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Using the new concept of "stochastic gauge system", we describe a novel loophole to 
circumvent the Einstein-Podolsky-Rosen (EPR) paradox. We derive a "realistic" (i.e., 
classical) model, free from any paradox, which exactly emulates the spin EPR 
experiment. We conclude that Bell's inequalities are violated in classical physics as 
well, or, conversely that quantum mechanical theory is logically consistent with 
relativity. 
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1. INTRODUCTION 

In 1935, A. Einstein, B. Podolsky, and N. Rosen (EPR) (Einstein, 1935) 
pointed out a paradox concerning the indetermination principle in quantum mechanics. 
This paradox was rapidly clarified by N. Bohr (Bohr, 1935). However, in 1952, the 
EPR questions were reformulated in terms of hidden variables and instantaneous effects 
at a distance by D. Bohm (Bohm, 1952). Finally, in 1964, J. S. Bell (Bell, 1964) 
demonstrated the so-called Bell theorem, according to which any "local theory" should 
satisfy a certain inequality and then should violate the standard quantum mechanical 
theory. Following this paper, a number of experiments were performed to check Bell's 
inequalities (cf. review papers : Home, 1991 ; D'Espagnat, 1984 ; Clauser, 1978). The 
results were non-ambiguous : Bell's inequalities are violated and the predictions of 
quantum mechanics fully satisfied. 

The significance of this phenomenon has been extensively debated (Mermin, 
1990 ; Clauser, I969 ; 1974 ; D'Espagnat, 1975 ; 1978 ; Wigner, 1970) and several 
loopholes have been proposed to circumvent tile paradox (cf. Home, 1991). 

In the present letter, we suggest a new loophole, which takes advantage of a 
well-known implicit hypothesis underlying the conventional derivations of Bell's 

41 

O894-9875/95/02flO~O4L$O?.50/O o 1995 PLenum Publishing Corporation 



42 geldmann 

theorem, namely, the "stochastic decoupling" of the probability system from the 
experimental set-up. When this assumption is rejected, we show that it is feasible to use 
non-standard probability outcomes, defined as elements of a so-called "stochastic 
gauge system" : This leads to a possible violation of Belrs inequalities. 

The falsity of the "stochastic decoupling" assumption was previously suspected 
by a number of authors. A significant example of those criticisms was given by Lochak 
(Lochak, 1975). This author claimed that the use of the same probability system in 
relation to different experimental arrangements is actually in contradiction with 
quantum mechanical concepts. His argument was founded on the interpretation of a 
particular event (that we will shortly recall in Sec. 4.2). Nevertheless, his objection was 
further discarded by Shimony (Shimony, 1976) who gave an alternative interpretation 
of the same event in the framework of the standard theory. In addition, Shimony 
claimed that the derivation of Bell's inequalities by Clauser and Home (Clauser, 1974) 
does not really imply the "stochastic decoupling" assumption. However that may be, in 
the present letter, we will not focus on this discussion. Instead, we will exhibit for the 
first time an explicit model in which the assumption is deliberately forsaken. For this, 
we will replace the conventional probability system by a non standard system of 
"stochastic gauge variables." Surprisingly, we will find that the framework of  classical 
physics is fully sufficient. 

As a matter of fact, it is generally assumed that it is impossible to violate Bell's 
inequalities in classical physics. But we will just provide such a realistic, (i.e., classical) 
example which exactly emulates the spin EPR correlations. Nevertheless, at this stage, 
the loophole has not to be taken as a picture of reality. But at least it proves that Bell's 
inequalities are violated in classical physics as well, or conversely that quantum 
mechanical theory is logically consistent with relativity. 

When a coupling between the probability system and the experimental set-up 
is assumed, Bell's inequalities turn out to be irrelevant. However, the need for an 
instantaneous influence at a distance is not at once eliminated. Clearly, this will be 
achieved if the probability trial is delayed and performed at a single location between 
the two ends of the system, so long as all communications of ix~ormation between such 
an "ignition point" and the two ends of the system are propagated with afinite velocity. 
We will prove in Sec. 5 that this is entirely feasible in classical physics provided that 
some consistency conditions are fulfilled. 

2. INCOMPATIBILITY BETWEEN QUANTUM MECHANICS AND 
STANDARD PROBABILITY THEORY 

It is well known that quantum mechanical correlations cannot be regarded as a 
simple application of standard probability theory. In the particular case of particle 
spins, this can be proved by the fact that any conventional random system should 
satisfy Bell's inequalities while spin correlations violate these inequalities. 

For clarity, we reformulate here the underlying hypothesis and derive a new 
proof of Bell's inequalities using the simple concept of "Hamming distance" (see any 
textbook on digital communications, e.g., Viterbi, 1979). 

We consider an ensemble of N pairs of random correlated entities {~,  ~2} 

(e.g., particles). In a space region ~j, we suppose that an observer <9~ selects freely an 
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argument u I (e.g., a direction of  analysis), element of  a given set U, and measures on ~l 

a random dichotomic observable s I = _+ 1 (e.g., a spin), element of  a dyadic set S = 
{-1,+1}. Similarly, in a space region ~2, a second observer 0 2 selects independently an 

argument u 2 E U and, measures on ,~2a random dichotomic observable s 2 = _+ 1 E S. 

We suppose now that both u I and u 2 remain fixed for the N entity pairs 
{at, ~2}. Hence, a sequence of  measurements consists of two observable arrays 

S I = {s u, sl2, .... sin} and '-~2 = {s21, s22 ..... s2n}. The N measurement pairs can be 
interpreted as N trials of  a random process. Thus, each observable st~ and s~ (i =1, 2 ..... 
N) should depend on the arguments ul, u 2 E U and on the particular outcome ~. ~ of a 

basic outcome set A (defined together with its sigma-algebra, ~ ( A )  and its prob,"loility 

distribution/9) (Kolmogorov, 1956). The Kotmogorov probability system { A ,  5~(A), 

p} may depend upon the particular arguments u t and u 2. We can write : 

% =  Ft(u , u 2, X~). (1) 

S2/= F2(ut, u2, ~'i), (2) 

where F z and F 2 are measurable mappings of A onto S = {-1,+1} depending upon 
arguments u I and u 2 as parameters. 

As far as both u t and u 2 remain fixed, owing to the Bernouilli weak law of 
large numbers, for very large N, the arithmetic mean M(u I, u 2) of the product sl, s2, is 

independent of  the actual outcome array {~%'~'12 ..... ~.~,,} and equal to the 

mathematical expectation E[sls2] of the observable product with respect to the 

probability system { A ,  E ( A ) ,  p}.  

M ( u ,  u2) = (l/N) (s~ts2t + std,.2+ ...+s~ss2N )=  Els~s21. (3) 

It wilt be convenient to substitute for the observables, x~ = ( l+s t ) /2  and 
Yi = (1+s2i)/2 (i =I,  2,...,N). Let X = {x t, x2,...x ~} and Y = {Yl, Y2,..',Y~}. It is seen that 
x i a n d y  i are binary digits (0 or 1) while X and Y are binary words of N bits. In signal 
processing, the Hamming distance dH(X, Y) between two N-bit words is defined as the 
number of  homologous bits which are different in the two words X and Y. In addition, 
it is readily shown that d a has the standard properties of a metrics, i.e., that 

d,(X, Y) > o, 
dH(X , Y) = dH(Y, X), 
dH(X, D = O  C=~ X =  Y, 

]dH(X , Z)-dH(Y , Z)I _ dH(X , Y) _< dH(X , Z)+dH(Y, g). (4) 

The triangle inequality Eq.(4), refers to a new arbitrary N-bit word Z. (Actually, the 
first part of the triangle inequality is a consequence of the second pan). 

Coming back to the observable arrays S t and 5' 2, define 

d(SvS2) = (l/N) dn(X , Y). (5) 
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From Eq.(3), it is a simple exercise to show that 

d(SvS2) = (1/2) ( 1 - M ( u p  u2) ). (6) 

Presently, any observable array ,71 or 8 2 only pertains to an assigned location, 
within a pair of random correlated entities {'~1, ~2} and to a definite pair of arguments 
{u s, u2}. In order to check the triangle inequality we have to define a non-ambiguous 
situation involving three observable arrays 8 ,  ,7 b and S c defined at one and the same 
time, irrespective of their actual environment. For this, we have to force any valid 

outcome array {~.~,,Z,~,,...,~.~,~ } to fit any argument pair, and hence to assume the 

following assumption : 

Assumption 1 (stochastic decoupling) : The Kolmogorov probability system 

{ A ,  Y~(A), p}, is independent of any particular choice of arguments u~ and u 2. 

When assumption 1 holds true, a valid N-element outcome array 

{ ~-i, ,;Li 2 ..... ~.~,~ } is simply the collection of the N outcomes from N independent trials 

performed in A with respect to the probability distribution p.  
We will further suppose that the end regions t~j and t~ 2 are taken very far from 

one another and with no overlap. Thus, we may assume that the choice of one 
argument in one region does not influence instantaneously at a distance the 
experimental result in the second region. This characteristics is usually formalised in 
terms of "locality principle" : 

Assumption 2 (locality) : The observable sti (resp. s2i) described by Eqs(1)-(2) 

only depends upon (u~, ~. i) (resp. (u 2, ~. i) ), where u 1, u 2 • U and ~. ,~ A .  

Furthermore, to account for spin correlation, the correlation between entities 
'~l and /h, still governed by Eqs. (1)-(2) is generally specified as follows : 

V ~ . ~  A ,  '7'ul, u2E U : ul=u 2 ~ s l ,  =-s2 r  (7) 

However, for symmetry, and without loss ill generality, we will prefer tile 
following definition : 

Assumption 3 (correlation) : Let tile observables sl~ and s2i be described by 
Eqs.(l)-(2). We have : 

V ~ , / E A ,  Vut ,  u 2 E O  : Ul=U 2 ~ s l i  =s2i. (8) 

When assumptions 2 and 3 hold true, any observable s k of an entity S k depends 
only upon one argument u k E U and one random outcome ~. ~ A : 

s k = F(u~ ~. ) ,  (9) 
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irrespective of k = 1 or 2. Hence,. Eq.(9) replaces Eqs.(l)-(2). 
With assumptions 1 to 3, we are able to define wifl~out ambiguity three 

observable arrays, S o, St, and S, derived from the same valid outcome array 

{Z% ,~.i~ .... ,~'iN }, and corresponding respectively to three particular arguments, a, b 

and c of U. Then, clearly, for very large N, the distance d(S~, Sb) between observable 
arrays, Eq. (5), is a mathematical metrics independently of the actual outcome array. 
From Eq. (6), the triangle inequality (Eq.(4) first part), 

Id(S~, So)- d(S~, Sb)l -< d(S~, S), 

is immediately translated into : 

[M(a, b ) -  M(a, c)l < 1 -M(b ,  c). (10) 

Equation (10) is Bell's inequality, slightly modified to account for the change 
of sign of M(b.c), since Bell makes use of Eq. (7) instead of Eq. (8). This inequality is 
an alternative formulation o f  the triangle inequality with respect to the Hamming 
distance. 

Now, we measure the spins of a correlated particle pair in directions a and b 
respectively. Let sa and - s  b be the results. We repeat this experiment with new 
particles identically prepared. Let M(a, b) be the mean value of the product sa s b for a 
very large number N of experiments. From quantum mechanical theory, we know that 

M(a, b) = cos(a-b). (11) 

This correlation function leads to a violation of Bell's inequalities Eq. (10), e.g., for 
a = 0 ,  b = / t / 4 a n d c = x / 2 .  

3. DISCUSSION 

We conclude from Sec. 2 that the three assumptions 1--3 do not 
simultaneously hold true in quantum mechanics. Since the correlation assumption is 
actually an experimental result, a conventional conclusion is that the locality principle 
is disproved. However, as the derivation of Bell's inequalities also implies assumption 1 
(stochastic decoupling), this last condition is also questionable. Furthermore, if 
assumption 2 seems rather "plausible", assumption I is not evident at all. Above all, as 
we shall see in Sec. 5, the requirement of instantaneous influence at a distance may be 
completely eliminated when assumption 1 is rejected. 

A simple example of violation of Bell's inequalities when assumptions 2 and 3 
hold true but not assumption 1 is sketched in Table 1, in the framework of a discrete 6- 

element outcome set : The outcome set A.= { ~-t ,3-z . . . . .  ~ '6  } is fixed but the probability 

distribution, defined as 

putu 2 (X,) = mp,,, (X ~ ) + ( l -m) p,,, (X ~ ), (12) 
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depends upon the pair of  selected arguments {u t, u2} in accordance with Table 1. (In 

Eq.(12), the so-called "parametric probabilities" p,, (~.~) and Pu~ ( k i )  are given in 

Table 1; i =1 to 6 and u t, u2= a, b or c ; in addition, m = 0 or 1 is an arbitrary but fixed 
coefficient). For reasons explained in Sec. 4.2. we will call "stochastic gauge system" 
such a non standard probability model. 

We compute easily from Eqs.(3, 12) and Table 1 : 

6 

M(a, b) = E [sosbl = Es,(~.~)sb(~i)po~(~i)= 2/3 ; 
i=l 

(13) 

and similarly, M (a, c) = 0 ; M (b, c) = 2/3, (regardless of the coefficient m = 0 or 1). 
Bell's inequality, Eq. (10), is violated. 

Now, suppose that a first observer 01 in an end region ~1 is allowed to "select 

one of the three arguments a, b and c. In addition, suppose that the outcome of a 

random trial is one member of the six element set A and that the probability 

distribution p involved in A depends upon the selected argument u I = a, b or c, 
according to Eq.(12) ,and Table 1 (we use m = 1 in Eq.(12)). Finally, suppose that the 

observable is the dichotomic variable sli = F(u l, ~. ,) also given in Table 1. We will 
eliminate any instantaneous transmission in Sec. 5, but provisionally assume that the 

outcome ~.~of the random trim is instantaneously transmitted from the end region ~ to 

a second region ~2 where a second observer ~9 2 select independently a second argument 

u 2 = a, b or c. This is exactly the conventional interpretation of EPR experiment which 
leads to a violation of Bell's inequalities. But before we proceed any further, we nmst 
make sure of some consistency conditions. 

s~ s b s¢ p~ I Pb Pc 

~.~ +1 +1 +1 3/12 4/12 3/12 

~.2 -1 +1 +1 1/12 1/12 2/12 

~.3 -1 -1 +1 2/12 1/12 1/12 

~.4 -1 -1 -1 3/12 4/12 3/12 

~.5 +1 -1 -1 1/12 1/12 2/12 

~.6 +1 +1 -1 2/12 1/12 1/12 

Table 1. Example of  non standard probability system using "stochastic gauge 
variables." 

4. CONSISTENCY CONDITIONS 

4.1. Der ivat ion  of Consistency Conditions 

The key condition in tile procedure of  Sec 3. is tile possibility of  performing a 
definite random trial as soon as one argument a is known (and consequently to ignore 
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the second argument), while the dichotomic observable So should be consistent with 
any argument b as second partner in the pair. The consistency conditions can be 
formalised as follows : 

(1) A so-called "parametric probability distribution"po is associated with each 
argument a. Let Eo[.] stand for the mathematical expectation associated with this 
probability distribution po. 

(2) For any pair (a, b) of arguments, we have : 

Ealsal = EbIsol = EIsJ  (14) 
Eolsdb I = gb[Sdb I (15) 

Equation (14) may be regarded as a weak version of assumption 1. This 
defines an overall expectation E[s] independent of any argument. On the contrary, 
Eq.(15) is consistent with a very violation of assumption 1. 

Proof. Let A + = { 7L ~ A / F ( a ,  ~. ) = + 1 } and similarly for A' ,  B ÷ and B-. Since the very 

observables are dichotomic, we must have a definite probability for, e.g., p,~ (A + ) and 

P~b ( A+ [7 B+) irrespective of the particular value of m in Eq.(12). This is translated in 
terms of expectations into Eqs.(14-15). 

By inspection of Table 1, we see that these conditions are fulfilled. 

4.2. In te rp re ta t ion  in Terms  of "Stochastic Gauge  Var iab les"  

It is worth noting that tile individual outcomes X are not observable, since 
they have not a definite probability. Consequently, they should not be interpreted as 
"hidden variables." In addition, provided that the consistency conditions remain 
invariant, neither the basic set A nor the parametric probability distributions p are 
unique. Thus, the outcomes ;k may be rather regarded as a form of "stochastic gauge 
variables." 

Incidentally, we will recall an argument given by Lochak (Lochak, 1975) and 

discussed by Shimony (Shimony, 1976). They consider the event A + N B +. As we have 
seen, this event should have a definite probability. According to Lochak , this is a 
consequence of assumption 1 (stochastic decoupling). But clearly, this assumption is 
not necessary. So, we will not debate further of the subtle interpretation of this event. 

4.3. Transmiss ion of information 

We will now consider the possibility of transmitting information from region 
E 1 to region ~ r  Accounting for assumptions 2 and 3 (locality and correlation), we may 

regard the observable arrays as sequences of digital signals in a memoryless symmetric 
channel. The input will be one argument, uj= a or b in region E I. Let qo and qb 
respectively be the relevant a priori probabilities. This input signal is next encoded by 
use of a random process as described, e.g., in Table 1, generating a digital sequence. 
The output will be the observable s 2 received on port 2 in the region/~2, with the second 
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argument u 2 as a parameter. 
In ~ ,  in order to discriminate between file two possible input signals, a and b, 

we have to evaluate, e.g., the conditional probability prob {u t = a / s 2 = +1}, for one 
observable s z with u 2 as a fixed parameter. (prob {. } stands for "probability that {. }"). 
By virtue of Eq.(14), we have : 

prob {ul=a / s2=+l } = 
prob{ s 2 = +l/  u I = a} prob{ u I = a} 

prob{ s 2 = +1} 
= prob {ul=a } = qa" 

Irrespective of u 2, this probability is identical to the a priori probability. No 
information can be transmitted. 

5. ELIMINATING INSTANTANEOUS INFLUENCE AT A DISTANCE 

In this section, we will show that the requirement of instantaneous influence at 
a distance can be completely eliminated even with a spaeelike interval between the two 
end regions £1 and A? 2. For this, we will emulate an idealised EPR experiment (Fig. 1). 

We consider a restframe where a source S and two observers located in regions 
~ and t~ 2 respectively are fixed. In addition, between tile two end regions, we define an 

"ignition point" tP. A two way communication link is established between ~l and ~, and 

t~., and t~, respectively. Let 1: i and "1:2 be the non negative time delays between R~--lP 

and ~ z - - P  and let z ~ + z 2 = T. 

At time t~, an excited atom is generated from the source. 
At time t 2, a pair of correlated entities (e.g., photons) is emitted towards the 

two observers. 
At time t~ and t a respectively, each observer in regions ~l and t~ 2 opens a 

polarizer in a random orientation, u~ and u 2 respectively, selected among three 
possibilities, a, b and c. The two photons reach ~ and ~2 respectively at the same time 

t s(t 5> t 3and t  5_> t4). 
Now, at time %, the interaction between the photon and the polarizer located 

in region ~t makes the local orientation information u~ = a, b and c to be launched 

with a finite velocity from ~ towards the ignition point P (and similarly for the second 

region ~2)- 

At point ~, an information u~. (k =1 or 2, e.g., k = 1 in Fig. 1) will be first 

available at time T = t 5 + 1: k. The second infornmtion, if any, will be ignored. At tP, we 

perform a random trial with respect to the relevant parametric probability distribution, 
depending upon this first received argument u k. The outcome of the trial is one member 
3. of  the basic set A .  

This only outcome k is returned, again with a finite velocity, backwards both 

end regions ~,~ (k= l a n d  2). This information ~. is received at time t 6 and t 7 

respectively in regions t~ I and ~2 where the dichotomic observables s,~ = F(u~ ~. ) are 
finally determined. 

Clearly, any communication o f  information between the end regions and the 
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E l 

t t t 2 t 3 

t I t 2 t4 t 5 "~ t 7 

Fig. 1. Time-space diagram of an idealised EPR experiment. 

ignition point  will require a finite time lapse and thus will always be consistent with 
relativity. 

The measurements  are completed at time t 6 and t 7. By contrast, the average 
correlations are immediately defined as soon as the arguments  are selected in the end 
regions, i.e., at time t 3 and t 4. Therefore, and this statement is surprising but trivial : 
Statistics are instantaneously definite at a distance. There is no contradiction, because 
this does not imply any sort of  propagation. This just  means that if a fact is true, it is 
instantaneously true everywhere. 

In this model, the ignition point 0~will usually be inaccessible and its location 

should be regarded as an uncontrolled random variable. Therefore, depending upon the 
location of ~, t 6 and t 7 will be randomly distributed within the range [ t 5, t 5 + T]. Thus,  

strictly speaking, for an ensemble of measurements,  there is no delay, but rather a finite 
risetime. The only experimental evidence of such a mechanism will be a risetime 
dependence, e.g., proportional to the delay T between the two end regions ~l and ~2. 

Discussion o f  the Aspect 's  experiment. Most experiments on tile EPR paradox 
only check the violation of Bell's inequalities. According to our model, this does not 
prove any instantaneous influence at a distance. However, at least one experiment by 
Aspect, Dalibard and Roger (Aspect, 1982) seems to have definitely proved the 
existence of such very instantaneous effects. The authors make use of an acoustooptic 
switch to redirect the light incident from the source towards one o f  two polarising cubes 
in order to forbid any transmission of  information with a finite velocity. Actually, our 
model is much simpler but tentatively, these results may be reinterpreted. An idealised 
Aspect experiment is very similar to our above description (fig. 1) but in addition, the 
polarizers are shut at time t 8 > t 3, and t 9 > t 4 respectively. 

Now, according to our model, i f t  3 < t s and t6< t 8 in region ~l, and t 4 < t 5 and 

t 7 < t 9 in region ~2, the dichotomic observables will be determined. Otherwise, the 
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photons will not be detected. This will reduce the yield, but this will not affect the 
statistical distribution. In other words, except from the yield, the experimental results 
should remain unchanged. 

In the actual Aspect's experiment, due to possible leakage of the acoustooptic 
ceils, the times t 8 and t 9 of total shutting are difficult to appreciate. However, when 
accounting for the all the delays the yield is found very close to zero. Indeed, the 
Aspect's yield was unexpectedly low, but no explanation of this fact was reported. 

According to our model, it should be emphasised that the crucial effect is not 
tile violation of Bell's inequalities but only the variation of the yield, versus different 
parameters such as the distance between the two end regions. So far, to the best of our 
knowledge, no such experiments have been reported. 

6. A CLASSICAL E M U L A T I O N  OF EPR E X P E R I M E N T  

The previous example (Sec. 3) may be easily extended to fit the conventional 
EPR spin experiment. Now, the outcome set will be file unit circle A ={ ~. }. We will 
also allow the arguments u = a, b and c to be any direction of the unit circle U ={u} of 
the possible spin orientations. 

For any argument u E U, define a parametric probability density in A : 

p~ (3.)d~. = (1/4) Icos(3.- u)[ d~.. 

Furthermore, define the observable : 

F(u, Z. ) = s u (~.) = sgn (cos(~. - u)), 

where "sgn" stands for sign. It is a simple exercise to compute tile mathematical 
parametric expectations : 

27~ 

EoIsoi = j" 

0 

so(~.)po(k) dk  = 0 = Eblsol, 

2~ 

Eo[S,,Sbi = J" 

0 

so ( k )  s b (~.) po (~.) d~. = cos(a - b) = Eb[SaSb] 

Both consistency conditions Eqs. (14-15) are fulfilled. In addition, the mathe- 
matical expectations emulate tile conventional spin EPR correlations in accordance 
with Eq.(l  1), i.e., M(a, b) = cos(a - b). 

Thus, we can repeat exactly the prior description of a given experiment. The 
conclusion will be the same : Bell's inequalities are violated. As regards instantaneous 
influence at a distance, we will assume as in Sec. 5 that the quantum mechanical 
collapse is equivalent to a stochastic trial occurring at an ignition point t9, located at 
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random between the two end regions. In other words, the two spin directions, or at 
least one of them, are propagated with a f inite velocity from the end regions to the 
random point tP. This can be interpreted as a very "ignition point" for the quantum 

mechanical collapse. Next, the collapse front is propagated with a f in i te  velocity from 
the ignition point backwards the two end regions. Thus, it is possible to forsake 
instantaneous effects with the only counterpart of a finite risetime depending upon the 
distance between the two end regions. Nevertheless, the correlations are 
instantaneously definite at a distance as soon as the spin directions are selected (as 
explained in Sec. 5). 

7. P H Y S I C A L  I N T E R P R E T A T I O N  

Coming back to the EPR experiment, the quantum state of the system is 
initially represented by a pure wave function W o. Assume that one argument, (e.g., u) = 
a), is selected in one end region, e.g., ~l- Then, according to our model, the system will 

be described by the parametric probabilities po . As soon as the physical system 
interacts with region ~) tile initial state ~ o  collapses into a mixture of two (equally 
likely) pure states, • ~+ and W ( corresponding respectively to s~ = +1 and s~ = -1. 

In region ~ ,  let S,, ~ be the quantum spin operator of the first particle with 

respect to the argument u~ = a. The average spin is computed as 

E Q [ s a ] = ( l / 2 ) [ (  ~F,+ISa) I~F, ÷ ) + (  ~F,ISQ'I~F,  ) ] = (  ~FolSa'I~Fo ). 

On tile other hand, in region ~2, the second observer selects independently an 

argument u 2 = b. Provisionally, assume that this choice precedes any selection of 
argument by the first observer in region ~ .  As soon as the physical system interacts 

with region ~2 the initial state ~F 0 collapses into a mixture of two equally likely pure 

states, W2 + and ~F 2- corresponding respectively to s 2 = +1 and s 2 = -1. Now, the second 
observer may evaluate the conditional expectation of the observable s) if the first 
argument u~ is assumed to be u z = a as 

EblsJ= "2) I( )+( ) l  

According to quantum mechanical theory, we meet again tile first consistency 
condition, 

EQIsal = EblSol = ( ~ o l  So' I~o ). 

Now, back in region t~) ,we may evaluate tile conditional expectation of the product 

s~s 2 if  the second argument u 2 is assumed to be u2= b as 

Eo[sasb]=(1/2)[  ( V t + I S , , ' ® S n 2 I ~ F )  + ) + (  ~F,'[Sot®SbZi~F," ) ] ,  
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where Sb 2 is tile quantum spin operator of file second particle with respect to the 
argument u 2 = b. 

On the other hand, in region $2, assume that the argument, u 2 = b, has been 

selected. We compute the conditional expectation of the product s~s~ if the first 
argument u~ is assumed to be u~ = a as 

EbtSoS l = (I/2) t ( V; t  So'®S 2tV; ) ÷ ( V2"I So'®Sb IV:" ) I 

From quantum mechanical theory, the second consistency condition holds : 

Eo[SaSb]=Eb[SoSb]=( WolSo'@Sb2IWo ) 

In conclusion, tile parametric probabilities p,  with respect to one argument, u, 
appear to be the probabilities governing the collapse of the initial wave function as soon 
as one argument u has been selected in one end region. 

8. CONCLUSION 

We have suggested a new loophole to circumvent the EPR paradox. Our model 
may be sketched as follows : (1) The quantum mechanical collapse is assumed to be 
propagated with a finite velocity from a random ignition point. (2) Although consistent 
with quantum mechanical theory, the probability system which governs the collapse 
depends upon independent arguments to be selected in two spacelike separated regions. 
(3) As soon as the arguments are selected, the probability system is immediately 
completed. Therefore, correlations are instantaneously definite at a distance. 

We have shown that the only violation of Bell's inequalities does not prove 
that the quantum mechanical collapse is instantaneous. Our classical model does not 
aim to describe the underlying reality. However, the experimental signature a similar 
quantum mechanical mechanism could be a risetime dependence, e.g., proportional to 
the distance between the two end regions. Only such experiments, similar to the 
Aspect's experiment, could check if the collapse is or not definitely instantaneous. 

Finally, we have exhibited a non paradoxical realistic model which exactly 
emulates the spin EPR experiment : This proves that quantum mechanical theory is 
logically consistent with relativity. 
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