
Annals of Operations Research 64(1996)237-259 237

Solving linear programs with multiple right-hand
sides: Pricing and ordering schemes

Horand I. Gassmann

School of Business Administration, Dalhousie University,
Halifax, Nova Scotia, Canada B3H 1Z5

E-mail: gassmann@ earth.sba.dal.ca

Stein W. Wallace

Department of Managerial Economics and Operations Research,
Norwegian University of Science and Technology,

N-7034 Trondheim, Norway

E-mail: sww@iok.unit.no

This paper discusses the use of different pricing and ordering schemes when solving
many linear programs that differ only in the right-hand sides. This is done in a setting of
what has become known as bunching or trickling down. The idea is to collect (bunch) all
right-hand sides that have the same optimal basis, and to organize the search for these
bases efficiently. We demonstrate that the choice of pricing rule is indeed very impor-
tant, but we were not able to make conclusions regarding ordering schemes. Numerical
results are given.

1 Introduction

The need to solve many linear programs that differ only in the right-hand sides can
show up in different contexts. For example, a planning problem might be solved re-
peatedly, say, each morning, and the only change from one day to the next is the right-
hand side of the LP describing the problem. The right-hand side might, for example,
represent the demand for certain goods. In other contexts, the many right-hand sides
show up within one single problem. If decisions have to be made before the actual
values of some parameters are known, we might, for example, wish to minimize the
expected value of the objective function. Project scheduling with random activity
durations is an example. There exists a large collection of papers dealing with the
calculation of the expected project duration time in PERT networks, see for example
Kleindorfer [14], Shogan [20], Dodin [6] and Kamburowski [13].

© J.C. Baltzer AG, Science Publishers

238 H.L Gassmann, S. W. Wallace / Pricing and ordering schemes

One simple, but not always very efficient, way of solving many problems that
differ only in the right-hand sides is to utilize the fact that the optimal basis for one
right-hand side will probably be quite good for any other right-hand side that is simi-
lar to the first. Since the basis will be dual feasible, the dual simplex method seems
most appropriate to reach all optimal bases starting from the optimal basis of a par-
ticular right-hand side.

Wets [21] introduced the idea of bunching. The principle here is to try to collect
all possible right-hand sides that have the same optimal basis. In its simplest form,
the setup is as follows. Pick some right-hand side, and solve the corresponding prob-
lem to optimality. Then, using the optimal basis, check for primal feasibility (and
hence optimality) for all other right-hand sides. All right-hand sides having the same
optimal basis are then "bunched" together. Next, pick one right-hand side not yet
bunched, preferably the one with the lowest number of primal infeasible rows, and
bring that problem to optimality. Then bunch for the new basis, and continue until all
right-hand sides are checked.

This was later developed into what has become known as "trickling down", see
Wets [22]. As before, pick some right-hand side and solve the corresponding problem
to optimality, obtaining an optimal basis. Store this basis in the root of a tree, the
"trickling down tree". Next, pick another right-hand side. Enter the tree at its root,
and check for primal feasibility using the basis stored in that node of the tree. Since
the basis is dual feasible for all right-hand sides, primal feasibility is equivalent to
optimality. If at least one row has a negative entry, select such a row and pivot to obtain
a new basis. This new basis becomes a new node in the trickling down tree, and the arc
connecting it to its parent node is associated with the index of the row where pivoting
took place. This process of pivoting and creating nodes in the tree is continued until the
new problem is brought to optimality. The advantage of this approach is that when a
right-hand side is being treated, we can avoid pivoting and the basis update if the
present node in the trickling down tree has a child node corresponding to the index of
an infeasible primal variable. We simply move to the child node and continue there.

This approach was tested by Haugland and Wallace [11] for generalized networks.
In their paper they discuss the importance of picking right-hand sides in an appropri-
ate order. Generally speaking, the result is that one should start with the problem
representing the expected value of all random variables (or some other problem in the
"middle"). Then problems should be picked in increasing distance from this first prob-
lem. The reason is that if one started with the extreme problems, the paths in the tree
would also be extreme (in a certain sense), and later problems (right-hand sides) that
were really only a few pivots away from the optimal basis were sent along long and
time-consuming simplex paths.

This happens because it is generally preferable to follow an existing arc (pivot) in
the trickling down tree, rather than create a new branch; i.e. whenever the current
primal solution has a negative entry that coincides with the pivot row of a child of the
current node, this will be an attractive row to pivot on. Of course this selection scheme

H.L Gassmann, S. W. Wallace//Pricing and ordering schemes 239

is myopic and may not be globally optimal. In particular, it may result in both large
trickling down trees and a large overall number of "pivots". A large tree means in-
creased storage, while the number of pivots indicates the number of infeasible primal
solutions that have to be checked.

Stochastic decomposition, developed by Higle and Sen [12], has a related con-
struct that we will mention briefly. During the run of their algorithm, two classes of
optimizations take place. Once per main iteration, a problem is solved all the way to
optimality. The dual optimal solution corresponding to this problem is stored for later
use. All other problems considered in the same main iteration are solved approxi-
mately. This is done by checking which of the available dual solutions is best. Since
this amounts to a restricted optimization, we end up with a bound. But more impor-
tantly for our purposes, it can be viewed as bunching the right-hand sides that use the
same dual solution.

Gassmann's code MSLiP [8] uses another setup, which, in contrast to the other
methods we have discussed so far, works within a primal setting. In principle, he
builds up a trickling down tree, but the tree is never stored explicitly.

The method amounts to a pre-order (or depth-first) traversal of the tree of optimal
bases and was designed to minimize the amount of storage. A "paradigm problem" is
chosen in the beginning, and all problems are considered to be at the same level as
the paradigm. Each iteration consists of one pricing step (for the paradigm problem),
the ratio test to determine the leaving variable, and the basis update. Each right-hand
side still in the running is then considered in turn. Since the incoming variable has
already been identified - it must be the same as in the paradigm problem - a ratio test
suffices to determine if the pivot step applies for the current problem or not. If the
pivot step can be taken, the problem is carried along to the next level, otherwise it is
left behind, along with information to reconstruct the basis that was active at this
point. We propose the name "tamping" for this method.

Once the paradigm problem has been brought to optimality (or has been deter-
mined to be infeasible), the search for a new paradigm begins. The first group of
candidates are those that followed the paradigm all the way to the final basis. At that
point, all of those problems are either optimal or infeasible. If their infeasibilities lie
in exactly the same rows as for the paradigm, then these problems have been dealt
with or "bunched", otherwise a candidate for the new paradigm has been identified.
Some thought could be expended on how to select the paradigm from among the
possible candidates; at present we simply use the first candidate encountered.

Eventually there will be no more problems of this type, and one traverses the tree
(backwards) to identify problems which have been left off at earlier stages. Whenever
such a problem is encountered, the corresponding basis is recovered and all problems
which were left behind at the same level are then considered together.

The advantage of this scheme is that only part of the basis tree needs to be in
storage at any one time, namely the part that leads from the starting basis of the first
paradigm problem to the current basis of the current paradigm.

240 H.L Gassmann, S. W. Wallace / Pricing and ordering schemes

2 Storage requirements

Both in trickling down trees and in Gassmann's implicit bunching tree, there is a
question of what to store at each node (or what to leave behind together with a group
of unbunched right-hand sides).. The possibilities are in principle many. One could
simply store the entering and leaving variables which permits one to reconstruct the
relevant basis whenever needed; one could store the entire inverse basic matrix (which
of course can only be done for very small problems), or one could store the basis
updates in some incremental fashion. In all cases one would avoid both pricing and
pivoting, although the computational burden is slightly different. The discussion of
which method to use will depend both on the classical trade-off between time and
storage, and on the overall setup, trickling down or implicit bunching.

We will look at three update schemes in particular and how they impact on the
tamping method: the traditional product form using eta-vectors, Schur-complement
updates, and the method of Bartels and Golub.

In the product form, an initial basis B0 is explicitly factored by LU-decom-
position, both factors being stored as a sequence of eta-columns. At each pivot step,
another eta-vector is appended to that sequence. Retrieving the basis corresponding
to an earlier pivot in the current sequence is therefore trivial, all that is required is to
Count back the required number of eta-vectors and to discard the tail of the sequence.
No new data structures or storage locations are needed and there is no further loss of
accuracy beyond the roundoff errors inherent in the product form update.

Schur-complement updates [4] also factor and store the initial basis B 0, then
record the changes leading from B0 to B i a s a square dense matrix of dimension ki < i.
Update formulas exist which allow converting Si to Si+l or Si-l, but there is some
processing required, and the effect of accumulated roundoff errors cannot be ignored.
The alternative is to store each of the Schur-complements. The added storage require-
ment is moderate - and independent of the problem size - if pivot sequences are short,
but grows rapidly with the length of the sequence.

The situation is worse for Bartels-Golub updates [5], which explicitly modify
the LU-factorization at each step. Here, one has the choice between undoing the modi-
fications, and storing all the inverses explicitly - surely a daunting prospect for large
problems. On balance then, the product form, simple as it is, appears best suited for
the needs of the tamping algorithm.

3 Pricing schemes

Our first step was to check if performance of the tamping method depended on which
pricing scheme was used. There are many reasons why it might. First, a pricing
method should preferably give few pivots, even if that comes at a price of higher costs
per pricing operation. The reason is simple enough. For each new basis encountered,
all non-bunched right-hand sides must be checked to see if they should be carried

H.L Gassmann, S.W. Wallace / Pricing and ordering schemes 241

along or left behind. The fewer pivots, the fewer times this must be done. Moreover,
few pivots probably means fewer groups of right-hand sides left behind, and it might
even mean fewer bunches. (The latter can happen because of degeneracy or because
the same optimal basis is found several times, reached along different pivot paths.)

We studied the following possibilities:

• Most negative reduced cost. This is the standard setup.

• Random eligible column. This is the natural alternative to compare with if we
want to test whether the choice of column matters at all.

• Biggest objective drop. Whenever the reduced cost is negative, we explicitly cal-
culate the step length, and we pick the column that maximizes the absolute value
of the reduced cost times the step length.

• Devex pricing. This method was suggested by Harris [10], and is also discussed
in Murtagh [18]. The idea is to use a consistent framework in which to measure
the distance moved during each pivot step. In the standard pricing scheme one
can think of distances measured in the space of the nonbasic variables, but since
the nonnegative variables change from iteration to iteration, so too does the frame-
work in which one operates. The key is to scale the reduced costs by suitable
correction factors which approximate the correct distance measure and to perform
simple updates to the weights at each iteration.

• Steepest edge. The idea is to follow the steepest edge of the polytope of feasible
solutions, where steepness is measured not in the space of non-basic columns, but
in the space of all columns. Similar to devex pricing, one uses scale factors which
multiply the reduced costs. Goldfarb and Reid [9] developed a recursion formula
for the weights which makes this approach practicable.

We shall discuss numerical results in a later section. It turns out that it does
indeed matter which rule is used. Which scheme to prefer depends on two measures
of size. If the problem is large in terms of the number of possible right-hand sides,
but small to moderate in terms of LP size (less than 100 rows), the biggest objective
drop seemed to be best. If the problem is large in terms of LP size, the most negative
column and steepest edge pricings came out best.

4 Ordering schemes

The paper by Haugland and Wallace mentioned earlier [11] is mostly concerned about
the order in which right-hand sides are picked. That turns out to be very important
when using trickling down trees. Not very surprisingly, it is of less importance for the
tamping method. We chose to test the orderings listed below. All norms refer to the
distance between the given right-hand side and the mean. In all cases we tested both
increasing and decreasing distances.

242 H.L Gassmann, S. W. Wallace / Pricing and ordering schemes

Lexicographic ordering.

The Ll norm.

The L2 norm.

The L** norm.

Random order.

"Generalized Gray codes". Gray codes are a method to order binary codes in such
a way that two consecutive elements differ in exactly one bit. A similar scheme
was used by Berland [1] in arranging the extreme points of an n-dimensional
rectangle. In the current context, if the right-hand sides exhibit a lattice structure
(for example, when they are generated from the realizations of independently
distributed random variables), then one might order them such that consecutive
problems differ in exactly one right-hand side element. This ought to imply that
few pivots are needed to get from the optimal basis of one problem to the optimal
basis of its successor, and thus might be a sensible way to order the right-hand
sides. Bertsekas and Tsitsiklis [2, p. 50], give a construction of reflected Gray
codes that can be easily adapted to define this order.

The results in terms of CPU and total number of pricings certainly vary quite a
bit, often by several hundred percent, but we were not able to detect any patterns with
respect to which scheme to use. Since the only actual effect of the chosen scheme is
the picking of a paradigm problem when groups of right-hand sides left behind are
later picked up, this is perhaps not very surprising. However, we must repeat that
despite our inability to detect a pattern, there is a wide variation in performance.

5 Numerical results

The tests we performed fall into two broad categories. The first group of problems are
ten two-stage stochastic linear programs, as outlined in table 1. In addition to these
we tested seven (deterministic) problems from the netlib set [7]. Problem character-
istics of these problems are collected in table 12.

The problems described in table 1 are well-known examples from stochastic pro-
gramming, which is the setting that originally caused our interest in the questions
asked in this paper. Further information about the problems can be found in Birge [3]
or Gassmann [8]; problem 1 is also described in Louveaux and Smeers [15], prob-
lem 8 is from Mulvey and Vladimirou [17], problem 9 was taken from Sen et al. [19],
and problem 10 appears in Mulvey and Ruszczyriski [16].

We shall list two types of results in tables 2 to 11. The first, called "First bunch-
ing", refers to the first run through all the right-hand sides; the other, called "Over-
all", shows the results when adding up over all iterations needed to solve the two-
stage recourse problem by Benders decomposition. (For an outline of the code used,

H.1. Gassmann, S. W. Wallace / Pricing and ordering schemes 243

Table 1

Characteristics of the stochastic examples.

Problem name No. of rows No. of cols No. of RHS

1 Iouveaux 8 16 1280

2 sc205 23 22 800

3 scrs8 29 38 512

4 scsd8 21 140 216

5 scagr7 39 40 432

6 sctapl 61 96 216

7 scfxm I 149 225 96

8 mv3 108 303 80

9 ssn 176 706 210

10 storm 527 1260 200

Table 2

Results for example 1, louveaux.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
Steepest edge

30 0.6 32306 65
45 0.8 43250 92
24 0.4 13880 53
30 0.6 29717 66
17 0.5 26786 66

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical 30 0.6 32306 65
Random 31 0.7 14599 38
L2 norm, ascending 31 0.6 8597 32
L2 norm, descending not converged
Gray codes 30 0.6 32306 65

244 H.L Gassmann, S. W. Wallace /Pricing and ordering schemes

Table 3

Results for example 2, sc205.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
Steepest edge

7 0.3 120 3.9
7 0.3 156 4.0
7 0.3 118 4.1
7 0.3 119 4.2
7 0.3 126 4.2

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical
Random
L2 norm, ascending
L2 norm, descending
Gray codes

7 0.29 120 3.9
7 0.33 117 3.8
7 0.29 I00 3.2

11 0.39 99 3.5
7 0.29 133 4.0

Table 4

Results for example 3, scrs8.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
Steepest edge

235 1.1 301 1.9
119 1.0 174 1.8
10I 0.8 152 1.5
143 1. I 209 1.9
160 1.3 232 2.2

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical
Random
L2 norm, ascending
L2 norm, descending
Gray codes

235 1.1 301 1.9
116 0.8 162 t.7
126 0.9 178 1.6
150 0.8 186 1.7
194 1.1 266 1.9

H.L Gassmann, S. W Wallace / Pricing and ordering schemes 245

Table 5

Results for example 4, scsd8.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
Steepest edge

1831 6.0 1834 6.1
5970 18.0 9679 29.8

115 0.6 177 1.3
1342 6.4 1345 6.6
270 1.5 457 3.0

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical
Random
L2 norm, ascending
L2 norm, descending
Gray codes

1831 6.0 1834 6.1
I105 3.6 1573 5.6
765 2.6 1378 5.0
848 2.9 1178 4.4

1188 3.9 1191 4.1

Table 6

Results for example 5, scagr7.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
Steepest edge

30 1.0 343 8.3
35 1.1 342 8.2
30 1.0 206 7.4
24 0.9 335 8.4
28 0.9 197 7.8

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical
Random
L2 norm, ascending
L2 norm, descending
Gray codes

30 1.0 343 8.3
30 1.0 392 7.8
30 1.0 427 8.2
30 1.0 348 8.3
30 1.0 347 8.3

246 H.L Gassmann, S. W. Wallace / Pricing and ordering schemes

Table 7

Results for example 6, sctapl.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
Steepest edge

991 4.7 1061 5.9
525 3.3 760 5.0
117 2.1 180 3.3

1020 6.0 1059 7.1
547 4.2 576 3.0

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical
Random
L2 norm, ascending
L2 norm, descending
Gray codes

991 4.7 1061 5.8
1401 6.0 1455 7.2
1463 6.2 501 7.2
572 3.3 611 4.6
991 4.6 1061 5.8

Table 8

Results for example 7, scfxml.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative
Random
Biggest drop
Devex
S~epest edge

194 6.1 1734 49
1344 45.9 11545 143
163 9.7 1113 49
180 5.1 1434 46
152 5.6 1223 49

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical
Random
L2 norm, ascending
L2 norm, descending
Gray eodes

194 6.1 1734 49
194 6.2 1703 48
194 6.1 1725 49
194 6.2 1757 50
194 6.1 1734 49

H.L Gassmann, S. W. Wallace / Pricing and ordering schemes 247

Table 9

Results for example 8, mv3.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative 5287 34.6 13739 97
Random 1245 8.6 15665 114
Biggest drop 216 2.9 8610 174
Devex 7756 65.9 14986 136
Steepest edge 7584 77.9 14316 177

Table 10

Results for example 9, ssn.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative 34965 692 > 107 (i)
Random 89272 1775 (4)
Biggest drop 8721 801 > 2 x 106 (2)
Devex 7086 180 (4)
Steepest edge 4194 139 > 2 x 106 (3)

212,000
n.a.
> 350,000
n.a.
> 160,000

(1) Stopped after 10,000,000 pivots and 279 calls to the bunching routine.
(2)Stopped after over 2,000,000 pivots and 300 calls to the bunching routine.

Total CPU time: over 100 hours.
(3) Stopped after over 2,000,000 pivots and 300 calls to the bunching routine.

Total CPU time: over 45 hours.
(4) Stopped after first call to bunching routine.

see Gassmann [8].) We report both the number of pricing operat ions carried out and

the nu m ber o f CPU seconds used on a Sun SPARCstat ion 10 computer .
O f course , to the extent that the pricing and order ing schemes also affect the

number o f outer i terations needed, the Overal l statistics are less informat ive than the

First bunching results. Note, however , that this can only happen i f we are faced with

dual degeneracy. Therefore , in general, the Overal l setting can be seen as jus t a larger
example . In each co lumn of the tables that follow, we have indicated with b o l d type

w h e n e v e r there is a c lear winner. Some o f the order ing schemes ment ioned in sect ion
4 are not reported, since orderings with respect to different norms gave very similar

results to the L2 norm.

Look ing at tables 2 to 11, we see a few clear conclus ions along with a number o f
ques t ion marks. Whi le there are large di f ferences in the per formance o f the order ing

248 H.L Gassmann, S. W. Wallace//Pricing and ordering schemes

Table 11

Results for example 10, storm.

Effects of pricing strategies

First bunching Overall

Pricings CPU Pricings CPU

Most negative 120543 7048 997662 64967
Random n.a. n.a. n.a. n.a.
Biggest drop 90893 69512 413654 156057
Devex 109060 8201 868357 66535
Steepest edge 106710 20351 470307 63258

Effects of ordering schemes

First bunching Overall

Pricings CPU Pricings CPU

Lexicographical 120543 7048 997662 64967
Random n.a. n.a. n.a. n.a.
L2 norm, ascending 122995 7098 981442 62336
L2 norm, descending 123460 7140 945451 59831
Gray codes n.a. n.a. n.a. n.a.

schemes, no obvious strategy suggests itself. On some problems, the lexicographical
order is best, on others some reordering is useful. On some problems (especially prob-
lem scsd8) it is best to start near the centre and work one's way outward; on others
(such as problem sctapl) it is best to move towards the centre. Even random ordering
may be best in some instances (problem scagr7). The only definite conclusion regard-
ing ordering schemes is that generalized Gray codes perform very similar to the
natural lexicographical order, and so this option does not appear to be worth the cost
of reordering.

Conclusions regarding pricing schemes are far more apparent. First, picking a
random column does not seem useful. In no case was that option best. Devex pricing
and steepest edge pricing are very similar in philosophy, and on numerical grounds,
steepest edge pricing appears superior. This leaves a comparison between most nega-
tive, biggest drop and steepest edge.

Goldfarb and Reid found that steepest edge pricing is generally superior to most
negative reduced cost in problems with one right-hand side, and this conclusion is
upheld for the most part in our study as well. There are some exceptions, notably
problems 2 and 8, both of which are somewhat anomalous. Problem 2 has very few
rows and columns, while problem 8 has the fewest right-hand sides of all problems
considered, so that bunching is not as effective here as on the other problems. In
general, however, steepest edge wins out over most negative, particularly if the

H.L Gassmann, S. W. Wallace / Pricing and ordering schemes 249

number of right-hand sides is large. If the number of right-hand sides gets very large,
the number of pivots is the deciding factor, and therefore biggest drop should win,
followed by steepest edge pricing.

What came as somewhat of a surprise to us was the good showing of biggest drop
on small problems, but in hindsight that should perhaps not have been so surprising
after all. When the problem size is small, only few columns exist that can price out
negatively, so the ratio test will not be triggered all that often. In addition, these prob-
lems are characterized by many right-hand sides, so that the number of pivots should
be the prime determinant of speed.

The final question concerns the number of right-hand sides beyond which biggest
drop will be superior to steepest edge in terms of CPU time. Our conjecture is that
this limit depends on the number of rows and columns and will increase as the number
of rows gets larger. An informal rationalization of this conjecture might go as fol-
lows. First, as the number of right-hand sides increases, the pricing operation will
take a smaller and smaller fraction of the overall time. This is so because one pricing
operation is sufficient to deal with an entire "bunch" of problems, but the ratio test
must be performed separately for each right-hand side. Thus the strategy with the
fewest iterations will win out in the long run. On the other hand, the effort in biggest
drop grows faster than the effort in steepest edge if the problem dimensions are in-
creased. Of course the work in steepest edge pricing increases with the problem size,
but this is offset by the added work in each ratio test. The main point is that more
columns means more eligible columns - on average - and thus a larger number of
ratio tests that biggest drop must compute. Taken together, this means that for larger
problems more right-hand sides are needed before biggest drop becomes cheaper than
steepest edge. More computational testing is needed to make this statement more
precise.

For further illustration we have included eight figures. In figures 1 to 6, we have
shown CPU seconds and iterations (pricings) for examples 7, 9 and 10. The horizon-
tal axis represents the iteration number in MSLiP. Therefore, the figures demonstrate
the changing workload as the algorithm progresses. Figures 3 and 4 in particular show
how the algorithm settles down as the first-stage variables approach their optimal
values. Comparing these two figures we see clearly how both biggest drop and steep-
est edge pricing use far fewer pricings per bunching operation than most negative,
but on the CPU seconds most negative comes out ahead of biggest drop, for the
reasons explained in the previous paragraph.

Problem 9 appears to be extremely difficult, and we were not able to solve it to
optimality. After nearly three days of elapsed time, a global iteration maximum was
triggered in the most negative pricing run and the program was halted. Other pricing
schemes apparently got us no further to the optimal solution and were also stopped
prematurely. In addition, bunching did not seem to help as the right-hand sides are
quite diverse. Figures 5 and 6 show large fluctuations from one iteration to the next.
None of the methods seem to stabilize, and it is difficult to determine their relative

250 H.I. Gassmann, S. W. Wallace / Pricing and ordering schemes

t -
O
U

13.
U

i0 i

Mostneg--
Maxdrop

Steep

i0 20

.,A ,,...., A.=. , ,

30 40 50 60 70

Iteration no.

Figure 1. CPU seconds per bunching operation, problem 7 scfxml.

8 0

g,
t,,--

'S

6
Z

2 0 0

150

I00

5 0

i

Mo~tneg--
Maxdrop

Steep

10 20 30 40 50 60 70

Iteration no.

Figure 2. Number of pricings per bunching operation, problem 7 scfxml.

80

H.L Gassmann, S.W. Wallace / Pricing and ordering schemes 251

C
0
U

Q.

t)

3000

2500

2000

1500

i000

500

I

Mostneg --
Maxdrop

Steep

I~ ~ ",
i

r ' , l "] ~, l " , / V " - ' - - " ' , , - / ' - / ' J " - . , . , ' J ' , . - ,
'~ "~ ,..1 "I

I I I I

0 20 40 60 80 i00

Iteration no.

Figure 3. CPU seconds per bunching operation, problem 10 storm.

120

C "G

6
2

30000

25000

20000

15000

I0000

5000

0

i

Mostneg --
Maxdrop

Steep

i~.::
i:., 0~0 , .. [I:

!'tr V ~h| v I I |

20 40 60 80 i00

Iteration no.

Figure 4. Number of pricings per bunching operation, problem 10 storm.

120

252 H.I. Gassmann, S. W. Wallace / Pricing and ordering schemes

t-

O o

~L
U

2 0 0 0 , , , ,

0o I, !li
"°°'°° ',11! ,t 12oo I i i I '

tl, , I~:,
~ooo . , lh . ' i ! i l ~ t ~ j !

6 0 0

4oo ~:.~~' F~ ~ ~ -i

2 0 0

0 I I I I

0 50 I00 150 200 250 300

M'osEneg -- I %~:o: ----~ j

,, ! ii
~ I I ! ~I~

, , l l ~ i
"~,.,~i~ih. ! '

d "' I., . I

I .~ , :j. ~:','

i terat ion no.

Figure 5. CPU seconds per bunching operation, problem 9 ssn.

r

"E

6
Z

50000 j , , ,

tl I . I I Most n e g -
45000 Maxdr p ----[

35000

30000

25000 i i

.oooo , h, i;.,' ~!~ ~,i
15000 ~:!!.,~ ,.~!,,i~ ~ 'i~:'~'~v i,~'i!~ii~;'t."::i,!i~iti' ~' ~i. i~i~'~i~5~,'~.,J ~ ~i'~zu

~i 'i"~"' :"::! " ~ ' ' .' I' ~I :'''~ ~'" : ,: ,: ,~., ,

Ij| . , , / I I - i1'..,~",, ' ~ ~'~, ~'~,' "1 ~u' ~ ' F I ~ '"~.~1 ' ~ " , ~ ' : . ~ ' " v ~ ' ~ ' ~ 5ooo ' " " f ' "~ I "~ ' " " i "~ " ~ "I . , , , Y ,,r
, ~ ,~ .t i

0 I I I I I
0 50 100 150 200 250 300

I te ra t ion no.

Figure 6. Number of pricings per bunching operation, problem 9 ssn.

H.L Gassmann, S. W. Wallace / Pricing and ordering schemes 253

0
U

U

900

800

700

600

500

400

300

200

! !

.... M.Q _sI:_Q 9g..~..
.__~- - " Maxdrop --~--

------" * Steep

s "~ /,,

I °........°°....

U V , ° ; , - ' - - 1 - . . . - -
. ° -/

i00 I I I I I

0 50 i00 150 200 250

I teration no.

Figure 7. Cumulative average of CPU seconds, problem9 ssn.

300

e-

°--

K

6
Z

40000

35000 ~~s~.~_.._..~/
30000
25000

2 0 0 0 0

15000

i0000

5000

!

Mostneg

Maxdrop
steep

o°-°----... °...---"
.°
/

/
.,--- - ..

I I I I I

50 I00 150 200 250 300

I teration no.

Figure 8. Cumulative average number of pricings, problem 9 ssn.

254 H.L Gassmann, S. W. Wallace / Pricing and ordering schemes

merits from the picture. For that reason we also included cumulative averages in
figures 7 and 8 which make the relative rankings of the three pricing schemes much
more apparent. Again, biggest drop is best in terms of the number of pricing opera-
tions, followed by steepest edge, but again biggest drop is the worst of the three in
terms of CPU time used.

It bears pointing out that very little bunching takes place in problem 9, so essen-
tially a large number of LPs are solved (from warm starts). Our findings in this case
are directly comparable to Goldfarb and Reid's, and they show the same conclusions.

We ran a second set of tests using deterministic LPs from the netlib set and arbi-
trarily perturbing three of the right-hand sides. (These problems do not have time-
staged structure, and no attempt was made to decompose them.) The problems were
chosen to give a reasonable mix of sizes in the hope that additional information would

Table 12

Characteristics of the netlib problems.

Problem name No. of rows No. of cols Max. no. of RHS

11 afiro 28 32 1000
12 adlittle 57 97 1000

13 share2b 97 79 1000
14 brandy 221 249 1000

15 scorpion 389 358 1000

16 shell 537 1775 729
17 czprob 930 3523 512

be gathered concerning the performance of the pricing schemes in relation to the prob-
lem sizes. For each problem we chose four different randomizations of the right-hand
sides, using 8, 27, I25 and 1000 realizations on most problems. (For the larger prob-
lems shell and czprob we had to show some restraint on the largest instances due to
memory restrictions.)

The results are in general agreement with the findings for the two-stage stochastic
problems, that is to say, biggest drop and steepest edge pricing tend to outperform
most negative pricing on iteration counts, but the CPU times behave somewhat dif-
ferently. For biggest drop pricing, the argument has been stated before. What came as
a bit of a surprise was the performance of steepest edge pricing on the large problems
shell and czprob. After some more checking, it was found that whenever the tamping
algorithm switched to a new paradigm problem, the edge weights had to be recomputed.
More work in this area might improve the picture.

The ordering schemes are again inconclusive. However, since the same ordering
scheme seemed to work quite well for different numbers of realizations on the same
problem, it may be possible to identify general rules to infer promising strategies

H.L Gassmann, S. W. Wallace / Pricing and ordering schemes 255

Table 13

Results for example 11, afiro.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Most negative 16 0.09 17 0.12 20 0.31 23 2.16
Steepest edge 4 0.05 4 0.07 7 0.25 8 1.71
Biggest drop 3 0.04 3 0.05 3 0.20 4 1.67

Effects of ordering schemes

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Lexicographical 16 0.09 17 0.12 20 0.31 23 2.16
L2 norm, ascending 16 0.08 47 0.23 48 0.53 81 2.77
L2 norm, descending 16 0.08 20 0.14 20 0.35 30 2.26
Random 9 0.06 47 0.22 20 0.34 40 2.85
Gray codes 16 0.09 20 0.13 23 0.35 71 2.82

Table 14

Results for example 12, adlittle.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Most negative 210 2.2 608 6.5 2451 27.7 12171 159
Steepest edge 65 1.6 138 3.8 370 12.6 524 29
Biggest drop 60 1.8 116 3.7 196 6.7 352 18

Effects of ordering schemes

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Lexicographical 210 2.2 608 6.5 2451 27.7 12171 159
L2 norm, ascending 210 2.2 210 2.4 501 6.4 4076 60
L2 norm, descending 210 2.2 553 6.1 2182 25.0 5792 83
Random 222 2.4 663 7.1 4089 25.2 4490 66
Gray codes 210 2.2 608 6.5 2451 27.5 12171 159

256 H.L Gassmann, S.W. Wallace//Pricing and ordering schemes

Table 15

Results for example 13, share2b.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Most negative 144 2.3 434 6.9 1176 20.3 4794 98
Steepest edge 65 2.0 92 4.7 204 11.5 326 33
Biggest drop 27 1.1 49 2.1 84 4.6 125 17

Effects of ordering schemes

8 scenarios 27 scenarios 125 scenarios I000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Lexicographical 144 2.3 434 6.9 1176 20.3 4794 98
L2 norm, ascending 144 2.4 200 3.6 752 13.8 1344 37
L2 norm, descending 144 2.4 150 2.8 1983 32.6 9624 180
Random 240 4.0 375 5.7 518 10.5 5543 109
Gray codes 140 2.2 424 6.7 1352 22.5 4815 98

Table 16

Results for example 14, brandy.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Most negative 680 27 2522 I01 11756 470 85222 3506
Steepest edge 329 31 1246 122 5129 503 31943 3518
Biggest drop n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

Effects of ordering schemes

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Lexicographical 680 27 2522 101 11756 470 85222 3506
1.,2 norm, ascending 680 27 2573 I04 8170 347 65761 2724
L2 norm, descending 680 27 1918 78 8896 376 49554 2124
Random 606 25 2026 83 7710 332 29186 1362
Gray codes 680 25 2522 101 11756 471 85222 3500

H.L Gassmann, S. W. Wallace / Pricing and ordering schemes 257

Table 17

Results for example 15, scorpion.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Most negative 164 9.6 420 26.6 1011 72.6 4492 400
Steepest edge 44 11.1 117 43.6 252 120.7 372 262
Biggest drop 53 6.4 149 19.7 348 53.0 631 164

Effects of ordering schemes

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Lexicographical 164 9.6 420 26.6 1011 72.6 4492 400
L2 norm, ascending 164 9.6 133 8.1 190 16.7 257 60
L2 norm, descending 164 9.6 302 21.3 123 15.8 137 69
Random 139 7.7 223 13.8 586 46.1 225 73
Gray codes 164 9.7 420 26.8 1011 72.9 4492 398

Table 18

Results for example 16, shell.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 729 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Most negative 32 4.0 69 9.5 102 21.1 137 68.1
Steepest edge 28 21.0 71 83.6 110 197.6 122 272.6
Biggest drop 46 12.3 91 27.6 140 39.8 233 103.5

a priori . The present paper did not deal with this issue. (It should also be poin ted

out that p rob lem shell has a slightly different structure f rom the other p roblems in

that the randomness was in t roduced into the bounds o f some o f the variables. The

tamping a lgor i thm goes through unchanged for this kind o f p rob lem (since bounded

var iables are a special fo rm of constraint) , but the routine e mp l o y e d to sort the f ight-

hand sides cou ld not deal with it.)

258 H.L Gassmann, S. W. Wallace/Pricing and ordering schemes

Table 19

Results for example 17, czprob.

Effects of pricing strategies

8 scenarios 27 scenarios 125 scenarios 512 scenarios

Pricings CPU Pricings CPU Prieings CPU Pricings CPU

Most negative 2444 513 7635 1611 35126 7439 139683 29668
Steepest edge 1640 1897 5385 6439 21803 26488 83872 102,000
Biggest drop 1567 14025 5446 45631 n.a. n.a. n.a. n.a.

Effects of ordering schemes

8 scenarios 27 scenarios 125 scenarios 1000 scenarios

Pricings CPU Pricings CPU Pricings CPU Pricings CPU

Lexicographical 2444 513 7635 1611 35126 7439 139683 29668
L2 norm, ascending 2444 513 3598 772 13091 2833 57257 12256
L2 norm, descending 2444 513 7734 1631 35735 7568 140801 30389
Random 1209 257 3757 799 13914 2994 251262 53153
Gray codes 2444 514 7635 I610 35126 7454 139683 29433

6 Concluding remarks

The purpose of this paper has been to discuss some computational aspects of solving
many LPs that differ only in the right-hand sides. Our interest has been to solve
stochastic programming problems, although the results apply to other contexts as well.

We have discussed a number of algorithmic principles for solving many LPs, and
shown how advanced versions of warm starts, such as bunching, trickling down and
implicit bunching can be used. We used Gassmann's code MSLiP and tested different
pricing and ordering schemes. The latter gave us no clear results.

However, we found that it is indeed worthwhile considering pricing regimes other
than the most negative reduced cost. The alternative approaches cost (substantially)
more per pricing, but can still pay off because of savings related to the large number
of problems that are to be solved. For almost all problems, the best idea was to take
the column with the largest drop in the objective. Only for problems with a large
number of rows did it not come out best in terms of CPU. In that case, the steepest
edge approach seemed best.

Acknowledgements

The first author was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC). Much of the work reported in

H.L Gassmann, S.W. Wallace/Pricing and ordering schemes 259

this paper was done while the first author spent a sabbatical leave at the Univers i ty o f

Trondhe im. The host insti tute 's hospital i ty and use o f compute r equ ipment are grate-
ful ly acknowledged . BjOm Nygren and Kjetil Haugen contr ibuted valuable discus-
sions and insight. We fur ther thank the associate edi tor and two anonymous referees

fo r helpful comment s on an earlier draft of this paper.

References

[1] N.J. Berland, Stochastic optimization and parallel processing, Ph.D. Thesis, Department of
Informatics, University of Bergen, February 1993.

[2] D.P. Bertsekas and J.M. Tsitsiklis, Parallel and Distributed Computation, Prentice-Hall,
Englewood Cliffs, New Jersey, 1989.

[3] J.R. Birge, Decomposition and partitioning methods for multistage stochastic linear programs,
Operations Research 33, 1985, 989-1007.

[4] J. Bisschop and A. Meeraus, Matrix augmentation and partitioning in the updating of the basis
inverse, Mathematical Programming 13, 1977, 241-254.

[5] V. Chv~ttal, Linear Programming, W.H. Freeman, New York, 1980.
[6] B. Dodin, Bounding the project completion time in PERT networks, Operations Research 33, 1985,

862-881.
[7] J.J. Dongarra and E. Grosse, Distribution of mathematical software via electronic mail, Communi-

cations of the ACM 30, 1987, 403-407.
[8] H.I. Gassmann, MSLiP: A computer code for the multistage stochastic linear programming prob-

lem, Mathematical Programming 47, 1990, 407-423.
[9] D. Goldfarb and J.K. Reid, A practicable steepest-edge simplex algorithm, Mathematical Program-

ming 12, 1977, 361-371.
[10] P.M.J. Harris, Pivot selection methods of the devex LP code, Mathematical Programming 5, 1973,

1-28.
[11] D. Haugland and S.W. Wallace, Solving many linear programs that differ only in the fight-hand

side, European Journal of Operational Research 37, 1988, 318-324.
[12] J.L. Higle and S. Sen, Stochastic decomposition: An algorithm for two-stage linear programs with

recourse, Mathematics of Operations Research 16, 1991, 650-669.
[13] J. Kamburowski, Bounds in temporal analysis of stochastic networks, Foundation of Control En-

gineering 10, 1985, 177-185.
[14] G.B. Kleindorfer, Bounding distributions for a stochastic acyclic network, Operations Research

19, 1971, 1586-1601.
[15] E Louveaux and Y. Smeers, Optimal investments for electricity generation: A stochastic model and

a test problem, in Numerical Techniques for Stochastic Optimization, Yu. Ermoliev and R.J-B Wets,
eds., Springer, 1988, pp. 445-454.

[16] J.M. Mulvey and A. Ruszczyfiski, A new scenario decomposition method for large-scale stochastic
optimization, Technical Report, Department of Civil Engineering and Operations Research,
Princeton University, May 1992.

[17] J.M. Mulvey and H. Vladimirou, Stochastic network optimization models for investment planning,
Annals of Operations Research 20, 1989, 187-217.

[18] B.A. Murtagh, Advanced Linear Programming: Computation and Practice, McGraw-Hill, New
York, 1981.

[19] S. Sen, R.D. Doverspike and S. Cosares, Network planning with random demand, Technical Report,
SIE Department, University of Arizona, Tucson, AZ, December 1992.

[20] A.W. Dhogan, Bounding distributions for a stochastic PERT network, Networks 7, 1977, 359-381.
[21] R.J-B Wets, Stochastic programming: Solution techniques and approximation schemes, in Math-

ematical Programming: The State of the Art, A. Bachem, M. Gr6tschel and B. Korte, eds., Springer,
Berlin, 1983, pp. 566-603.

[22] R.J-B Wets, Large scale linear programming techniques, in Numerical Techniques for Stochastic
Optimization, Yu. Ermoliev and R.J-B Wets, eds., Springer, Berlin, 1988, pp. 65-94.

