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Second-order scenario approximation and refinement 
in optimization under uncertainty* 

N.C.P. Edir is inghe and G-M. You 
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When solving scenario-based stochastic programming problems, it is imperative that the 
employed solution methodology be based on some form of problem decomposition: 
mathematical, stochastic, or scenario decomposition. In particular, the scenario decom- 
position resulting from scenario approximations has perhaps the least tendency to be 
computationally tedious due to increases in the number of scenarios. Scenario approxi- 
mations discussed in this paper utilize the second-moment information of the given 
scenarios to iteratively construct a (relatively) small number of representative scenarios 
that are used to derive bounding approximations on the stochastic program. While the 
sizes of these approximations grow only linearly in the number of random parameters, 
their refinement is performed by exploiting the behavior of the value function in the 
most effective manner. The implementation SMART discussed here demonstrates the 
aptness of the scheme for solving two-stage stochastic programs described with a large 
number of scenarios. 

Keywords: Bounds on stochastic programs, second-order scenario approximation, 
simplicial partitioning of joint domains. 

1 Introduction 

Incorpora t ing  uncer ta inty  into mathematical  opt imizat ion models  for  decision making  

is beco m ing  increasingly popular  due to at least two reasons: deve lopmen t  of  nove l  

theore t ica l  and a lgor i thmic  p rocedures  for  solving such models  ef f ic ient ly ;  an 

increas ing  n u m b e r  o f  rea l -wor ld  appl ica t ions  that demons t ra te  the super ior i ty  o f  

s tochast ic  solut ions ove r  their  determinist ic  counterparts .  A recent  stochastic program-  

ming appl icat ion for  p lanning the f inances o f  a major  proper ty  and casual ty insurer  
is d i scussed  in Car in6  et al. [4]. In such p lanning  problems,  typical ly,  the fu ture  
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uncertainty is described using a set of outcome scenarios that the decision-maker 
deems appropriate. However, as the number of scenarios under consideration becomes 
very large, which is the case usually in practice, the resulting stochastic programming 
model may soon be pushed outside our current solution capability. 

The numerical procedures in stochastic programming may be categorized in 
at least three ways: mathematical decomposition, sampling-based techniques, and 
bounds-based-approximation methods. The L-shaped decomposition (Van Slyke and 
Wets [32]) and its nested application for multistage problems (Birge [1], Gassmann 
[21]); and the scenario-aggregation techniques such as the progressive hedging 
algorithm due to Rockafellar and Wets [31] may be viewed as mathematical decom- 
position approaches. For parallel implementations, see Birge et al. [2] for instance. In 
sampling-based methods, one iteratively draws random samples from the underlying 
scenario-space for computing stochastic quasi-gradients (see Ermoliev [ 11 ], Ermoliev 
and Gaivoronsky [12]) or for stochastic L-shaped decomposition (Higle and Sen [23]), 
procedures which enjoy asymptotic convergence properties. Noting that the variance 
of the sample is the key to the convergence process, various variance reduction 
schemes, such as importance sampling within the L-shaped method (Dantzig and 
Glynn [5], Infanger [25]), have been employed for better algorithmic performance. In 
contrast to the above approaches, this paper is concerned with the third solution tech- 
nique, namely, the successive approximation procedure based on computable bounds 
on the optimal objective value, see Ermoliev and Wets [13] for details. 

In developing approximations, typically, one focuses on the value function ¢ 
arising in stochastic programming, being evaluated for the decisions x taken so far 
and the random variables co observed so far, hence written as O(x, co). In an equiva- 
lent two-stage decision problem, consequently, the stochastic program is formulated 
as (see Kall [26]): 

Z* " = minlc'X + s~sPS¢(x, cos)} (1) 

where the scenarios cos E R M, with associated probabilities Ps, are indexed in the set 
S. We use ~ to denote a set in R M that contains the set of given scenarios { cos: s E S}. 
The feasible set for choosing x is denoted by X C R n'. The value function ¢ is 
determined by solving a second optimization problem for recourse decisions yS ~ Rn2 
under each scenario cos, for a chosen first-stage decision x. Therefore, if there are 
many scenarios under consideration, i.e. IsI is large, then (1) becomes simply too 
large to solve in a straightforward manner, i.e. by casting the problem in the so-called 
deterministic extensive-form. To alleviate this difficulty, one may resort to approxi- 
mating either the scenario distribution (cos, Ps) along with its domain f~ or the value 
function ¢, with the aim of obtaining accurate bounding functions: 

i//L (x) < iV(x) := ~ ps¢(x, co s ) <_ IV v (x), 
s ~ S  

(2) 
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such that computing the lower and upper approximations ~L(X) and ~u(x), respec- 
tively, is relatively easy compared to computing ~(x). Furthermore, the bounds in (2) 
are required to be tight, for instance, in the sense of a certain generalized moment  
problem (e.g. see [8, 9]), or at the very least, the approximations are required to 
coincide with ~(x), i.e. hence exact, if ~ is linear (or bi-linear) in co. 

While the computational simplicity depends on size as well as exploitable struc- 
ture available in the approximations ~L(X) and ~v(x) ,  tightness of the bounds is 
dependent  on such factors as the extent to which functional information of 0 and 
probabilistic information of the underlying scenario space could be utilized in con- 
structing the approximations in (2). 

The two main functional properties that have been exploited for constructing 
approximations are the convexity of ~ in co or the convex-concave  saddle property of 

in co. These properties naturally arise in stochastic linear programming, when one 
considers the fol lowing second-stage problem for determining recourse decisions 
yS ~ Rn2 (under the scenario index s ~ S): 

(b(x,~S,rl s) := inf{q(rlS)'y s. Wy s = h(~ s) - T (~S)x ,y  s > 0}, (3) 
yS 

where the random vector co represents the right-hand side random components  ~ ~ .=. 
C R r and the objective random components 77 ~ O C •L, i.e. co = (~, 77). In particu- 
lar, f~ ___ E x ® and all components  of co may be correlated. Moreover, T, h, and q are 
affinely generated according to: 

K 

T(~) = To + ~ Tk~k, h(~) = H~ + ho, and q(rl) = Qrl + qo, (4) 
k=l  

where H E R m2×K, Q E R n2×L, and To . . . . .  T/¢ E R mz×n' are fixed matrices, while h0 E R m2 
and q0 E R n~ are fixed vectors. Therefore, ~(x , . , . )  is a c o n v e x - c o n c a v e  saddle 
(polyhedral) function for each x ~ X. In the absence of uncertainty in the objective 
coefficients of (3), ~ is a convex function in 4- Also, by assuming a complete recourse 
matrix W (see, Kall [26]) and that the set { Jr : lrW < q(r/) } is non-empty, we obtain 
as a proper function. 

Under  the convex case, a standard strategy is to use linear (or piecewise-linear) 
functions to approximate the convex ~ from above and below. This yields the Jensen 
lower bound and the Edmundson-Madansky  [29] upper bound, which use the first 
moment  information of the given scenarios. While the latter upper bound in multi- 
dimensions is only applicable with rectangular supports under stochastic independence 
of random components,  the extension to the dependent case under general polyhedral 
domains is given in Gassmann and Ziemba [22]. Incorporating joint moments ,  in 
addition to first moments,  Frauendorfer [14[ derived an upper bound under multi- 
dimensional  rectangles. 
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If we define first-order information of the underlying scenario space as those 
moment conditions in which each random variable is raised at most to the power of 
one, then all of the above-mentioned bounds can be categorized as first-order 
approximations of scenarios. Let us similarly define second-order approximations of 
scenarios as those utilizing moment information in which each random variable is 
raised at most to the power of two, and at least one such moment condition is used in 
computing bounds. Dula's [6] upper bound is an example of second-order approxi- 
mations in the convex case. 

Considering the saddle case, which indeed is the more general case, the usual 
strategy is to compute lower and upper approximating functions that are bi-linear 
in ~ and r/, see [8,9, 15, 16]. According to the foregoing definition, the bounds 
developed in the latter references may be classified as first-order scenario approxima- 
tions. Recently, new second-order approximations were proposed by Edirisinghe [ 10]. 
This paper is concerned mostly with details of second-order scenario approximations 
and their implementation for solving problems with a large number of scenarios. It 
develops that the second-order approximations are not only tighter than the first- 
order scenario approximations, but they also lead to more effective procedures for 
further refinement of the approximations. Moreover, these second-order approxima- 
tions are determined according to a unique representation of the underlying scenario 
set, thereby imparting a naturally decomposable structure to the approximating prob- 
lems which may thus be solved efficiently under parallel computation. 

The paper is organized as follows. Section 2 includes a review of the second-order 
approximations and a comparison with first-order approximations with regard to com- 
putational simplicity and tightness. Also included is a discussion on the iterative use 
of the approximations for solving stochastic programs and its convergence. Section 3 
discusses the basic framework of the iterative approximation and its detail. In par- 
ticular, various refining strategies are described. The implementation of the procedure 
is in section 4, while the computational experience with this implementation is in 
section 5. Section 6 concludes with some remarks. The required notation will be 
introduced as it becomes necessary. 

2 Scenario approximations and clustering 

Consider the stochastic program given in (1) along with the second-stage recourse 
function definition (3) in which uncertainty is described by the set of scenarios 
{ tos := (~s, r/S): s ~ S} for the (K + L)-dimensional random vector to = (~, r/). Scenario 
approximation is usually accomplished under 

(i) a certain geometric shape for either domain f~, or separately for E and O, cover- 
ing the scenarios {tos: s ~S},  and 

(ii) a set of moment information computed for the scenarios { toe: s ~ S}. 
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Usually, the shape of f~ is intimately related to the amount of moment information 
that can be utilized to construct upper and lower approximations. Accordingly, the 
resulting bounds can be classified as either first-order or second-order scenario 
approximations, see section 1 for the definitions. 

2.1 First-order approximations 

The two main types of approximations in this category are those due to Edirisinghe 
and Ziemba [8,9] and Frauendorfer [15, 16]. These approximations are based on 
utilizing marginal domains E and O (of the scenarios) and then constructing scenario 
distributions - one for lower and one for upper bound - involving the extreme points 
of  the marginal domains. 

Consider the domains .=. and O to be compact, being finitely generated by the sets 
of  extreme points {ui:iEI} and {vJ:j ~J}, respectively. 

When f l  is a multi-dimensional (compact) rectangle, thus .=. and O are rectangu- 
lar, bounds in [15] use the first-order joint moment information: 

seS l s~S 
(5) 

for 0 E  {0, 1}, l E {1 ..... L}, k E {1 ..... K}, Fl EBK, and 1"2 EBL, where Br is the set 
of  all subsets of  { I ..... K} and BL is the set of all subsets of  {1 ..... L}, to determine 
upper and lower approximating scenario distributions leading to inequalities of  the 
form (with probabilities denoted by ~ and _ ,  respectively): 

I J 

i~r(x) <_ ~_~ ~id)(x ' u i, ~ i )  and I~(x) >-- ~ ~ j ~ ( X , ,  ~J, I) j ), 
i=1  j=l 

(6) 

where I = 2 r and J = 2 L. It should be observed in the above that the approximating 
distributions are independent of the decision process x and the recourse function ~, 
and thus, when used in the stochastic program (1), the inequalities in (6) yield 
approximating linear programs with the so-called L-shaped decomposition structure. 
However, when the dimension of uncertainty is large, i.e. K and L are large, the 
approximating distributions themselves could contain a large number of scenarios 
- exponential in K and L - to be considered, which can render these approximations 
computationally prohibitive. 

A possible remedy for this situation - in reducing the number of approximating 
scenarios that one has to deal with - is perhaps the approximations in [8], wherein 
the domains E and O may be considered to be polytopes (of a smaller number of  
vertices), hence t )  itself is a polytope. But now, the first-order moment information 
that one can utilize is weakened to the following first and cross moments: 
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y ~ p s [ ~ ]  °' [1711 °2 for 01 ,02  E {0,1}. (7)  
sES 

Furthermore, the resulting approximations no longer possess, in general, the proper- 
ties of being independent of the decisions x and the function 0, i.e. approximating 
scenarios as well as probabilities fl depend on x and 0: 

/ J 
I~r(x) <_ Z fli(X)¢(x, ui, ~i (fl)) and I~(X) >_ Z ~__j(X)¢(X,, ~J (~_ff), I)J ). 

i=l j = l  

(8) 

Nevertheless, the above inequalities have been shown to generate lower and upper 
bounding functions which are piecewise linear convex, thus the resulting approxima- 
tions on (1) would necessitate at most solution of linear programs. Moreover, this 
lower approximating linear program would grow only linearly, i.e. O(L), in the 
constraints. Edirisinghe and Ziemba [10] showed how the latter approximations may 
be forced to have the desirable L-shaped structure for efficient solution whilst enjoy- 
ing the flexibility in choosing any polyhedral shape for domains. The implementation 
RAWFC (Rectangular Approximation With First and Cross moments) discussed in 
the latter reference uses rectangular (polyhedral) domains to solve large scenario- 
based stochastic programs when the dimension of uncertainty is sufficiently small. If, 
on the other hand, the domains .=. and O are chosen to be multi-dimensional simplices 
- thus, f~ is a x-simplex - then the approximations in (8) simplify to the format in (6), 
but now with I = K + 1 and J = L + 1. These are the bounds developed in [16] and 
implemented in [17]. 

The extensions of the above results when the scenarios are contained in un- 
bounded polyhedral domains appear in [9]. 

Towards sharpening the approximations (under the above bounding techniques), 
the usual strategy is to partition the domain (containing the scenarios) into non-over- 
lapping cells (of the chosen geometric shape), and re-apply the bounding technique in 
each cell of the partition. Major issues that need to be resolved in this exercise are: 

(i) how should a cell be chosen for further partitioning?, and 

(ii) how should a chosen cell be further subdivided? 

A cell (or cells) for further subdivision may be chosen based on a criterion which 
measures the probabilistically-weighted relative gap of lower and upper approximat- 
ing objective values for that cell, see [10] for instance. Regarding the second issue, 
one major task is determining directions along which further partitioning of the chosen 
cell can be carried out. The standard practice is to use the notion of degree of non- 
linearity of the recourse function along edges of the domain and to partition along 
directions which are perpendicular to such edges, see Frauendorfer and Kall [20]. 
Such practice is motivated by the fact that the aforementioned approximations are 
exact if the recourse function is linear in its domain. Nevertheless, since the first- 
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order approximations discussed so far are based on E and ®, a refinement process can 
only sub-divide the marginal domains, rather than the joint domain fL As a conse- 
quence, nonlinearity along joint-directions in ~ cannot be exploited in refining the 
approximations. 

A possible fix for this shortcoming might be to use joint-partitioning directions 
directly in f~, and then project the resulting partitioned cells on to .=. and 19 domains 
in order to continue using first-order approximations. For instance, f~ may be 
considered to be a (multi-dimensional) simplex and then under joint-partitioning of 
this simplex, the projected cells on E and 19 spaces become polytopes with at most 
(K + L + 1) vertices, see figure 1 for an illustration. Consequently, on the resulting 

tillon plane @lmplex~ 

Figure 1. Projection of simplicial partitioning. 

polytopes, first/cross moment bounds in [8] can be applied. This practice allows one 
to solve problems with larger dimensions of uncertainty since the sizes of these first- 
order approximations will now grow only linearly with partitioning. Such an imple- 
mentation is considered in the computational section of this paper, referred to as 
SPWFC (Simplicial Projection With First and Cross moments). 

However, the price one pays for this flexibility in partition-directions is the increase 
in the volume of the (simplicial) domain ~ containing the scenarios, which generally 
leads to weakening the tightness of the bounds on the objective value. Therefore, a 
natural strategy under such simplicial joint domains is to seek tighter approximations 
using higher-order moment information. The second-order approximations derived in 
Edirisinghe [7] are most appealing in that both second-order moment information as 
well as joint-partitioning in simplicial domains are admissible. We shall discuss them 
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in the following section, with particular attention to the refinement and convergence 
details. These approximations will be implemented later in this paper for solving large 
scenario-based stochastic programs. 

2.2 Second-order approximations 

Consider the joint  domain ~ to be a (K + L)-dimensional  simplex, having extreme 
points w i _ (u i, vi), i = 1 .. . . .  I : = K + L + 1. Define the I x / -d imens iona l  matrix V by 

V . =  

wl w? ... w ,  
... 

WI+L W2+L ... WiK+L 

1 1 . . .  1 

(9) 

Since f~ is a (K + L)-dimensional  simplex, V is a nonsingular matrix, the inverse of 
which is denoted by V -n. Define p E R / by 

p := V-1 s~ s , 

/5 j E R 1 for each l =  1 .. . . .  L by 

~l .= V-I [Zs~S 
: 

Psrl~ O~ s ` 

( Y~,os p,,7: 
and 15 k E R I for each k = I ..... K by 

~k .= v-~ :Z,~s pA::o" ]." 
Z,~spAi, ) 

(10) 

(11) 

(12) 

Then, the following bounding approximations hold: 

Theorem 2.1 [7] 
K+L+I~ } 

Z* <_ rain, c'x + ~_~ piq~(X ' (~i) (13) 
xEX 

and K+L+I/~ } 
Z* > nfin. c'x + ~ piq~(x ,if)i) (14) 

xEX .= 

for cb i := (ui,  ~ i ) and ~o i := (~i,1)i ), where 1 := Pff/Pi' l= 1 ..... L, and ~ := ]~k/pi, 
k = l  ..... K. 
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Since/~t  and ~k in (11) and (12), respectively, use second moments of the given 
scenarios, the bounding results in theorem 2.1 are second-order approximations. It is 
easy to show that the lower approximating scenario distribution { (if)i, Pi ): i = 1 ..... K 
+ L +  1} and the upper approximating scenario distribution { ( f f ) i ,p i ) :  i = 1 . . . . .  K 
+ L + 1 ) have the same first and cross moments as the original scenario distribution 
{(w s, ps): s E S}. However, simple numerical examples can be constructed to show 
that these approximating distributions may not have the same second moments as the 
original one. Consequently, in general, these second-order approximations may not 
represent solutions to the underlying genera l i zed  m o m e n t  prob lems;  see example 1 
and the discussion in [7]. For an illustration of the bounds in theorem 2.1 for K = L = 1, 
see figure 2, where we have denoted ( i  : = (~i, /) i  ) for i = 1 ..... K + L + 1. Also notice 
that ~-,K+L+I /~ i=1  Pi(  i = ~ : =  ~'seS Ps OJs 

I 
I 
I,,., o 

Figure 2. Second-moment bound for 
the expected recourse function. 

ws 

The approximations in (13) and (14) possess the required dual block-angular 
structure with at most (K + L + 1) blocks, in comparison to I sI blocks in the exact 
formulation (1). I sI denotes the cardinality of the scenario index-set S. Moreover, 
since IS[ is much larger than K + L + 1 - in practice, I sl is at least 2 r÷L - the 
approximations in theorem 2.1 are computationally much simpler than solving (1) 

directly. 
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2.3 Partitioning and convergence 

For refining the second-order simplicial approximation, when the domain f~ is 
partitioned, the ensuing cells of the partition are required to be simplices. Details of 
performing such a simplicial partition is discussed in section 3. 

Let SV:= {f~r[ r = 1 ..... Rv} represent such a partition (at some partitioning itera- 
tion v) of the joint simplicial domain f~ into subsimplices fl~ such that 

U a,= r,, arl ' l  a,,= 
r = l  

Vr ~ r'; r, r" E {1 . . . . .  R v }. (15) 

Let the corresponding index-sets of scenarios be S l ..... SRv, where S r : :  {sI (/)s E ~"~r, 
s ~ S}. Observe that the dependence of Sr on the iteration count v is suppressed for 
the convenience of exposition. The corresponding cell probabilities are evaluated 

Rv as Pr := Y'ses, Ps, where ~r=l Pr = 1. Under the cell-conditional first and second 
moments computed by 

1 ~ s s o psO9 k[o9 t] , 0 = 0 , 1 ;  k , l = l  . . . . .  K + L ,  (6) 
Pr s~S~ 

one obtains the upper and lower approximating (second-order) scenario distributions 
for cell Or, using a procedure similar to (9)-(14), {(rb i (r), Pi (r))li = 1 ..... K + L + 1 } 
and {((oi(r), pi(r))[i = 1 . . . . .  K + L + 1},respectively. The monotonicity of the ap- 
proximations under this partitioning procedure is given by the result below, which is 
straightforward to prove. 

T h e o r e m  2.2  
Under the above simplicial partitioning procedure of the joint domain f~, the second- 
order bounds behave monotonically for all x ~ X, i.e. 

and 

R v K+L+I 
IV(x ) _< I /¢~(x ) :=  E P r ~  'r(X) < E P if~(x'd)`) 

r=l i=1 

Rv K+L+I 
I~(X) _> l~t L (X) :-" E v,r v / ' t e l  (x)  _> piO(x, i), 

r=l i=I 

(17) 

where 
K+L+I K+L+I 

~ ' r ( x ) : =  E Pi (r)dp(x,~i(r)) and ~ / r ( x ) ' =  E pi(r)~( x,(Oi(r))" 
i=1 i=1 

(18) 

(I9) 

Corresponding to the above sequence of partitioning, one may obtain the sequence of 
upper and lower approximating objective value-sequences {Z~} and {Z~} by solving 
the linear programs 
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v X Z~ := rrfin{c'x + ~ ( x ) }  and Z~ := minlc'x + ~L( )}, (20) 
xeX xeX 

along with their optimal first-stage solutions x~ and x~, respectively. Due to theorem 
2.2, the sequence {Z~} is monotonically decreasing while {Z~.} is monotonically 
increasing. Furthermore, as long as maxr__ 1 ..... RvPr ~ 0 when v ~ ~,  the approximat- 

Rv ing scenario distributions P(r) lr=l can be shown to converge weakly to the original 
S distribution Ps[s=l. This yields limv~** Z~ = Z* and l i m v ~ ,  Z~ = Z*. 

The question of convergence of the approximate x-solutions to true optimal solu- 
tions of (1) can be answered by appealing to the theory of epiconvergence. Loosely 
speaking, epiconvergence here refers to the convergence of the epigraphical sets of 
the approximating functions (convex in x, in our case) to the epigraph of the original 
recourse function ~( . ) .  With weak convergence of the approximating probability 
measures along with the joint domain f~ being a (compact) simplex, due to Birge and 
Wets [3, section 2.11], one has the required epiconvergence of the approximating 
functions. Under epiconvergence, theorem 9 of Wets [33] shows that the set of 
approximate solutions belongs to the set of optimal solutions, i.e. 

lim sup[arg min gV ] C arg rrfin g, 

v where gV(x) := c'x + Ilt~(x ) (respectively, gV(x) "= c'x + Ilt L (X)) and g(x) := c'x 
+ Ig(x). Hence, {x~/} ~ x ' and  {x[} ~ x** hold as desired, where x* and x** are 
optimal solutions of the stochastic program (1). 

There are at least two related issues: stability and speed of convergence. While it 
follows from the preceding results that the approximations may be refined to a 
user-specified accuracy through a partitioning procedure, that the solution sets so 
generated behave in a continuous manner with respect to small perturbations in the 
approximating measures can be ensured by appealing to the stability results due to 
Kall [27] and Robinson and Wets [30]. The second important issue is how fast can 
the convergence (or a given accuracy for the upper and lower approximations) be 
achieved. Obviously, this depends on many factors such as the initial simplex used to 
contain the given set of scenarios, the manner in which simplicial partition of f~ is 
performed, as well as how efficiently one can solve the second-order approximations. 
These are the topics under discussion in section 3. 

A final remark is that solving the upper and lower approximations in (20) for sepa- 
rate first-stage solution vectors x~ and x[  does not help much in identifying cells 
(i.e. clusters of scenarios) of the current partition for further refinement. Observing 
that the lower approximating solution x[  is feasible in the upper approximating prob- 
lem, the standard strategy is to compute a weaker upper bound by 

- -  v v Z~ : = c'xVt, + Ig v (x L). (21) 
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Consequently, the accuracy of the second-order approximation for estimating the 
objective value Z* of (1), at some iteration v, can be evaluated on the basis of the 
current lower bounding solution x~ by (provided Z~ > 0) 

- 

< e, (22) 

i.e. if the relative gap of the upper and lower bounds for the current solution x[  is 
within a certain tolerance e, then no further refinement of the current approximation 
is needed. 

3 Simplicial partitioning for iterative approximation 

To apply the simplicial approximation technique presented in the preceding section, 
an initial (K + L dimensional) simplex which can contain the given set of scenarios is 
needed. Usually, in practice, scenarios are constructed by following random variable 
outcome-trees, see for instance Caririo et al. [4], and thus when the scenarios are 
viewed as points in the (K + L)-dimensional space, their convex hull C may be far 
from being simplicial. Thus, an initial simplex f~ covering this convex hull is generally 
expected to consist of a larger volume of zero-measure which typically contributes to 
weakening the approximations. However, when refining the approximations through 
a simplicial partition of this initial simplex ~ ,  one is able to iteratively remove the 
areas of zero-measure, a procedure later described as cell-redefining. 

3.1 Constructing an initial simplex £2 

Since the empty spaces in f~ adversely affect the tightness of the approximations, 
hence the speed of convergence, it is desirable to have an initial simplex as compact 
as possible. While many nonlinear programming formulations can be developed for 
this purpose, when the scenario set is large in number, such an approach becomes an 
onerous task in itself. Alternatively, one might determine a compact rectangle R con- 
taining C by defining: 

a j  " = n ~ { o ) s .  • } and flj " = max{6oS.. }, Vj = 1 . . . . .  K + L, (23) 
s ~ S  J s ~ S  .I 

x K + L r t ~  and setting R • = j =! t j ,  flj ]. Subsequently, a simplicial partition of this rectangle 
may be attempted since C C_ R.  However, this leads to increasing the number of 
simplices in the problem exponentially, and thus, may not be desirable from a com- 
putational point of view. Instead, we take a simplistic approach by adopting from 
Horst and Tuy [24] and modifying as follows: Let 

fx+,. } 
flo(S) "= max ,~ ~ t~jcoj (24) 

s ~ S  [ j = l  
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for some fixed coefficient vector t5 E R K+L such that gj > 0, j = 1 .... , K + L. Then, 
~ ( ~ )  defined by 

~'~(~) :---- 09 E R K + L  . Z ~ j ( . O  j _ flO(¢~) <_ O ,o ) j  -- O?,j >_ 0, Vj = 1 . . . . .  K + L ,  (25) 
j=l  

is a simplex containing C. Furthermore, this simplex is characterized by the set of  
extreme points "V : = {w 1 , wZ, . . . ,  w x + L + 1 }, where the j th  component of w I is w / =  aj 
for j  = 1 ..... K + L and the remaining vertices w i (for i = 2 ..... K + L + 1) are given by 

{a_~.[ if i ~ j + l ,  

W} (t~) = ~-,x+l ,. 1 (26) 
• flO(6)--2~k=l,k¢jOkOtk] if i = j + l .  

As a result, the degree of  uncertainty - defined as the maximum variability of the 
values that the random variables can take for a given domain - has increased when 
considering f~(B) instead of C. While this leads to the effect of  diluting the quality of 
approximations, the cell-redefining strategy discussed in the next section may be used 
to reduce the degree of uncertainty under a simplicial partition of ~ (S) .  

Nevertheless, the coefficient vector B may be chosen to control the effect of  the 
initial simplex on the approximations. For instance, the uncertainty in the objective 
coefficients typically has a lesser effect on the tightness of the approximations (as 
will be demonstrated in the computational section) than that in the right-hand side 
coefficients of  the recourse linear program. This motivates one to construct the 
simplex f~(6) such that the increase in the degree of uncertainty in the ~ components 
is smaller than that in the 77 components. This may be accomplished using the follow- 
ing simple result: 

Proposition 3.1 
For ej denoting the j th  elementary vector and t~ ~ R x+L being a given fixed coeffi- 

j+l  cient vector such that 6>  0, wj+l(~ + eej)  < wj (S) holds for every e > 0. 

Proof 
Z K+L  kCO . Rewriting, flo (tS) = maXs~ s {Cs + t~jco~ }, where we have defined Cs:= k~j,k=l 

X'K+L ~kak Clearly, G < Cs for all s ~S.  Hence, Also define G := ~ t~ j , k= l  

j+l  wj (•) = maxlCs/aj  + ¢_o~} - G /a j  
s~S  

= max{(C s - G)/Sj  + ¢.o~} 
s~S  

>__ max{(Cs - G ) / ( ~ j  + e) + ~ }  = wj+l( t~ + ee / )  
s~S  

holds since (Cs - G) > 0, k/s E S. [ ]  
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Accordingly, one would be motivated to assign smaller t~j for coordinates along 
which the underlying function is close to being linear. However, since the recourse 
function ~ depends on first-stage decisions x as well, implementation of this idea is 
somewhat  difficult. In section 5, we discuss this sensitivity of t$ on the tightness of 
the approximations. 

3.2 Cell-Redefining (C-R) procedure 

A C-R procedure was introduced and implemented in [10] in order to further tighten 
first-order bounds when partitioning in rectangular domains. In this section, we pur- 
sue a similar idea with regard to simplicial domains. 

Let us consider a simplicial partition of the initial simplex f~, as indicated in (15). 
In particular, at some iteration v of partitioning, for some r E { 1 .. . . .  Rv},  the cell £2r 
is a simplex itself in R x+L. The set of scenarios in this cell is described by { ogS: s E Sr }. 
Let Cr : =conv  { ms: s E Sr} , the convex hull. 

Definition 3.2 
The cell f~r is said to have removable volume of zero measure if there exists a simplex 
f~. such that Cr _ fY C f2r. 

The C-R procedure strives for such a simplex f~r (with the least possible volume) 
for a given cell f2 r. The motivation is that the upper and lower approximations on f~r 
will be much tighter than those on f~r. See figure 3 for an illustration in •2. 

al ioll 
cell 

Figure 3. Cell-redefining procedure for a simplex. 

For the convenience of exposition, let us drop the index r. The set of extreme 
points of f~ is {w 1 . . . . .  w K+L+I } and the associated vertex matrix is denoted by V, see 
(9). The cell-redefining procedure selects a vertex w j of f2, checks if this vertex can 
be replaced (i.e. redefined) by a point t ~ f~ such that the simplex 

f2' := conv{w I . . . .  , w J - l , t , w  j+l . . . . .  W K + L + I  } C ~'~, (27) 

and if so, replaces ~ by f~' provided that f~\fY is of sufficiently large volume. 
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by 
For each scenario co ~ (s ~ S) in f~, determine the convex multipliers A~(E ~K+L+ 1) 

/:) ~,s  . =  V - 1  (28) 

and thus 0 < ~ , } <  1 and x'K+L+I s - -  - -  L i = I  ~i = 1, Vs E S. The set of multipliers associated 
with vertex w i is represented by A i := {;I,~: s E S}. Observe that #i := max{Ai} is a 
measure o f  closeness of the scenarios (in the cell) to a given vertex w i. If/.t i is close 
to one, then of course one would not expect a significant reduction in the volume of 
f~ when the vertex w i is redefined. In fact, the best vertex for redefining, in this sense, 
is determined by the index 

j "= arg min{l.ti " i = 1 . . . . .  K + L + 1}. (29) 

Therefore, unless/ l j  < #*, a user-specified threshold value (<1), the C-R procedure 
should not be invoked. 

Suppose #j < #*, and thus, the vertex w j is to be replaced by the (K + L)-dimen- 
sional point t ~ f~ such that t is far thes t  as possible from w j, in the sense of the 
associated multipliers, such that (27) holds. This problem may be formulated as: 

minimize [V- I  ( t ) 1  (30) 
t~xx+£ 1 j 

subjectto v - l (  t ) 1  ->0, 

'l(°'/l  >0 
where I7' is the matrix that results when the j th  column of V is replaced by the 
column-vector (~) .  The inverse of I2 is obtained by ~,-1 = U V - I ,  where U is the 
eta-matrix given by 

1 0 - . .  0 ~| 0 . . .  0 

0 1 ... 0 /'2 0 ... 0 

0 0 . . .  0 1 0 . . .  0 
t j  

^ 

0 0 ... 0 tj+t 1 ... 0 

: : : 

tK+L+I 0 0 ... 0 0 ... 1 

U : =  (31) 
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and 

v - l ( t  I ~K+L+I. 1 := ~" E (32) 

Upon algebraic manipulation and simplification, (30) reduces to the following linear 
program: 

minimizetEa x+'~ V-I(J)( t )1 (33) 

subjectto V - ' ( t )  > 0 ' 1  - 

( t ) > o ,  V i = j , i = l ,  , K + L + I ; s E S ,  (MiV-l(J) - Z~ V-l(i)) 1 "'" 

where V -l(J) refers to the j th row of V -1. The LP in (33) has (K + L) variables and 
([SI + 1)(K + L) + 1 constraints. Thus, the dual problem, which is referred to as CRLP 
and has only (K + L) constraints, is easier to solve generally provided IS[ is not too 
large. Initially, when the number of scenarios under consideration is large, therefore, 
cell-redefining should not be invoked; besides, in the initial iterations, given the way 
the initial simplex is constructed, cell-redefinition may not yield a significant reduc- 
tion of the volume of zero measure. By setting/~* small enough, one may avoid the 
latter situation. However, as the simplicial partitioning procedure progresses, result- 
ing cells (~r) are likely to contain a smaller number of scenarios, i.e. I Srl will be 
smaller, thus offering a better chance of being redefined to tighten the approxima- 
tions. Several other remarks are in order: 

Remarks 
1. If/.tj = 0, then the dimension of the current simplicial cell can be reduced by 1, 

i.e. the dimension of uncertainty is (effectively) one less in the current cell. 

2. The multipliers ~s required in CRLP are already available when allocating 
scenarios to cells of the simplicial partition. That is, when determining the set of 
scenarios that belong to the simplicial cell f~r, characterized by the vertex matrix 

CO s Vr, the multipliers M = Vr 1 ( 1 ) are computed for each s E S and consequently, 
the scenario co s is labeled as belonging to cell ~ r  if ~s > 0. 

3. The size of CRLP can be significantly reduced by considering only those 
scenarios which are extremal in S. One can do so by identifying the convex hull 
C using simple LP procedures, the details of which we shall omit here. 

3.3 Partitioning strategies 
At the current iteration v, a cell for further partitioning is chosen by the maximum 
(probabilistically) weighted difference (WDIFF) criterion, i.e. 
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m a x  P~ v,r v [¢t/ (xt.) - ¢~,r (x[)]. (34) 
r = l  . . . . .  R v 

When only a single cell is further partitioned at some iteration, it is referred to as 
single partitioning. However, when partitioning multiple cells, referred to as multiple 
partitioning, we pick all cells having WDIFF within 60% of the maximum in (34). 
This is typically done in order to save computations when the lower bounding solu- 
tions x~. are stabilized, as indicated by the percent change in x solutions (for 2-norm): 

xV+lll II L -IIx .ll x 100%. (35) 
IIxZll 

Given a cell chosen for further sub-division, the ways in which partitioning is actu- 
ally carried out can have a major impact on solution efficiency. This was demonstrated 
for rectangular partitioning in [10]. In our case, with simplices, one may proceed in 
at least two ways: radial partitioning or bi-partitioning. In radial partitioning of a 
cell ~r ,  a point interior to ~2r is chosen and it is joined to all vertices of f~r to generate 
(K + L + 1) sub-simplices. While increasing the number of cells in this manner leads 
to rapid growth of the size of the lower approximation, if implemented in the initial 
partitioning iterations, it may also adversely affect the convergence behavior of the x- 
solutions due to the way in which partitioning is performed. Furthermore, it can over- 
partition a cell and lead to wasteful computational effort. Therefore, we resort to the 
bi-partitioning procedure in which a cell ~ r  is split into only two sub-simplices by 
choosing a single partition plane that passes through vertices, dividing an edge. In so 
doing, thus, one needs to address: 

(1) the selection of the partitioned edge, and 

(2) the point at which the selected edge is to be partitioned. 

3.3. I Bisection partitioning 

The simplest strategy in partitioning is to choose the edge with the longest length and 
then partition it at the mid-point. That is, if the longest edge is determined by the two 
vertices (w i, w J), it will be partitioned at ff := (w i + w j ) /2 under bisection partition- 
ing, herein referred to as the Ao-strategy. This leads to two new simplicial cells after 
partitioning given by 

c o n v { w  1 . . . . .  w i - l ,  1~, w i + l . . . . .  w K + L  + I } 

and 
conv{w 1 . . . . .  W j - 1  , 1~, W j + l . . . . .  W K + L +I } .  

Note that the corresponding inverses of the two vertex-matrices can be obtained by 
single-pivot updates of the inverse V -1 of the cell just partitioned. The general moti- 
vation for bisection partitioning is that cells can be driven uniformly to very small 
sizes, thereby assuring theoretical convergence, see the discussion in section 2.3. 
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3.3.2 Par t i t ioning  based  on nonl ineari ty  

Instead of relying on (a passive strategy such as) arbitrarily small cell-sizes, by using 
more efficient partitioning directions based on the behavior of the recourse function 
in the chosen cell one may hope to accelerate the convergence process. Recalling that 
if the function is linear on a cell, then the approximations provide exact expected 
value, the motivation is to evaluate the degree  o f  nonl ineari ty  of the recourse function 
along edges of ~r ,  see [I0] and [20], for instance. However, since both ~ and r/ 
coordinates may vary along certain edges, the standard procedure in the latter refer- 
ences for evaluating nonlinearity cannot be employed. 

Let us drop the index r of the chosen cell f~r in the current partitioning iteration 
v. Also drop the iteration index v from the current lower bounding solution x~ that is 
being used. Suppose the vertices w i - (u i, v i) and w j - (u j, v j) represent the edge to 
be divided and that u i :~ u j and v i :/: v j. We employ one of two possible methods in 
such cases to measure the degree of nonlinearity associated with the edge (i, j). 

The first measure is based on the directional derivative information. Let Dij 
denote the directional derivative of the recourse function at w i along the direction 
w j -  w i. Similarly, Dji is also defined. To determine Dij , let (y i ,  ~i) be the optimal 
primal and dual solutions of the recourse linear program determining ~(xL, wi) .  Then 

where 

d o 
DO = (y i ,  ~i) I d01' (37) 

( q ( v J ) - q ( v i )  I 
d 0 "= . (38) 

h(u j ) - T(u  j )X L -- h(u  i ) + T(u  i )x  L 

Definition 3.3 
The local nonlinearity measure AI for the edge (i, j )  is defined by 

AI( i , j )  := I D 0 + Dji l .  (39) 

The motivation for the measure AI is that if the recourse function is linear on the 
edge (i, j),  then Ai(i,  j )  = 0. Consequently, AI (i, j )  ~ 0 implies that the recourse func- 
tion is nonlinear along the edge (i, j). 

The second measure of nonlinearity, denoted A2(i, j), considers the displacement 
from w i to w j in two possible two-step movements: w i ~ ~ := (u j ,  v i ) -~  w j and 
w i ~ ~ := (u i, v j ) ~ w j . Then, for each possible two-step displacement, the re- 
course function is approximated by two-piece linear functions, determined by primal 
and dual solutions of the recourse problem at w i and w j. Then the functional displace- 
ment due to this two-piece linear approximation is computed at both ff and ~ ,  of 
which the minimum is taken as the nonlinearity measure; see figure 4 for an illustra- 
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tion in R 2. That is, denoting the optimal primal and dual solutions corresponding to 
0(XL, w i) and 0(XL, w j) by (y i ,  1.gi) and (y  J, lrJ), respectively, we have 

O(XL, ~ )  > ~r i [h(u j ) - T(u  j ) x L  ] and O(XL, ~) -< q(v  i ) ' yJ .  (40) 

Furthermore, 

~O(XL, 7v) >_ ~rJ [h(u i) - T (u  i ) xL  ] and ~?(xt,, ~v) <_ q ( v  j ) ' y i .  (41) 

Consequently, the second measure of nonlinearity for the edge (i, j)  is defined by 

A2(i , j )  

:= m i n { q ( v  i ), y j  _ zci [h(u j ) _ T(uJ  )x  L ], q ( v j  ), yi  _ ~ j  [h(u i ) _ T(u  i )x  L ] }. (42) 

The intuition behind the m e a s u r e  A 2 is that if the recourse function is almost linear in 
the rectangle determined by the points w i, ¢v, w j and ~,  then A2 is expected to be 
smaller. More importantly, if either u i = u j or v i = v j occurs, then the nonlinearity 
measure A2 reduces to that proposed in [20]. As a final remark, observe that in the 
latter event, the first measure Al is a fairly poor measure of nonlinearity and thus 
should not be used, except possibly when U i ~ U j and v i ~ v j. 

3 .3.3 Cond i t iona l -mean  part i t ioning 

Once an edge (i, j)  is selected - corresponding to the maximum of the chosen non- 
linearity measure - one can proceed with partitioning the current simplex either by 
bisecting the edge (i, j)  or determining a partitioning plane based on probability mass. 
The former approach is referred to as mid-point partitioning and is identified by /~1 
and A2. 
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w ~/'~mean p ~?P~l~attltl°n 

nonllnQar edge ~"~w i 

Figure 5. Conditional-mean and mid-point partitioning. 

In the second approach, in order to balance the probability mass in the resulting 
two cells after partitioning, one is motivated to determine a partitioning plane that 
passes through the conditional mean (denoted by ~ )  for the current cell f~. (See 
figure 5.) This practice is consistent conceptually with that in rectangular domains. 
The following result is useful in accomplishing this objective. 

Proposition 3.4 
For the (K + L)-dimensional simplex ~ with vertices w k, k = 1 ..... K + L + 1, let p be 
defined by (10) for the first moments ~ .  Then, the hyperplane in R r+L determined 
by ~ and the ( K + L - 1 )  vertices w k (k= 1 ..... K + L +  1, k~i ,  k ~ j )  intersects the 
edge (i, j )  at 

Wl~ .-- Pi W i + PJ W j .  (43) 
Pi d- p j  Pi q- P j  

Proof  
Let the partitioning plane in the proposition be represented by a'co = b for coefficients 
a E R r+L and b E R. Thus, we have 

a ' ~  = b and a'wk = b, V k = l  . . . . .  K + L + l, k ~ i, k ~ j.  (44) 

Multiplying the last (K + L - l) equalities by the corresponding Pk and summing up, 

K + L + I  K + L + I  

E Pk [a 'wk]= 2 p~b. 
k#i,j;k=l k#i,j;k=l 

(45) 

Subtracting (45) from the first equality in (44) and rearranging, a 'w  tJ = b follows, 
where w ~ is defined in (43). Thus, w ~J belongs to the hyperplane of interest. More- 
over, w 'j belongs to the edge (i, j), which completes the proof. [] 
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Notice that Pi ~ 0 and pj ¢: 0 must hold in the above proposition for w ii not to be 
one of the vertices. Consequently, this ensures that a (valid) partition of f2 is avail- 
able. The latter condition is trivially satisfied throughout the partitioning process since 
all cells are maintained to be of full-dimensionality, by following the first remark in 
section 3.2. Also see the implementation in section 4. The strategy that utilizes such 
conditional-mean partitioning planes is referred to as A1 and A2, corresponding to 
the nonlinearity measure. 

4 Implementation 

In the implementation of the Second Moment Approximation for l inear  sTochastic 
programs (with two decision-stages) - SMART - ,  it is recognized that the core prob- 
lem data should be kept separately from the uncertainty data. The core problem data 
is the first-stage feasible set X, objective costs c, and the second-stage fixed matrices 
W, Q, T O . . . . .  Tr,  and H, and the vectors h0, and q0, while the stochastic data is the 
scenario set {(co s, Ps): s ~ S}. Thus, unless one desires to solve the Grand LP formu- 
lation, the core-input is not combined with the stochastic input. Instead, the SMART 
routine clusters the scenario set (initially, with just one cluster) according to a certain 
simplicial partition (of the underlying domain f~), accomplished by the SIMDEC 
module, while the Second-Order Scenario Approximation (SOSA) module computes 
the upper and lower approximating scenario distributions corresponding to the output 
of SIMDEC. The BOUNDS module then generates the approximate LP, files (in MPS 
format) by combining SOSA with the core input according to the cell (geometric) 
information in SIMDEC. After solving the approximate LPs, if the relative gap of the 
upper and lower bounds is not within the prescribed tolerance e, then the lower bound- 
ing solution thus obtained becomes the input to SIMDEC for further refinement. This 
general scheme is depicted in figure 6. In what follows, we provide a brief descrip- 
tion of each of these modules. 

4.1 SLP  modules  

The CORE-INPUT module incorporates the Kall-Keller [28] GENSLP code for gen- 
erating the fixed matrices and vectors where the first stage feasible set X is generated 
by the linear constraints Ax  = b, x > 0 for matrix A ~ R r''×''. GENSLP is a random 
problem generator which allows complete recourse matrices W. The user inputs are 
the dimensions and density of the matrices A and W, as well as the dimensions of 
uncertainty K and L. The scenario generator module SCENGEN uses the inputs K 
and L, the degree of uncertainty for each random parameter specified by a lower and 
upper bound, as well as the number of scenarios N ( : = [ S I ) which is required to be 
at least 2 x÷L. It then assigns a scenario to each of the 2 r+L vertices of the rectangle 
formed by the upper and lower bounds on random parameters, and the remaining 
N - 2 r÷L scenarios are generated by taking (0-1  uniformly generated) random convex 
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Figure 6. Schematic diagram of the SMART modules. 

combinations of these vertices. Then each scenario is treated equally likely with prob- 
ability 1IN. This way scenarios may be generated to be statistically dependent. 

4.2 SMART modules 

The three main modules SIMDEC, SOSA, and BOUNDS constitute the SMART rou- 
tine to solve the generated SLP problem through approximation. These three modules 
are successively invoked beginning with an initial simplex f2 enclosing the set of 
scenarios, as given in section 3.1. In particular, it allows sensitivity analysis with 
respect to the initial simplex parameter S0, by fixing ~ in (25) as follows: 

60 
6j= 

I 

if j = l  . . . . .  K, 

if j = K + I  . . . . .  K + L .  
(46) 

4.2.1 SIMDEC module 

This module performs a simplicial decomposition of the domain f~, assigns scenarios 
to cells of the resulting partition, and maintains and updates the geometric informa- 
tion of cells from one partitioning iteration to another. When invoked with a current 
solution iterate x~, this module determines 
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(1) a cell - denoted herein by ~'~r at some partitioning iteration v -  for further parti- 
tioning, according to the rule (34), 

(2) an edge (w i, w j) identified by a partitioning strategy such as A0, Al, or A2, and 

(3) a partitioning point w* of the latter edge, i.e. either the mid-point (w i + w J)~2 or 
the point w/j corresponding to the conditional-mean partitioning plane, see (43). 

Before partitioning a chosen cell ~"~r, its effective dimension is determined by 
Edim(~r)  := (K + L) - I/dr)l, where lo(r) := {i : #i = 0, i = 1 .. . . .  K + L + 1 }, which 
is the set of vertices that can be removed (from the current vertex set Vr) to yield a 
lower dimensional  simplicial cell, denoted by f~r as well. Consequently, if Edim(~r)  
+ 1 > I S,[, it is preferable to solve the exact problem for cell ~ r  rather than approxi- 
mations, and hence the cell is marked NOAPPX for the exact LP formulation later. 
Otherwise, ~ r  is partitioned into two new cells f~l, and f~2 and the information is 
updated according to the following procedure: 

Procedure-SP" 

begin 

S v :=  { s v - l \ ~ " ~  r U {~'~1, ~"2r2 }; 

V/ "= {Vr\{Wi}}U {w*}; 

Vr 2 := {%\{wJ}}u {w*}; 

( v / )  -~ = u~v7~; 

( v~ )  -~ = u jv ; -~ ;  

= e; 

for all s e S r do 
~temp = Ui~S; 
if ~,temp > 0 then begin 

~s = ~temp; 

s) =s~ u 1~}; 
else begin 

,t, = u j , t ' ;  

g=S~r u {,}; 
end; (*if*) 

end;  (*for*) 
end; 

For the cell f2 r, Ui is the eta matrix with its ith column being the eta column 
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( ) - - t  I - - t i - I  1 --ti+l .. . ,  -- tr+L+I , w h e r e  t = V r l ( w * ' , l )  ". (47) 
-~i  ' ' " '  ti ' ti ' ti ' ti 

The Procedure-SP can be invoked more than once before leaving the SIMDEC 
module,  as determined by multiple cell partitioning, see [34] and the discussion that 
follows. 

Cell-Redefining (C-R) 
The C-R procedure is a part of the SIMDEC module for redefining the vertices of 
cells obtained through simplicial partitioning. As described in section 3.2, each new 
cell ~ r  created in the current partitioning step is admissible for redefining provided 
that the corresponding CRLP, i.e. the dual of (33), does not have too many variables, 
i.e. I Srl (K + L) < 1000. For an admissible cell, the vertices that will be attempted for 
redefining are selected by the criterion #j < #* (where the threshold/ l*  is set to be 
0.70, see section 3.2), for if not, the likelihood of obtaining a significant reduction in 
the cell volume is poor. As mentioned before,/zj  -- 0 implies that this vertex w j may 
be eliminated completely to yield a lower dimensional simplex. 

The Procedure-CR below, also (heuristically) tests the replaceability of the 
chosen vertex w j by checking if there are scenarios on the facets (incident to w j) 
describing the simplex, for if so, one would not expect to obtain a significant reduction 
in the size of  the current simplex. 

The input to Procedure-CR is the set of multipliers A i : = {}IS: s E St},  for i = 1 .. . . .  
K + L + 1 a n d / t i  : = max Ai. }I's are already available within SIMDEC. Denote the 
potential set of  vertices for redefining by J0 := {i :/-1i -</,t*, /.t i > 0}. For a chosen 
vertex w j, denote the optimal value of (33) by CRLP(w j) := V-l(J)( ~" ), where t* is 
the point that replaces w j. 

Define Jl as the index-set of the already re-defined vertices. Initialize Jl = 0 .  

Procedure-CR 

Step 1 

Step 2 

Step 3 

If  J0 = 0 ,  then STOP. 

F i n d j  := arg min{//i: i EJo}. 

Check replaceability of w j as follows. 
begin 

for i = 1 to K + L + 1 do if i ;ej then begin 
if  min A i > 0 then go to step C-R 4; 

end (*for*); 
go to step C-R 5; 

end; 
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Step 4 

Step 5 

Solve dual of (33) to obtain CRLP(w j) and t*. 
If CRLP(w j) > 0 then update the geometric information as follows. 
begin 

w j = t*; 
v ;  -I = U J V r l  ; 

for all s E Sr do 
As = Uiyts; 

end; 
Update A i := {,~: S ESr}; and l.ti := max Ai, V i =  1 ..... K + L +  1; 

J0 = {i :/1i_< #*, # i >  0, i =  1 ..... K + L +  1} 
end; (U j is the resulting eta-matrix when using (47) with t* in place of w*). 

Update: Jl =J1 O {j} 
J0 = J0\ {J0 f') Jl } and go to step 1. 

4.2.2 SOSA module 

Given the geometric information of newly created cells in the simplicial partition, as 
well as the clustering of scenarios from SIMDEC, the SOSA module first computes 
the required second-moment information for each new cell tar- Consequently, accord- 
ing to theorem 2.1, the lower and upper approximating scenario distributions are 
computed as outputs. However, if the cell has been marked NOAPPX in the SIMDEC 
module, see section 4.2.1, the exact recourse problem is developed for this cell tar 
and is maintained throughout the remaining partitioning iterations v. This is the basic 
level of operation of this module, as selected by SWITCH = 0 and referred to as 
SMART. It also provides several switches for computing other approximate distribu- 
tions. These are described briefly next: 

(a) SWITCH = 1: Each newly created simplex ta r is projected to ~ and 7/domains 
to obtain the vertices of the marginal domains E and ®. Then, only first and 
cross moment information for the scenarios in tar is computed and used in 
developing lower and upper approximations according to [8], see the discus- 
sion in section 2.1. (In the computational section, we refer to this setting as 
Simplicial Projection With First and Cross moments: SPWFC.) 

(b) SWITCH = 2: Just as in SWITCH = 1, compute the lower approximation using 
first and cross moments, but the upper approximation is computed using 
second moments following SWITCH = 0. 

The implementation also allows maintaining different switches (either SWITCH 
= 0, 1, or 2) for different cells, as determined by choices in the previous partitioning 
iterations. That is, for instance, a cell under SWITCH = 0 in iteration v may later be 
partitioned and labeled under SWITCH = 2 in iteration v + 1. When used, this setting 
is referred to as Hybrid-SMART (or HYBRID). 
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4.2.3 BOUNDS module 

For the fixed data from CORE-INPUT, using the lower approximation from SOSA 
and the geometric information from S/MDEC, the BOUNDS module first generates 
the lower bounding linear program LBLP in MPS format, according to the SWITCH 
used in SOSA. For SWITCH = 0, see the formulation Z~. in (20). Then an LP solver 
is called - in our case, IBM's OSL Subroutine Version 1.2 - to solve this LP and the 
lower bounding solution x~ is obtained. 

Then, for this first-stage solution x~, combining with CORE-INPUT data and 
information from SOSA and SIMDEC, the upper bounding LPs for each cell ~"~r a re  
formed in MPS format and solved successively. The objective values v,r v ~u ( xL)  thus 
obtained, see (19), are accumulated for each cell and weighted by the associated prob- 
abilities Pr, r = 1 ..... Rv, to obtain the upper bound Zzt~ in (21). 

Subsequently, the relative gap test is performed according to (22) to determine if 
termination should occur for the specified e. If not, the current solution x~, as well as 
the weighted difference WDIFF of upper/lower bounds for all the current cells be- 
come the input to the SIMDEC module, and the iteration is continued. 

The preceding description is the basic operation of the BOUNDS module, as 
selected by OPTION = 0. The other two options available are outlined below: 

(a) OPTION -- 1: If the stability of the generated x-solutions, as measured by (35), 
indicates that the current lower bounding solution has not changed significantly 
over the last few iterations, then the BOUNDS module can set the current x[ 
fixed, and solve lower bounding LPs on each cell separately, thereby avoiding 
the solution of a larger LBLE If this mode of operation does not yield a signifi- 
cant drop in the relative gap in the next few iterations, it can switch back to the 
mode determined by OPTION = 0. Observe that under OPTION = 1, the upper 
and lower bounding LPs are only solved for those cells newly created by 
SIMDEC. 

(b) OPTION = 2: Although it is not of much use, this mode allows the solution of 
the full upper bounding LP to determine the tighter upper bound Z~ in (21) along 
with its solution v x v, see (20). The difference in x~ and x~ may serve as an indi- 
cator for convergence of lower bounding solutions, although it is not utilized in 
the implementation. 

5 Computational results 

The implementation in the preceding section was coded in FORTRAN 77 and developed 
on a SUN SparcStation 2 running under UNIX. OSL Version 1.2 was used as the sub- 
routine for solving LPs. The code was compiled using the optimizing compiler flags 
-04  -cg89. 

The SMART code allows up to 16 (dependent) random variables (max: K -  8, 
L = 8) and up to 100,000 scenarios. The maximum number of simplicial partitions 
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allowed is 20. The core input has the limits: mr, nl, m2, n2 < 100 and the stochastic 
linear programs are generated by specifying a random seed for GENSLP and a 
second random seed for SCENGEN. The above limitations are set only due to memory 
restrictions of the machine. 

All coefficients in the CORE-INPUT are generated uniformly from the interval 
[-10,  10]. For the purposes of the experiments reported here, all scenarios are gener- 
ated such that the corresponding random variables have a maximum spread of [--5, 5]. 
Furthermore, only the complete-recourse matrix option is used in GENSLP along with 
matrices being specified to have 10% density. 

In each category of experimentation, at least 5 problems have been solved and 
averaged when comparisons are made. Specifically, the following issues are investi- 
gated: 

(1) the sensitivity of the initial simplex (specified by the value of S0) with respect 
to second moment approximations; 

(2) the effect of joint partitioning compared to coordinate axis partitioning with re- 
spect to first-order approximations; 

(3) the effect of using second-order information over first-order information when 
using joint-partitioning; 

(4) the effect of partitioning strategy and multiple partitioning on second moment 
approximations. 

The set of problem characteristics given in table 1 serves as the base for the above 
investigations. 

Table 1 

Randomly generated sample problem categories. 

Problem category K L (ml, hi, m2, n2) # Scenarios 

1 5 5 (20,40,20,40) 2048 

2 5 2 (20,40,20,40) 2048 

3 8 0 (10,20,10,20) 1024 

4 1 1 (5,10,5,10) [ 100,700] a) 

5 5 5 (10,20,10,20) 1024 

6 8 8 (30,50,30,50) 65536 

")Number of scenarios is increased from 100 to 700 in steps of 100 scenarios. 

The sensitivity of the approximations to the initial simplex is investigated by 
varying 80, see (46), using the problem categories #1 and #2. In both cases, single- 
partitioning is used with the A2 strategy. As shown in figures 7 and 8, increasing S0 
has the tendency to strengthen the second moment approximations in the initial 
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iterations, but eventually this effect is diminished. The noted behavior is for the case 
with no cell-redefining. Accordingly, we have set ~0 = 1 for the remaining experi- 
ments. 

Figure 9 uses the problem category #3 to illustrate the effect of using second- 
moment information over first moments under the partitioning strategy A2 involving 
single partitioning. Given that this problem category does not have 7"/random vari- 
ables, A 1 strategies are not appropriate, see the discussion in section 3.3.2. Also 
notice that since L = 0, in the simplicial projection bounds, SPWFC, the resulting 
lower bound is Jensen's bound. It is evident that SMART (with SWITCH = 0) 
produces much faster convergence of objective values compared to using only first 
moments. Another significant departure from first-order approximations is that much 
of the adjustments in (lower bounding) x solutions occur in the initial iterations in 
SMART, while SPWFC continues to change x solutions until much later. Thus, 
convergence of x may be attained in SMART much faster. The effect of using the 
conditional-mean partitioning plane versus the mid-point partitioning plane, under 
single partitioning, is depicted in figure 10 for the same problem category. Our 
computational experience suggests that mid-point partitions may be dominated by 
conditional-mean partitions. 

It may be noted that while the second-order lower bound is tighter than Jensen's 
bound (for L = 0), the former involves a much larger lower bounding LP problem. 
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(problem category #4). 

However, since second moment bounds tend to force x solutions towards convergence 
much faster, an appropriate strategy might be to use multiple partitioning after the 
initial few iterations. As figure 11 shows, the latter practice indeed is the most prag- 
matic computational procedure. Consequently, in the remaining experiments we have 
utilized multiple partitioning according to the 60% rule mentioned in section 3.3. 

The effect of cell-redefining strategy is illustrated using the problem category #4, 
see figure 12, where the partitioning strategy is A 2 and the number of scenarios is 
200. Observe that in the initial iterations, there is very little improvement brought 
about by the C-R strategy. But, after a significant refinement of the simplicial parti- 
tion, the C-R strategy is able to effectively remove the areas of zero measure. 
Consequently, the approximations become tighter and convergence is achieved faster. 
Using the same problem category, we illustrate the sensitivity of SMART solution 
time to the number of scenarios in the problem, see figure 13. In the same figure, the 
CPU times for solving the grand LP are plotted. A word of caution in interpreting this 
comparison is in order. While the grand LP solution time is adversely affected by the 
number of scenarios, rather than the dimension of uncertainty (i.e. K and L), the 
SMART CPU times are more sensitive to the sizes of K and L, rather than the number 
of scenarios. In this figure, we have used K = L = 1 to illustrate the former sensitivity. 
However, if K and L are increased, the SMART CPU times are affected adversely. 
Nevertheless, increasing the dimensions K and L, while holding the number of 
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scenarios constant, leads to larger volumes of zero measure in the cells of the 
simplicial partition. Consequently, when the C-R strategy is utilized, one has better 
chances of removing such areas of zero measure and even perhaps reducing the effec- 
tive dimension of the resulting cells. 

When both K and L are non-zero, one may use either of the strategies Al or A2. 
This effect is presented in figure 14 using conditional-mean partitioning for problem 
category #5. Our limited computational experience does not favor one over the other, 
although in many instances where K and L are roughly about the same size, A1 does 
seem to have a slight advantage over A2. Figure 15 shows that simplicial bounds with 
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Figure 15. Comparison of SMART with Hybrid version 
(problem category #5). 

second moments are much superior to using either rectangular first order bounds or 
simplicial first order bounds. This superiority becomes more evident when both K 
and L are significantly large. As an example of larger K and L, we use the problem 
category #6 and graph the performance of SMART in figure 16. It is the general ob- 
servation that the second-order lower bounds tend to converge much faster than the 
upper bounds. This observation may suggest that one need not solve the complete 
lower bounding formulation for the entire domain towards the final iterations, but 
rather solve (smaller) lower bounding problems, by fixing x, only for those cells which 
are newly partitioned. Although the SMART code allows this practice, we have not 
performed extensive testing so far. 
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6 Concluding remarks 

In this paper, we have demonstrated the effectiveness of incorporating second-order 
approximations of the expected recourse function when solving two-stage stochastic 
linear programming problems. Using second-order moments as well as partitioning 
the domain along joint directions yield the desired computational efficiency when 
solving larger problems. The limited computational experience gained here, using the 
implementation SMART, provide sufficient motivation for further testing of such 
solution procedures. In particular, when the number of scenarios is large, but the 
dimension of uncertainty is sufficiently small - up to 16 in our computational 
experiments - ,  the second-order scenario approximations may prove a powerful alter- 
native for solving stochastic programs. 

While the discussion in the paper is on two-stage versions of the model, exten- 
sions of this general approach for multistage models seem fairly straightforward, at 
least conceptually. That is, viewing the recourse function at each decision stage as a 
saddle function, approximating scenario distributions may be constructed stage-wise. 
Such an approach is taken by Frauendorfer [18, 19] using first-order approximations. 
However, the apparent shortcoming in a direct implementation is that when the 
number of decision stages is large, the resulting number of approximating scenarios 
can become too excessive to warrant the use of approximations as a solution approach. 
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An al ternat ive  approach  is to v iew the comple te  set o f  scenarios ,  spanning the full 

n u m b e r  o f  decis ion stages,  under  one domain  and emp loy  approx imat ions  on it. Then,  

o f  course ,  one  would  have  to assure,  a m o n g  other  things,  that  solut ions  ob ta ined  
th rough  such representa t ive  scenarios  do converge  to true solutions.  These  are poten-  

t ially useful  avenues  for  future research.  
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