
Annals of Operations Research 64(1996)83-112 83

On the formulation of stochastic linear programs
using algebraic modelling languages

H.I. Gassmann and A.M. Ireland

School of Business Administration, Dalhousie University,
Halifax, Nova Scotia, Canada B3H 1Z5

E-mail: gassmann@earth.sba.dal.ca; aireland@ac.dal.ca

This paper considers extensions to algebraic modelling languages to support for-
mulation, instantiation and solver integration for stochastic linear programs (SLPs). We
present a taxonomy of SLP problem types and analyze formulation requirements includ-
ing distribution handling by class of problem. We demonstrate suggested formulations
for most problem classes, show solver input in the S-MPS standard, and propose con-
sistency checks for constraints involving stochastic data items. Some unresolved diffi-
culties are identified.

1 Introduction

Algebraic modelling languages (AMLs) for mathematical programming are languages
in which mathematical programming models can be stated using language constructs
which closely resemble mathematical notation [21,32]. These languages assist
modellers in the formulation, solution and management of large mathematical pro-
grams by providing powerful, declarative algebraic syntax for model specification,
often in systems with integrated LP solvers and a range of model management facili-
ties. Their capabilities have reduced the programming skill required for modellers to
implement large LPs, encouraging wider application of linear programming in prac-
tical situations.

Use of stochastic linear programming (SLP) models is becoming more widespread
as computing capacity and solver technology rapidly improve and as SLP advantages
are demonstrated (see for example, Carifio et al. [8], Mulvey and Vladimirou [36],
Dempster and Ireland [13], Sen et al. [44]). However, SLP modellers now face
difficulties similar to those encountered by deterministic LP builders using earlier
computer languages. Because AMLs and other modelling systems do not yet support
stochastic modelling, SLP formulations and solver links must often be custom pro-
grammed in one-off pieces of code, resulting in tight coupling among the model speci-
fication, model instance and the solver used. This can require extensive time and skill
for programming and debugging, increasing the cost and effort required to use SLPs
and limiting the practical realization of their analytical benefits.

© J.C. Baltzer AG, Science Publishers

84 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

The purpose of this paper is to help to advance development of algebraic model-
ling languages as SLP formulation and management tools by analyzing requirements
and proposing supporting language extensions. We first review the capabilities of
AMLs, their limitations for SLP formulation and management, and a solver input
standard which could improve solver integration with AMLs. After introducing two
sample problems, we present a taxonomy of SLP types to be supported, based on
characteristics of their random structures which determine minimum model and data
specifications. AML formulation techniques and solver integration mechanisms are
then proposed and illustrated for most problem types, followed by a discussion of
SLP model management needs and suggestions for further related research.

2 Background

In this section we summarize the process of model formulation, error checking and
solver integration provided by AMLs, concluding with a brief discussion of their
current and potential model management capabilities.

2.1 Model formulation

The process of using an AML system to formulate and solve an LP follows the
steps shown in figure 1. First, a model is formulated using algebraic language con-
structs and data is specified (in either the model file or a distinct file) to instantiate
the model. The AML system then generates output which is either directly readable
by one or more solvers or is converted to solver input by a custom-written routine. A
solver is then invoked through commands internal or external to the AML system and
produces a problem solution.

Model I
Specification

Data
Specification

System Input Solver Solution

Figure I. Steps in using an AML system.

In formulating models, AMLs use declarative statements (specifying what is to
be done rather than how it is done), extensive use of domains over sets, and rows
(constraints) rather than columns (activities) to represent models; they thus tend to
support a mathematician's view of models rather than a view based on program-

H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 85

ming language syntax or on activities and processes (Greenberg and Murphy [21]).
Examples of algebraic modelling languages include GAMS (Brooke et al. [7]), AMPL
(Fourer et al. [15]), LINGO (Cunningham and Schrage [10]), LPL (Hiidimann [24]),
and MODLER (Greenberg [20]). For surveys of AML features and capabilities, see
Greenberg and Murphy [21] and Kuip [32].

Algebraic modelling language systems allow modellers to distinguish between
models and their instances in a way not done by earlier-generation matrix generator
programs, which had to be custom-written for specific problems and typically mixed
data and model specifications. As described in current object-oriented terminology,
AML model specifications define models abstractly through object classes, including
classes of indices, parameters and variables; general relationships, (defined through
constraint classes); and class attributes such as nonnegativity. Model instances are
formed when data sets fix membership in these classes. This approach has the advan-
tage of producing a generic model specification for which many modifications can be
done through changes in data sets alone.

These capabilities help modellers formulate a wide range of LPs and nonlinear
programs, including those with complex time and network structures. However,
stochastic LP formulation requires specification of random structures, ideally mini-
mizing redundancy and problem size. In an earlier paper [17], we demonstrated SLP
formulation and instantiation using one AML by explicitly constructing event tree
indices and parent scenario references for the "deterministic equivalent problem", but
the process is time consuming, cumbersome and error-prone. Use of AMLs for
stochastic linear programming would be greatly facilitated by inclusion of specific
language constructs and operations to automate the process by generating random
variable realizations, dependent parameters, and the necessary indices, and carrying
out automatic consistency checks.

2.2 Consistency checking

For deterministic LPs, the AML makes sure that the problem is set up correctly, that
all index classes are consistent, that all data items are initialized, that attributes such
as nonnegativity and integrality hold where specified, and that explicit modeller-
defined consistency checks are satisfied. When the LP solver takes over, it still has to
figure out the size of the problem, the location and number of nonzeroes, the starting
basis, and so on.

For stochastic LPs, we expect the AML to perform similar functions: it should
check that the problem is well-defined, recognize the time and stochastic structures,
and pass this information on to the solver. Because there are many different SLP
solution strategies, the output from the AML has to be quite flexible. Maximal flex-
ibility is achieved when using the minimal problem representation, for which the
existing S-MPS standard (see below) can act as a guideline, making suitable exten-
sions where necessary.

86 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

2.3 Solver integration

Once models are formulated, AML systems use several approaches to communicating
with solvers. A common solver integration approach is to transfer data through shared
memory without the use of intermediate files. AMPL, for example, can communicate
with MINOS, CPLEX or OSL in this fashion, giving fast and efficient model solution
as a single operation after a model is formulated and instantiated. A second approach
is to generate an output file in the standard MPS format read by essentially all current
LP solvers; this allows transfer of formulated model instances among a wide range of
solvers and facilitates solver comparison. Finally, AMLs may support solvers by pro-
ducing output files that can be read into the solver directly or, if necessary, converted
through custom-written routines to solver-specific input formats. This requires addi-
tional time and programming skill for creating the linking routines, but it avoids some
of the shortcomings of the MPS format, such as limits to accuracy and variable names.

Each of these approaches presents some difficulties for stochastic modellers.
Since SLP solvers are not currently supported by AML systems, integration must
take place either through custom-written linking routines, which have the disadvan-
tages outlined above, or through use of the MPS input format, which requires the use
of the deterministic equivalent LP formulation and thus rules out some interesting
SLP classes as well as placing size limitations on the problems that can be handled.
Neither prospect provides SLP modellers with minimum-size model specifications
capable of being readily passed to multiple solvers - a practice that is often desirable
since SLP solver efficiency varies significantly with problem structure and is some-
times difficult to predict without experimentation.

2.4 MPS format and the S-MPS extension

Instances of deterministic LPs are most frequently stored and communicated using
the well-known MPS standard [25,43]; this uses a 72-column card image with fixed
line formats providing for up to three eight-character name fields and two twelve-
digit numerical fields. Positions of numerical data are identified by matching column
and row names. A model specification file consists of a number of sections, some of
which are optional. Each section begins with a header line and most contain data lines;
sections are briefly described in figure 2. MPS can be used to specify deterministic
equivalents for SLPs which use only discrete distributions, but it is necessary to
explicitly define all random variable realizations and resulting decision variables and
parameters for all scenarios. Although this approach allows SLPs to be passed among
solvers, its formulations are redundant wherever variables and parameters are not de-
pendent on random variables, and it does present obvious practical limits on the sizes
of problems that can be easily handled.

The S-MPS solver input standard defined by Birge et al. [4] extends the MPS
standard to stochastic LPs in a nonredundant specification which is transferrable

H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 87

ROWS section
constraint names and types

COLUMNS section
nonzero LP coefficients column by column

RHS section
nonzero right-hand side coefficients

BOUNDS, RANGES
optional for bounds on variables and slacks

Figure 2. Summary of the MPS format.

among many SLP solvers now in use in research or application environments. S-MPS
will also handle problems with continuous distributions. It consists of three files: the
"Core" file, which closely follows the MPS format and contains the basic determin-
istic problem; the "Time" file, which explicitly defines the problem's time structure;
and the "Stoch" file, which defines the random structure and specifies variables and
parameters which are dependent on the problem's random variables. Each of the last
two sections presents only the minimum data needed to extend the basic deterministic
problem, so that problem size is controlled. The standard's explicit description of time
and random structures also provides necessary input to decomposition SLP solvers. It
thus provides output in a format which both minimizes redundancy and allows trans-
fer among solvers without the custom routines now required by AML systems. How-
ever, the rigid record format imposes limitations which make multivariate random
variables difficult to implement, as described later in the paper.

2.5 AML model management capabilities

We regard model management as encompassing support for the entire modelling life
cycle, including problem identification, model creation, model implementation, vali-
dation, solution, interpretation, maintenance, and version and security control (cf.
Krishnan [31]). Using this definition, AML systems as described above are limited in
their model management functions to supporting formulation, consistency and com-
pleteness checking and solver links. However, management of optimization models is
an active research area (e.g. see [45]), and AMLs can be accompanied by or embedded
in additional software with extended model management capabilities. For example,
AIMMS [6] provides interactive, Windows-based output display and report format-
ting; AMPL and GAMS both provide text-based report formatting; MODLER and its
companion ANALYZE [19, 20] give multiple model views and text explanations of
model structure and output; and LPForm [35] formulates models in GAMS through
either a graphic or text-based Windows interface.

88 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

Research on management of SLPs is relatively rare, although Wallace and Wets
[48,49] consider preprocessing functions for detecting conditions for relatively com-
plete recourse, and Kall and Mayer [27-29] have designed and partially implemented
a model management system for SLPs which integrates GAMS with multiple SLP
solvers. As far as we are aware, little consideration has so far been given to SLP
management features within AML systems.

3 Two sample problems

This section introduces two small sample problems that will be used in the remainder
of the paper. The original formulation of both problems is as deterministic LPs, but
we will subsequently modify them to study alternative ways to treat stochastic infor-
mation and possible algebraic modelling language problem formulations.

3.1 Transportat ion problem

The first problem is a completely standard transportation problem: units of a com-
modity have to be distributed from a number of warehouses or sources to a number
of demand points or destinations. The allocation should minimize the total transpor-
tation cost while respecting supply constraints at each of the sources (one cannot ship
more units than are available) and demand constraints at the destinations (demand
must be satisfied).

The transportation model can be formulated mathematically as

minimize ~_~ cijxij
i , j

subject to ~., xij > d j , j = 1 J,
i

~ xij < si, i = 1 I,
J

xij >_0, i = 1 I, j = l J,

where cij represents the cost of transporting one unit of the commodity from source i
to destination j, xij is the amount shipped, si is the amount of the commodity available
for shipment from source i, and dj is the demand of the commodity at destination j.

The same model can be formulated in the algebraic modelling language AMPL as
follows:

set sources;
set destinations;
param supply {sources};
param demand {destinations};
param uniLcost {sources, destinations};

H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs 89

var units_shipped {sources, destinations} >= 0;

minimize total_cost:
sum {s in sources, d in destinations}

uniLcost[s,d] • units_shipped[s,d];

subject to satisfy {d in destinations}
sum {s in sources} units_shipped[s,d] >= demand[d];

subject to avail {s in sources}:
sum {d in destinations} units_shipped[s,d] <= supply[s];

The accompanying AMPL data file for a specific instance with just two sources
and three destinations is:

set sources := Bergen Oslo;
set destinations := Trondheim Stavanger Lillehammer;

param supply: Bergen Oslo :=
100 250;

param demand: Trondheim Stavanger Lillehammer :=
150 100 80;

param uniLcost: Trondheim Stavanger Lillehammer :=
Bergen 10 5 20
Oslo 20 10 10

This particular instance corresponds to a linear program which can also be
rendered in the standard MPS format as follows:

NAME
ROWS

N COST
L SUPBGN
L SUPOSL
G DEMTRD
G DEMSTV
G DEMLIL

COLUMNS
TRBGNTRD
TRBGNTRD
TRBGNSTV
TRBGNSTV
TRBGNLIL
TRBGNLIL
TROSLTRD
TROSLTRD
TROSLSTV
TROSLSTV
TROSLLIL
TROSLLIL

Transportation problem

COST 10.0
DEMTRD 1.0 SUPBGN 1.0
COST 5.0
DEMSTV 1.0 SU PBGN 1.0
COST 20.0
DEMLIL 1.0 SUPBGN 1.0
COST 20.0
DEMTRD 1.0 SU POSL 1.0
COST 10.0
DEMSTV 1.0 SUPOSL 1.0
COST 10.0
DEMLIL 1.0 SU POSL 1.0

90 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

RHS
RHS DEMTRD 150.0
RHS DEMSTV 100.0
RHS DEMLIL 80.0
RHS SUPBGN 100.0
RHS SUPOSL 250.0

ENDATA

As mentioned, the problem as stated is a deterministic LP without time structure;
we will eventually introduce random demands (with known distributions) to turn it
into a stochastic LP.

3.2 Production/~nventory problem

The second problem is a multiperiod production and inventory problem. In each
period, sufficient quantities of several products must be produced (subject to some
resource capacity constraints), in order to satisfy the demand for this product in this
period. Excess production can be put into storage (at a cost proportional to the number
of units stored) to augment production in a later period. The amount of storage space
is limited. The AMPL model file describing this problem class is as follows:

set products;
param T > 0;

param starLinventory
param max_production
param production_cost
param holding_cost

{products};
{products};
{products};
{products};

param demand {products, 1..T};
param max_.inventory;

var make {products, 1..T};
var hold {products, 1..T};

minimize total_cost:
sum {p in products, t in I..T} (production_cost[p]* make[p,t]

+ holding_cost[p], hold[p,t]);

subject to balance {p in products, t in I..T}:
if (t=l then starLinventory[p]

else hold[p,t-1])
+ make[p,t] = demand[p,t] + hold[p,t];

subject to prod_cap {p in products, t in 1..T}:
make[p,t] <= max_production[p];

subject to hold_cap {t in I..T}:
sum {p in products} hold[p,t] <= max_inventory;

H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs 91

The following AMPL data file describes a three-period instance with a single
product:

param T := 3;
set products := widgets;
param start_inventory :-- widgets
param max_production := widgets
param production_cost := widgets
param holding_cost := widgets
param max_inventory := 4;
param demand: 1 2 3 :=

1 4 4;

0;
4;
0;
1;

This instance can also be given in MPS format, as follows:

NAME Production/inventory problem
ROWS

N COST
E DEMD1
L PCAP1
L HCAP1
E DEMD2
L PCAP2
L HCAP2
E DEMD3
L PCAP3
L HCAP3

COLUMNS
MAKE1 DEMD1 1.0
HOLD1 DEMD1 - 1.0
HOLD1 COST 1.0
MAKE2 DEMD2 1.0
HOLD2 DEMD2 - 1.0
HOLD2 COST 1.0
MAKE3 DEMD3 1.0
MAKE3 COST 1.0

RHS
RHS DEMD1 1.0
RHS DEMD2 4.0
RHS DEMD3 4.0
RHS PCAP1 4.0
RHS PCAP2 4.0
RHS PCAP3 4.0
RHS HCAP1 3.0
RHS HCAP2 3.0
RHS HCAP3 3.0

ENDATA

PCAP1
HCAP1
DEMD2
PCAP2
HCAP2
DEMD3
PCAP3

1.0
1.0
1.0
1.0
1.0
1.0
1.0

92 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

This problem has a definite time structure. We will use it to show possibilities
(and limitations) in setting up multistage stochastic (dynamic) programming prob-
lems.

4 A taxonomy o f s tochas t i c LPs

SLPs present a major challenge for modelling systems because they can exhibit a
variety of random structures which affect numbers and redundancy of scenarios, de-
cision variables and parameters. In addition, random variable distribution character-
istics and interdependencies greatly influence the degree to which problems must be
specified in a "brute force" fashion. The following taxonomy of SLP types is intended
as an initial attempt to classify and clearly describe SLP problem types so that sup-
port requirements for AMLs and other model management systems can be identified.

Generally speaking, a stochastic linear program is a linear program in which some
of the data are stochastic. We will only consider the situation when probability distri-
butions (possibly multivariate) are available for all the stochastic data items. This can
also be viewed as linear programming under risk.

I
Chance-

Constrained
Problems

Individual chance-
constraints

Joint chance-
constraints

Mixed problems

I

Recourse
Problems

I
Seena~o-

Based
Problems

Stochastic
LPs

I
Disln'bufion
Problems

I
Dis~ibution-

Based
Problems

4,
Independent random variables
Perlod-to-period Independence
Random walk
Dependence on past data
Random problem dimensions
Dependence on past decisions

Figure 3. A taxonomy of stochastic LPs.

I
Hybrid

Problems

Figure 3 summarizes the taxonomy. We consider four main subclasses of SLPs.
Chance-constrained problems (Charnes and Cooper [9], Pr6kopa [37], Kall [26])
contain one or more chance constraints or probabilistic constraints of the form

H.L Gassmann, A.M. Ireland /Formulation of stochastic linear programs 93

where the coefficients aij and bj are (possibly) random variables, Jk is some subset of
the rows of the problem, at, is a specified reliability level and the probability is taken
with respect to the distribution of the random variables aiy and by. The index k runs
from 1 to K, the number of chance constraints contained in the problem. In problems
with individual chance constraints, each of the index sets Jk is a singleton set; joint
chance-constraint problems contain a single multivariate chance constraint, that is,
K = 1. Mixed problems contain several multivariate chance constraints.

Recourse problems (Dantzig [12], Beale [1]) have the general form

minimize c~x0 + El {c~xl } + ." + Er {c~.xr }

subject to Aoxo

Blxo + A l x l

"..

= bo

= b I

BTXT_ 1 + ATX T = b T

x t>O, t = O T.

Any of the entries in the boldfaced matrices A t, B t and vectors bt, ct may be random.
Time periods are denoted by t = 0 T, and each period t has a decision vector xt
constrained explicitly by decisions in prior periods; E t is used to denote the expected
value of future decisions. The term "recourse" refers to the assumption that in any
period one has access to a recourse decision at some penalty cost which will allow the
constraints to be met.

The random structure of a recourse problem can be thought of as an (idealized)
event tree (Lane and Hutchinson [33]) in which multiple realizations of random vari-
ables create branches at particular times and scenarios are paths from the event tree
root to individual leaves. Each branch point in an event tree represents realizations of
one or a combination of random variables at a given time period, given past realiza-
tions leading to the position in the tree from which the branch occurs. Associated with
each node in a tree are the values of its random variable realizations, parameters
calculated from those realizations, and contingent decision variables.

Scenario-based recourse problems have their tree structure, including random
variable realizations and dependent data, explicitly specified. (In particular, this
implies that all random elements must be finitely distributed.) These problems arise
when it is convenient to explicitly describe event paths rather than state them in terms
of distributions. Problems requiring a manager to give a subjective assessment of the
outcomes of a range of possible future events are often of this type.

94 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

Problems for which a priori specification of distribution parameters can be used
to generate the tree structure, decision variables and parameter values are referred to
as distribution-based problems. Since SLP formulation issues are primarily concerned
with event tree specification, we categorize distribution-based recourse problems
according to the degree of distribution interdependence present in the random struc-
ture, which determines their formulation requirements as discussed in the following
section. We distinguish the following problem types:

Type 1 (independent random variables): problems for which individual random
variables are independent within and across time periods. For such problems the ran-
dom structure can be completely specified using univariate distributions.

Type 2 (period-to-period independence): problems for which distributions are
correlated within time periods but are independent of realizations in the past. Multi-
stage versions of the transportation problem might well fall into this category if the
transported good is a commodity such as umbrellas: the demand in the three demand
centres will be weather-dependent and therefore correlated, while the demand in one
year is unlikely to be affected by the sales in the previous year.

Type 3 (random-walk problems): those for which the distribution of the random
variables is determined by the sum of an analogous random variable in the previous
period and a random increment whose distribution does not depend on past events or
decisions. As an example of this type, consider an investment problem which con-
tains a simple interest rate model as one of its components.

Type 4 (dependence on past data): problems for which any distribution parameters
(mean, discrete realizations, variance etc.) depend on past events. A problem in which
interest rate changes follow different distributions when rates are high than when rates
are low illustrates this type.

Type 5 (random problem dimensions): problems which allow the number of
decision variables and/or constraints to be dependent on prior realizations. Problems
which include "coffin states", in which branches can terminate before the end of the
predefined time period, are a special case of this type. Examples of this include prob-
lems in which bankruptcy of a business might occur in one scenario, and ones in
which new products might be introduced in particularly favorable circumstances.

Type 6 (dependence on past decisions): problems for which distribution parameters
depend on past decisions (rather than just past events). Problems of this type occur in
horse racing, when a single large bet can change betting odds, and stock markets, for
a single large investor whose actions influence future prices and returns.

The third major category of SLPs are distribution problems [2]. Also called "wait-
and-see problems", these problems are concerned with making statements about the
distributions of objective value and decision variables obtained when solving a
(deterministic) LP for each possible realization of the data.

These problem classes are not quite as exclusive as they may seem, and there are
various possibilities for hybrid problems. One could envision, for instance, a setup in
which part of the random structure is subjected to probabilistic constraints, while

H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs 95

explicit recourse is built in for the rest. Another problem of potential interest is a dis-
tribution problem containing one or two probabilistic constraints. We mention these
problems mostly for the sake of completeness, as we are not aware of any serious
attempts at using them in applications.

5 Formulation of chance-constrained problems

In this section we consider model and data specifications for chance-constrained prob-
lems, defining general randomness in the model specification but giving detail as data.
Whenever necessary, we define new language keywords to support our formulations,
for which examples are shown in AMPL. Hypothetical solver input in the S-MPS
standard is given for each formulation to show output that could be produced by an
AML system for automatic SLP solver integration.

5.1 Individual chance constraints

To define a problem with individual chance constraints, we must be able to specify in
the algebraic modelling language the location of the random variables, along with
their probability distributions. In addition, the language must be able to detect and
process the individual chance constraints themselves.

The question arises which of these items should be part of the model, and which
should be part of the data. It seems clear that the probability distributions are data
items, since it cannot be desirable to change the model when substituting a uniform
distribution for a truncated normal distribution, to give an example. On the other hand,
the reliability levels associated with the constraints are a parameter class, and they
should be treated like any other parameter class; that is, they should be set up in the
model, with the data specified in the data section.

Similarly, the probabilistic constraints are a special type of constraint which
should be set up as part of the model. This practically forces the point of view that the
location of the random variables is also a model item, with the distribution being
allowed to be a degenerate distribution if necessary. What one needs then is a con-
struct in the modelling language to flag random variables.

Possible modifications to an AMPL model file, as applied to the transportation
model, are as follows:

param reliability {destinations} >= O, <= 1;
param demand {destinations} random;

subject to avail {d in destinations}:
prob (sum {s in sources} units_shipped[s,d] >= demand[d])

>= reliability[d];

The attribute random attaches to the parameter class demand in much the same
way other attributes like integer, binary or >= 0 do. The keyword prob in the avail-

96 H.L Gassmann, A.M. Ireland /Formulation of stochastic linear programs

ability constraints indicates that a probability is to be evaluated. There is no require-
ment on the algebraic modelling language to actually "understand" this concept, but
it is imperative that the information be passed on to the eventual solver in the correct
way.

The actual distributions of the random demands would appear in the data file, as
outlined in a separate section below in more detail.

The current version of the S-MPS standard does not include chance constraints,
but individual chance constraints could be described as follows:

CHANCE
G RHS DEMTRD 0.95
G RHS DEMSTV 0.95
G RHS DEMLIL 0.95

This would specify minimum reliability levels of 0.95 associated with each of the
three demand locations.

5.2 Joint chance constraint

The modification from the individual chance constraints in the last section is a slight
one, as seen in the following fragments of an AMPL file:

param reliability >= 0, <= 1;
param demand {destinations} random;

subject to avail:
jointprob {d in destinations}

(sum {s in sources} units_shipped[s,d] >= demand[d])
>= reliability;

In place of an entire class of reliability levels, it is now sufficient to define a
single parameter, but the probabilistic constraint has to take into consideration a
multiple integral. This can be done by placing an indexing expression within the scope
of the keyword prob; the use of a different keyword such as jointprob might be slightly
more readable here.

In the S-MPS format, this could be rendered as

CHANCE JOINT
RHS DEMTRD
RHS DEMSTV
RHS DEMLIL

0.98

but there is some ambiguity as to whether the coefficient of 0.98 forms a minimal
reliability level or a maximal fault tolerance. The direction of the implied inequality
cannot be conveyed within the framework of this standard.

H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs 97

5.3 Specifying distributions

Next we will take a look at how distributions can be specified within the data section.
Univariate distributions are relatively easy, but the language must be able to

understand and deal with a number of widely used distributions such as uniform,
normal, beta and gamma distributions, as well as ad-hoc distributions, both discrete
and continuous.

As an example, we give part of an AMPL data file with proposed extensions:

param demand .-'-
Trondheim
Stavanger
Lillehammer

normal (150,25);
uniform (80,120);
discrete (70 .25 80 .5 90 .25);

This describes stochastic demand in the transportation problem, where demand in
Trondheim follows a normal distribution with mean 150 and variance 25, demand
in Stavanger is uniformly distributed over the interval [80,120], and demand in
Lillehammer follows the indicated three-point (discrete) distribution.

Other common univariate distributions can obviously be provided for in a very
similar fashion. The only type that appears difficult is the general continuous distri-
bution. This is, however, hardly surprising, since specification of such distributions
requires definition of a nonlinear distribution (or density) function, for which the
algebraic modelling languages, developed to handle linear programs, are not particu-
larly well adapted.

The same distributions could be formulated in the S-MPS format:

INDEP NORMAL
RHS DEMTRD 150.0 25.0

INDEP UNIFORM
RHS DEMSTV 80.0 120.0

INDEP DISCRETE
RHS DEMLIL 70.0 0.25
RHS DEMLIL 80.0 0.5
RHS DEMLIL 90.0 0.25

Due to the rigid card image format, two-parameter families of distributions can be
handled easily, but additional parameters are rather difficult to describe without de-
stroying the basic philosophy of the MPS format.

Multivariate distributions are somewhat harder to deal with because the informa-
tion requirements are greater. For illustration purposes, we will assume that the stochastic
demand in the three demand centres of the transportation problem is modelled by a
trivariate normal distribution with mean # = (150, 100, 80) and covariance matrix

E = 16 .
7.2

98 H.L Gassmann, A.M. I r e land /Formula t ion o f stochastic linear programs

(This describes an equicorrelated distribution with correlation coefficient 0.6 between
the demands in any two destinations.)

The difficulty then is to communicate the dimension of the random vector and the
locations of the individual entries. In AMPL we could use notation similar to the
specification of two-dimensional tables, along the lines of

param demand := multinormal :
Trondheim Stavanger Lillehammer :=
mean 150 1 O0 80
Trondheim 25 12 9
Stavanger 12 16 7.2
Lillehammer 9 7.2 9;

This device is not available in the S-MPS format because of the limitations posed
by the rigid record structure. Instead, the original document [4] attempted to achieve
the same result by decomposing the multivariate distribution into linear combinations
of univariate ones. In the case of the multivariate normal distribution this is permis-
sible since if x is a multivariate normal random variable with mean/.t and covariance
matrix E, then for any matrix T and vector a of appropriate dimensions, Tx + a has a
multivariate normal distribution with mean T# + a and covariance matrix TET ' .

For instance, if x 1= (x~, x~, x~)' is a random vector consisting of three inde-
pendent standard normal random variables, a I = (150, 100, 80)' and T I is defined as

T 1 = I
5 0 0 /

2.4 3.2 0 ,

1.8 0.9

then the random variable Tlx + a I has the equicorrelated trivariate normal distribu-
tion given before. (T l is the Cholesky decomposition of the matrix E.)

This decomposition is not unique, however. For example, let us assume that x 2
has a (univariate) normal distribution with mean 150 and variance 25, x22 is normally
distributed with mean 35 and variance 16, and x 2 is normally distributed with mean
24.43974 and variance 9. If we define a 2 = (0, 0, 0) ' and

I 1 0 0 1
T 2 = 0.48 0.8 0 ,

~,0.36 0.225

then the random variable T2x 2 has the same distribution as TIx I + a 1.

Clearly, this decomposition is quite cumbersome, and the modeller should not be
expected to perform the calculations by hand. One possible approach would be to have
the decomposition calculated by the AML; alternatively, one might seek extensions to
the S-MPS standard.

H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs 99

6 Recourse problem formulation

As noted above, recourse problems introduce randomization through explicit or im-
plicit event tree structures which associate probabilities and expected values with
contingent decisions during a planning period. Formulating these problems in the case
of discrete distributions involves identifying random variables and either explicitly or
implicitly stating the realizations that will form the underlying "tree" for the problem.
Continuous distributions are handled slightly differently in that the discretizations
are formed in the appropriate solver, either through random sampling or judicious
approximations. For recourse problems as for chance-constraint problems, we sepa-
rate as far as possible the randomization of parameters in the model specification from
specification of distributions in a problem's data set.

6.1 Scenario-based problem formulation

The transportation model respecified as a two-stage scenario-based problem is shown
below. In the model specification, a new index set scenarios has been introduced,
with a probability parameter probab summing to 1 across all scenarios. Destination
demand, along with associated shortage and surplus (recourse) costs are set up as
random variables by indexing over destinations and scenarios. Decision variables are
also indexed over scenarios, and the objective function minimizes expected total cost,
as follows:

set sources;
set destinations;
set scenarios;

param supply {sources};
param demand {destinations, scenarios};
param uniLcost {sources, destinations};
param shortage_cost {destinations, scenarios};
param surplus_cost {destinations, scenarios};

param probab {scenarios} >= O, <= 1;
check: sum \1 s in scenarios\r\ probab[s] = 1;

var units_shipped {sources, destinations} >= O;
var units_short {destinations, scenarios} >= O;
var units_long {destinations, scenarios} >= O;

minimize total_cost:
sum {s in sources, d in destinations}

uniLcost[s,d] * units_shipped[s,d]
+ sum {d in destinations, w in scenarios}

(probab[w]* shortage_cost{d] * units_short[d,w])
+ sum {d in destinations, w in scenarios}

(probab[w]* su rplus_cost[d]*units_long[d,w]);

100 H.L Gassmann, A.M. Ireland//Formulation of stochastic linear programs

subject to satisfy {d in destinations, w in scenarios}:
sum {s in sources} units_shipped[s,d]

+ units_short[d,w] - units_long[d,w] = demand[d,w];

subject to avail {s in sources}:
sum {d in destinations} units_shipped[s,d] <= supply[s];

For multistage problems of this type, it is necessary to keep explicit track of
branches in the tree structure and parent scenarios in order to minimize redundancy in
the specification. This is done by explicitly defining parent and start time parameters
for each scenario, giving the number of the preceding scenario from which the
current scenario branches and the time period in which the branch occurs. The tree
structure is then explicitly stated in the problem's data set. The reader is referred to
Gassmann and Ireland [17] for an example of a multistage scenario-based problem
specification.

6.2 Formulation of distribution-based recourse problems

Distribution-based recourse problems offer the opportunity to let the AML system
generate random structures automatically rather than rely on detailed tree specifica-
tions. As with chance-constrained problems, the modeller can change distributions
more easily when the distribution is kept in the data specification and the system
generates the random structure. Complexities arise, however, as distribution inter-
dependencies become greater.

A generic two-stage distribution-based problem formulation in AMPL is shown
below. Here the demand is defined as random and requires a distribution defined in
the data set for each destination, as in the previous section. Decision variables
units_short and units_long are defined as random to indicate that they will have
multiple values corresponding to the demand distribution branches. The keyword
expectation in the objective indicates that the system will calculate the expected value
across all realizations of the demand random variable.

set sources;
set destinations;

param supply {sources};
param demand {destinations} random;
param shortage_cost {destinations};
param surplus_cost {destinations};
param unit_cost {sources, destinations};

var units_shipped {sources, destinations} >= O;
var units_short {destinations} random >= O;
var units_long {destinations} random >= O;

H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 101

minimize total_cost:
sum {s in sources, d in destinations}

uniLcost[s,d] * units_shipped[s,d]
+ expectation {d in destinations}

(shortage_cost[d], units_short[d])
+ expectation {d in destinations}

(surplus_cost[d], units_long[d]);

subject to satisfy {d in destinations}:
sum {s in sources} units_shipped[s,d]

+ units_short[d,p] - units_long[d,p] = demand[d,p];

subject to avail {s in sources}:
sum {d in destinations} units_shipped[s,d] <= supply[s];

This example serves to illustrate two-stage distribution-based models of both
Type 1 and Type 2; Type 1 models will have independent demand distributions for the
various destinations, while a Type 2 model would have dependent (multivariate) dis-
tributions as for the chance-constraint case discussed earlier.

Both the AMPL data file and the corresponding S-MPS file can take the form
given in section 5.3. We illustrate here with independent discrete distributions as
follows:

param demand .-'-
Trondheim discrete(135 .25 150 .5 165 .25);
Stavanger discrete(90 .25 100 .5 110 .25);
Lillehammer discrete(70 .25 80 .5 90 .25);

and

INDEP DISCRETE
RHS DEMTRD 135.0 0.25
RHS DEMTRD 150.0 0.5
RHS DEMTRD 165.0 0.25

RHS DEMSTV 90.0 0.25
RHS DEMSTV 100.0 0.5
RHS DEMSTV 110.0 0.25

RHS DEMLIL 70.0 0.25
RHS DEMLIL 80.0 0.5
RHS DEMLIL 90.0 0.25

This stoch file is sufficient to generate 27 different scenarios.The corresponding
event tree can then be generated in the solver, relieving the AML of this task.

For multistage problems, the situation becomes more complicated. Information
about the distributions alone is not sufficient to reconstruct the event tree; what is
needed in addition is information about the time stage in which each random variable

102 H.L Gassmann, A.M. Ireland//Formulation of stochastic linear programs

is realized. This also means that the simple attribute random is inadequate. What is
needed instead is a hierarchy of uncertainties corresponding to the time structure of
the problem.

There are two ways to specify this in a language like AMPL, neither of which is
completely satisfactory. In both cases, we start by defining the time structure using a
special attribute or entity timeset, which must be ordered or capable of being ordered.
It is then possible to define a class of attributes random[t] corresponding to the
elements t of the time set. (For ease of use, one could allow the attribute random to
be interpreted as equivalent to random[t2], where t2 is the second element of the time
set, making it slightly more convenient to set up two-stage problems.)

It is possible to place this specification into the model file directly or, alterna-
tively, to flag only general randomness in the model file and make more explicit
statements in the data section. The first option might look as follows when applied to
the production/inventory problem:

timeset periods := 1..T
param demand {p in products, t in periods} random[t];
var make {p in products, t in periods} random[t];
var hold {p in products, t in periods} random[t];

The disadvantage of this approach is that a change in the distribution (a data item)
may result in a change in the model. It is common practice, for instance, to set up
multiperiod problems in two-stage stochastic form at first, in which all uncertainty
will be resolved after the first period. Reformulating the problem as a true multistage
problem would then necessitate changes in both the model and data file if this par-
ticular approach is followed.

If the explicit statement appears in the data file instead, then the model file for
this example might look like

param demand
var make
var hold

{p in products, t in periods} random;
{p in products, t in periods} random;
{p in products, t in periods} random;

while the data file would be

param demand • widgets :=
1 random[I] 1
2 random[2] discrete (3 .5 5 .5)
3 random[3] discrete (3 .5 5 .5);

Here, there are two problems. This type of specification is considerably more
complicated to set up; it is therefore easier for the modeller to make a mistake. More
importantly, variables do not appear in the data section, so the nature of the random-
ness of the variables make and hold is hard to specify. More work is clearly needed

H.L Gassmann, A.M. Ireland//Formulation of stochastic linear programs 103

here; we will put explicit information into the model file for the time being, giving
the following full model file:

set products;
param T > 0;
timeset periods := I..T;

param starLinventory {products};
param max_production {products};
param production_cost {products};
param holding_cost {products};
param max_inventory;
param demand {products, I..T} random[t];

var make {products, t in periods} random[t];
var hold {products, t in periods} random[t];

minimize total_cost:
expectation(sum {p in products, t in periods}

(production_cost[p],make[p,t] + holding_cost[p],hold[p,t]));
subject to balance {p in products, t in periods}:

if (t=l then starLinventory[p]
else hold[p,t-1])

+ make[p,t] = demand[p,t] + hold[p,t];

subject to prod_cap {p in products, t in 1..T}:
make[p,t] <= max_production[p];\

subject to hold_cap {t in I..T}:
sum {p in products} hold[p,t] <= max_inventory;

The corresponding data file looks like this:

param T := 3;
set products := widgets;
param starLinventory := widgets
param max_production := widgets
param production_cost := widgets
param holding_cost := widgets
param max_inventory := 4;

0;
4;
0;
1;

Problem types beyond 2 must be multistage, since they all involve dependencies
on prior random variable realizations. Type 3 problems can be set up by specifying
parameter changes (rather than the original parameters) as random variables, with cal-
culations in the model. This specification begins to break down the definition of
distributions as data, however, since changing the demand distribution requires

param demand: widgets :=
1 1
2 random(2, discrete(3 .5 5 .5))
3 random(3, discrete(3 .5 5 .5));

104 H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs

modification of the demand calculation in the model itself. The separation can be
maintained in a slightly different form by defining and storing the demand calculation
and associated distribution in secondary model and data files, if the system allows
this. In a system which permits multiple-model and data sections, such as AMPL, the
production/inventory model could be rendered in random-walk form using a data file
of this type:

param T := 3;
set products := widgets;
param starLinventory :=
param max_production :=
param production_cost :=
param holding_cost :=

widgets 0;
widgets 4;
widgets 0;
widgets 1;

param max_inventory := 4;

model;
param drift {products, t in 2..T} random[t];
subject to {p in products, t in 2..T}:

demand[p,t] = demand[p,t-1] + drift[p,t];

data;
param drift: widgets :=

2 discrete(-1 .5 1 .5)
3 discrete(-1 .5 1 .5);

Since the drift has a stationary distribution, it should be possible to simplify this
further by specifying only one one-dimensional distribution:

model;
param drift {products, t in 2..T} random;
subject to {p in products, t in 2..T}:

demand[p,t] = demand[p,t-1] + drift[p,t];

data;
param drift: widgets := discrete(-1 .5 1 .5);

Problems of Type 4 require more complex tracking of past realizations and their
incorporation into formulas calculating distribution parameters. A sample suggested
formulation is given below. As in Type 3, Type 4 distributions must rely on "model"
specifications which could be kept in separate files from the original model definition
to simplify distribution switching.

As an example, we give a modification of the production problem in which the
step size of the random walk depends on the current demand level.

param T := 3;
set products := widgets;
param starLinventory := widgets 0;

H.L Gassmann, A.M. Ireland / Formulation of stochastic linear programs 105

param max_production := widgets 4;
param production_cost := widgets O;
param holding_cost := widgets 1;
param max.inventory := 4;
model;
param drift {p in products, t in 2..T} random[t] :=

discrete (-0.1 ,demand[p,t-1] 0.5
+ 0.1 ,demand[p,t-1] 0.5);

subject to {p in products, t in 2..T}:
demand[p,t] = demand[p,t-1] + drift[p,t];

Type 5 problems employ random problem dimensions. We can modify the
production/inventory problem to illustrate some of the difficulties encountered with
this problem type. Let us say that the first-period demand for widgets is known to be
1 and that second-period demand can be 2, 4, or 6 units, with probability 0.2, 0.5 and
0.3, respectively. If second-period demand is 2, we get out of the business altogether;
there might be a lump-sum representing liquidation and salvage cost, but there will
be no further production to be considered in the third stage. If second-stage demand
is 4, we continue operations, with third-stage demand being 4, 5 or 6 units, with equal
probability. Finally, if second-stage demand is 6, we will expand operation and stor-
age facilities and introduce another product, skiffles. The two products are expected
to be complementary, and we would estimate the joint demand distribution to look
like

widgets

6

8

10

skiffles
4 6 8

0.25 0.06 0.00

0.06 0.25 0.06

0.01 0.06 0.25

The event tree for this problem takes the form given in figure 4, so it is possible
to devise a scenario-based formulation of this particular instance. But what about a
distribution-based formulation? First, the index set products must be allowed to be
random. To guard against errors in the formulation, it makes sense to define a fixed

J

)

Figure 4. An event tree with a coffin state.

106 H.I. Gassmann, A.M. Ireland//Formulation of stochastic linear programs

set potential_products and require that all realizations of the random set products (that
is, all possible product mixes) be subsets of potential_products. This could be done in
AMPL by specifying in the model file

set potential_products;
set products {I..T} within potential_products random;
Actual product mix can depend on the observed data,
but all possible products have been identified beforehand

param start_inventory {products[I]};
param production_cost {potential_products};
param holding_cost {potential_products};
param demand {t in 1 ..T, products[t]} random;
param max_inventory;
param max_production {t in I..T, products[t]};\

var make {t in I..T, products[t]} random;
var hold {t in I..T, products[t]} random;

minimize total_cost:
sum {t in 1..T, p in products[t]}:
(expectation(production_cost[p].make[p,t] + holding_cost[p]*hold[p,t]);

In the data file we would have to specify something like

set potential_products := widgets skiffles;
set products .-'-

1 widgets # First-stage product mix is deterministic
2 widgets # Second-stage product mix is fixed
3 if demand[widgets,2] = 2 then { } # Stop producing

else if demand[widgets,2] = 4 then widgets # Continue as before
else widgets skiffles;

If second-stage demand is high, introduce another product

param demand :=
First-stage demand is deterministic:

1 widgets 1

Second-stage demand is stochastic:
2 widgets discrete 2 .2 4 .5 6 .3

Third-stage demand distribution depends on the current product mix:
[3,*] if products[3] = widgets

then widgets discrete (4 1/3 5 1/3 6 1/3)
else if products[3] = widgets skiffles
then discrete(widgets: 6 8 10 :=

skiffles 4 0.25 0.06 0.01
6 0.06 0.25 0.06
8 0.00 0.06 0.25);

H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 107

Type 6 problems (which we have not seen used in practical situations) pose the
greatest difficulty and appear to require new solver approaches, since distributions
are not determined until a problem is partially solved and the SLP cannot be solved
with current techniques until the problem is fully known. Treatment of these clearly
is an interesting area for further work.

6.3 Summary o f recommended AML system extensions

As seen in the preceding examples of model and data files, the formulation of chance-
constrained problems, scenario-based recourse problems and distribution-based
recourse problems of Types 1 through 5, can be handled through relatively few
language and processing extensions in an AML system with capabilities similar to
AMPL. Recommended new language keywords include:

prob and jointprob to set up chance-constrained problems;

random and random[t] to identify random parameters, sets and variables;

expectation to express expectation operators in distribution-based recourse prob-
lems;

timesot to designate the set of time stages;

discrete, normal, uniform, etc. to specify particular distributions.

If S-MPS solver input were produced, AML system processing would have to be
extended to generate its required files, but aside from the consistency checks described
in the next section, relatively little new internal processing would be required beyond
that since its field values are for the most part taken directly from the AML specifi-
cations. Difficulties arise in describing general (nonstandard) distributions and de-
pendence of random variables across periods.

7 Model management functions

As noted earlier, management of SLP models is a promising and relatively new re-
search area. We comment here on two model management functions which arise
directly from our work on AML extensions: consistency checking for objective and
constraint specifications, and automatic selection of the appropriate SLP solver based
on AML model and data Specifications.

7.1 Consistency checks

Algebraic modelling languages perform a number of consistency checks during the
generation of the LP matrix. These checks include verification that all the indices
referenced in objective and constraints are consistent with the definitions of param-
eters, sets and variables, that values are available for all referenced data items, and
that attributes such as nonnegativity and integrality are satisfied.

108 H.L Gassmann, A.M. Ireland//Formulation of stochastic linear programs

In stochastic LPs, there are opportunities for additional checks which will prove
useful to the modeller. In particular, constraints containing exactly one random
parameter are ill-defined unless there is a probability expression that turns the con-
straint into a chance constraint. In the absence of a probability clause, there must be
at least one additional random variable to balance things out.

For example, the demand constraint

t ransp[Bergen,Trondheim] + transp[Oslo,Trondheim] >= demand[Trondheim]

is ill-defined if demand is specified as a random variable and the level of transporta-
tion activity is set before this random variable is realized. Using the recourse formulation,
the constraint can be salvaged by adding the induced random variables units_short
and units_long and writing

t ransp[Bergen,Trondheim] + transp[Oslo,Trondheim]
+ units_short[Trondheim] - units_long[Trondheim] = demand[Trondheim]

For multistage problems, the consistency check will have to make use of the
hierarchy of uncertainties described earlier. In essence, random variables of the
highest level of uncertainty cannot occur singly in a constraint. In the three-stage
production/inventory problem, for instance, the third-stage demand is not known
when the second-stage production and inventory are set, both of which are random
variables induced by the random demand in period 2. Hence, in the constraint

hold[p,2] + make[p,3] = demand[p,3] + hold[p,3]

make[p,3] and hold[p,3] must be defined as random[3] to balance the occurrence of
the random variable demand[p,3].

7.2 Solver selection

A great number of different solution techniques are available and needed to solve
SLPs, depending on problem type, characteristics of distributions within a problem,
tree size and shape, and problem characteristics in general.

Problems with individual chance constraints have deterministic equivalents which
are nonlinear programs, so in principle they could be solved by NLP solvers. Often, it is
far more efficient, however, to use special techniques as described by Pr6kopa [37]
and Sz~ta i [46]. These methods can also be used to solve problems with joint chance
constraints.

Two-stage recourse problems can be solved using stochastic quasigradient
methods (Ermoliev [14] and Gaivoronski [18]), Benders decomposition (Van Slyke
and Wets [47]), regularized decomposition (Ruszczyfiski [39,40]) or stochastic de-
composition (Higle and Sen [22,23]). Multistage recourse problems can be solved
by nested Benders decomposition (Birge [3], Gassmann [16]), scenario aggregation

H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 109

(Rockafellar and Wets [38]), specialized interior point techniques (Lustig et al. [34],
Birge and Holmes [5], Czyzyk et al. [11]) or similar methods. All of these methods
can also be used iteratively within the approximation methods studied by Kall et al.
[30].

To the extent that modelling experts can choose the appropriate solver based on
characteristics of the model specification and data, AMLs should be able to support
intelligent solver selection based on data about the nature of the SLP gathered during
processing. This is clearly an area of future research, but we believe that it will be
possible to formulate rules which would help the user decide between a stochastic
decomposition approach and solving the deterministic equivalent by interior point
methods, to give a very concrete example. Intelligent solver selection has been
demonstrated for nonlinear programs by Schittkowski [41,42] and has been suggested
for SLPs by Kall and Mayer [29].

8 Summary and conclusions

Based on a review of stochastic linear programming problem types and current
algebraic modelling language capabilities, we have shown feasible, nonredundant
formulation approaches for chance-constrained problems, scenario-based recourse
problems and five types of distribution-based recourse problems. We have also shown
that most of these problem types can be efficiently passed to SLP solvers using the
flexible S-MPS solver input format and have identified difficulties with that format
for some problem types. The formulations require a limited number of AML extensions
and the implementation of consistency checks to ensure that constraints containing
random variables are mathematically well-defined. In addition, data provided by these
language extensions could support intelligent solver selection mechanisms; this and
other SLP management functions such as multiple problem views and explanation
facilities should provide many opportunities for further research.

Acknowledgements

This research was supported in part by funding from the National Sciences and
Engineering Research Council of Canada (NSERC) and the Social Sciences and
Humanities Research Council of Canada (SSHRC). The authors are grateful to two
anonymous referees for carefully reading the manuscript and suggesting numerous
improvements.

References

[1] E.M.L. Beale, On minimizing a convex function subject to linear inequalities, Journal of the Royal
Statistical Society, Series B 17, 1955, 173-184.

[2] B. Bereanu, The distribution problem in stochastic linear programming, Operations Research
Verfahren 8, 1970, 22-35.

110 H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs

[3] J.R. Birge, Decomposition and partitioning methods for multistage stochastic programs, Opera-
tions Research 33, 1985, 989-1007.

[4] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, A standard
input format for multiperiod stochastic linear programs, Committee on Algorithms Newsletter 17,
1988, 1-19.

[5] J.R. Birge and D. Holmes, Efficient solution of two-stage stochastic linear programs using interior
point methods, Computational Optimization and Applications 1, 1992, 245-276.

[6] J. Bisschop and R. Entriken, AIMMS: The Modelling System, Paragon Decision Technology, 2001
DG Haarlem, The Netherlands, 1993.

[7] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User Guide, The Scientific Press, Redwood
City, CA, 1988.

[8] D.R. Carifio, T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe and W.T.
Ziemba, The Russell-Yasuda Kasai model: An asset/liability model for a Japanese insurance com-
pany using multistage stochastic programming, Interfaces 24, Jan.-Feb. 1994, 29-49.

[9] A. Charnes and W.W. Cooper, Management Models and Industrial Applications of Linear Program-
ming, Vol. 1, Wiley, New York, 1961.

[10] K. Cunningham and L. Schrage, The LINGO modelling language, Technical Report, University of
Chicago, Chicago, IL, 1989.

[11] J. Czyzyk, R. Fourer and S. Mehrotra, A study of the augmented system and column-splitting ap-
proaches for solving two-stage stochastic linear programs by interior-point methods, Technical
Report 93-05, Department of Industrial Engineering and Management Sciences, Northwestern Uni-
versity, Evanston, IL, 1993.

[12] G.B. Dantzig, Linear programming under uncertainty, Management Science 1, 1955, 197-206.
[13] M.A.H. Dempster and A.M. Ireland, A financial expert decision support system, in Mathematical

Models for Decision Support, G. Mitra, ed., NATO ASI Series F 48, Springer, Berlin, 1988, pp.
415-440.

[14] Yu. Ermoliev, Stochastic quasigradient methods, in Numerical Techniques for Stochastic Optimi-
zation, Yu. Ermoliev and R.J-B Wets, eds., Springer Series in Computational Mathematics, Vol. 10,
Springer, Berlin, 1988, pp. 141-185.

[15] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Pro-
gramming, The Scientific Press, South San Francisco, CA, 1993.

[16] H.I. Gassmann, MSLiP: A computer code for the multistage stochastic linear programming prob-
lem, Mathematical Programming 47, 1990, 407-423.

[17] H.I. Gassmann and A.M. Ireland, Scenario formulation in an algebraic modelling language, Annals
of Operations Research 59, 1995, 45-75.

[18] A. Gaivoronski, Implementation of stochastic quasigradient methods, in Numerical Techniques for
Stochastic Optimization, Yu. Ermoliev and R.J-B Wets, eds., Springer Series in Computational
Mathematics, Vol. 10, Springer, Berlin, 1988, pp. 313-351.

[19] H.J. Greenberg, A Computer-Assisted Analysis System for Mathematical Programming Models and
Solutions, Kluwer Academic, Boston, MA, 1993.

[20] H.J. Greenberg, Modeling by Object-Driven Linear Elemental Relations: A User's Guide for
MODLER, Kluwer Academic, Boston, MA, 1993.

[21] H.J. Greenberg and F.H. Murphy, A comparison of mathematical programming modeling systems.
Annals of Operations Research 38, 1992, 239-280.

[22] J.L. Higle and S. Sen, Stochastic decomposition: An algorithm for two-stage linear programs with
recourse, Mathematics of Operations Research 16, 1991, 650-669.

[23] J.L. Higle and S. Sen, Guidelines for a computer implementation of stochastic decomposition
algorithms, Technical Report, Department of Systems and Industrial Engineering, University of
Arizona, Tucson, AZ, 1991.

[24] T. Htirlimann, Reference Manual for the LPL Modeling Language (Version 3.1), Institute for
Automation and Operations Research, University of Fribourg, CH-1700 Fribourg, Switzerland,
1989.

H.L Gassmann, A.M. Ireland/Formulation of stochastic linear programs 111

[25] International Business Machines, Inc., Mathematical Programming Subsystem - Extended (MPSX)
and Generalized Upper Bounding (GUB) Program Description, document number SH20-0968-1,
1972.

[26] P. Kall, Stochastic Linear Programming, Springer, Berlin, 1976.
[27] P. Kall and J. Mayer, SLP-IOR: A model management system for stochastic linear programming -

system design, in Optimization-Based Computer-Aided Modelling and Design, A.J.M. Beulens and
H.-J. Sebastian, eds., Springer, 1992, pp. 139-157.

[28] P. Kall and J. Mayer, A model management system for stochastic linear programming, in System
Modelling and Optimization, P. Kall, ed., Springer, 1992, pp. 580-587.

[29] P. Kall and J. Mayer, Model management for stochastic linear programming, Working Paper, Uni-
versity of Zilrich, Ztirich, Switzerland, 1993.

[30] P. Kall, A. Ruszczyriski and K. Frauendorfer, Approximation techniques in stochastic programming,
in Numerical Techniques for Stochastic Optimization, Yu. Ermoliev and R.J-B Wets, eds., Springer
Series in Computational Mathematics, Vol. 10, Springer, Berlin, 1988, pp. 33-64.

[31] R. Krishnan, Model management: Survey, future research directions and a bibliography, ORSA
Computer Science Technical Section Newsletter 14, Spring 1993, 1-16.

[32] C.A.C. Kuip, Algebraic languages for mathematical programming, European Journal of Operational
Research 67, 1993, 25-51.

[33] M. Lane and P. Hutchinson, A model for managing a certificate of deposit portfolio under uncer-
tainty, in Stochastic Programming, M.A.H. Dempster, ed., Academic Press, London, t980.

[34] I.J. Lustig, J.M. Mulvey and T.J. Carpenter, The formulation of stochastic programs for interior
methods, Technical Report SOR 89-16, Department of Civil Engineering and Operations Research,
Princeton University, Princeton, NJ, 1989.

[35] P. Ma, F.H. Murphy and E.A. Stohr, An implementation of LPFORM, Working Paper, University
of Delaware, Newark, DE, 1994.

[36] J.M. Mulvey and H. Vladimirou, Stochastic network optimization models for investment planning,
Annals of Operations Research 20, 1989, 187-217.

[37] A. Prrkopa, Numerical solutions of probabilistic constrained programming problems, in Numeri-
cal Techniques for Stochastic Optimization, Yu. Ermoliev and R.J-B Wets, eds., Springer Series in
Computational Mathematics, Vol. 10, Springer, Berlin, 1988, pp. 123-139.

[38] R.T. Rockafellar and R.J-B Wets, Scenarios and policy aggregation in optimization under uncer-
tainty, Mathematics of Operations Research 16, 1991, 119-148.

[39] A. Ruszczyfiski, A regularized decomposition method for minimizing a sum of polyhedral func-
tions, Mathematical Programming 35, 1986, 309-333.

[40] A. Ruszczytlski, Parallel decomposition of multistage stochastic programs, Mathematical Program-
ming 58, 1992, 201-228.

[41] K. Schittkowski, EMP: An expert system for mathematical programming, TechnicalReport, Mathe-
matisches Institut, Universitiit Bayreuth, 1987.

[42] K. Schittkowski, Some experiments on heuristic code selection versus numerical performance in
nonlinear programming, European Journal of Operational Research 65, 1993, 292-304.

[43] L. Schrage, Linear, Integer and Quadratic Programming with LINDO, 3rd ed., The Scientific Press,
Palo Alto, CA, 1986.

[44] S. Sen, R.D. Doverspike and S. Cosares, Network planning with random demand, Working paper,
Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, 1992.

[45] B. Shetty, H.K. Bhargava and R. Krishnan (eds.), Model Management in Operations Research,
Annals of Operations Research 38, 1992.

[46] T. Sz~intai, Acomputer code for solution of probabilistic-constrained stochastic programming prob-
lems, in Numerical Techniques for Stochastic Optimization, Yu. Ermoliev and R.J-B Wets, eds.,
Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin, 1988, pp. 229-235.

112 H.L Gassmann, A.M. Ireland//Formulation of stochastic linear programs

[47] R. Van Slyke and R.J-B Wets, L-shaped linear programs with applications to optimal control theory
and stochastic programming, SIAM Journal of Applied Mathematics 17, 1969, 638-663.

[48] S.W. Wallace and R.J-B Wets, Preprocessing in stochastic programming: the case of uncapacitated
networks, ORSA Journal on Computing 1, 1989, 252-270.

[49] S.W. Wallace and R.J-B Wets, Preprocessing in stochastic programming: the case of linear
programs, ORSA Journal on Computing 4, 1992, 45-59.

