lemma 2.3(i), we can see that all dements of A' 0 are on the same side of 
e. Moreover, if b and b' are any two consecutive dements of A' o (and b comes 
first), then their distances from e satisfy d(b', e) > d(b, e). Hence A' 0 can intersect 
[ v~', v~] only once, contradiction, t3 

l_emma 2.6. Let P'  be any translate of P containing exactly two boundary points of 
~,  i.e., P'  n B d ~  = (do, d 1 }. Then, either d o and d t are two consecutive elements 
of A, or there exist another translate P "  of P and ~ ~ {0,1} such that 

(i) P"n~Cc_P'n~¢, IP"n~l~ ½1P'n~'l; 
(ii) ?,, n Bd~' = { d~ }. 

Proof. Let o~, v~ . . . . .  v~, denote the vertices of P', and suppose again without loss 
of generality that the square S intersects the sides [v,', v~] and rv' v' 1 only. t 1~ 2J 

Assume first that di_x ~ P(oldx)  for h - 0,1. Then P(Vldx)n ~ = O (h = 
0,1), otherwise P '  ( ___ P(vldx)N ~ )  would contain some d ~ B d ~  (d @ d o, dz), 
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contradict ing I P ' n B d ~ l = 2 .  Thus, bo th  d o and d~ belong to E 1 and, by 
Proposi t ion 2.1, they can be jo ined by a directed polygon 

(dx  _ c t c I ~1 _ d - i, i+1 . . . . .  ~ j -  l - x !  where0  < i < j < j ( 1 ) , X  ~ {0,1}.  

Since all points  of  this polygon are in P'  c~ B d ~ ,  we have j = i + 1, i.e., d o and d 1 

are two consecutive elements of  A. 
Suppose  next d 1 ~ P(vldo),  and let {r,  r + 1  . . . . .  s} be a maximal  interval 

( m o d n )  all of  whose elements belong to type(do).  Note  that  in this case 
1 ~ type(do).  By Proposit ion 2.2, d o has two neighbors (on A), d o and d~-, such 

- 

that type(d o , do) = r and type(d 0, = s. 
If  r e ( 2 , 3  . . . . .  ½n) ( o r s ~  ½ n + 2 , ½ n + 3  . . . . .  n } ) , t h e n  d o ( d ~ , r e s p . ) i s i n  

P' ~_ P ( v l d o ) n  S, hence d o = d I (d~ = dl, resp.) and the l emma holds. 
Consider  now the only remaining case r = s = ½n + 1. Let  e (and e*) be  a 

straight line through d o parallel to [v~', v~] (and [v~, v~], resp.), and let x ( x * )  
denote  the intersection point of  e and [v~, v~] (e* and Iv,', v~], resp.). Then 

Ie' n ~'1 _< Ie(v~)n~el  + IP(v~x*)n~et + n  el, 

where the last term is zero. Thus, either P "  := P ( v l x  ) or P "  .'= P(v t x*  ) meets the 
requirements  of  the lemma. [] 

This mot ivates  the following. 

Definition 2.7. Let r be  a natural  number.  A point c ~ B d T  is called r-rich if 
there exists a translate P "  of P such that  P "  n B d ~  = (c} and IP"  C~ C I > r. 

L e m m a  2.8. Let P'  be a translate of P, r > 2 a natural number, and suppose that 
c- ,  c, c ÷ ~ P" are three consecutive elements of A (in this order), l f  c is r-rich, then 
1P' n ( ~ \ B d ~ ) l  >_ r - 1. 

Proof Suppose  without  loss of  generality that  c - =  c~, c = c~+ 1 for  some i 
(0 </<__~j(1)). Then, by  Proposit ion 2.2 and  L e m m a  2.3, t y p e ( c - , c ) = 1 ,  
type(c, c ÷) = s for some s (1 _< s < ½n + 1) and type(c)  ___ {1,2 . . . .  , s }. 

Using the fact that  c is r-rich, we can choose a translate P "  of P satisfying 
the condit ions described in Definition 2.7. Let v~', v~', . . . .  v~" denote  the vertices of  
P " ,  and assume as above that S intersects the sides trv"t-1, v['],[v~', v[~-l]. It  is 
easily seen that  t ~  ½ n + 2 , ½ n + 3 , . . . , n  and t ~ s + l , s + 2  . . . . .  s + ½ n - 1  
(mod n), otherwise P "  would cover  either c -  or  c +. I f  t = ½n + 1, then IP"C~ c~ I 
>__ r > 2 readily implies that  P "  contains another  boundary  point  of C distinct 
f rom c, contradict ing the assumptions. Hence  

t ~ {1 ,2  . . . .  , s } .  (6) 

The  b o u n d a r y  of P "  intersects both  [c- ,  c] and [c, c + ]. Let  the corresponding 
intersection points  be denoted b y  d -  and  d ÷. 

I f  d -  and  d + are on the s ame  edge of  P "  (d- ,  d + ~ [v~'_ 1, vt'], say), then by  
(6) all points  of  P " n  ff  are lying in the triangle d-cd  ÷. However,  this triangle is 
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completely covered by any convex set containing c- ,  c and c +, thus 

I P ' n U e \ S d e ) l  >__ I P " n ( ~ k e d ~ e ) l  >_ r - 1 .  

If d -  and d + are on different edges of P" ,  then d + ~[v;!_l,v;'], d - E  
Ivy', v~_l], and all points of P "  N cg are in the quadrangle Q = (d- ,  c, d +, v~'). Let 
v], v~ . . . . .  v,' denote the vertices of P',  and suppose that S intersects the sides 
[v~'_ l, v'] and [v~', v'+l ] only. 

We claim that P ' ~  Q. For if not then [v~' 1, v~']u[v~', v~'+l ] would cross the 
boundary of Q at least twice. Since c-,  c, c + ~ P '  and P '  is convex, none of these 
intersection points can be on [d-,  c] u [c, d + ]. Further, no side of P'  can intersect 
both fv" " " " " " - ' ' t t_l, Vt]D_[d+,v,] and [v t ,v~+l]~_[vt ,d  ]. This implies [v~_l, vr]N 
v" , ' ' 1At '" '  " ~- 1, v"] -¢ 0 [v', v'~+ lJ t'~,, vt + 1] ¢ ~ ,  which is impossible. Hence, P '  ___ Q _D P "  

N(C~\Bdf f )  and the lemma follows. D 
We are now in the position to prove Theorem 1'. 
Let f :  B d ~  ~ { B, W }  be a 2-colouring having the properties stated in 

Corollary 2.4. Let us define a 2-colouring of ~ with red and green (g: ~g 
{ R, G }), as follows. For any x ~ ~', let 

g ( x )  := {G otherwise.ifx~BdCgandxis½k"rich°rf(x)=W' 

Consider now any translate P '  of P covering at least k '  elements of cg. We 
distinguish two cases. 

Case A. P ' A ( < K \ B d ~ ) - - # O .  Then f ( c ) = R  for any c ~ P ' N ( T \ B d W ) .  If 
t P ' A  Bd~#l _> 3 then, by Lemma 2.5, P '  contains two consecutive dements of A. 
According to Corollary 2.4, at least one of these two points should be green. 

Thus we can assume that IP'  n BdCgl < 2 and P '  contains no two consecutive 
elements of A By Lemma 2.6 there is a ½k'-rich point d ~ P '  N Bd<g which is 
green by definition. (Note that P '  N BdCg 4; 0 .) 

Case B. P '  n ( ~ \ B d ~ )  = 0 .  By Lemma 2.5, P '  contains at least ½k' consecu- 
tive elements of A. Let them be denoted by Cl, c 2 . . . . .  c,, (m > ½k'). Suppose that 
k '  > 10. Since no two consecutive elements of A are red, there are at least two cis 
(1 < i < m) which are coloured green. 

Assunie now, in order to obtain a contradiction that g ( c i ) =  G for all i 
(1 < i < m). In view of Corollary 2.4, there are no three consecutive white points 
on A; hence at least one of c2,c 3 . . . . .  c,,_ 1 is ½k'-rich. However, in this case it 
follows immediately from Lemma 2.8 that IP '  n ( ~ \ B d ~ ' ) l  > ½ k ' - 1  > 0, the 
desired contradiction. 

Therefore, taking (1) and (2) into account, Theorems 1 and 1' are true for 
k '  > 10, i.e., if 

20(  ..... 
k > ~ m i n , m l n ~ . , . . d ( v , . v p , )  + ~  " 
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Note  that our  cotouring g: C ~ { R, G} has the following interesting ad- 
ditional property.  

Proposition 2.9. Let P '  be any translate of P covering at least k '  elements of ~.  
Then I { c ~ e ' n ~ l g ( c ) = R } l > _  ~ ( k ' - 8 ) .  

If  k " . ' =  ~ ( k ' - 8 ) > 1 0 ,  then repeating the above argument for oK,:= 
{ c ~ ~ l g ( c )  = R } and k" ,  we obtain that the points of  c~, can be recoloured by 
two colours (pink and violet) so that, leaving the points of  c#\c~, unchanged 
(green), any translate of  P covering at least k '  elements of  c~ will contain at least 
one point  of  each colour. 

Hence, by  induction we can establish the following generalization of Theor- 
em 1. 

Theorem 3. Let P be an open domain bounded by a centrosymmetric convex closed 
polygon in the plane, and let r be a natural number. Then there exists a constant 
k = k ( P ,  r)  such that any k-fold covering of  R 2 with translates of P can be 
decomposed into r simple coverings. 

Note  that using a beautiful lemma of  Beck and Fiala [2], one can easily prove 
the following slight generalization of a result of  Beck [1], related to our Theorem 
11" 

Theorem 4. Let P be an open domain bounded by a centrosymmetric convex closed 
polygon having n vertices. Then any finite system of points cg c_ •2 can be 
partitioned into two parts qflR U cg c (red and green) so that l i P '  n ¢gRI - I e '  n ~c l t  
< yn2(logt ~[)4 for every translate P'  o fP .  ('f is an absolute constant.) 

However,  if I~el is large, then this result does not give any nontrivial 
information about  the discrepancy of the above partition on small sets, and the 
methods of  the classical theory of irregularities in point-distributions seem to 
break down as well (cf. [ll, [6], [7]). 
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