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Abstract 

System availability is becoming an increasingly important factor in evaluating 
the behavior of commercial computer systems. This is due to the increased de- 
pendence of enterprises on continuously operating computer systems and to the 
emphasis on fault-tolerant designs. Thus, we expect availability modeling to be of 
increasing interest to computer system analysts and for performance models and 
availability models to be used to evaluate combined performance/availability 
(performability) measures. Since commercial computer systems are repairable, 
availability measures are of greater interest than reliability measures. Reliability 
measures are typically used to evaluate nonrepairable systems such as occur in 
military and aerospace applications. We will discuss system aspects which should 
be represented in an availability model; however, our main focus is a state of the art 
summary of analytical and numerical methods used to solve computer system 
availability models. We will consider both transient and steady-state availability 
measures and for transient measures, both expected values and distributions. We 
are developing a program package for system availability modeling and intend to 
incorporate the best solution methods. 
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1. Introduction 

Most o f  the modeling work in fault-tolerant computing has focused on models 

for ultrareliable systems with long mission time requirements such as aviation and 

space computers,  wind-tunnel systems, ballistic missile defense computers,  etc. The 

modeling of  maintained or repairable systems with high availability requirements 
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such as telephone switching systems, general-purpose data processing computers, 
database computers (e.g. banking, airline reservation, and insurance claims) and 
comnmnication network computers has received relatively little attention. 

In the former class of  systems, no down time can be tolerated during the 
mission time. Therefore, redundancy is used to replace failed components almost 
instantaneously for a fixed level of  service. Although repair can be performed on the 
failed components, usually repairmen are not handy during the mission. Even if 
repairmen were handy, a mission failure occurs either if redundancy is exhausted or if 
imperfect switching takes place. Reliability, i.e. the probability that the system remains 
operational over a given time period, is an appropriate measure for evaluating the 
effectiveness of  this class of systems. 

Systems in the second class are usually operated continuously and short down 
times during their operation can be tolerated. Therefore, redundancy is used to improve 
the perfomaance under normal operation and to reduce the down time in the case of  
a failure. In some cases, hot standby systems are used just to reduce the down times. 
In this class of systems, both preventive and corrective maintenance can be performed 
to obtain the desired level of service. Availability, i.e. the fraction of  time the system 
is operational, is a more appropriate measure for evaluating the effectiveness of  tkis 
class of  systems. 

The choice of a dependability measure requires consideration about where the 
main cost or penalty of  system failure is. If it is associated with the frequency of 
failures, a measure based on the time between successive failures is needed, and if 
it is associated with the fraction of time the system is down, an availability measure 
is needed. Although most of  the work in performance modeling of computer systems 
has concentrated on the steady-state behavior of the system, in availability modeling 
the transient behavior of  computer systems is also important because failures and 
repair occur very infrequently, and systems may not reach a steady state during the 
period of observation. 

Recently, many vendors (e.g. DEC, HP, WANG, etc.) have announced com- 
puter systems with guaranteed levels of  availability in the 0.95 to 1.0 range. They pay 
a penalty if this level of  availability is not met over a finite time interval, for example, 
over a quarter, half a year, or a year. When vendors offer this guaranteed availability, 
they assess their risk of not meeting this guanranteed level and charge a premium in 
their maintenance agreement. The risk assessment involves evaluating the probability 
of  not meeting the minimum requirements on the availability or, in turn, the distri- 
bution of  availability over a finite interval. 

In this paper we consider all three types of  availability measures, namely 
steady-state availability, transient or interval availability, and distribution of avail- 
ability over a finite interval. In sect. 2 we present system aspects which should be 
considered when constructing an availability model and define the various measures 
of  availability. The next three sections consider analytical and numerical techniques 
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used in evaluating steady-state availability, transient or interval availability, and the 
distribution of  availability, respectively. The focus is primarily on Markovian models. 
In sect. 6 we briefly describe combined measures of  performance and availability, and 
refer the reader to relevant work done for evaluating these measures. 

2. S y s t e m  aspec t s  to  b e  modeled 

When evaluating the availability of  a system, one has to be careful about the 
level of detail included in the model. The reason we are studying the availability of a 
system is to compare various redundancy techniques, to make subsequent design 
trade-offs, and to pinpoint the subsystems which are availability bottlenecks. We 
should also consider the accessibility of  failure and repair data. Typically in a com- 
puting system, Field Replaceable Units (FRUs) are identified which are replaced if 
any component within the FRU fails. Therefore, failure/repair data on FRUs is easier 
to obtain. This suggests that we should model a system at a level where the redundancy 
occurs or at FRU level or at a subsystem level. 

The smallest entity represented in the model is termed a component. We 
assume that components can be in one of  two states: operational or failed. A system 
is considered operational, or available, if at least a minimum set of these components 
is operational. The failure and repair process of  these components can be represented 
by a state graph with state space ,Jr, where each state is a distinct combination of  
operational and failed states of each individual component. In the simplest case, the 
whole system can be considered a single component yielding a state graph with two 
states representing the system operational state and the system failure state, respectively. 
Components are not restricted to be hardware components. Software in operation can 
also be considered a component in the model. This is in contrast to software in test- 
ing mode, whose failure rate decreases as bugs are removed. 

In availability models, many simplifying assumptions are made about the real 
system behavior which can reduce the model's accuracy. In order to improve this 
situation, we need to formulate and solve models that make less restrictive assump- 
tions and to attempt to validate those that are made. There are three aspects of avail- 
ability models which must be considered in creating believable models of  real systems. 

2.1. PHYSICAL INTERCONNECTION OF COMPONENTS 

A system is considered to be an interconnected collection of  components, each 
of which can be either operational or failed. Some availability models assume full 
connectivity (every component is connected to every other), which is not the case in 
most real computer systems. For exampie, consider a hypothetical fault-tolerant 
database system shown in fig. I. Processors have their own local disks (databases) and 
share another disk where data logs are kept. Transactions are processed on both 
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processor local disk pairs. The system is considered operational if at least one processor 
local disk pair is operational and the shared disk is operational. Such conditions for 
the system to be operational are called assertions. 

In any given state of the system, we determine whether the assertion is satisfied 
or not as follows. We remove all failed components and their respective intercon- 
nections from the physical interconnection graph. This may create one or more 
interconnected sets of  components called part#ions. If any of these partitions satisfy 
the assertion, the system is considered operational. For the example of  fig. 1, an 
assertion could be (I of  Proc) AND (1 of LDisk) AND (1 of  SDisk). If Proc(1) and 
LDisk(2) have failed and the rest of  the system is operational, the system still has 
I processor, 1 local disk, and the shared disk, and it may appear that the assertion is 
satisfied. However, the system is not operational because the assertion is not satisfied 
in any one of  the partitions. 

2.2. FAILURE BEHAVIOR 

In most availability models, the components are assumed to fail independently. 
Common cause failures (e.g. power failure brings many components down, CPU failure 
brings operating system down), dormant failures (e.g. a standby component fails at a 
different rate than the operational component), and blocked failures (e.g. during 
system repair, certain components can not fail) are usually ignored. Moreover, the 
failure process is not modeled in detail. For example, a hardware fault could be 
transient, intermittent, or permanent. This fault is not detected until the hardware 
component is exercised and it causes an error which may then lead to component 
or system failure. An intermittent fault may exist for a long time before it causes an 
error. However, it may be difficult or impossible to estimate parameters at the fault 
level. We recommend modeling at the error level if the system implements some error 
recovery techniques (see subsect. 2.3) and otherwise at the failure level. Another 
important aspect of  failures is their time-dependent behavior. For example, as design 
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faults or software bugs are detected, the frequency of failure decreases. One has to 
make a judicious choice of the failure behavior representation in the model based on 
the available data, the questions being addressed with the model and the desired 
model accuracy. 

2.3. REPAIR BEHAVIOR 

There are many aspects of  repair which should be considered for inclusion in 
an availability model. Some systems have automatic recovery techniques. A very 
common technique to recover from transient error is to do checkpointing and retry. 
Since a large percentage of errors are known to be due to transient faults [31], many 
levels of  retries (e.g. instruction retry, process retry, task retry, etc.) are implemented 
in most computer systems. If the automatic retry is not successful for any reason (e.g. 
permanent fault, error propagates beyond the checkpoint, number of retries attempted 
reaches a prespecified threshold, etc.), a manual repair takes place. There are various 
levels of  manual repair. The operator may simply try to restart the system, which is 
often successful. The operator may isolate the failed component and try to restart the 
system without it, that is, the system is made available quickly with Off-line repairs on 
the failed component. The last resort is to call repairmen (if not in-house) to perform 
reconfiguration and repairs. Other aspects of  repair which could be included in the 
model are preventive maintenance and deferred and non-deferred repair. Repair 
dependencies could be included (e.g. a service processor must be repaired before the 
main processor can be repaired). Sometimes there is more than one repairman per- 
forming the job. There may be queueing for repairmen, in which case the queueing 
discipline should be represented. 

Once again, we must make a judicious choice of  including certain aspects of  
the repair behavior in the system model and approximating or ignoring the others. 
This choice must depend upon the available data, the question being addressed, and 
the accuracy desired. 

In most availability models it is assumed that the times to failure and times to 
repair are exponentially distributed so that the model is Markovian. From a practi- 
tioner's point of  view, these assumptions put severe limitations on the believability 
of the model results. Some attempts have been made to include non-exponential 
failure and repair times in availability models. These approaches include using phase- 
type distributions, using Markov renewal processes, and using Monte Carlo simulation. 
Although simulation is the most flexible approach, it has problems with ultra-high 
availability systems because of the desired accuracy of  the solution. Some events are so 
rare that to obtain reasonable confidence intervals, an unreasonably large number of 
replications may need to be performed. Variance reduction techniques for ultra-high 
availability systems have been investigated to a limited extent [19]. 
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2.4.  AVAILABILITY MEASURES 

In the remainder of  this paper (with the brief exception ofsubsect.  3.2.1), we 
assume that the failure and repair time distributions are either exponential or phase- 
type. Therefore, the state of the system evolves in time as a finite state time-homogene- 
ous continuous time Markov chain { X(t): t ~> 0 }. We partition the total set of states 
(~)  into an operational set (~I,o) and a failed set (~f)based on interconnections and 
assertions. Define a random variable 0(t) such that 

1 X(t) E ~o 
o( t )  = , (1)  

o x ( o  

and define A (t) such that 

t 

1 ] O(s) ds (2) A(t) = t 
0 

The availability measures of  significance are steady-state availability, 

A = l i m A ( t ) =  lim E[A(t)] , (3) 
t . + o .  t - - + ~  

interval availability, 

I(t)  = E [ A ( t ) ] ,  (4) 

and the distribution of  availability, 

F(t, x) = Pr [A(t) <~ x] . (5) 

In the following sections we survey the analytical and numerical techniques 
used to evaluate the above three measures of availability, and comment on our experi- 
ence with these techniques in the context of developing a system availability modeling 
package called SAVE (System AVailability Estimator). 

3. S t e a d y - s t a t e  avai labi l i ty  

Steady-state availability is probably the most commonly used availability 
measure. If there is no interaction among components with respect to both their 
failure and repair behavior, i.e. if the sequences of times to failure and repair for 
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different components are mutually independent, then the steady-state system avail- 
ability can be obtained directly from the steady-state component  availabilities using 
combinatorial methods. We briefly discuss this case in subsect. 3.2.1. If  on the other 
hand there is interaction among components, the combinatorial methods no longer 
suffice, as discussed next. 

3.1. A R B I T R A R Y  INTERACTION AMONG COMPONENTS 

In general, components interact due to contention for limited repair facilities, 
repair dependencies, common-cause and blocked failues, as discussed in sect. 2. As 
mentioned in subsect. 2.4, we consider only finite state time-homogeneous Markov 
chain models. The steady-state probabilities E are obtained using 

~ Q  = 0, ~ zr  = 1, (6) 
x E q ~  

where Q is the transition rate matrix. The steady-state availability is evaluated based 
on interconnection and assertions as 

A = Z ~ -  (7) 
~ . E  "-.I, o 

Two characteristics of  availability models that must be considered in computing A 
using eqs. (6) and (7) are (i) the exponential increase in the number of states (size of 
matrix Q) with the number of components in the system, as well as with details in- 
corporated about the failure and the repair behavior of the system, and (ii) the orders 
of  magnitude differences in the transition rates (repair rates >> failure rates). 

Since Q is sparse, the state space size problem can be alleviated to some extent 
by using sparse matrix storage techniques. Iterative methods are particularly suitable 
for solving eq. (6). Sparse storage techniques for such methods are easy to implement, 
since the iterative methods do not alter the matrix. Direct methods, on the other hand, 
need much more sophisticated sparse storage schemes, for allowance must be made 
for fill.in (zero elements which become non-zero as a result of  operations upon the 
matrix) as well as for the elimination of non-zero elements. In some cases, the fill-in 
can become very excessive, which is difficult to predict a priori. In addition, with 
iterative methods advantage can be taken of  good initial approximations, especially 
when a series of  related models are being solved. Also, the iterative procedure can be 
halted once a prespecified tolerance criterion has been satisfied (e.g. a user may need 
3 decimal place accuracy), whereas direct methods, by definition, perform a fixed 
amount of computations and yield the best accuracy they can. Finally, iterative 
methods do not suffer from problems of stability, for successive iterates always refer 
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to the coefficient matrix which is not altered. For these reasons, we prefer iterative 
methods for solving large availability models. In developing the SAVE availability 
modeling package, we have experimented with a few numerical methods, including 
the Gauss-Seidel (with successive over relaxation), Power, Lanczos, and Lopsided 
iteration methods [34,35]. Selection of  a particular method will be based on accuracy, 
convergence, and execution time. Since we have not yet experimented extensively 
with these methods, we report only our preliminary experience. 

The Gauss-Seidel method can be programmed in two ways. Assuming that 
there is a total of  N states, the first method involves using the N X N singular Q matrix 
in Gauss-Seidel iterations and renormaiizing ~ so that the probabilities sum to 1. Re- 
normalization may be done either after the method converges, after each iteration, or 
at iterations where there is a possibility of an overflow or underflow. In the second 

* * - b* where the * implies that method, we assume n N = 1 and rewrite eq. (6) as~  Q -.~ , 
the dimensions are N -  1. Notice that Q* is no longer singular and b* is not a 0 vector. 
After the Gauss-Seidel iteration converges, we renormalize ~ so that the probabilities 
sum to 1. The first method converges much faster than the second method; however, 
the first method is not guaranteed to converge, while the second is [17,12,37]. The 
convergence rate of  the Gauss-Seidel method can be improved by using the successive 
over relaxation method and selecting the optimum relaxation parameter dynamically 
[35]. The Power method consists of first multiplying eq. (6) by a suitably chosen 
positive At and then obtaining a fixed point iteration ~ = ~ P ,  where P = I  + AtQ. 
Now if At  ~< l/q, where q = max(-qi ,  i), then P will be a stochastic matrix. If the 
original continuous time Markov chain is irreducible, then the resulting discrete time 
Markov chain (described by P)  is also irreducible. Moreover, if At < 1/q, the discrete 
time Markov chain is also aperiodic. Therefore, the Power method using matrix P will 
always converge. However, the number of iterations could be extremely large, as the 
second largest eigenvalue of P can be very close to 1 for many availability modeling 
problems. The comparisons for the number of iterations taken by the Gauss-Seidel 
and the Power methods appear in [12]. The Lopsided method can increase the con- 
vergence rate of  the Power method by using m trial vectors. The convergence rate of 
the Lopsided method depends upon the m + l ' th  largest eigenvalue of  P.  The problem 
with the Lopsided method is that a good value of m is not known a priori. The value 
of  m can become large, creating storage problems. Moreover, complete eigensolution 
of  an (m + 1)× (m + 1) "interaction matrix" is needed, which requires complex 
arithmetic. There are other problems related to "defective" interaction matrices and 
"rotating eigenvectors" which complicate the use of  the Lopsided method. However, 
solutions to these problems do exist [33]. The Lanczos method appears to be 
promising in some cases, details of  which appear in [35]. We have not investigated 
other iterative methods which involve the use of  exact aggregation and disaggrega- 
tion [4]. 

We have been most successful by taking advantage of the special structure 
of availability models. Typically in availability models, states with a total of  i failed 
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components have higher probabilities of  occupancies than states with i + 1 failed 
components, i E { 0, 1 , . . .  }. We solve for the steady-state probabilities in a system 
with a maximum of i + 1 failed components by using the starting vector obtained 
from solving for the steady-state probabilities in a system with a maximum of  i failed 
components. The probabilities for states with exactly i + 1 failed components are 
assumed to be 0 in the starting vector. For i = 1, the steady-state probabilities can be 
evaluated in a closed form very easily [10]. The Q matrix needs to be evaluated 
and stored once, except that the diagonal elements need to be reevaluated when we 
go from i to i + 1. For each i E 12, 3 , . . .  }, we begin with the first Gauss-Seidel 
method and if it starts diverging, we revert to one of the methods which is guaranteed 
to converge. Our stopping rule uses Cauchy's criterion which compares the maximum 
of the absolute differences in the elements of  the solution vectors obtained on two 
successive iterations. This criterion may stop the iteration prematurely, and therefore 
we plan to investigate other stopping rules, discussed in [ 17,12,35 ]. Another advantage 
of  breaking the problem as above is that we may decide not to consider states with 
more than c failed components, based on the convergence in availability estimates 
obtained for i E { 1 ,2  . . . . .  c }, thus reducing the overall computation time and storage 
requirements. 

3.2. REDUCING THE COMPUTATIONAL EFFORT IN SPECIAL CASES 

The above approach for availability evaluation is very general, though restrictive 
in practice because of the exponential increase in the number of  states with the 
number of  components in the system as well as with the details incorporated about 
the failure and the repair behavior of the system. For restricted interaction among 
components, some specialized techniques exist to reduce storage and computation 
time requirements. 

3.2.1. No interaction among components 

In this case, we do not allow any failure or repair dependencies among com- 
ponents. However, the time to failure and time to repair distributions for each indi- 
vidual component can be arbitrary as long as either the repair instants or the failure 
instants form a renewal process (the time to failure and the time to repair of  a com- 
ponent can be dependent). Then the steady-state availability of  a component i is 
given by [30] 

Mean time to failure 
A. -- (8 )  

' Mean time to failure + Mean time to repair 

and the availability of  the system is given by a combination of  the component avail- 
abilities given above. Physical interconnection of  the components can be arbitrary with 
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arbitrary assertions placed on the operational conditions of the system. For the 
example of  fig. 1, the steady-state availability is given by 

A = ASp [1 - (1 -Aproc0)ALD0))  (1 --Aproc(2)ALD(2))]. (9) 

A computer package called ADVISER developed at CMU [20] takes arbitrary physical 
interconnection among components and arbitrary assertions to yield a symbolic 
expression for the steady-state availability of the system. Notice that no failure and/or 
repair dependencies have been taken into account. 

3.2.2. Product form queueing networks 

An availability model can be represented by a queueing network with two 
service centers, one (typically an infinite server) corresponding to the failure process, 
and the other (typically a multiserver) corresponding to the repair process. A separate 
closed chain with population one is created for each component.  However, if a group 
of components has probabilistically identical failure/repair behavior, then that group 
can be represented by a single closed chain with population equal to the number of 
components in the group. In the example of fig. 1, if the processors behave identically 
and the local disks behave identically, we can create a chain for processors, a chain for 
local disks, and a chain for the shared disk with populations of 2, 2 and 1, respectively 

Fai lure Server  

Nso = 1 

NLD=2 

/ 

[) 
Np=2 

~> 

Repai r  Server  

Fig. 2. Queueing network for the database example. 

(fig. 2). Notice that the queueing disciplines should neither distinguish between 
Proc(1) and Proc(2) nor between LDisk(1) and LDisk(2). The steady-state proba- 
bilities for the Markov chain corresponding to this queueing network can be obtained 
using one of  the methods given in subsect. 3.1. However, the state (population vector) 
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of  the network does not distinguish among the components in a chain. Therefore, if 
the components are not fully connected, it may not be possible to determine from the 
state of the network whether the system is operational or failed. For example, if the 
components are not fully connected as in fig. 1, the state with 1 processor and 1 local 
disk failed will be an ambiguous state from the system availability point of  view. 
However, as discussed in subsect. 3.2.3, it is possible to compute the steady-state 
availability from the steady-state probabilities even if the components are not fully 
connected. 

If the queueing disciplines and the service time distributions at the service 
centers in the availability model belong to the product form class [1 ], the steady-state 
probabilities can be obtained using one of many algorithms for product form queueing 
networks [25]. A few useful examples of such service centers in availability models are: 

(1) Infinite server, 
(2) Last-Come First-Served Preemptive Resume (LCFSPR), 
(3) Random Order Service Preemptive Resume (ROSPR) [10], 
(4) First-Come First-Served (FCFS). 

The service time distributions at the first three service centers can be phase-type, 
which can be different for different chains. However, at an FCFS service center 
they must be exponential with identical mean for different chains. The product 
form is preserved for more general availability models incorporating common-cause 
failures, blocked failures, dormant failures, automatic recovery mechanisms, etc., 
details of  which appear in [ 10]. 

The advantage of preserving the product form is that the availability can be 
evaluated for much larger models with tremendous savings in storage and execution 
times (the Q matrix does not need to be stored). We are investigating the stability of 
various product form algorithms [25] for orders of magnitude differences in service 
rate parameters and for state-dependent arrival and service rates. 

If the availability model does not satisfy the product form conditions or the 
conditions of subsect. 3.2.1, then the following approach is useful [9]. 

3.2.3. Lumping and unlumping states 

One technique to reduce the computational effort is to lump states into dis- 
joint groups ~1,  q~2, • • • , egn" A necessary and sufficient condition for the lumped 
process to form a Markov chain is that for any two groups ~I and ~,r, the transition 
rate from a state i in ~r  to qbj (i.e. ~"j~Jqlj) is the same for each i in ~I  [18]. These 
common values form the transition rate matrix for the lumped chain. In order to 
compute A from the lumped chain steady-state probabilities, a lumped group of 
states must contain either only operational states or only failed states. Therefore, 
when A is to be computed, the physical interconnection of  components and the 
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assertions also play a role in lumping. In the example of fig. 1, suppose that the 
failure and the repair behaviors for both processors are identical. If only one processor 
and LDisk(1) have failed, the system is operational if the failed processor is Proc(1), 
while it is failed if the failed processor is Proc(2). Therefore, it is not possible to lump 
states corresponding to the same number of failed processors and compute A as 
discussed above. However, if stronger conditions than those required for lumping hold, 
it is possible to lump states into groups regardless of  the physical interconnection and 
assertions while solving for the steady-state probabilties, and unlump groups into 
states (if needed) while evaluating the availability of the system based on the physical 
interconnection and assertions. To make the task of unlumping easier, we restrict the 
lumping as follows. 

In addition to the condition for lumping given earlier in this section, we require 
that for every pair of  groups (b z and ~.r, the transition rate from ~x to a state / in cbj 
(i.e. Ei~lqij ) is the same for every state / in ~.r, where the condition must also hold 
for I = J [9]. Now the unlumping is easy because the above conditions are sufficient 
for the set of  states belonging to a group to have equal probabilities. These stronger 
conditions for lumping are satisfied when there are groups of components such that 
the components in a group have identical failure behavior and identical repair behavior. 
Such lumping was done implicitly using the queueing network representation in sub- 
sect. 3.2.2 by representing a group of identical components by a single closed chain. 

As an example, again consider the system in fig. 1 and assume that the pro- 
cessors are identical (same failure behavior and same repair behavior) and that the 
local disks are identical. Moreover, assume any finite number of repairmen and a 
queueing discipline which gives preemptive priority to the shared disk over the pro- 
cessors and to the processors over the local disks. Due to the priority queueing disci- 
pline, the solution is not the product form. Then the states having the same number of 
operational processors and the same number of operational local disks can be lumped. 
There are 18 groups and the lumped chain can be solved using one of the methods 
discussed in subsect. 3.1. The group with one processor, one local disk, and one 
shared disk operational is the only group which has some states belonging to ~o and 
the remaining to xI, f. The rest of  the 17 groups have all states belonging to either xI, o 
or ~f .  Therefore, only one group needs to be unlumped into its constituent states, 
Since 

Pr[1 Proc .AND. 1 LD .AND. SD] 

= Pr [Proc(1) .AND. LD(1) .AND. SD] 

+ Pr[Proc(1).AND. LD(2).AND. SD] 

+ Pr[Proc(2).AND. LD(1) .AND. SD] 

+ Pr[Proc(2).AND. LD(2).AND. SD] 

system up 

system down 

system down 

system up 
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and all states in the group have equal probabilities, the availability of  the system is 
easily evaluated. The lumping-untumping method, regardless of whether the solution 
is obtained via product form algorithms or by solving the Markov chain, reduces the 
number of  states by orders of magnitude. Therefore, it is currently being used in the 
SAVE package. 

3.3. SENSITIVITY EVALUATION 

Sensitivity evaluation with respect to failure and repair parameters of the 
system is also very important. In eq. (6), we wish to evaluate the sensitivity of the 
vector E with respect to one of the failure or repair rate parameters, say X, which 
could be a part of  many elements in the matrix Q. By differentiating both sides of 
eq. (6) with respect to ~, we get 

dQ d~ d n 
d'~ + d-'~ Q~ = O, if" d~. - O. (10) 

The above equation can be written as 

dTr 

d x Q  = b , ~ ,  

where 

dO 
b = - r r  ....... "~ 

d~. 

can be evaluated after the steady-state probabilities have been computed. Therefore, 
we need to solve the same matrix equation as in eq. (6) except that the right-hand side 
is non-zero. The Gauss-Seidel methods can be used to solve eq. (10); however, the 
normalization is different. A Power-like iteration can also be created to solve eq. (10). 
In both cases, the convergence properties remain the same as discussed in subsect. 3.1 
[35]. In general, the Lanczos or the Lopsided methods may not be used to solve a 
general set of  simultaneous linear equations. Now, dA/dX can be obtained using 
eq. (7). 

4. In te rva l  avai labi l i ty  

In this section we consider interval availability for finite state time-homogene- 
ous Markov chain models. Following the standard approach, the dynamic behavior of 
the model can be characterized by a linear system of ordinary differential equations 
with constant coefficients [30] 
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E'(t)  = Z(t) Q ,  (11) 

where ~(t)  is the state probability vector and Q is the N X N  transition rate matrix. 
Interval availability is then obtained from 

t 

I ( t )  = E[A(t)] = ~ + ]  ~ ( u )  du. (12) 
x E q s  o 0 

It is convenient in what follows to let 

/ ( t )  = 

t 

I ~(u)  du 

0 

(13) 

so that 

I ( t )  = ~_, / ( t ) .  (14) 
~ o  ~ 

There are many ways to solve eq. (11), some of which have been used in existing 
availability and reliability modeling packages. One form of the solution to eq. (11) is 

Qt 
~(t)  = ~(0)  e ~ , (15) 

which can be evaluated using the power series to yield 

oo tk 
E(t)  = Z (E(0)~Q k) k--~. (16) 

k = 0  

and hence 

0~ t k 

2(t) = Z (Z(0)a  k) (k+l) ,  (17) 
k = O  

However, since ~Q has both negative and positive elements, the above sum may not be 
well behaved in the numerical sense. 
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Another form of the solution to eq. (11) is expressed in terms of the eigen- 
values and the corresponding eigenvectors of Q. Assuming distinct eigenvalues, the 
solution can be written as 

N 
hit 

E(t) = ~. e a i z i ,  (18) 
i = 1  

where X i is an eigenvalue, Zi is the corresponding eigenvector of Q, and a i a r e  deter- 
mined from the initial conditions 

N 

= y .  a .v . .  
! ~-,l 

i----1 

Now, ~(t)  can be symbolically integrated term by term to obtain an expression for 
/ ( t ) .  A slightly more complicated form results if eigenvalues are repeated [3]. An 
alternative formulation used in the ARIES modeling package [28] avoids the compu- 
tation of eigenvectors. However, the classical approach is O(N4), while the ARIES 
approach is O(N s ) [6]. More importantly, however, there are several other problems 
with the eigenvalue approach [3]. First, even though Q has only real entries, some of 
its eigenvalues can be complex. Furthermore, realistic problems can result in repeated 
eigenvalues and numerical problems arise in the case of numerically close eigenvalues. 
Added to these problems is the difficulty of finding eigenvalues of a large matrix. 

The solution to eq. (11) can also be obtained using Laplace transforms, as 
follows: 

= - Q ) - ' ] .  (t9) 

This is the approach used in the SURF modeling package [24] and in general it 
requires numerical inversion of the Laplace transform, although for some models 
inversion via partial fractions may be possible. Since we are interested in I(t)instead 
of n(t), we should invert (s~/- Q)-l/s ,  i.e. 

1 Z _1  
/ ( t )  = 7 - Q (20) 

An approach that appears to be more promising than any of the above methods 
for computing E(t) and / ( t )  is the randomization (or uniformization) method 
[11,13,26]. The method is based on an equation which has a nice probabilistic 
interpretation [ 16,30] which we omit here. The resulting equation can also be derived 
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quite simply as follows. First make the change of variables ~( t )  = eq~( t ) ,  where 
q i> m a x ( -  qii), in eq. (11), yielding 

~ '  (t) = •(t) Q* , (21) 

where Q* = I  + Q/q. Next, apply the power series expansion method to the above 
equation [as it was applied to eq. (11) to yield eq. (16)] to solve for ~(t),  yielding 

~(t) = e-qt ~(t) = Z Z(O) (Q*)k e-qt(qt) k (22) 
k~ 

k - - O  

(The above equation can also be dervived probabilistically as in [13].) Numerical 
problems are minimized, since the matrix Q* has only nonnegative entries. Finally, 
by symbolically integrating eq. (22) we get 

°0 ** e-qt(qt)n (23) 
1 Z z(O)(Q*) k Z n! 

I ( t )  - q t  k = O  ~ n = k + X  

All terms are nonnegative and the equation can be used to efficiently compute I ( t ) .  
It is easy to show that the L 1 norm of  the error obtained by approximating / ( t )  by 
the sum of the first K terms in eq. (23) is upper bounded by 

~. e-qt (qt)n (24) 
n! 

n = K + l  

It follows from eq. (14) that this value also upper bounds the resulting error in the 
interval availability. 

Yet another approach to solving eq. (11) is to use numerical integration 
methods. In a test of  numerical methods for initial value problems, Hull et al. [14] 
compared variable-order predictor-corrector methods, Runge-Kut t a  methods, and 
extrapolation methods on a wide selection of test problems, and concluded that when 
function evaluations are relatively expensive (as is the case for large and sparse transi- 
tion matrices), variable-order methods are best, such as that of Krogh and Gear. Also, 
Lambert [23] suggests that Gear's method represents the most highly developed 
method for the treatment of stiff systems such as the ones we encounter due to the 
orders of magnitude differences in transition rates. 

Once again, we are interested i n / ( t )  rather than E(t). Symbolically integrating 
eq. (11) yields 
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~(t) = ~(u) d Q + ~(0) ,  

0 

or in terms off( t )  = ~(t) ,  we have 

(2s) 

~' ( t )  = ~(t) Q + ~(0) ,  (26) 

which can be integrated numerically to obtain ~(t) and henceI(t).  
We believe that either randomization, i.e. use of eq. (23), or numerical integra- 

tion of eq. (26) using Gear-like methods are the preferred approaches for solving large 
availability models for interval availability. We are currently experimenting with these 
two methods for the SAVE package. 

In order to derive the sensitivity of the vector I ( t )  with respect to one of the 
failure or repair rate parameters, say X, we proceed by differentiating both sides of 
eq. (26) with respect to X, which yields 

a~'(t)  _ a/3(t).., aQ (27) 
ax ax + £(t)  a x '  

where ~(0) does not depend on X so that aE(0)/ax = 0.  Reversing the order of dif- 
ferentiation with respect to t and X, we get 

aQ (28) S'(t)  = S( t )Q + ~(t) ax ' 

where S(t) = a~(t)/~}, is the sensitvity vector for parameter k. We can solve ford(t)  
and S(t)  simultaneously (and henceI(t)  and M(t)/a X) with one large set of simultane- 
ous differential equations, namely 

[ ~ ' ( t ) ,  S '  (t)) = Q~(t), s ( t ) )  

o 

+ (~(0),0). (29) 

This approach can easily be extended to solve simultaneously for ~(t) and multipIe 
sensitivity vectors for different model parameters. The most promising method to 
solve eq. (29) appears to be numerical integration. 
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5. Distribution of availability 

In this section we briefly consider the distribution of availability over a finite 
interval for finite state time-homogeneous Markov process models. In general, it is 
quite difficult to evaluate the above distribution in a closed form. While an expression 
for the Laplace transform of F(t, x) with respect to variable x has been obtained for 
multiple component models, we are not aware of any technique which can be used to 
invert this transform to yield closed form results for repairable systems. The Laplace 
transform could be inverted numerically to get F(t, x). This approach is under investi- 
gation [22]. For very large t, x/-{A(t) converges to a normal distribution (e.g. see [32] ) 
whose mean and variance can be computed. However, there are two problems with 
using the normal approximation. First, most intervals of  interest are short intervals 
where the normal distribution can give severe errors, and second, for high availability 
systems we are interested in the tail of the distribution where the normal approxi- 
mation tends to fail [8]. For a two.state model with failure and repair rates 3. and #, 
respectively, the following equation was obtained in [29] 

F(t,x) = 1 - e x p ( - k x ) [ 1  + ~ f e x p ( - I ~ y ) y - U ~ I I ( 2 ~ ) d y ]  
0 

, ( 3 0 )  

where I l (a) is the Bessel function of order 1 defined by 

Ii(a) = ~.  (a/2) 2i÷1 , 
] ! ( ] +  1)! (31) 

j = 0  

and the initial state is the operational state. Although F(t, x) could be evaluated by 
numerically integrating the above equation, it has not been investigated. Moreover, it 
is not clear how to extend the above analysis to multiple-component availability 
models. Uniformization can also be used to evaluate F(t, x) for two-state models, as 
shown in [30]. 

The most promising approach for multicomponent models that has been 
described in the literature is the numerical approach presented in [8]. The approach 
is based on evaluating the joint probability that the cumulative operational time 
during an interval of  length t is x and that the system is in a particular operational 
or failure state at time t. Equations are obtained relating these joint probabilities for 
arguments t and x to those for arguments t - A and x, and those for arguments 
t - A and x -. A, where A is chosen small enough so that the probability of  more than 
one event in the Markov process in time A is negligible. These equations allow recursive 
computation of  probability density functions of  system availability. Details are given 
in [8]. 
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As an example, consider a system which consists of  three components in series. 
The failure rates of  the three components are k 1 = 1/t96, X 2 = X a = 1/392, re- 
spectively, and the repair rates of  the three components are/,t I = 1,/a 2 = 0.5, #3 = 0.25, 
respectively. We do not allow another component to fail if one component has already 
failed. The mean time between system failures is 98 hours and the mean time to repair 
the system is 2 hours. Hence, the steady-state availability of  this system is 0.98. Using 
a A of  0.1, we show in fig. 3 the probability density function of  system availability for 

EXPONENTIAL FAILURE/REPAIR 
o THREE COMPONFNTS IN SFR, IES 
u3 

O 

" 7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

o 

i I i i ! ! T=50 :" 

a ~  

O 
0.95 0,96 0.97 0.98 0.99 1.00 

GUARANTEED AVAILABILITY X/T 

Fig. 3. Probability density function. 

t = 100 ,200 ,300 ,400 ,  and 500 hours. From fig. 3 we find that as the interval length t 
increases, the distribution of  system availability approaches very slowly to that of  the 
steady-state availability, which is deterministic at x/t = 0.98. Also, we observe that for 
small values of  t, the distribution of  system availability is far from a normal distribu- 
tion. There exists a finite probability of  achieving a guaranteed availability of  one, 
which is the probability of  not failing during the entire interval t. 
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6. C o m b i n e d  p e r f o r m a n c e  and availability 

Recently there has been a considerable interest in evaluating fault-tolerant 
computer systems that can operate in a degraded mode. Combined measures of per- 
formance and availability, called performability, have been proposed to evaluate such 
systems [2,27]. Performability measures are generalizations of availability measures 
and they also fall into three basic classes, namely steady-state performability, interval 
performability, and the distribution of performability over a finite interval. 

We associate a performance level or a reward rate r i with being in state i 
rather than simply a zero or one value, as has been the case in pure availability models. 
Define a random variable r/(0 such that 

rl(t) = r i if X(t) = i (32) 

and define Y(t)  such that 

r ' ( t )  = 

t 

I n(s) 

0 

ds. (33) 

The steady-state performability is defined as 

Y = tim Y(t)  = Iim E[Y( t ) ] ,  (34) 
t . . .  ~a t - . * ~  

the interval performability as 

C(t) = E lY ( t ) ] ,  (35) 

and the distribution of  performability as 

G(t, x) = Pr [Y(t) ~< x] .  (36) 

The steady-state performability and the interval performability can be evaluated from 
a n d / ( t )  directly. However, the distribution of  performability poses considerable 

problems and has been evaluated only in special cases. For acyclic Markov chains (no 
recovery or repairs), G(t, x) can be obtained analytically [7,5]. For cyclic Markov 
chains (models with repair), the Laplace transform of G(t, x)  with respect to x has 
been obtained [15,21] and the moments of Y(t)  have been obtained [15]. The 
numerical inversion of  the Laplace transform is under investigation [22]. 
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