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This paper considers extensions to algebraic modelling languages to support for- 
mulation, instantiation and solver integration for stochastic linear programs (SLPs). We 
present a taxonomy of SLP problem types and analyze formulation requirements includ- 
ing distribution handling by class of problem. We demonstrate suggested formulations 
for most problem classes, show solver input in the S-MPS standard, and propose con- 
sistency checks for constraints involving stochastic data items. Some unresolved diffi- 
culties are identified. 

1 Introduction 

Algebraic modelling languages (AMLs) for mathematical programming are languages 
in which mathematical programming models can be stated using language constructs 
which closely resemble mathematical notation [21,32]. These languages assist 
modellers in the formulation, solution and management of large mathematical pro- 
grams by providing powerful, declarative algebraic syntax for model specification, 
often in systems with integrated LP solvers and a range of model management facili- 
ties. Their capabilities have reduced the programming skill required for modellers to 
implement large LPs, encouraging wider application of linear programming in prac- 
tical situations. 

Use of stochastic linear programming (SLP) models is becoming more widespread 
as computing capacity and solver technology rapidly improve and as SLP advantages 
are demonstrated (see for example, Carifio et al. [8], Mulvey and Vladimirou [36], 
Dempster and Ireland [13], Sen et al. [44]). However, SLP modellers now face 
difficulties similar to those encountered by deterministic LP builders using earlier 
computer languages. Because AMLs and other modelling systems do not yet support 
stochastic modelling, SLP formulations and solver links must often be custom pro- 
grammed in one-off pieces of code, resulting in tight coupling among the model speci- 
fication, model instance and the solver used. This can require extensive time and skill 
for programming and debugging, increasing the cost and effort required to use SLPs 
and limiting the practical realization of their analytical benefits. 
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The purpose of this paper is to help to advance development of algebraic model- 
ling languages as SLP formulation and management tools by analyzing requirements 
and proposing supporting language extensions. We first review the capabilities of 
AMLs, their limitations for SLP formulation and management, and a solver input 
standard which could improve solver integration with AMLs. After introducing two 
sample problems, we present a taxonomy of SLP types to be supported, based on 
characteristics of their random structures which determine minimum model and data 
specifications. AML formulation techniques and solver integration mechanisms are 
then proposed and illustrated for most problem types, followed by a discussion of 
SLP model management needs and suggestions for further related research. 

2 Background 

In this section we summarize the process of model formulation, error checking and 
solver integration provided by AMLs, concluding with a brief discussion of their 
current and potential model management capabilities. 

2.1 Model formulation 

The process of using an AML system to formulate and solve an LP follows the 
steps shown in figure 1. First, a model is formulated using algebraic language con- 
structs and data is specified (in either the model file or a distinct file) to instantiate 
the model. The AML system then generates output which is either directly readable 
by one or more solvers or is converted to solver input by a custom-written routine. A 
solver is then invoked through commands internal or external to the AML system and 
produces a problem solution. 

Model I 
Specification 

Data 
Specification 

System Input Solver Solution 

Figure I. Steps in using an AML system. 

In formulating models, AMLs use declarative statements (specifying what is to 
be done rather than how it is done), extensive use of domains over sets, and rows 
(constraints) rather than columns (activities) to represent models; they thus tend to 
support a mathematician's view of models rather than a view based on program- 
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ming language syntax or on activities and processes (Greenberg and Murphy [21]). 
Examples of algebraic modelling languages include GAMS (Brooke et al. [7]), AMPL 
(Fourer et al. [15]), LINGO (Cunningham and Schrage [10]), LPL (Hiidimann [24]), 
and MODLER (Greenberg [20]). For surveys of AML features and capabilities, see 
Greenberg and Murphy [21] and Kuip [32]. 

Algebraic modelling language systems allow modellers to distinguish between 
models and their instances in a way not done by earlier-generation matrix generator 
programs, which had to be custom-written for specific problems and typically mixed 
data and model specifications. As described in current object-oriented terminology, 
AML model specifications define models abstractly through object classes, including 
classes of indices, parameters and variables; general relationships, (defined through 
constraint classes); and class attributes such as nonnegativity. Model instances are 
formed when data sets fix membership in these classes. This approach has the advan- 
tage of producing a generic model specification for which many modifications can be 
done through changes in data sets alone. 

These capabilities help modellers formulate a wide range of LPs and nonlinear 
programs, including those with complex time and network structures. However, 
stochastic LP formulation requires specification of random structures, ideally mini- 
mizing redundancy and problem size. In an earlier paper [17], we demonstrated SLP 
formulation and instantiation using one AML by explicitly constructing event tree 
indices and parent scenario references for the "deterministic equivalent problem", but 
the process is time consuming, cumbersome and error-prone. Use of AMLs for 
stochastic linear programming would be greatly facilitated by inclusion of specific 
language constructs and operations to automate the process by generating random 
variable realizations, dependent parameters, and the necessary indices, and carrying 
out automatic consistency checks. 

2.2 Consistency checking 

For deterministic LPs, the AML makes sure that the problem is set up correctly, that 
all index classes are consistent, that all data items are initialized, that attributes such 
as nonnegativity and integrality hold where specified, and that explicit modeller- 
defined consistency checks are satisfied. When the LP solver takes over, it still has to 
figure out the size of the problem, the location and number of nonzeroes, the starting 
basis, and so on. 

For stochastic LPs, we expect the AML to perform similar functions: it should 
check that the problem is well-defined, recognize the time and stochastic structures, 
and pass this information on to the solver. Because there are many different SLP 
solution strategies, the output from the AML has to be quite flexible. Maximal flex- 
ibility is achieved when using the minimal problem representation, for which the 
existing S-MPS standard (see below) can act as a guideline, making suitable exten- 
sions where necessary. 
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2.3 Solver integration 

Once models are formulated, AML systems use several approaches to communicating 
with solvers. A common solver integration approach is to transfer data through shared 
memory without the use of intermediate files. AMPL, for example, can communicate 
with MINOS, CPLEX or OSL in this fashion, giving fast and efficient model solution 
as a single operation after a model is formulated and instantiated. A second approach 
is to generate an output file in the standard MPS format read by essentially all current 
LP solvers; this allows transfer of formulated model instances among a wide range of 
solvers and facilitates solver comparison. Finally, AMLs may support solvers by pro- 
ducing output files that can be read into the solver directly or, if necessary, converted 
through custom-written routines to solver-specific input formats. This requires addi- 
tional time and programming skill for creating the linking routines, but it avoids some 
of the shortcomings of the MPS format, such as limits to accuracy and variable names. 

Each of these approaches presents some difficulties for stochastic modellers. 
Since SLP solvers are not currently supported by AML systems, integration must 
take place either through custom-written linking routines, which have the disadvan- 
tages outlined above, or through use of the MPS input format, which requires the use 
of the deterministic equivalent LP formulation and thus rules out some interesting 
SLP classes as well as placing size limitations on the problems that can be handled. 
Neither prospect provides SLP modellers with minimum-size model specifications 
capable of being readily passed to multiple solvers - a practice that is often desirable 
since SLP solver efficiency varies significantly with problem structure and is some- 
times difficult to predict without experimentation. 

2.4 MPS format and the S-MPS extension 

Instances of deterministic LPs are most frequently stored and communicated using 
the well-known MPS standard [25,43]; this uses a 72-column card image with fixed 
line formats providing for up to three eight-character name fields and two twelve- 
digit numerical fields. Positions of numerical data are identified by matching column 
and row names. A model specification file consists of a number of sections, some of 
which are optional. Each section begins with a header line and most contain data lines; 
sections are briefly described in figure 2. MPS can be used to specify deterministic 
equivalents for SLPs which use only discrete distributions, but it is necessary to 
explicitly define all random variable realizations and resulting decision variables and 
parameters for all scenarios. Although this approach allows SLPs to be passed among 
solvers, its formulations are redundant wherever variables and parameters are not de- 
pendent on random variables, and it does present obvious practical limits on the sizes 
of problems that can be easily handled. 

The S-MPS solver input standard defined by Birge et al. [4] extends the MPS 
standard to stochastic LPs in a nonredundant specification which is transferrable 
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ROWS section 
constraint names and types 

COLUMNS section 
nonzero LP coefficients column by column 

RHS section 
nonzero right-hand side coefficients 

BOUNDS, RANGES 
optional for bounds on variables and slacks 

Figure 2. Summary of  the MPS format. 

among many SLP solvers now in use in research or application environments. S-MPS 
will also handle problems with continuous distributions. It consists of three files: the 
"Core" file, which closely follows the MPS format and contains the basic determin- 
istic problem; the "Time" file, which explicitly defines the problem's time structure; 
and the "Stoch" file, which defines the random structure and specifies variables and 
parameters which are dependent on the problem's random variables. Each of the last 
two sections presents only the minimum data needed to extend the basic deterministic 
problem, so that problem size is controlled. The standard's explicit description of time 
and random structures also provides necessary input to decomposition SLP solvers. It 
thus provides output in a format which both minimizes redundancy and allows trans- 
fer among solvers without the custom routines now required by AML systems. How- 
ever, the rigid record format imposes limitations which make multivariate random 
variables difficult to implement, as described later in the paper. 

2.5 AML model management capabilities 

We regard model management as encompassing support for the entire modelling life 
cycle, including problem identification, model creation, model implementation, vali- 
dation, solution, interpretation, maintenance, and version and security control (cf. 
Krishnan [31]). Using this definition, AML systems as described above are limited in 
their model management functions to supporting formulation, consistency and com- 
pleteness checking and solver links. However, management of optimization models is 
an active research area (e.g. see [45]), and AMLs can be accompanied by or embedded 
in additional software with extended model management capabilities. For example, 
AIMMS [6] provides interactive, Windows-based output display and report format- 
ting; AMPL and GAMS both provide text-based report formatting; MODLER and its 
companion ANALYZE [19, 20] give multiple model views and text explanations of 
model structure and output; and LPForm [35] formulates models in GAMS through 
either a graphic or text-based Windows interface. 
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Research on management of SLPs is relatively rare, although Wallace and Wets 
[48,49] consider preprocessing functions for detecting conditions for relatively com- 
plete recourse, and Kall and Mayer [27-29] have designed and partially implemented 
a model management system for SLPs which integrates GAMS with multiple SLP 
solvers. As far as we are aware, little consideration has so far been given to SLP 
management features within AML systems. 

3 Two sample problems 

This section introduces two small sample problems that will be used in the remainder 
of the paper. The original formulation of both problems is as deterministic LPs, but 
we will subsequently modify them to study alternative ways to treat stochastic infor- 
mation and possible algebraic modelling language problem formulations. 

3.1 Transportat ion problem 

The first problem is a completely standard transportation problem: units of a com- 
modity have to be distributed from a number of warehouses or sources to a number 
of demand points or destinations. The allocation should minimize the total transpor- 
tation cost while respecting supply constraints at each of the sources (one cannot ship 
more units than are available) and demand constraints at the destinations (demand 
must be satisfied). 

The transportation model can be formulated mathematically as 

minimize ~_~ cijxij 
i , j  

subject to ~., xij > d j ,  j = 1 . . . . .  J,  
i 

~ xij < si, i = 1 . . . . .  I, 
J 

xij >_0, i = 1  . . . . .  I, j = l  . . . . .  J, 

where cij represents the cost of transporting one unit of the commodity from source i 
to destination j, xij is the amount shipped, si is the amount of the commodity available 
for shipment from source i, and dj is the demand of the commodity at destination j. 

The same model can be formulated in the algebraic modelling language AMPL as 
follows: 

set sources; 
set destinations; 
param supply {sources}; 
param demand {destinations}; 
param uniLcost {sources, destinations}; 
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var units_shipped {sources, destinations} >= 0; 

minimize total_cost: 
sum {s in sources, d in destinations} 

uniLcost[s,d] • units_shipped[s,d]; 

subject to satisfy {d in destinations} 
sum {s in sources} units_shipped[s,d] >= demand[d]; 

subject to avail {s in sources}: 
sum {d in destinations} units_shipped[s,d] <= supply[s]; 

The accompanying AMPL data file for a specific instance with just two sources 
and three destinations is: 

set sources := Bergen Oslo; 
set destinations := Trondheim Stavanger Lillehammer; 

param supply: Bergen Oslo := 
100 250; 

param demand: Trondheim Stavanger Lillehammer := 
150 100 80; 

param uniLcost: Trondheim Stavanger Lillehammer := 
Bergen 10 5 20 
Oslo 20 10 10 

This particular instance corresponds to a linear program which can also be 
rendered in the standard MPS format as follows: 

NAME 
ROWS 

N COST 
L SUPBGN 
L SUPOSL 
G DEMTRD 
G DEMSTV 
G DEMLIL 

COLUMNS 
TRBGNTRD 
TRBGNTRD 
TRBGNSTV 
TRBGNSTV 
TRBGNLIL 
TRBGNLIL 
TROSLTRD 
TROSLTRD 
TROSLSTV 
TROSLSTV 
TROSLLIL 
TROSLLIL 

Transportation problem 

COST 10.0 
DEMTRD 1.0 SUPBGN 1.0 
COST 5.0 
DEMSTV 1.0 SU PBGN 1.0 
COST 20.0 
DEMLIL 1.0 SUPBGN 1.0 
COST 20.0 
DEMTRD 1.0 SU POSL 1.0 
COST 10.0 
DEMSTV 1.0 SUPOSL 1.0 
COST 10.0 
DEMLIL 1.0 SU POSL 1.0 
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RHS 
RHS DEMTRD 150.0 
RHS DEMSTV 100.0 
RHS DEMLIL 80.0 
RHS SUPBGN 100.0 
RHS SUPOSL 250.0 

ENDATA 

As mentioned, the problem as stated is a deterministic LP without time structure; 
we will eventually introduce random demands (with known distributions) to turn it 
into a stochastic LP. 

3.2 Production/~nventory problem 

The second problem is a multiperiod production and inventory problem. In each 
period, sufficient quantities of several products must be produced (subject to some 
resource capacity constraints), in order to satisfy the demand for this product in this 
period. Excess production can be put into storage (at a cost proportional to the number 
of units stored) to augment production in a later period. The amount of storage space 
is limited. The AMPL model file describing this problem class is as follows: 

set products; 
param T > 0; 

param starLinventory 
param max_production 
param production_cost 
param holding_cost 

{products}; 
{products}; 
{products}; 
{products}; 

param demand {products, 1..T}; 
param max_.inventory; 

var make {products, 1..T}; 
var hold {products, 1..T}; 

minimize total_cost: 
sum {p in products, t in I..T} ( production_cost[p]* make[p,t] 

+ holding_cost[p], hold[p,t] ); 

subject to balance {p in products, t in I..T}: 
if (t=l then starLinventory[p] 

else hold[p,t-1]) 
+ make[p,t] = demand[p,t] + hold[p,t]; 

subject to prod_cap {p in products, t in 1..T}: 
make[p,t] <= max_production[p]; 

subject to hold_cap {t in I..T}: 
sum {p in products} hold[p,t] <= max_inventory; 
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The following AMPL data file describes a three-period instance with a single 
product: 

param T := 3; 
set products := widgets; 
param start_inventory :-- widgets 
param max_production := widgets 
param production_cost := widgets 
param holding_cost := widgets 
param max_inventory := 4; 
param demand: 1 2 3 := 

1 4 4; 

0; 
4; 
0; 
1; 

This instance can also be given in MPS format, as follows: 

NAME Production/inventory problem 
ROWS 

N COST 
E DEMD1 
L PCAP1 
L HCAP1 
E DEMD2 
L PCAP2 
L HCAP2 
E DEMD3 
L PCAP3 
L HCAP3 

COLUMNS 
MAKE1 DEMD1 1.0 
HOLD1 DEMD1 - 1.0 
HOLD1 COST 1.0 
MAKE2 DEMD2 1.0 
HOLD2 DEMD2 - 1.0 
HOLD2 COST 1.0 
MAKE3 DEMD3 1.0 
MAKE3 COST 1.0 

RHS 
RHS DEMD1 1.0 
RHS DEMD2 4.0 
RHS DEMD3 4.0 
RHS PCAP1 4.0 
RHS PCAP2 4.0 
RHS PCAP3 4.0 
RHS HCAP1 3.0 
RHS HCAP2 3.0 
RHS HCAP3 3.0 

ENDATA 

PCAP1 
HCAP1 
DEMD2 
PCAP2 
HCAP2 
DEMD3 
PCAP3 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
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This problem has a definite time structure. We will use it to show possibilities 
(and limitations) in setting up multistage stochastic (dynamic) programming prob- 
lems. 

4 A taxonomy o f  s tochas t i c  LPs 

SLPs present a major challenge for modelling systems because they can exhibit a 
variety of random structures which affect numbers and redundancy of scenarios, de- 
cision variables and parameters. In addition, random variable distribution character- 
istics and interdependencies greatly influence the degree to which problems must be 
specified in a "brute force" fashion. The following taxonomy of SLP types is intended 
as an initial attempt to classify and clearly describe SLP problem types so that sup- 
port requirements for AMLs and other model management systems can be identified. 

Generally speaking, a stochastic linear program is a linear program in which some 
of the data are stochastic. We will only consider the situation when probability distri- 
butions (possibly multivariate) are available for all the stochastic data items. This can 
also be viewed as linear programming under risk. 

I 
Chance- 

Constrained 
Problems 

Individual chance- 
constraints 

Joint chance- 
constraints 

Mixed problems 

I 

Recourse 
Problems 

I 
Seena~o- 

Based 
Problems 

Stochastic 
LPs 

I 
Disln'bufion 
Problems 

I 
Dis~ibution- 

Based 
Problems 

4, 
Independent random variables 
Perlod-to-period Independence 
Random walk 
Dependence on past data 
Random problem dimensions 
Dependence on past decisions 

Figure 3. A taxonomy of stochastic LPs. 

I 
Hybrid 

Problems 

Figure 3 summarizes the taxonomy. We consider four main subclasses of SLPs. 
Chance-constrained problems (Charnes and Cooper [9], Pr6kopa [37], Kall [26]) 
contain one or more chance constraints or probabilistic constraints of the form 



H.L Gassmann, A.M. Ireland /Formulation of stochastic linear programs 93 

where the coefficients aij and bj are (possibly) random variables, Jk is some subset of  
the rows of  the problem, at, is a specified reliability level and the probability is taken 
with respect to the distribution of the random variables aiy and by. The index k runs 
from 1 to K, the number of chance constraints contained in the problem. In problems 
with individual chance constraints, each of the index sets Jk is a singleton set; joint 
chance-constraint problems contain a single multivariate chance constraint, that is, 
K = 1. Mixed problems contain several multivariate chance constraints. 

Recourse problems (Dantzig [12], Beale [1]) have the general form 

minimize c~x0 + El {c~xl } + ."  + Er  {c~.xr } 

subject to Aoxo 

Blxo + A l x l  

".. 

= bo 

= b I 

BTXT_ 1 + ATX T = b T 

x t>O,  t = O  .. . . .  T. 

Any of  the entries in the boldfaced matrices A t, B t and vectors bt, ct may be random. 
Time periods are denoted by t = 0 ..... T, and each period t has a decision vector xt 
constrained explicitly by decisions in prior periods; E t is used to denote the expected 
value of future decisions. The term "recourse" refers to the assumption that in any 
period one has access to a recourse decision at some penalty cost which will allow the 
constraints to be met. 

The random structure of a recourse problem can be thought of as an (idealized) 
event tree (Lane and Hutchinson [33]) in which multiple realizations of  random vari- 
ables create branches at particular times and scenarios are paths from the event tree 
root to individual leaves. Each branch point in an event tree represents realizations of 
one or a combination of random variables at a given time period, given past realiza- 
tions leading to the position in the tree from which the branch occurs. Associated with 
each node in a tree are the values of its random variable realizations, parameters 
calculated from those realizations, and contingent decision variables. 

Scenario-based recourse problems have their tree structure, including random 
variable realizations and dependent data, explicitly specified. (In particular, this 
implies that all random elements must be finitely distributed.) These problems arise 
when it is convenient to explicitly describe event paths rather than state them in terms 
of distributions. Problems requiring a manager to give a subjective assessment of the 
outcomes of  a range of possible future events are often of this type. 
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Problems for which a priori specification of distribution parameters can be used 
to generate the tree structure, decision variables and parameter values are referred to 
as distribution-based problems. Since SLP formulation issues are primarily concerned 
with event tree specification, we categorize distribution-based recourse problems 
according to the degree of distribution interdependence present in the random struc- 
ture, which determines their formulation requirements as discussed in the following 
section. We distinguish the following problem types: 

Type 1 (independent random variables): problems for which individual random 
variables are independent within and across time periods. For such problems the ran- 
dom structure can be completely specified using univariate distributions. 

Type 2 (period-to-period independence): problems for which distributions are 
correlated within time periods but are independent of realizations in the past. Multi- 
stage versions of the transportation problem might well fall into this category if the 
transported good is a commodity such as umbrellas: the demand in the three demand 
centres will be weather-dependent and therefore correlated, while the demand in one 
year is unlikely to be affected by the sales in the previous year. 

Type 3 (random-walk problems): those for which the distribution of the random 
variables is determined by the sum of an analogous random variable in the previous 
period and a random increment whose distribution does not depend on past events or 
decisions. As an example of this type, consider an investment problem which con- 
tains a simple interest rate model as one of its components. 

Type 4 (dependence on past data): problems for which any distribution parameters 
(mean, discrete realizations, variance etc.) depend on past events. A problem in which 
interest rate changes follow different distributions when rates are high than when rates 
are low illustrates this type. 

Type 5 (random problem dimensions): problems which allow the number of 
decision variables and/or constraints to be dependent on prior realizations. Problems 
which include "coffin states", in which branches can terminate before the end of the 
predefined time period, are a special case of this type. Examples of this include prob- 
lems in which bankruptcy of a business might occur in one scenario, and ones in 
which new products might be introduced in particularly favorable circumstances. 

Type 6 (dependence on past decisions): problems for which distribution parameters 
depend on past decisions (rather than just past events). Problems of this type occur in 
horse racing, when a single large bet can change betting odds, and stock markets, for 
a single large investor whose actions influence future prices and returns. 

The third major category of SLPs are distribution problems [2]. Also called "wait- 
and-see problems", these problems are concerned with making statements about the 
distributions of objective value and decision variables obtained when solving a 
(deterministic) LP for each possible realization of the data. 

These problem classes are not quite as exclusive as they may seem, and there are 
various possibilities for hybrid problems. One could envision, for instance, a setup in 
which part of the random structure is subjected to probabilistic constraints, while 
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explicit recourse is built in for the rest. Another problem of potential interest is a dis- 
tribution problem containing one or two probabilistic constraints. We mention these 
problems mostly for the sake of completeness, as we are not aware of any serious 
attempts at using them in applications. 

5 Formulation of chance-constrained problems 

In this section we consider model and data specifications for chance-constrained prob- 
lems, defining general randomness in the model specification but giving detail as data. 
Whenever necessary, we define new language keywords to support our formulations, 
for which examples are shown in AMPL. Hypothetical solver input in the S-MPS 
standard is given for each formulation to show output that could be produced by an 
AML system for automatic SLP solver integration. 

5.1 Individual chance constraints 

To define a problem with individual chance constraints, we must be able to specify in 
the algebraic modelling language the location of the random variables, along with 
their probability distributions. In addition, the language must be able to detect and 
process the individual chance constraints themselves. 

The question arises which of these items should be part of the model, and which 
should be part of the data. It seems clear that the probability distributions are data 
items, since it cannot be desirable to change the model when substituting a uniform 
distribution for a truncated normal distribution, to give an example. On the other hand, 
the reliability levels associated with the constraints are a parameter class, and they 
should be treated like any other parameter class; that is, they should be set up in the 
model, with the data specified in the data section. 

Similarly, the probabilistic constraints are a special type of constraint which 
should be set up as part of the model. This practically forces the point of view that the 
location of the random variables is also a model item, with the distribution being 
allowed to be a degenerate distribution if necessary. What one needs then is a con- 
struct in the modelling language to flag random variables. 

Possible modifications to an AMPL model file, as applied to the transportation 
model, are as follows: 

param reliability {destinations} >= O, <= 1; 
param demand {destinations} random; 

subject to avail {d in destinations}: 
prob (sum {s in sources} units_shipped[s,d] >= demand[d]) 

>= reliability[d]; 

The attribute random attaches to the parameter class demand in much the same 
way other attributes like integer, binary or >= 0 do. The keyword prob in the avail- 
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ability constraints indicates that a probability is to be evaluated. There is no require- 
ment on the algebraic modelling language to actually "understand" this concept, but 
it is imperative that the information be passed on to the eventual solver in the correct 
way. 

The actual distributions of the random demands would appear in the data file, as 
outlined in a separate section below in more detail. 

The current version of the S-MPS standard does not include chance constraints, 
but individual chance constraints could be described as follows: 

CHANCE 
G RHS DEMTRD 0.95 
G RHS DEMSTV 0.95 
G RHS DEMLIL 0.95 

This would specify minimum reliability levels of 0.95 associated with each of the 
three demand locations. 

5.2 Joint chance constraint 

The modification from the individual chance constraints in the last section is a slight 
one, as seen in the following fragments of an AMPL file: 

param reliability >= 0, <= 1; 
param demand {destinations} random; 

subject to avail: 
jointprob {d in destinations} 

(sum {s in sources} units_shipped[s,d] >= demand[d]) 
>= reliability; 

In place of an entire class of reliability levels, it is now sufficient to define a 
single parameter, but the probabilistic constraint has to take into consideration a 
multiple integral. This can be done by placing an indexing expression within the scope 
of the keyword prob; the use of a different keyword such as jointprob might be slightly 
more readable here. 

In the S-MPS format, this could be rendered as 

CHANCE JOINT 
RHS DEMTRD 
RHS DEMSTV 
RHS DEMLIL 

0.98 

but there is some ambiguity as to whether the coefficient of  0.98 forms a minimal 
reliability level or a maximal fault tolerance. The direction of the implied inequality 
cannot be conveyed within the framework of this standard. 
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5.3 Specifying distributions 

Next we will take a look at how distributions can be specified within the data section. 
Univariate distributions are relatively easy, but the language must be able to 

understand and deal with a number of widely used distributions such as uniform, 
normal, beta and gamma distributions, as well as ad-hoc distributions, both discrete 
and continuous. 

As an example, we give part of an AMPL data file with proposed extensions: 

param demand .-'- 
Trondheim 
Stavanger 
Lillehammer 

normal (150,25); 
uniform (80,120); 
discrete (70 .25 80 .5 90 .25); 

This describes stochastic demand in the transportation problem, where demand in 
Trondheim follows a normal distribution with mean 150 and variance 25, demand 
in Stavanger is uniformly distributed over the interval [80,120], and demand in 
Lillehammer follows the indicated three-point (discrete) distribution. 

Other common univariate distributions can obviously be provided for in a very 
similar fashion. The only type that appears difficult is the general continuous distri- 
bution. This is, however, hardly surprising, since specification of such distributions 
requires definition of a nonlinear distribution (or density) function, for which the 
algebraic modelling languages, developed to handle linear programs, are not particu- 
larly well adapted. 

The same distributions could be formulated in the S-MPS format: 

INDEP NORMAL 
RHS DEMTRD 150.0 25.0 

INDEP UNIFORM 
RHS DEMSTV 80.0 120.0 

INDEP DISCRETE 
RHS DEMLIL 70.0 0.25 
RHS DEMLIL 80.0 0.5 
RHS DEMLIL 90.0 0.25 

Due to the rigid card image format, two-parameter families of distributions can be 
handled easily, but additional parameters are rather difficult to describe without de- 
stroying the basic philosophy of the MPS format. 

Multivariate distributions are somewhat harder to deal with because the informa- 
tion requirements are greater. For illustration purposes, we will assume that the stochastic 
demand in the three demand centres of the transportation problem is modelled by a 
trivariate normal distribution with mean # = (150, 100, 80) and covariance matrix 

E =  16 . 
7.2 
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(This describes an equicorrelated distribution with correlation coefficient 0.6 between 
the demands in any two destinations.) 

The difficulty then is to communicate the dimension of the random vector and the 
locations of the individual entries. In AMPL we could use notation similar to the 
specification of two-dimensional tables, along the lines of 

param demand := multinormal : 
Trondheim Stavanger Lillehammer := 
mean 150 1 O0 80 
Trondheim 25 12 9 
Stavanger 12 16 7.2 
Lillehammer 9 7.2 9; 

This device is not available in the S-MPS format because of the limitations posed 
by the rigid record structure. Instead, the original document [4] attempted to achieve 
the same result by decomposing the multivariate distribution into linear combinations 
of univariate ones. In the case of the multivariate normal distribution this is permis- 
sible since if x is a multivariate normal random variable with mean/.t and covariance 
matrix E, then for any matrix T and vector a of appropriate dimensions, Tx + a has a 
multivariate normal distribution with mean T# + a and covariance matrix TET ' .  

For instance, if x 1= (x~, x~, x~)' is a random vector consisting of  three inde- 
pendent standard normal random variables, a I = (150, 100, 80)' and T I is defined as 

T 1 = I 
5 0 0 / 

2.4 3.2 0 , 

1.8 0.9 

then the random variable Tlx + a I has the equicorrelated trivariate normal distribu- 
tion given before. (T l is the Cholesky decomposition of the matrix E.) 

This decomposition is not unique, however. For example, let us assume that x 2 
has a (univariate) normal distribution with mean 150 and variance 25, x22 is normally 
distributed with mean 35 and variance 16, and x 2 is normally distributed with mean 
24.43974 and variance 9. If we define a 2 = (0,  0, 0 ) '  and 

I 1 0 0 1 
T 2 = 0.48 0.8 0 , 

~,0.36 0.225 

then the random variable T2x 2 has the same distribution as TIx I + a 1. 

Clearly, this decomposition is quite cumbersome, and the modeller should not be 
expected to perform the calculations by hand. One possible approach would be to have 
the decomposition calculated by the AML; alternatively, one might seek extensions to 
the S-MPS standard. 
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6 Recourse problem formulation 

As noted above, recourse problems introduce randomization through explicit or im- 
plicit event tree structures which associate probabilities and expected values with 
contingent decisions during a planning period. Formulating these problems in the case 
of discrete distributions involves identifying random variables and either explicitly or 
implicitly stating the realizations that will form the underlying "tree" for the problem. 
Continuous distributions are handled slightly differently in that the discretizations 
are formed in the appropriate solver, either through random sampling or judicious 
approximations. For recourse problems as for chance-constraint problems, we sepa- 
rate as far as possible the randomization of parameters in the model specification from 
specification of distributions in a problem's data set. 

6.1 Scenario-based problem formulation 

The transportation model respecified as a two-stage scenario-based problem is shown 
below. In the model specification, a new index set scenarios has been introduced, 
with a probability parameter probab summing to 1 across all scenarios. Destination 
demand, along with associated shortage and surplus (recourse) costs are set up as 
random variables by indexing over destinations and scenarios. Decision variables are 
also indexed over scenarios, and the objective function minimizes expected total cost, 
as follows: 

set sources; 
set destinations; 
set scenarios; 

param supply {sources}; 
param demand {destinations, scenarios}; 
param uniLcost {sources, destinations}; 
param shortage_cost {destinations, scenarios}; 
param surplus_cost {destinations, scenarios}; 

param probab {scenarios} >= O, <= 1; 
check: sum \1 s in scenarios\r\ probab[s] = 1; 

var units_shipped {sources, destinations} >= O; 
var units_short {destinations, scenarios} >= O; 
var units_long {destinations, scenarios} >= O; 

minimize total_cost: 
sum {s in sources, d in destinations} 

uniLcost[s,d] * units_shipped[s,d] 
+ sum {d in destinations, w in scenarios} 

(probab[w]* shortage_cost{d] * units_short[d,w]) 
+ sum {d in destinations, w in scenarios} 

(probab[w]* su rplus_cost[d]*units_long[d,w]); 
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subject to satisfy {d in destinations, w in scenarios}: 
sum {s in sources} units_shipped[s,d] 

+ units_short[d,w] - units_long[d,w] = demand[d,w]; 

subject to avail {s in sources}: 
sum {d in destinations} units_shipped[s,d] <= supply[s]; 

For multistage problems of this type, it is necessary to keep explicit track of 
branches in the tree structure and parent scenarios in order to minimize redundancy in 
the specification. This is done by explicitly defining parent and start time parameters 
for each scenario, giving the number of the preceding scenario from which the 
current scenario branches and the time period in which the branch occurs. The tree 
structure is then explicitly stated in the problem's data set. The reader is referred to 
Gassmann and Ireland [17] for an example of a multistage scenario-based problem 
specification. 

6.2 Formulation of distribution-based recourse problems 

Distribution-based recourse problems offer the opportunity to let the AML system 
generate random structures automatically rather than rely on detailed tree specifica- 
tions. As with chance-constrained problems, the modeller can change distributions 
more easily when the distribution is kept in the data specification and the system 
generates the random structure. Complexities arise, however, as distribution inter- 
dependencies become greater. 

A generic two-stage distribution-based problem formulation in AMPL is shown 
below. Here the demand is defined as random and requires a distribution defined in 
the data set for each destination, as in the previous section. Decision variables 
units_short and units_long are defined as random to indicate that they will have 
multiple values corresponding to the demand distribution branches. The keyword 
expectation in the objective indicates that the system will calculate the expected value 
across all realizations of the demand random variable. 

set sources; 
set destinations; 

param supply {sources}; 
param demand {destinations} random; 
param shortage_cost {destinations}; 
param surplus_cost {destinations}; 
param unit_cost {sources, destinations}; 

var units_shipped {sources, destinations} >= O; 
var units_short {destinations} random >= O; 
var units_long {destinations} random >= O; 



H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 101 

minimize total_cost: 
sum {s in sources, d in destinations} 

uniLcost[s,d] * units_shipped[s,d] 
+ expectation {d in destinations} 

(shortage_cost[d], units_short[d]) 
+ expectation {d in destinations} 

(surplus_cost[d], units_long[d]); 

subject to satisfy {d in destinations}: 
sum {s in sources} units_shipped[s,d] 

+ units_short[d,p] - units_long[d,p] = demand[d,p]; 

subject to avail {s in sources}: 
sum {d in destinations} units_shipped[s,d] <= supply[s]; 

This example serves to illustrate two-stage distribution-based models of both 
Type 1 and Type 2; Type 1 models will have independent demand distributions for the 
various destinations, while a Type 2 model would have dependent (multivariate) dis- 
tributions as for the chance-constraint case discussed earlier. 

Both the AMPL data file and the corresponding S-MPS file can take the form 
given in section 5.3. We illustrate here with independent discrete distributions as 
follows: 

param demand .-'- 
Trondheim discrete(135 .25 150 .5 165 .25); 
Stavanger discrete( 90 .25 100 .5 110 .25); 
Lillehammer discrete( 70 .25 80 .5 90 .25); 

and 

INDEP DISCRETE 
RHS DEMTRD 135.0 0.25 
RHS DEMTRD 150.0 0.5 
RHS DEMTRD 165.0 0.25 

RHS DEMSTV 90.0 0.25 
RHS DEMSTV 100.0 0.5 
RHS DEMSTV 110.0 0.25 

RHS DEMLIL 70.0 0.25 
RHS DEMLIL 80.0 0.5 
RHS DEMLIL 90.0 0.25 

This stoch file is sufficient to generate 27 different scenarios.The corresponding 
event tree can then be generated in the solver, relieving the AML of this task. 

For multistage problems, the situation becomes more complicated. Information 
about the distributions alone is not sufficient to reconstruct the event tree; what is 
needed in addition is information about the time stage in which each random variable 
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is realized. This also means that the simple attribute random is inadequate. What is 
needed instead is a hierarchy of uncertainties corresponding to the time structure of 
the problem. 

There are two ways to specify this in a language like AMPL, neither of which is 
completely satisfactory. In both cases, we start by defining the time structure using a 
special attribute or entity timeset, which must be ordered or capable of being ordered. 
It is then possible to define a class of attributes random[t] corresponding to the 
elements t of the time set. (For ease of use, one could allow the attribute random to 
be interpreted as equivalent to random[t2], where t2 is the second element of the time 
set, making it slightly more convenient to set up two-stage problems.) 

It is possible to place this specification into the model file directly or, alterna- 
tively, to flag only general randomness in the model file and make more explicit 
statements in the data section. The first option might look as follows when applied to 
the production/inventory problem: 

timeset periods := 1..T 
param demand {p in products, t in periods} random[t]; 
var make {p in products, t in periods} random[t]; 
var hold {p in products, t in periods} random[t]; 

The disadvantage of this approach is that a change in the distribution (a data item) 
may result in a change in the model. It is common practice, for instance, to set up 
multiperiod problems in two-stage stochastic form at first, in which all uncertainty 
will be resolved after the first period. Reformulating the problem as a true multistage 
problem would then necessitate changes in both the model and data file if this par- 
ticular approach is followed. 

If the explicit statement appears in the data file instead, then the model file for 
this example might look like 

param demand 
var make 
var hold 

{p in products, t in periods} random; 
{p in products, t in periods} random; 
{p in products, t in periods} random; 

while the data file would be 

param demand • widgets := 
1 random[I] 1 
2 random[2] discrete (3 .5 5 .5) 
3 random[3] discrete (3 .5 5 .5); 

Here, there are two problems. This type of specification is considerably more 
complicated to set up; it is therefore easier for the modeller to make a mistake. More 
importantly, variables do not appear in the data section, so the nature of the random- 
ness of the variables make and hold is hard to specify. More work is clearly needed 
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here; we will put explicit information into the model file for the time being, giving 
the following full model file: 

set products; 
param T > 0; 
timeset periods := I..T; 

param starLinventory {products}; 
param max_production {products}; 
param production_cost {products}; 
param holding_cost {products}; 
param max_inventory; 
param demand {products, I..T} random[t]; 

var make {products, t in periods} random[t]; 
var hold {products, t in periods} random[t]; 

minimize total_cost: 
expectation(sum {p in products, t in periods} 

(production_cost[p],make[p,t] + holding_cost[p],hold[p,t])); 
subject to balance {p in products, t in periods}: 

if (t=l then starLinventory[p] 
else hold[p,t-1]) 

+ make[p,t] = demand[p,t] + hold[p,t]; 

subject to prod_cap {p in products, t in 1..T}: 
make[p,t] <= max_production[p];\ 

subject to hold_cap {t in I..T}: 
sum {p in products} hold[p,t] <= max_inventory; 

The corresponding data file looks like this: 

param T := 3; 
set products := widgets; 
param starLinventory := widgets 
param max_production := widgets 
param production_cost := widgets 
param holding_cost := widgets 
param max_inventory := 4; 

0; 
4; 
0; 
1; 

Problem types beyond 2 must be multistage, since they all involve dependencies 
on prior random variable realizations. Type 3 problems can be set up by specifying 
parameter changes (rather than the original parameters) as random variables, with cal- 
culations in the model. This specification begins to break down the definition of 
distributions as data, however, since changing the demand distribution requires 

param demand: widgets := 
1 1 
2 random(2, discrete(3 .5 5 .5)) 
3 random(3, discrete(3 .5 5 .5)); 
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modification of the demand calculation in the model itself. The separation can be 
maintained in a slightly different form by defining and storing the demand calculation 
and associated distribution in secondary model and data files, if the system allows 
this. In a system which permits multiple-model and data sections, such as AMPL, the 
production/inventory model could be rendered in random-walk form using a data file 
of this type: 

param T := 3; 
set products := widgets; 
param starLinventory := 
param max_production := 
param production_cost := 
param holding_cost := 

widgets 0; 
widgets 4; 
widgets 0; 
widgets 1; 

param max_inventory := 4; 

model; 
param drift {products, t in 2..T} random[t]; 
subject to {p in products, t in 2..T}: 

demand[p,t] = demand[p,t-1] + drift[p,t]; 

data; 
param drift: widgets := 

2 discrete(-1 .5 1 .5) 
3 discrete(-1 .5 1 .5); 

Since the drift has a stationary distribution, it should be possible to simplify this 
further by specifying only one one-dimensional distribution: 

model; 
param drift {products, t in 2..T} random; 
subject to {p in products, t in 2..T}: 

demand[p,t] = demand[p,t-1] + drift[p,t]; 

data; 
param drift: widgets := discrete(-1 .5 1 .5); 

Problems of Type 4 require more complex tracking of past realizations and their 
incorporation into formulas calculating distribution parameters. A sample suggested 
formulation is given below. As in Type 3, Type 4 distributions must rely on "model" 
specifications which could be kept in separate files from the original model definition 
to simplify distribution switching. 

As an example, we give a modification of the production problem in which the 
step size of the random walk depends on the current demand level. 

param T := 3; 
set products := widgets; 
param starLinventory := widgets 0; 
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param max_production := widgets 4; 
param production_cost := widgets O; 
param holding_cost := widgets 1; 
param max.inventory := 4; 
model; 
param drift {p in products, t in 2..T} random[t] := 

discrete (-0.1 ,demand[p,t-1] 0.5 
+ 0.1 ,demand[p,t-1] 0.5); 

subject to {p in products, t in 2..T}: 
demand[p,t] = demand[p,t-1] + drift[p,t]; 

Type 5 problems employ random problem dimensions. We can modify the 
production/inventory problem to illustrate some of the difficulties encountered with 
this problem type. Let us say that the first-period demand for widgets is known to be 
1 and that second-period demand can be 2, 4, or 6 units, with probability 0.2, 0.5 and 
0.3, respectively. If second-period demand is 2, we get out of the business altogether; 
there might be a lump-sum representing liquidation and salvage cost, but there will 
be no further production to be considered in the third stage. If second-stage demand 
is 4, we continue operations, with third-stage demand being 4, 5 or 6 units, with equal 
probability. Finally, if second-stage demand is 6, we will expand operation and stor- 
age facilities and introduce another product, skiffles. The two products are expected 
to be complementary, and we would estimate the joint demand distribution to look 
like 

widgets 

6 

8 

10 

skiffles 
4 6 8 

0.25 0.06 0.00 

0.06 0.25 0.06 

0.01 0.06 0.25 

The event tree for this problem takes the form given in figure 4, so it is possible 
to devise a scenario-based formulation of this particular instance. But what about a 
distribution-based formulation? First, the index set products must be allowed to be 
random. To guard against errors in the formulation, it makes sense to define a fixed 

J 

) 

Figure 4. An event tree with a coffin state. 
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set potential_products and require that all realizations of the random set products (that 
is, all possible product mixes) be subsets of potential_products. This could be done in 
AMPL by specifying in the model file 

set potential_products; 
set products {I..T} within potential_products random; 
# Actual product mix can depend on the observed data, 
# but all possible products have been identified beforehand 

param start_inventory {products[I]}; 
param production_cost {potential_products}; 
param holding_cost {potential_products}; 
param demand {t in 1 ..T, products[t]} random; 
param max_inventory; 
param max_production {t in I..T, products[t]};\ 

var make {t in I..T, products[t]} random; 
var hold {t in I..T, products[t]} random; 

minimize total_cost: 
sum {t in 1..T, p in products[t]}: 
(expectation(production_cost[p].make[p,t] + holding_cost[p]*hold[p,t]); 

In the data file we would have to specify something like 

set potential_products := widgets skiffles; 
set products .-'- 

1 widgets # First-stage product mix is deterministic 
2 widgets # Second-stage product mix is fixed 
3 if demand[widgets,2] = 2 then { } # Stop producing 

else if demand[widgets,2] = 4 then widgets # Continue as before 
else widgets skiffles; 

# If second-stage demand is high, introduce another product 

param demand := 
# First-stage demand is deterministic: 

1 widgets 1 

# Second-stage demand is stochastic: 
2 widgets discrete 2 .2 4 .5 6 .3 

# Third-stage demand distribution depends on the current product mix: 
[3,*] if products[3] = widgets 

then widgets discrete (4 1/3 5 1/3 6 1/3) 
else if products[3] = widgets skiffles 
then discrete(widgets: 6 8 10 := 

skiffles 4 0.25 0.06 0.01 
6 0.06 0.25 0.06 
8 0.00 0.06 0.25); 
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Type 6 problems (which we have not seen used in practical situations) pose the 
greatest difficulty and appear to require new solver approaches, since distributions 
are not determined until a problem is partially solved and the SLP cannot be solved 
with current techniques until the problem is fully known. Treatment of these clearly 
is an interesting area for further work. 

6.3 Summary o f  recommended AML system extensions 

As seen in the preceding examples of model and data files, the formulation of chance- 
constrained problems, scenario-based recourse problems and distribution-based 
recourse problems of Types 1 through 5, can be handled through relatively few 
language and processing extensions in an AML system with capabilities similar to 
AMPL. Recommended new language keywords include: 

prob and jointprob to set up chance-constrained problems; 

random and random[t] to identify random parameters, sets and variables; 

expectation to express expectation operators in distribution-based recourse prob- 
lems; 

timesot to designate the set of time stages; 

discrete, normal, uniform, etc. to specify particular distributions. 

If S-MPS solver input were produced, AML system processing would have to be 
extended to generate its required files, but aside from the consistency checks described 
in the next section, relatively little new internal processing would be required beyond 
that since its field values are for the most part taken directly from the AML specifi- 
cations. Difficulties arise in describing general (nonstandard) distributions and de- 
pendence of random variables across periods. 

7 Model management functions 

As noted earlier, management of SLP models is a promising and relatively new re- 
search area. We comment here on two model management functions which arise 
directly from our work on AML extensions: consistency checking for objective and 
constraint specifications, and automatic selection of the appropriate SLP solver based 
on AML model and data Specifications. 

7.1 Consistency checks 

Algebraic modelling languages perform a number of consistency checks during the 
generation of the LP matrix. These checks include verification that all the indices 
referenced in objective and constraints are consistent with the definitions of param- 
eters, sets and variables, that values are available for all referenced data items, and 
that attributes such as nonnegativity and integrality are satisfied. 
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In stochastic LPs, there are opportunities for additional checks which will prove 
useful to the modeller. In particular, constraints containing exactly one random 
parameter are ill-defined unless there is a probability expression that turns the con- 
straint into a chance constraint. In the absence of a probability clause, there must be 
at least one additional random variable to balance things out. 

For example, the demand constraint 

t ransp[Bergen,Trondheim] + transp[Oslo,Trondheim] >= demand[Trondheim] 

is ill-defined if demand is specified as a random variable and the level of transporta- 
tion activity is set before this random variable is realized. Using the recourse formulation, 
the constraint can be salvaged by adding the induced random variables units_short 
and units_long and writing 

t ransp[Bergen,Trondheim] + transp[Oslo,Trondheim] 
+ units_short[Trondheim] - units_long[Trondheim] = demand[Trondheim] 

For multistage problems, the consistency check will have to make use of the 
hierarchy of uncertainties described earlier. In essence, random variables of the 
highest level of uncertainty cannot occur singly in a constraint. In the three-stage 
production/inventory problem, for instance, the third-stage demand is not known 
when the second-stage production and inventory are set, both of which are random 
variables induced by the random demand in period 2. Hence, in the constraint 

hold[p,2] + make[p,3] = demand[p,3] + hold[p,3] 

make[p,3] and hold[p,3] must be defined as random[3] to balance the occurrence of 
the random variable demand[p,3]. 

7.2 Solver selection 

A great number of different solution techniques are available and needed to solve 
SLPs, depending on problem type, characteristics of distributions within a problem, 
tree size and shape, and problem characteristics in general. 

Problems with individual chance constraints have deterministic equivalents which 
are nonlinear programs, so in principle they could be solved by NLP solvers. Often, it is 
far more efficient, however, to use special techniques as described by Pr6kopa [37] 
and Sz~ta i  [46]. These methods can also be used to solve problems with joint chance 
constraints. 

Two-stage recourse problems can be solved using stochastic quasigradient 
methods (Ermoliev [14] and Gaivoronski [18]), Benders decomposition (Van Slyke 
and Wets [47]), regularized decomposition (Ruszczyfiski [39,40]) or stochastic de- 
composition (Higle and Sen [22,23]). Multistage recourse problems can be solved 
by nested Benders decomposition (Birge [3], Gassmann [16]), scenario aggregation 
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(Rockafellar and Wets [38]), specialized interior point techniques (Lustig et al. [34], 
Birge and Holmes [5], Czyzyk et al. [11]) or similar methods. All of these methods 
can also be used iteratively within the approximation methods studied by Kall et al. 
[30]. 

To the extent that modelling experts can choose the appropriate solver based on 
characteristics of the model specification and data, AMLs should be able to support 
intelligent solver selection based on data about the nature of the SLP gathered during 
processing. This is clearly an area of future research, but we believe that it will be 
possible to formulate rules which would help the user decide between a stochastic 
decomposition approach and solving the deterministic equivalent by interior point 
methods, to give a very concrete example. Intelligent solver selection has been 
demonstrated for nonlinear programs by Schittkowski [41,42] and has been suggested 
for SLPs by Kall and Mayer [29]. 

8 Summary and conclusions 

Based on a review of stochastic linear programming problem types and current 
algebraic modelling language capabilities, we have shown feasible, nonredundant 
formulation approaches for chance-constrained problems, scenario-based recourse 
problems and five types of distribution-based recourse problems. We have also shown 
that most of these problem types can be efficiently passed to SLP solvers using the 
flexible S-MPS solver input format and have identified difficulties with that format 
for some problem types. The formulations require a limited number of AML extensions 
and the implementation of consistency checks to ensure that constraints containing 
random variables are mathematically well-defined. In addition, data provided by these 
language extensions could support intelligent solver selection mechanisms; this and 
other SLP management functions such as multiple problem views and explanation 
facilities should provide many opportunities for further research. 
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