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This paper discusses the use of different pricing and ordering schemes when solving 
many linear programs that differ only in the right-hand sides. This is done in a setting of 
what has become known as bunching or trickling down. The idea is to collect (bunch) all 
right-hand sides that have the same optimal basis, and to organize the search for these 
bases efficiently. We demonstrate that the choice of pricing rule is indeed very impor- 
tant, but we were not able to make conclusions regarding ordering schemes. Numerical 
results are given. 

1 Introduction 

The need to solve many linear programs that differ only in the right-hand sides can 
show up in different contexts. For example, a planning problem might be solved re- 
peatedly, say, each morning, and the only change from one day to the next is the right- 
hand side of  the LP describing the problem. The right-hand side might, for example, 
represent the demand for certain goods. In other contexts, the many right-hand sides 
show up within one single problem. If decisions have to be made before the actual 
values of  some parameters are known, we might, for example, wish to minimize the 
expected value of  the objective function. Project scheduling with random activity 
durations is an example. There exists a large collection of  papers dealing with the 
calculation of  the expected project duration time in PERT networks, see for example 
Kleindorfer [14], Shogan [20], Dodin [6] and Kamburowski [13]. 
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One simple, but not always very efficient, way of solving many problems that 
differ only in the right-hand sides is to utilize the fact that the optimal basis for one 
right-hand side will probably be quite good for any other right-hand side that is simi- 
lar to the first. Since the basis will be dual feasible, the dual simplex method seems 
most appropriate to reach all optimal bases starting from the optimal basis of a par- 
ticular right-hand side. 

Wets [21] introduced the idea of bunching. The principle here is to try to collect 
all possible right-hand sides that have the same optimal basis. In its simplest form, 
the setup is as follows. Pick some right-hand side, and solve the corresponding prob- 
lem to optimality. Then, using the optimal basis, check for primal feasibility (and 
hence optimality) for all other right-hand sides. All right-hand sides having the same 
optimal basis are then "bunched" together. Next, pick one right-hand side not yet 
bunched, preferably the one with the lowest number of primal infeasible rows, and 
bring that problem to optimality. Then bunch for the new basis, and continue until all 
right-hand sides are checked. 

This was later developed into what has become known as "trickling down", see 
Wets [22]. As before, pick some right-hand side and solve the corresponding problem 
to optimality, obtaining an optimal basis. Store this basis in the root of a tree, the 
"trickling down tree". Next, pick another right-hand side. Enter the tree at its root, 
and check for primal feasibility using the basis stored in that node of the tree. Since 
the basis is dual feasible for all right-hand sides, primal feasibility is equivalent to 
optimality. If at least one row has a negative entry, select such a row and pivot to obtain 
a new basis. This new basis becomes a new node in the trickling down tree, and the arc 
connecting it to its parent node is associated with the index of the row where pivoting 
took place. This process of pivoting and creating nodes in the tree is continued until the 
new problem is brought to optimality. The advantage of this approach is that when a 
right-hand side is being treated, we can avoid pivoting and the basis update if the 
present node in the trickling down tree has a child node corresponding to the index of 
an infeasible primal variable. We simply move to the child node and continue there. 

This approach was tested by Haugland and Wallace [11] for generalized networks. 
In their paper they discuss the importance of picking right-hand sides in an appropri- 
ate order. Generally speaking, the result is that one should start with the problem 
representing the expected value of all random variables (or some other problem in the 
"middle"). Then problems should be picked in increasing distance from this first prob- 
lem. The reason is that if one started with the extreme problems, the paths in the tree 
would also be extreme (in a certain sense), and later problems (right-hand sides) that 
were really only a few pivots away from the optimal basis were sent along long and 
time-consuming simplex paths. 

This happens because it is generally preferable to follow an existing arc (pivot) in 
the trickling down tree, rather than create a new branch; i.e. whenever the current 
primal solution has a negative entry that coincides with the pivot row of a child of the 
current node, this will be an attractive row to pivot on. Of course this selection scheme 
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is myopic and may not be globally optimal. In particular, it may result in both large 
trickling down trees and a large overall number of "pivots". A large tree means in- 
creased storage, while the number of pivots indicates the number of infeasible primal 
solutions that have to be checked. 

Stochastic decomposition, developed by Higle and Sen [12], has a related con- 
struct that we will mention briefly. During the run of their algorithm, two classes of 
optimizations take place. Once per main iteration, a problem is solved all the way to 
optimality. The dual optimal solution corresponding to this problem is stored for later 
use. All other problems considered in the same main iteration are solved approxi- 
mately. This is done by checking which of the available dual solutions is best. Since 
this amounts to a restricted optimization, we end up with a bound. But more impor- 
tantly for our purposes, it can be viewed as bunching the right-hand sides that use the 
same dual solution. 

Gassmann's code MSLiP [8] uses another setup, which, in contrast to the other 
methods we have discussed so far, works within a primal setting. In principle, he 
builds up a trickling down tree, but the tree is never stored explicitly. 

The method amounts to a pre-order (or depth-first) traversal of the tree of optimal 
bases and was designed to minimize the amount of storage. A "paradigm problem" is 
chosen in the beginning, and all problems are considered to be at the same level as 
the paradigm. Each iteration consists of one pricing step (for the paradigm problem), 
the ratio test to determine the leaving variable, and the basis update. Each right-hand 
side still in the running is then considered in turn. Since the incoming variable has 
already been identified - it must be the same as in the paradigm problem - a ratio test 
suffices to determine if the pivot step applies for the current problem or not. If the 
pivot step can be taken, the problem is carried along to the next level, otherwise it is 
left behind, along with information to reconstruct the basis that was active at this 
point. We propose the name "tamping" for this method. 

Once the paradigm problem has been brought to optimality (or has been deter- 
mined to be infeasible), the search for a new paradigm begins. The first group of 
candidates are those that followed the paradigm all the way to the final basis. At that 
point, all of those problems are either optimal or infeasible. If their infeasibilities lie 
in exactly the same rows as for the paradigm, then these problems have been dealt 
with or "bunched", otherwise a candidate for the new paradigm has been identified. 
Some thought could be expended on how to select the paradigm from among the 
possible candidates; at present we simply use the first candidate encountered. 

Eventually there will be no more problems of this type, and one traverses the tree 
(backwards) to identify problems which have been left off at earlier stages. Whenever 
such a problem is encountered, the corresponding basis is recovered and all problems 
which were left behind at the same level are then considered together. 

The advantage of this scheme is that only part of the basis tree needs to be in 
storage at any one time, namely the part that leads from the starting basis of the first 
paradigm problem to the current basis of the current paradigm. 
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2 Storage requirements 

Both in trickling down trees and in Gassmann's implicit bunching tree, there is a 
question of what to store at each node (or what to leave behind together with a group 
of unbunched right-hand sides).. The possibilities are in principle many. One could 
simply store the entering and leaving variables which permits one to reconstruct the 
relevant basis whenever needed; one could store the entire inverse basic matrix (which 
of course can only be done for very small problems), or one could store the basis 
updates in some incremental fashion. In all cases one would avoid both pricing and 
pivoting, although the computational burden is slightly different. The discussion of 
which method to use will depend both on the classical trade-off between time and 
storage, and on the overall setup, trickling down or implicit bunching. 

We will look at three update schemes in particular and how they impact on the 
tamping method: the traditional product form using eta-vectors, Schur-complement 
updates, and the method of Bartels and Golub. 

In the product form, an initial basis B0 is explicitly factored by LU-decom- 
position, both factors being stored as a sequence of eta-columns. At each pivot step, 
another eta-vector is appended to that sequence. Retrieving the basis corresponding 
to an earlier pivot in the current sequence is therefore trivial, all that is required is to 
Count back the required number of eta-vectors and to discard the tail of the sequence. 
No new data structures or storage locations are needed and there is no further loss of 
accuracy beyond the roundoff errors inherent in the product form update. 

Schur-complement updates [4] also factor and store the initial basis B 0, then 
record the changes leading from B0 to B i a s  a square dense matrix of dimension ki < i. 
Update formulas exist which allow converting Si to Si+l or Si-l,  but there is some 
processing required, and the effect of accumulated roundoff errors cannot be ignored. 
The alternative is to store each of the Schur-complements. The added storage require- 
ment is moderate - and independent of the problem size - if pivot sequences are short, 
but grows rapidly with the length of the sequence. 

The situation is worse for Bartels-Golub updates [5], which explicitly modify 
the LU-factorization at each step. Here, one has the choice between undoing the modi- 
fications, and storing all the inverses explicitly - surely a daunting prospect for large 
problems. On balance then, the product form, simple as it is, appears best suited for 
the needs of the tamping algorithm. 

3 Pricing schemes 

Our first step was to check if performance of the tamping method depended on which 
pricing scheme was used. There are many reasons why it might. First, a pricing 
method should preferably give few pivots, even if that comes at a price of higher costs 
per pricing operation. The reason is simple enough. For each new basis encountered, 
all non-bunched right-hand sides must be checked to see if they should be carried 
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along or left behind. The fewer pivots, the fewer times this must be done. Moreover, 
few pivots probably means fewer groups of right-hand sides left behind, and it might 
even mean fewer bunches. (The latter can happen because of degeneracy or because 
the same optimal basis is found several times, reached along different pivot paths.) 

We studied the following possibilities: 

• Most negative reduced cost. This is the standard setup. 

• Random eligible column. This is the natural alternative to compare with if we 
want to test whether the choice of column matters at all. 

• Biggest objective drop. Whenever the reduced cost is negative, we explicitly cal- 
culate the step length, and we pick the column that maximizes the absolute value 
of the reduced cost times the step length. 

• Devex pricing. This method was suggested by Harris [10], and is also discussed 
in Murtagh [18]. The idea is to use a consistent framework in which to measure 
the distance moved during each pivot step. In the standard pricing scheme one 
can think of distances measured in the space of the nonbasic variables, but since 
the nonnegative variables change from iteration to iteration, so too does the frame- 
work in which one operates. The key is to scale the reduced costs by suitable 
correction factors which approximate the correct distance measure and to perform 
simple updates to the weights at each iteration. 

• Steepest edge. The idea is to follow the steepest edge of the polytope of feasible 
solutions, where steepness is measured not in the space of non-basic columns, but 
in the space of all columns. Similar to devex pricing, one uses scale factors which 
multiply the reduced costs. Goldfarb and Reid [9] developed a recursion formula 
for the weights which makes this approach practicable. 

We shall discuss numerical results in a later section. It turns out that it does 
indeed matter which rule is used. Which scheme to prefer depends on two measures 
of size. If the problem is large in terms of the number of possible right-hand sides, 
but small to moderate in terms of LP size (less than 100 rows), the biggest objective 
drop seemed to be best. If the problem is large in terms of LP size, the most negative 
column and steepest edge pricings came out best. 

4 Ordering schemes 

The paper by Haugland and Wallace mentioned earlier [11] is mostly concerned about 
the order in which right-hand sides are picked. That turns out to be very important 
when using trickling down trees. Not very surprisingly, it is of less importance for the 
tamping method. We chose to test the orderings listed below. All norms refer to the 
distance between the given right-hand side and the mean. In all cases we tested both 
increasing and decreasing distances. 
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Lexicographic ordering. 

The Ll norm. 

The L2 norm. 

The L** norm. 

Random order. 

"Generalized Gray codes". Gray codes are a method to order binary codes in such 
a way that two consecutive elements differ in exactly one bit. A similar scheme 
was used by Berland [1] in arranging the extreme points of an n-dimensional 
rectangle. In the current context, if the right-hand sides exhibit a lattice structure 
(for example, when they are generated from the realizations of independently 
distributed random variables), then one might order them such that consecutive 
problems differ in exactly one right-hand side element. This ought to imply that 
few pivots are needed to get from the optimal basis of one problem to the optimal 
basis of its successor, and thus might be a sensible way to order the right-hand 
sides. Bertsekas and Tsitsiklis [2, p. 50], give a construction of reflected Gray 
codes that can be easily adapted to define this order. 

The results in terms of CPU and total number of pricings certainly vary quite a 
bit, often by several hundred percent, but we were not able to detect any patterns with 
respect to which scheme to use. Since the only actual effect of the chosen scheme is 
the picking of a paradigm problem when groups of right-hand sides left behind are 
later picked up, this is perhaps not very surprising. However, we must repeat that 
despite our inability to detect a pattern, there is a wide variation in performance. 

5 Numerical results 

The tests we performed fall into two broad categories. The first group of problems are 
ten two-stage stochastic linear programs, as outlined in table 1. In addition to these 
we tested seven (deterministic) problems from the netlib set [7]. Problem character- 
istics of these problems are collected in table 12. 

The problems described in table 1 are well-known examples from stochastic pro- 
gramming, which is the setting that originally caused our interest in the questions 
asked in this paper. Further information about the problems can be found in Birge [3] 
or Gassmann [8]; problem 1 is also described in Louveaux and Smeers [15], prob- 
lem 8 is from Mulvey and Vladimirou [17], problem 9 was taken from Sen et al. [19], 
and problem 10 appears in Mulvey and Ruszczyriski [16]. 

We shall list two types of results in tables 2 to 11. The first, called "First bunch- 
ing", refers to the first run through all the right-hand sides; the other, called "Over- 
all", shows the results when adding up over all iterations needed to solve the two- 
stage recourse problem by Benders decomposition. (For an outline of the code used, 
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Table 1 

Characteristics of the stochastic examples. 

Problem name No. of rows No. of cols No. of RHS 

1 Iouveaux 8 16 1280 

2 sc205 23 22 800 

3 scrs8 29 38 512 

4 scsd8 21 140 216 

5 scagr7 39 40 432 

6 sctapl 61 96 216 

7 scfxm I 149 225 96 

8 mv3 108 303 80 

9 ssn 176 706 210 

10 storm 527 1260 200 

Table 2 

Results for example 1, louveaux. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
Steepest edge 

30 0.6 32306 65 
45 0.8 43250 92 
24 0.4 13880 53 
30 0.6 29717 66 
17 0.5 26786 66 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 30 0.6 32306 65 
Random 31 0.7 14599 38 
L2 norm, ascending 31 0.6 8597 32 
L2 norm, descending not converged 
Gray codes 30 0.6 32306 65 
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Table 3 

Results for example 2, sc205. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
Steepest edge 

7 0.3 120 3.9 
7 0.3 156 4.0 
7 0.3 118 4.1 
7 0.3 119 4.2 
7 0.3 126 4.2 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 
Random 
L2 norm, ascending 
L2 norm, descending 
Gray codes 

7 0.29 120 3.9 
7 0.33 117 3.8 
7 0.29 I00 3.2 

11 0.39 99 3.5 
7 0.29 133 4.0 

Table 4 

Results for example 3, scrs8. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
Steepest edge 

235 1.1 301 1.9 
119 1.0 174 1.8 
10I 0.8 152 1.5 
143 1. I 209 1.9 
160 1.3 232 2.2 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 
Random 
L2 norm, ascending 
L2 norm, descending 
Gray codes 

235 1.1 301 1.9 
116 0.8 162 t.7 
126 0.9 178 1.6 
150 0.8 186 1.7 
194 1.1 266 1.9 
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Table 5 

Results for example 4, scsd8. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
Steepest edge 

1831 6.0 1834 6.1 
5970 18.0 9679 29.8 

115 0.6 177 1.3 
1342 6.4 1345 6.6 
270 1.5 457 3.0 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 
Random 
L2 norm, ascending 
L2 norm, descending 
Gray codes 

1831 6.0 1834 6.1 
I105 3.6 1573 5.6 
765 2.6 1378 5.0 
848 2.9 1178 4.4 

1188 3.9 1191 4.1 

Table 6 

Results for example 5, scagr7. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
Steepest edge 

30 1.0 343 8.3 
35 1.1 342 8.2 
30 1.0 206 7.4 
24 0.9 335 8.4 
28 0.9 197 7.8 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 
Random 
L2 norm, ascending 
L2 norm, descending 
Gray codes 

30 1.0 343 8.3 
30 1.0 392 7.8 
30 1.0 427 8.2 
30 1.0 348 8.3 
30 1.0 347 8.3 
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Table 7 

Results for example 6, sctapl. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
Steepest edge 

991 4.7 1061 5.9 
525 3.3 760 5.0 
117 2.1 180 3.3 

1020 6.0 1059 7.1 
547 4.2 576 3.0 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 
Random 
L2 norm, ascending 
L2 norm, descending 
Gray codes 

991 4.7 1061 5.8 
1401 6.0 1455 7.2 
1463 6.2 501 7.2 
572 3.3 611 4.6 
991 4.6 1061 5.8 

Table 8 

Results for example 7, scfxml. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 
Random 
Biggest drop 
Devex 
S~epest edge 

194 6.1 1734 49 
1344 45.9 11545 143 
163 9.7 1113 49 
180 5.1 1434 46 
152 5.6 1223 49 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 
Random 
L2 norm, ascending 
L2 norm, descending 
Gray eodes 

194 6.1 1734 49 
194 6.2 1703 48 
194 6.1 1725 49 
194 6.2 1757 50 
194 6.1 1734 49 
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Table 9 

Results for example 8, mv3. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 5287 34.6 13739 97 
Random 1245 8.6 15665 114 
Biggest drop 216 2.9 8610 174 
Devex 7756 65.9 14986 136 
Steepest edge 7584 77.9 14316 177 

Table 10 

Results for example 9, ssn. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 34965 692 > 107 (i) 
Random 89272 1775 (4) 
Biggest drop 8721 801 > 2 x 106 (2) 
Devex 7086 180 (4) 
Steepest edge 4194 139 > 2 x 106 (3) 

212,000 
n.a. 
> 350,000 
n.a. 
> 160,000 

(1) Stopped after 10,000,000 pivots and 279 calls to the bunching routine. 
(2)Stopped after over 2,000,000 pivots and 300 calls to the bunching routine. 

Total CPU time: over 100 hours. 
(3) Stopped after over 2,000,000 pivots and 300 calls to the bunching routine. 

Total CPU time: over 45 hours. 
(4) Stopped after first call to bunching routine. 

see Gassmann  [8].) We report  both the number  of  pricing operat ions carried out and 

the nu m ber  o f  CPU seconds used on a Sun SPARCstat ion 10 computer .  
O f  course ,  to the extent  that the pricing and order ing schemes  also affect  the 

number  o f  outer  i terations needed,  the Overal l  statistics are less informat ive  than the 

First  bunching  results. Note,  however ,  that this can only  happen i f  we are faced with 

dual  degeneracy.  Therefore ,  in general,  the Overal l  setting can be seen as jus t  a larger 
example .  In each co lumn of  the tables that follow, we have indicated with b o l d  type  

w h e n e v e r  there is a c lear  winner. Some  o f  the order ing schemes ment ioned  in sect ion 
4 are not  reported,  since orderings with respect  to different  norms gave very  similar 

results  to the L2 norm. 

Look ing  at tables 2 to 11, we see a few clear  conclus ions  along with a number  o f  
ques t ion marks.  Whi le  there are large di f ferences  in the per formance  o f  the order ing 
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Table 11 

Results for example 10, storm. 

Effects of pricing strategies 

First bunching Overall 

Pricings CPU Pricings CPU 

Most negative 120543 7048 997662 64967 
Random n.a. n.a. n.a. n.a. 
Biggest drop 90893 69512 413654 156057 
Devex 109060 8201 868357 66535 
Steepest edge 106710 20351 470307 63258 

Effects of ordering schemes 

First bunching Overall 

Pricings CPU Pricings CPU 

Lexicographical 120543 7048 997662 64967 
Random n.a. n.a. n.a. n.a. 
L2 norm, ascending 122995 7098 981442 62336 
L2 norm, descending 123460 7140 945451 59831 
Gray codes n.a. n.a. n.a. n.a. 

schemes, no obvious strategy suggests itself. On some problems, the lexicographical 
order is best, on others some reordering is useful. On some problems (especially prob- 
lem scsd8) it is best to start near the centre and work one's way outward; on others 
(such as problem sctapl) it is best to move towards the centre. Even random ordering 
may be best in some instances (problem scagr7). The only definite conclusion regard- 
ing ordering schemes is that generalized Gray codes perform very similar to the 
natural lexicographical order, and so this option does not appear to be worth the cost 
of  reordering. 

Conclusions regarding pricing schemes are far more apparent. First, picking a 
random column does not seem useful. In no case was that option best. Devex pricing 
and steepest edge pricing are very similar in philosophy, and on numerical grounds, 
steepest edge pricing appears superior. This leaves a comparison between most nega- 
tive, biggest drop and steepest edge. 

Goldfarb and Reid found that steepest edge pricing is generally superior to most 
negative reduced cost in problems with one right-hand side, and this conclusion is 
upheld for the most part in our study as well. There are some exceptions, notably 
problems 2 and 8, both of which are somewhat anomalous. Problem 2 has very few 
rows and columns, while problem 8 has the fewest right-hand sides of  all problems 
considered, so that bunching is not as effective here as on the other problems. In 
general, however, steepest edge wins out over most negative, particularly if the 
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number of right-hand sides is large. If the number of right-hand sides gets very large, 
the number of pivots is the deciding factor, and therefore biggest drop should win, 
followed by steepest edge pricing. 

What came as somewhat of a surprise to us was the good showing of biggest drop 
on small problems, but in hindsight that should perhaps not have been so surprising 
after all. When the problem size is small, only few columns exist that can price out 
negatively, so the ratio test will not be triggered all that often. In addition, these prob- 
lems are characterized by many right-hand sides, so that the number of pivots should 
be the prime determinant of speed. 

The final question concerns the number of right-hand sides beyond which biggest 
drop will be superior to steepest edge in terms of CPU time. Our conjecture is that 
this limit depends on the number of rows and columns and will increase as the number 
of rows gets larger. An informal rationalization of this conjecture might go as fol- 
lows. First, as the number of right-hand sides increases, the pricing operation will 
take a smaller and smaller fraction of the overall time. This is so because one pricing 
operation is sufficient to deal with an entire "bunch" of problems, but the ratio test 
must be performed separately for each right-hand side. Thus the strategy with the 
fewest iterations will win out in the long run. On the other hand, the effort in biggest 
drop grows faster than the effort in steepest edge if the problem dimensions are in- 
creased. Of course the work in steepest edge pricing increases with the problem size, 
but this is offset by the added work in each ratio test. The main point is that more 
columns means more eligible columns - on average - and thus a larger number of 
ratio tests that biggest drop must compute. Taken together, this means that for larger 
problems more right-hand sides are needed before biggest drop becomes cheaper than 
steepest edge. More computational testing is needed to make this statement more 
precise. 

For further illustration we have included eight figures. In figures 1 to 6, we have 
shown CPU seconds and iterations (pricings) for examples 7, 9 and 10. The horizon- 
tal axis represents the iteration number in MSLiP. Therefore, the figures demonstrate 
the changing workload as the algorithm progresses. Figures 3 and 4 in particular show 
how the algorithm settles down as the first-stage variables approach their optimal 
values. Comparing these two figures we see clearly how both biggest drop and steep- 
est edge pricing use far fewer pricings per bunching operation than most negative, 
but on the CPU seconds most negative comes out ahead of biggest drop, for the 
reasons explained in the previous paragraph. 

Problem 9 appears to be extremely difficult, and we were not able to solve it to 
optimality. After nearly three days of elapsed time, a global iteration maximum was 
triggered in the most negative pricing run and the program was halted. Other pricing 
schemes apparently got us no further to the optimal solution and were also stopped 
prematurely. In addition, bunching did not seem to help as the right-hand sides are 
quite diverse. Figures 5 and 6 show large fluctuations from one iteration to the next. 
None of the methods seem to stabilize, and it is difficult to determine their relative 
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merits from the picture. For that reason we also included cumulative averages in 
figures 7 and 8 which make the relative rankings of the three pricing schemes much 
more apparent. Again, biggest drop is best in terms of the number of pricing opera- 
tions, followed by steepest edge, but again biggest drop is the worst of the three in 
terms of CPU time used. 

It bears pointing out that very little bunching takes place in problem 9, so essen- 
tially a large number of LPs are solved (from warm starts). Our findings in this case 
are directly comparable to Goldfarb and Reid's, and they show the same conclusions. 

We ran a second set of tests using deterministic LPs from the netlib set and arbi- 
trarily perturbing three of the right-hand sides. (These problems do not have time- 
staged structure, and no attempt was made to decompose them.) The problems were 
chosen to give a reasonable mix of sizes in the hope that additional information would 

Table 12 

Characteristics of the netlib problems. 

Problem name No. of rows No. of cols Max. no. of RHS 

11 afiro 28 32 1000 
12 adlittle 57 97 1000 

13 share2b 97 79 1000 
14 brandy 221 249 1000 

15 scorpion 389 358 1000 

16 shell 537 1775 729 
17 czprob 930 3523 512 

be gathered concerning the performance of the pricing schemes in relation to the prob- 
lem sizes. For each problem we chose four different randomizations of the right-hand 
sides, using 8, 27, I25 and 1000 realizations on most problems. (For the larger prob- 
lems shell and czprob we had to show some restraint on the largest instances due to 
memory restrictions.) 

The results are in general agreement with the findings for the two-stage stochastic 
problems, that is to say, biggest drop and steepest edge pricing tend to outperform 
most negative pricing on iteration counts, but the CPU times behave somewhat dif- 
ferently. For biggest drop pricing, the argument has been stated before. What came as 
a bit of a surprise was the performance of steepest edge pricing on the large problems 
shell and czprob. After some more checking, it was found that whenever the tamping 
algorithm switched to a new paradigm problem, the edge weights had to be recomputed. 
More work in this area might improve the picture. 

The ordering schemes are again inconclusive. However, since the same ordering 
scheme seemed to work quite well for different numbers of realizations on the same 
problem, it may be possible to identify general rules to infer promising strategies 
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Table 13 

Results for example 11, afiro. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Most negative 16 0.09 17 0.12 20 0.31 23 2.16 
Steepest edge 4 0.05 4 0.07 7 0.25 8 1.71 
Biggest drop 3 0.04 3 0.05 3 0.20 4 1.67 

Effects of ordering schemes 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Lexicographical 16 0.09 17 0.12 20 0.31 23 2.16 
L2 norm, ascending 16 0.08 47 0.23 48 0.53 81 2.77 
L2 norm, descending 16 0.08 20 0.14 20 0.35 30 2.26 
Random 9 0.06 47 0.22 20 0.34 40 2.85 
Gray codes 16 0.09 20 0.13 23 0.35 71 2.82 

Table 14 

Results for example 12, adlittle. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Most negative 210 2.2 608 6.5 2451 27.7 12171 159 
Steepest edge 65 1.6 138 3.8 370 12.6 524 29 
Biggest drop 60 1.8 116 3.7 196 6.7 352 18 

Effects of ordering schemes 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Lexicographical 210 2.2 608 6.5 2451 27.7 12171 159 
L2 norm, ascending 210 2.2 210 2.4 501 6.4 4076 60 
L2 norm, descending 210 2.2 553 6.1 2182 25.0 5792 83 
Random 222 2.4 663 7.1 4089 25.2 4490 66 
Gray codes 210 2.2 608 6.5 2451 27.5 12171 159 
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Table 15 

Results for example 13, share2b. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Most negative 144 2.3 434 6.9 1176 20.3 4794 98 
Steepest edge 65 2.0 92 4.7 204 11.5 326 33 
Biggest drop 27 1.1 49 2.1 84 4.6 125 17 

Effects of ordering schemes 

8 scenarios 27 scenarios 125 scenarios I000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Lexicographical 144 2.3 434 6.9 1176 20.3 4794 98 
L2 norm, ascending 144 2.4 200 3.6 752 13.8 1344 37 
L2 norm, descending 144 2.4 150 2.8 1983 32.6 9624 180 
Random 240 4.0 375 5.7 518 10.5 5543 109 
Gray codes 140 2.2 424 6.7 1352 22.5 4815 98 

Table 16 

Results for example 14, brandy. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Most negative 680 27 2522 I01 11756 470 85222 3506 
Steepest edge 329 31 1246 122 5129 503 31943 3518 
Biggest drop n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

Effects of ordering schemes 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Lexicographical 680 27 2522 101 11756 470 85222 3506 
1.,2 norm, ascending 680 27 2573 I04 8170 347 65761 2724 
L2 norm, descending 680 27 1918 78 8896 376 49554 2124 
Random 606 25 2026 83 7710 332 29186 1362 
Gray codes 680 25 2522 101 11756 471 85222 3500 
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Table 17 

Results for example 15, scorpion. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Most negative 164 9.6 420 26.6 1011 72.6 4492 400 
Steepest edge 44 11.1 117 43.6 252 120.7 372 262 
Biggest drop 53 6.4 149 19.7 348 53.0 631 164 

Effects of ordering schemes 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Lexicographical 164 9.6 420 26.6 1011 72.6 4492 400 
L2 norm, ascending 164 9.6 133 8.1 190 16.7 257 60 
L2 norm, descending 164 9.6 302 21.3 123 15.8 137 69 
Random 139 7.7 223 13.8 586 46.1 225 73 
Gray codes 164 9.7 420 26.8 1011 72.9 4492 398 

Table 18 

Results for example 16, shell. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 729 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Most negative 32 4.0 69 9.5 102 21.1 137 68.1 
Steepest edge 28 21.0 71 83.6 110 197.6 122 272.6 
Biggest drop 46 12.3 91 27.6 140 39.8 233 103.5 

a priori .  The  present  paper  did not  deal with this issue. (It should also be poin ted  

out  that  p rob lem shell has a slightly different  structure f rom the other  p roblems  in 

that the randomness  was in t roduced into the bounds  o f  some o f  the variables.  The  

tamping  a lgor i thm goes through unchanged  for  this kind o f  p rob lem (since bounded  

var iables  are a special  fo rm of  constraint) ,  but  the routine e mp l o y e d  to sort the f ight-  

hand sides cou ld  not  deal with it.) 
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Table 19 

Results for example 17, czprob. 

Effects of pricing strategies 

8 scenarios 27 scenarios 125 scenarios 512 scenarios 

Pricings CPU Pricings CPU Prieings CPU Pricings CPU 

Most negative 2444 513 7635 1611 35126 7439 139683 29668 
Steepest edge 1640 1897 5385 6439 21803 26488 83872 102,000 
Biggest drop 1567 14025 5446 45631 n.a. n.a. n.a. n.a. 

Effects of ordering schemes 

8 scenarios 27 scenarios 125 scenarios 1000 scenarios 

Pricings CPU Pricings CPU Pricings CPU Pricings CPU 

Lexicographical 2444 513 7635 1611 35126 7439 139683 29668 
L2 norm, ascending 2444 513 3598 772 13091 2833 57257 12256 
L2 norm, descending 2444 513 7734 1631 35735 7568 140801 30389 
Random 1209 257 3757 799 13914 2994 251262 53153 
Gray codes 2444 514 7635 I610 35126 7454 139683 29433 

6 Concluding remarks  

The purpose of this paper has been to discuss some computational aspects of solving 
many LPs that differ only in the right-hand sides. Our interest has been to solve 
stochastic programming problems, although the results apply to other contexts as well. 

We have discussed a number of algorithmic principles for solving many LPs, and 
shown how advanced versions of warm starts, such as bunching, trickling down and 
implicit bunching can be used. We used Gassmann's code MSLiP and tested different 
pricing and ordering schemes. The latter gave us no clear results. 

However, we found that it is indeed worthwhile considering pricing regimes other 
than the most negative reduced cost. The alternative approaches cost (substantially) 
more per pricing, but can still pay off because of savings related to the large number 
of problems that are to be solved. For almost all problems, the best idea was to take 
the column with the largest drop in the objective. Only for problems with a large 
number of rows did it not come out best in terms of CPU. In that case, the steepest 
edge approach seemed best. 
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