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Abstract. This work gives a systematic description of the statistical theory of the propagation of 
cosmic ray charged particles through random electromagnetic fields in space. A kinetic equation is 
derived for the cosmic ray distribution function averaged over the statistical ensemble corresponding 
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scattering and acceleration of charged particles are analyzed. The theory of fluctuation effects in 
cosmic rays is briefly discussed. 
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1. Introduction 

The last twenty years in cosmic ray astrophysics have been marked by significant 
changes due to a crucial change in astronomy during the postwar years. The 
pronounced enlargement of the observation range has made it possible to include 
in the composition of the observational astronomy 'windows' superhigh-energy 
charged particles (cosmic rays) as well as photons from many intervals of the 
electromagnetic spectrum. It should be noted that the energy spectrum of the 
charged particles covered by the term 'cosmic rays' is extremely broad and is 
extended from the energies of 'escaping' particles (~103 eV in the solar and 
interplanetary plasma) to energies of - 102o eV in magnetized plasma in the pulsar 
atmospheres. The range of problems associated with cosmic ray astrophysics is 
unusually broad. Cosmic ray astrophysics is of fundamental importance to studies 
of the physical nature of transient objects (the Universe, pulsars, quasars, galactic 
nuclei, supernovae) since it is the relativistic particle interactions with the medium 
(matter, fields, radiations) that yield the major portion of information about these 
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objects. On the other hand, cosmic ray studies are of exceptional importance to 
the research into dynamical processes in the interstellar and interplanetary 
medium. A classical example is the propagation of galactic cosmic rays in the solar 
system. The charged particle propagation in space filled with magnetic fields (and 
such are all cosmic objects without exception) results in the deformation of the 
particle spatial-energy distribution, which is directly reflected in the experimen- 
tally observed spectra of cosmic ray intensity whose analysis makes it possible to 
derive valuable information on cosmic rays themselves and on the physical nature 
of the medium in which the charged particles propagate. Propagation of cosmic- 
ray charged particles in interstellar and interplanetary media is one of the most 
urgent problems of high-energy astrophysics in which the direct relation between 
the physical nature of various cosmic objects and the fine effects occurring during 
the relativistic particle interaction with magnetized cosmic plasma becomes natur- 
ally apparent. 

The foundations of the theory of cosmic ray interaction with magnetized cosmic 
plasma were laid some thirty years ago. Fermi (1949) showed that, when 
'colliding' with magnetized 'clouds' of cosmic plasma moving in the opposite 
direction, cosmic ray charged particles should accelerate. This effect, subsequently 
called the Fermi acceleration effect, is of fundamental importance in cosmic ray 
astrophysics and, in one modified form or another, is the basis of the theory of 
charged particle propagation in cosmic plasma. Serious studies of cosmic ray 
propagation processes began, however, about a decade ago. They were stimulated 
by an extensive development of experimental methods associated with the ap- 
pearance of a worldwide network of neutron monitor stations and with launchings 
of recording equipment beyond the Earth's magnetosphere. The principles of the 
plasma theory were developed approximately at the same time in connection with 
thermonuclear studies. A certain aggregate of theoretical concepts that gives a 
consistent description of cosmic ray interaction with magnetized cosmic plasma 
has been formed as a result of the synthesis of achievements in the experimental 
studies of cosmic rays and plasma physics. Methods for deriving the basic 
equations of the cosmic-ray transfer theory have been developed and research 
into various specific cases of particle propagation, which is valid for some extreme 
relations between the parameters characterizing the propagation, has been carried 
out. Unfortunately, the real observational data relate usually to the intermediate 
domain of the values of these parameters and, therefore, it is too early yet to 
expect a comprehensive quantitative agreement between theory and experiment. 
The analytical studies of the extreme cases, however, provide a deeper insight into 
the physical essence of the studied events and a qualitative idea about them that 
may be hoped to properly reflect real situations. 

The range of questions discussed in the present work is associated mainly with 
those problems in propagation theory which must be studied on the basis of the 
kinetic equation. The fact is that the first attempts to construct a statistical theory 
of cosmic ray propagation were based on a simple model of isotropic diffusion 
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(Dorman, 1958; Ginsburg and Syrovatsky, 1963; Parker, 1963; Dorman, 1963), 
which was gradually further complicated and supplemented on the basis of 
phenomenological considerations and experimental data. This is the most 
rudimentary and most difficult part of the propagation theory associated with the 
solution of complex boundary-value problems in mathematical physics. Further 
progress in this field is possible on the basis of the development of numerical 
methods for solving partial differential equations. On the other hand, the subse- 
quent development of the theory has shown that, even in the diffusion approxima- 
tion, if the magnetic fields are transferred by moving plasma clouds, the corres- 
ponding equations are of somewhat unusual form, which has not been taken into 
account by many authors (Parker, 1963; Dorman, 1963). Such a situation takes 
place for interplanetary space where magnetic fields are transferred by solar wind 
at velocity Uo ~ 4 × 107 cms -1 and in the expanding shells of super-novae. Under 
these conditions, the particle motion is determinantly affected by the adiabatic 
deceleration mechanism associated with particle energy loss in 'collisions' with the 
radially recessed 'clouds' of magnetized cosmic plasma. The adiabatic deceleration 
mechanism was first examined by Ginsburg et al. (1955) who studied the problem 
of particle propagation in supernovae shells. It is the kinetic approach to the 
description of cosmic ray propagation, however, that has made it possible to 
establish the correct form of the diffusion approximation equations and the kinetic 
coetficients of these equations by establishing their relation to the parameters of 
the medium in which the particles propagate. Apart from these questions, there is 
a broad range of problems that cannot be solved at all if the diffusion approxima- 
tion is to be used. Thus, the kinetic approach to the evolution of the distribution 
function of charged particles is necessary When studying the question of how the 
anisotropic flux of galactic cosmic rays transforms during the cosmic ray passage 
from the Galaxy to the solar system. The same approach is also necessary when 
studying the spatial-angular distribution of solar cosmic rays during the initial 
phase after their generation in chromospheric flares. The above examples do not 
exhaust the great number of problems that may be solved in terms of kinetic 
theory. 

As was indicated above, we shall limit ourselves in the present review to works 
which treat the application of the kinetic equation to the description of cosmic ray 
propagation processes. The theory of cosmic ray transfer is set forth at great 
length and the various specific effects in terms of the isotropic diffusion model are 
analyzed in detail in a number of monographs (Ginsburg and Syrovatsky, 1963; 
Parker, 1963; Dorman, 1963). 

The anisotropic diffusion model including the adiabatic deceleration of cosmic 
rays in radially expanding cosmic plasma was first developed by Parker (1965) and 
Dorman (1965). A consistent theory of cosmic ray propagation based on the 
kinetic equation was developed by Dolginov and Toptygin (1966). A great 
contribution to the development of this theory was made by Toptygin (1973, 
1973a), Dolginov and Toptygin (1966, 1968), and Galperin et al. (1971). The 
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collisionless equation was used by Dolginov and Toptygin (1966) to develop the 
theory of cosmic ray propagation in an inhomogeneous expanding medium which 
contains random magnetic field inhomogeneities transferred at a certain velocity 
by the cosmic plasma against the background of a regular magnetic field. The 
kinetic equation obtained was used by Dolginov ond Toptygin (!966) to make the 
transition to the diffusion approximation, to obtain the expression for the particle 
flux density including the adiabatic deceleration, and to examine some problems 
in the theory of cosmic ray transfer. Significant advances in the studies of 
propagation and acceleration of cosmic rays were made when studying the solar 
high-energy particles. Tverskoy (1967a; 1969) formulated the hypothesis of the 
transfer of fast particles behind the shock wave front where a developed magneto- 
hydrodynamic turbulence occurs. It was assumed that the Larmor radius of 
particles is much smaller than the basic scale of turbulence. In this case, the 
kinetic equations describing the particle propagation are determined by a detailed 
form of the spectral function for a random magnetic field. It will be noted that the 
developed magnetohydrodynamic turbulence (Alfv6n waves) was found as a result 
of direct measurement in interplanetary space (Belcher and Davis, 1969, 1971). 

The rapid development of experimental techniques in recent years has made it 
possible to study intensively a new type of cosmic ray variations, namely, 
microvariations which are more or tess regular changes in the cosmic ray intensity 
with a period of the ordrer of several tens of minutes and less. Comparison 
between theory and experimental measurements of the correlation function of the 
particle distribution function fluctuations is most informative to the study of 
microvariations. The theory of cosmic ray fluctuation effects was first developed 
by Shishov (1968). 

We shall now outline briefly the contents of the review. In Section 2 the 
functional method is used to average the collisionless kinetic equation over a 
statistical ensemble corresponding to a random magnetic field and to obtain the 
kinetic equation for the averaged function of the cosmic ray distribution. In recent 
years the functional method has been intensively developed in quantum field 
theory (Schwinger, 1951; Fradkin, 1965), turbulence theory (Hopf, 1952; Monin 
and Yaglom, 1965, 1967), and especially in connection with problems of wave 
propagation in media with random inhomogeneities (Tatarsky, 1967; Klyatskin 
and Tatarsky, 1973). Transition to the diffusion approximation (Dolginov and 
Toptygin, 1966) is made in Section 3. Considered in Sections 4-6 are some 
problems of the theory of cosmic ray propagation in a strong regular magnetic 
field against the background of which a magnetohydrodynamic turbulence is 
excited (Tverskoy, 1967a; Toptygin, 1973a; Tsytovich, 1966; Dorman, 1972). 
The question of cosmic ray fluctuation effects is briefly considered in Section 7. 

Appendices I and II give the derivation of the equation for the correlation 
function of cosmic ray distribution function fluctuations and the solution of this 
equation for strong intensity fluctuations. Appendix III establishes the relation- 
ship between the various forms of the anisotropic transfer equation which are 
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used in the theory of cosmic ray propagation. 
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2. Kinetic Equation 

Consider a flux of non-interacting charged particles moving in a magnetic field 
with the regular, 1-10(r, t), and the random, l-ll(r, t), components 

H(r, t)=Ho(r, t)+Hl(r,  t), 

(H(r, t))=Ho(r, t), (2.1) 

f f I l ( r ,  t)> = O. 

The angle brackets denote averaging over a statistical ensemble corresponding to 
a random magnetic field. As was indicated in Section 1, the fact that magnetic 
fields are transferred by the solar wind plasma at a certain velocity should be 
taken into account for interplanetary space. The velocity, which should be 
ascribed to the field, depends on the extent to which the magnetic field is frozen 
into the solar wind plasma. If the magnetic field is completely frozen into the 
plasma moving at velocity lu(r, t)l<< c (c is the speed of light) and having the 
regular, no(r, t), and random, u~(r, t), components 

u(r, t)=uo(r, t)+ul(r,  t), 

(u(r, t))=u0(r, t), (2.2) 

(u~(r,  t))  = 0.  

then the effect of the induction electric field 

E(r, t )= _ 1  [u(r, t)H(r, t)] (2.3) 
C 

on a particle should be included. Because of the transient nature of the processes 
occurring on the Sun and the turbulence development directly in interplanetary 
space, a broad spectrum of turbulent pulsations (Alfv6n waves, magnetosound 
waves, etc.) is generated in the solar wind plasma apart from the plasma-frozen 
random inhomogeneities of the magnetic field. The stochastic electromagnetic 
fields of such pulsations significantly affect the charged particle motion. The 
distribution function f(r, p, t) of non-interacting charged particles moving in the 
magnetic field determined by relations (2.1) satisfies the collisionless kinetic 
equation 

~t~+v 0f+F~p/=0 '  Or (2.4) 

where v = (cgp/e) is the velocity and e = c(p2+ m2c2) ½ is the energy of a particle 
with momentum p and charge e. F is the force affecting the particle: 

F = e ( E + l [ v H ] ) .  (2.5) 
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The problem was formulated by Dolginov and Toptygin (1966) based on Equa- 
tions (2.1)-(2.5). 

Represent F in the form of the regular 

F0 = e(Eo +-lc [vHo]) (2.6) 

and the random 

FI = e(E1 +~ [vH1]) (2.7) 

parts. If the magnetic field is completely frozen into the plasma, the regular part 
of the electric field Eo is of the form 

So  = - ! IuoHo] (2.8) 
C 

and the random part is 

E1 = _ 1  ([uoH~] + [u~H]). (2.9) 
c 

In accordance with relations (2.5)-(2.9), the kinetic Equation (2.4) will be written 
in the form 

(~t + Lo)f+ F~Lf= 0,  (2.10) 

where 

L o = V~r + FoL 

is the operator associated with the regular part Fo of force F and L = (O]Op). The 
distribution function/(r, p, t) is irregularly changed in space and time following 
the variations of the random field. The distribution function ([(r, p, t)} averaged 
over a statistical ensemble corresponding to a random field has real meaning. The 
method first developed in quantum field theory (Schwinger, 1951; Fradkin, 1965) 
and statistical hydromechanics (Hopf, 1952) (see also Monin and Yaglom, 1965, 
1967), will be used to derive the equation satisfied with the function (f(r, p, t)). In 
recent years, this method has been intensively developed in problems of wave 
propagation in media with random inhomogeneities (Tatarsky, 1967; Klyatskin 
and Tatarsky, 1973). As is known (Hopf, 1952; Tatarsky, 1967) the statistical 
properties of the random function Fl(r, p, t ) - f l (x ,  t) (the set of variables {r, p} 
will henceforth be denoted with a single letter {x}) are completely determined, if 
its characteristic functional is present: 

q~[n(x, t)] = (exp i(~F~)), (2.11) 

where 

(~IF1) = / dx dt 7/,, (x, t)Fl,,(x, t) 
J 
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denotes the 'scalar product' in the functional space; the repeated indices here and 
below mean summation. 

All the moments of the random field may be obtained from (2.11) as functional 
derivatives at the zero functional argument ~(x, t). 

1 6~[~] ] =(Fl~(x, t))=0 
i 8"0~(x, t) i .=o  

(2.12) 
1 I 

[ = (Fl,,(x, t)Fax (x', t '))= D~x (x, t; x', t'). 
i 2 6~,~(x, t)Sn~(x', t') ,~=o 

In the general case, the correlation tensor D~x is determined by the relation 

D,,x = e2 { T,,~ 
1 

+ c  (e~t3~'vt3IIvx + Ex~,vv~II~) + e~,~,sx~vvt3v~Bvv J , (2.12a) 

where e,~ov is the united antisymmetrical tensor of the third rank; T~x = (EI~E~x) 
and Bvv = (HlvH~.) are the correlation tensors of the electric and magnetic fields, 
respectively; Il~e = (H~EIz)  is the crossed correlation tensor of the electric and 
magnetic fields. If the magnetic field is completely frozen into the plasma, then 
D~x is of the form 

D~x = e,~t3vex.~{wt3w.Bw- wt3Ho~S~.v - w.HovSa~ + Ho.Ho~Qt3~}, 

(2.14) 

where w=V-Uo,  and S,v =(ul,H~v) is the crossed correlation tensor of the 
magnetic and velocity fields; Q~, =(u~t3ua~, ) is the correlation tensor of the 
velocity field. When writing (2.14) we neglected the term (e/c)2([nlH1]~[u~H1]~) 
assuming it to be small. 

After multiplying Equation (2.10) by expi (-qFa) and averaging the obtained 
expression over the statistical ensemble corresponding to the random field we 
shall get the equation in functional derivatives 

( ~ t )  I6 In ~["]-~ 3~/~ (x, t) 6 } +Lo ff;[~l;x, t]=iL~t6n~(x,t  ) ~[~1; x, t] (2.15) 

relative to the functional 

~;[11; x, t] = (f(x, t) expi (~lFa)) 
qb[~l] (2.16) 

whose value coincides, at the zero functional argument r t = 0, with the distribution 
function averaged over the statistical ensemble corresponding to the random field: 

~[0;  x, t] = (/(x, t)). (2.17) 

The following procedure is usually used (Monin and Yaglom, 1965, 1967; 
Tatarsky, 1967) to obtain the equation for the averaged distribution function 
(2.17) from Equation (2.15). 

Represent the functional ~[~l(x, t); x, t] in the form of the functional power 
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series 

 tn; x, t]=  o(x, t)+ fdxl dtlr/~ (xa, t~)~:l~(X, t; xl ,  tx) 

+ I dx, dtt  dx2 dt2r/,, (x~, tl)V/o(x2, t2)S~2,,t~(x, t; Xl, t~; x2, tz) 

+ f dxl dtl  dx2 dr2 dx3 dt3rh~(xl, t l )~(x2,  tz)'r/v(x3, t3) 

× ~;3aov(X, t;Xl, tl; X2, t2; X3, t3)+. • •, (2.18) 

where ~;o, ~:~,~, ~;zao . . . .  are the power  functionals of the zero, first, second, etc. 
powers, respectively. The  expansion ~ In ~[~l] /~a(x ,  t) is the functional power 
series, the n-th term of which is determined by the form of the correlation tensor 
of the (n + 1)-th rank 

8 In ~b[rl] f 
~rt,,(x, t) = - j dx l  dtlr/~(xl, t l )D~(x ,  t; xt, tl) 

+ fdxl dr1 dx2 dt2rl~(xl, tl)'rlv(x2, t2) 

x D,~.t(x, t ;x l ,  t~; x2, t2)+ . . . .  (2.19) 

Substituting (2.18) and (2.19) in (2.15), we shall equate the functionals of the 
same power in the left and right parts of (2.15) to each other. The resultant 
infinite chain of connected equations is 

(~+ Lo)~;o(x, t)= i~,,~;.(x, t; x, t) 

(~t + L o ) ' ~ ( x ,  t; x~, h)=-iD~,~(x, t; x~, tl)Le~'o(X, t) 

+ 2 / ~ 2 = ~ ( x ,  t; x, t; xl, tl) (2.20) 

( ~ +  Lo)~;z~e (x, t; xl, t,; x2, tz) = -D,~ov(x, t; xl, tl; x2, t2),~Lgv~ro(X, t) 

-iD~(x,  t; xl, t l ) ~ l o  (x, t; x2, t2) 

-iDov(x, t; x2, t2)~v~;l~(x, t; xt, tl) 

+3/2~v~3,,ov(x, t; x, t; Xl, tl; X2, t2). 

It was taken into account when writing (2.20) that a symmetrization over the 
arguments  and indices of the factors ~/~ (x, t) should be made in the higher terms 
of expansions (2.18) and (2.19). 

Assuming one of the functionals ~:, to be zero, we shall obtain a closed set of 
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equations. Thus, assuming ~2 = 0, we obtain the following set of equations from 
(2.20); 

+ to) :o(X, t) = t; x, t) 
(2.21) 

( O +  Lo)~:~(x, t;Xl, tx)=-iD~x(x, t;xx, tx)Sfx~0(x, t). 

To solve the equation set (2.21), we introduce the functions q~(x, t ;x~,q) 
according to the relation 

~lot (X, t; Xl, t l )= exp (-Lot)~o~ (x, t; xl, tl). (2.22) 

The effect of the operator exp (-Lot) on the arbitrary function of coordinates and 
momenta is known to consist in replacing r by r -z l r ( t )  and p by p-z ip( t ) ,  where 
Ar(t) and zap(t) are the changes of the radius-vector and momentum of the 
particle in a regular field during time t. Substituting (2.22) in the second equation 
of the set (2.21), we shall get 

t 

~;l~(x, t; Xl, t l ) = - i J  dt' exp [-Lo(t- t ' ) ]Dax(x,  t'; x~, tl)~X~:o(X, t). 

0 

(2.23) 

The Equation for the function ~o(X, t) will be found from the first equation of the 
set (2.21) using (2.23): 

+ Lo) (r, p, t) 

= ~ f dt' exp [ - L o ( t -  t ')]D~(r, p, t'; rl, Pl, t ) . ~ ; ( r ,  p, t'). 
0 

(2.24) 

We returned here to the previous denominations {x}---~{r, p} and omitted index 0 for 
the function ~o!r, p, t). In accordance with (2.21), we set that in the right part of 
(2.24) tl = t and it should be borne in mind that, after the action of the operator 
exp [-Lo(t-t')], we should set that rl = r and Pl =P.  

For further analysis of equation (2.24), the dependence of the correlation 
tensor of the coordinate axes and time should be specified. If the magnetic field is 
completely frozen into the plasma, the most general form of the correlation tensor 
D~x compatible with the experimental data and satisfying Maxwell's equations is 

where 

D~x (rl, q; rz, t2) = D~x(p, r -  uoT), 

p=½(rl+r2), r = r 2 - r l ,  T=tR-q. 

(2.25) 
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The random magnetic field described by the correlation tensor (2.25) corres- 
ponds to the case where the turbulence is a certain aggregate of regions whose 
scale is of the order of the random field correlation radius. The turbulence is 
homogeneous within each of such regions, but the total intensity of the magnetic 
field turbulent pulsations varies slowly from one turbulent region to another. In 
accordance with this, the first argument in the right hand side of (2.25) describes 
the gradual variations in the turbulent pulsation intensity from one turbulent 
region to another and reflects the fact that the pulsation intensity varies appreci- 
ably only when p changes by a value of the order of the random field correlation 
radius Ic. The second argument describes the local structure of turbulence, which 
is universal inside the region with a characteristic size of the order of Ic. The 
writing of the second argument in the form of r - u o T  presupposes that the natural 
movement of magnetic field inhomogeneities may be neglected and that it may be 
assumed that all the spatial-time variations of the random magnetic field are 
associated with the transfer of random inhomogeneities at velocity Uo (Monin and 
Yaglom, 1965; 1967). If the turbulence is not only homogeneous but also 
statistically isotropic, the correlation second-rank tensor of the random magnetic 
field is of the following form (Monin and Yaglom, 1965; 1967; Dolginov and 
Toptygin, 1968); 

{(r) 
rile 

r {r ~ 2t~ 
~1 (~)=~\~]--~'- I dyytp(y), 

0 

(2.26) 

where tp(dlc) is some scalar function which is assumed to be known from 
observations; (H2(p)> is the mean square of the random magnetic field. 

Taking account of (2.25) and setting t - t ' =  ~-, Equation (2.24) can be written 
in the form 

t 

0 

_ /r+rl p) 
x D ~ x ~ - - ~ - , p , ; r l - r - u o ~ ' ,  ~x~(r, p, t - z ) .  

(2.27) 

The right part of Equation (2.27) is different from zero for time intervals of the 
order of the time of the random field correlation. Assuming that the correlation 
time is small as compared with the characteristic time of changes of the mean 
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distribution function ~, we may write 
co 

0 

/ xD~x ~ , p l ; r l - r - u o ~ ' , p  ~ ( r , p ,  t). (2.28) 

If the particle momentum in the regular magnetic field Ho varies little at distances 
of the order of the random field correlation radius, it may be assumed that 
z~r(~-) = w- and Ap(~)= 0 in the case of the action of the operator exp (-Lot) .  

Then 

( O+ Lo):T(r,p, t)= ~,~D,,~(r,p)~x~(r,p, t) 
e o  

D~x (r, p) = t drD~x (r, vq" - Uol-; p). (2.29) 

0 

It is included in (2.29) that the first argument in D ~  describes the slow change of 
the mean square of the random field with distance (see (2.25)) and, therefore, the 
effect of operator exp ( -Lot )  on it may be disregarded. 

At ul = 0 the Equations (2.27)-(2.29) transform into equations first obtained by 
Dolginov and Toptygin (1966) using the diagram techniques. 

Let us elucidate the character of the approximations used in deriving the kinetic 
equation. When obtaining Equations (2.27)-(2.29), we ctosed the equation chain 
by setting /72 = 0. This assumption is valid if the corrections to the distribution 
function ~(r,  p, t), associated with the inclusion of the next terms of the func- 
tional series (2.18) are small. In the considered case, however, the next non- 
vanishing approximation need not be calculated and the known quantum analogy 
(see, for example, Bonch-Bruevich and Tyablikov, 1961) may be used according 
to which the approximation based on the approximation I:2 = 0 corresponds to the 
Born approximation of the disturbance theory. If the magnetic field is stationary 
in time, the condition of applicability of the Born approximation is that the 
change of the particle momentum gp in the random field H1 is small as compared 
with the particle momentum p. 

The ratio of these values 

6__p e~/(H~) 
lc = ~/--~--~ << 1 (2.30) p cp lXl 

determines the condition of applicability of the considered approximation*. We 
can see that this condition is reduced to the smallness of the ratio of the random 

* The authors are indebted to I. N. Toptygin for valuable remarks which helped in specifying the 
criterion (2.30). 
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field correlation radius to the Larmor radius of a particle in the random field 
R1 = ( c p / e ~ .  The condition means that the particle is scattered on each 
magnetic field inhomogeneity through a small angle 0 -  It~R1. 

The following circumstance will be noted in conclusion of this Section. Until 
recently, the problems of the cosmic ray propagation theory were not considered 
from the viewpoint of the dynamical theory and were studied using other methods 
of which the Fokker-Planck method may be considered traditional (Parker, 1963, 
1966; Dorman, 1965, 1967; Jokipii, 1967, 1971; Hall and Sturrok, 1968; 
Gleeson and Axford, 1967; Kurlsrud and Pearce, 1969; Kurlsrud and Ferrai, 
1971). An intrinsic controversy is, however, typical of this method. On the one 
hand, the particle motion is treated as a certain stochastic process and, on the 
other hand, the kinetic factors of the equations of this process are calculated 
according to the motion equations. It is natural that a consistent theory of cosmic 
ray propagation should be based on dynamical equations supplemented by the 
corresponding hypotheses about the nature of the random field in which the 
particles propagate (Klyatskin and Tatarsky, 1973). 

In such an approach, the kinetic equation describing the cosmic ray propagation 
cannot be reduced in the general case to the Fokker-Planck equation (see (2.27)) 
and turns into it only in the extreme case when the correlation time of the random 
field is much less than the characteristic time of the change in the particle 
distribution function. A consistent method for deriving the kinetic equation and 
the Fokker-Planck equation, which describe the motion of cosmic ray charged 
particles in random magnetic fields, was first developed by Dolginov and Toptygin 
(1966). They selectively summarized a definite class of diagrams of the distur- 
bance theory series and obtained the kinetic equation on the assumption of the 
Gaussian distribution of random magnetic field inhomogeneities. 

In this Section we have discussed the functional method of deriving the kinetic 
equation (Dorman and Katz, 1972) borrowed from the quantum field theory and 
statistical hydromechanics (Schwinger, 1951; Fradkin, 1965; Hopf, 1952). This 
method has been intensively developed in recent years in connection with the 
problems of the theory of wave propagation in media with randem in- 
homogeneities (Tatarsky, 1967; Klyatskin and Tatarsky, 1973). It can be seen 
that the use of the diagram techniques under the Gaussian distribution, together 
with the approximation F 2  = 0 in the functional method, results in the kinetic 
equation the collision term of which is determined by the second-rank correlation 
tensor of the random magnetic field. As noted above, in this case the particles are 
scattered on each inhomogeneity of the magnetic field through a small angle. To 
examine the cases when the particles are scattered through large angles, it is 
necessary to take account of the higher-rank correlators in the kinetic equation. It 
will be noted that the functional method makes it possible to go beyond the 
frameworks of the Born approximation and to include the triple correlation (Katz, 
1973), i.e. to examine the cases where a particle is scattered through large angles 
on collision with an individual inhomogeneity of the magnetic field. 
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3. Diffusion Approximation 

Turning to the study of the kinetic equation, consider the problem of derivation of 
the diffusion approximation equations. These equations were first consistently 
derived by Dolginov and Toptygin (1966) on the basis of Equation (2.29). If the 
size of the system is sufficiently large and the particles have time to be strongly 
scattered, so that their distribution is close to the isotropic one, the distribution 
function may be series-expanded in spherical harmonics and we may restrict 
ourselves to the first terms of the expansions 

~;(r, p, t ) = 4-~ f N (r, p, t ) + 3P j(r, p, t ) ], (3.1) 
vp 

where N is the concentration of particles; J is the density of the particle flux in the 
momentum space. Substituting (3.1) in (2.29) and integrating the kinetic equation 
over the angles of vector p, we shall obtain the equation for particle concentration 
N(r, p, t). If the kinetic equation is multiplied by vector p and integrated over 
angular variables, we shall obtain the equation for the particle flux density l(r, p, t) 

2r" 02N [1.t v2~ ON]+ 1 0 2 0N+div .  Uo/ 2 _ (pO_~J+~j) 
o, 7]p j op c , 

1_ _[ OJ v 2 + tuohjtp +(l+7)J ), (32) 

where 

Ho = cp v A 
h=-Ho, R eHo' Xo=-~--, (3.4) 

12c2p2vr(2 -1) 
A = ,/~ F(v/2) l~ (H~(r)) ' (3.5) 

F(x) is the Euler F-function; v is the exponent of the inhomogeneity spectrum of 
the interplanetary magnetic field. 

It was taken into account when writing (3.2)-(3.5) that D.x is of the form 
determined by the relation (2.26) and q~(r) is determined by the expression 
(Dolginov and Toptygin, 1968) 

{ r ]  (v-1)/2 [ r)  
O ( ~ )  = , ~ ,  ~/'(v-1)/2\~,, (3.6, 

where Y/,(x) is the McDonald function. According to the observation data, the 
inhomogeneity spectrum exponent takes on the value 1 < v-< 3.8. It will be noted 
that the spectral representation (3.6)corresponds to the inhomogeneity power 
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spectrum decreasing in the region of small scales of magnetic field in- 
homogeneities. 

The first term of Equation (3.3) may be neglected for the time intervals t >> A/v. 
Then Equation (3.3) can be resolved relative to J and we shall obtain the 
following expression for the particle flux density 

ON p ON 
J~ = -x~x 0--~-x- u°~5 ~pp' (3.7) 

where ~x is the tensor coefficient of particle diffusion in space 

x0R 2 [ A2 A 
+-ffsh~hx +~e~,xh,). (3.8) 

The first term in (3.7) is the usual diffusive flux proportional to the concentration 
gradient, and in the absence of the regular field ( R - - ~ )  ~,x =~06,x, which 
corresponds to the isotropic diffusion. Then, (3.7) takes the form 

ON ON 
J =  - ~o -~-r - Uo ~ p . (3.9) 

In this case, A has the meaning of the particle transport free path, and xo is the 
scalar diffusion coefficient. 

The second term in (3.7) describes the convective flux due to the motion of 
plasma-frozen magnetic field inhomogeneities at velocity Uo. The expression (3.7) 
for the particle flux density was first obtained by Dolginov and Toptygin (1966) 
on the basis of the kinetic theory, and by Parker (1965) on the basis of a 
phenomenological approach. Substituting (3.7) in (3.2), we obtain the anisotropic 
diffusion equation for the particle concentration 

ON O ON ON Ou, pON 
- p )  - - -  Uo,~ - - +  • ( 3 . 1 0 )  

Ot Or, x~x(r' Orx Or~ Ors 30p 

The last term in the right part of (3.10) describes the adiabatic cooling of charged 
particles (the antifermi mechanism of acceleration), associated with the radial 
expansion of the solar wind plasma with the frozen-in magnetic field in- 
homogeneities. 

Equation (3.10) was obtained on the assumption that the proper motion of 
magnetic field inhomogeneities had been neglected, i.e. u = 0. Inclusion of the 
chaotic component of the magnetic inhomogeneity velocity is equivalent to the 
appearance of stochastic electric fields resulting in particle acceleration (the Fermi 
acceleration mechanism). In virtue of the general properties of the Fermi acceler- 
ation mechanism (Tverskoy, 1967), the necessary condition of the effectiveness of 
this mechanism is a high degree of the isotropy of the particle distribution in the 
momentum space. Therefore, the particle acceleration may be considered in the 
diffusion approximation. A procedure similar to that used in deriving the Equa- 
tion (3.10) results in the anisotropic diffusion equation including the particle 
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acceleration effect (Dolginov and Toptygin, 1967): 

where 

ON 0 ON ON 3uo ~pON 

a t - a r ~ X ~ x ( r ' P ) o r x - U ° ~ o r ~  - Or~ 3Op 

+lOpZD(r, ON 
eop P)Tp' (3.11) 

(u2(r))p2 (3.12) 
D(r, p) - 3vA (r, p) 

is the particle diffusion coefficient in the momentum space; (u~) is the root-mean- 
square fluctuation of the velocity. 

The question of the relative importance of particle deceleration and accelera- 
tion in interplanetary space is one of the most interesting ones in the theory of 
cosmic ray modulation by solar wind. Some qualitative observations (Dorman, 
1971) will be presented prior to consideration of direct solutions to Equations 
(3.10) and (3.11). It was established from the data on the high-energy solar 
cosmic ray anisotropy (Dorman, 1963) that the transport path, A, of these 
particles near the Earth's orbit is substantially longer than is expected from 
diffusion theory. This means that a region with small A (essentially smaller than at 
r > rl) is located at some distance from the Sun (rl ~ 2-3 AU). It is this region that 
is determinant in the diffusion approach (such a model was proposed by Meyer et 

al. (1956) to explain the effects of the flare of February 23, 1956). 
Thus, the values A -  1012 cm (for particles with kinetic energy e k -  1 GeV) 

obtained in terms of the diffusion theory relate not to the region r < 1 AU but to 
the region r ~ r l .  This circumstance should also be borne in mind when tackling 
the problem of deceleration and acceleration of cosmic rays in interplanetary 
space. 

Consider first the question of the relative importance of cosmic ray acceleration 
and deceleration in the region r ~< rl. Because of the radial expansion of the solar 
wind, the mean change of the particle energy will be 

de)  _ 2 ev 2 Uo 
dec 3 c 2 r (3.13) 

i.e., the relative change of the energy decreases when moving away from the Sun 
and with decreasing u0. Expression (3.13) is valid in the ranges of both relativistic 
and non-relativistic energies. It is of importance to note that, according to (3.13), 
the deceleration effect is independent of A. On the other hand, the chaotic motion 
of magnetic inhomogeneities at velocity Ul (against the background of their 
regular radial motion at velocity Uo) results in particle acceleration due to the 
action of the Fermi acceleration mechanism, the mean change of the particle 
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energy being 

T2 (3.14) 

for relativistic particles and 

(3.15) 

If A = A6(r/r~5), then 

for non-relativistic particles. 
Then from (3.13) and (3.14) we get for galactic cosmic rays of moderate 

energies: 

= - a. (3.16) 
: oc 3 c < u ~ )  r 

2 Uo V 2 A 6 
O d - -  

3 c <u 2) r 6" 

Thus, if A increases when moving away from the Sun in proportion to r, the value 
a should be independent of r (at constant (u2)) in the region of supersonic 
expansion of the solar wind where u0=const.  At a moderate solar activity, 
A 6 ~ 1012 cm, which follows from the analysis of the observation data on solar 
cosmic rays. Assuming u o ~ 4 x 1 0 7 c m s  -1 in (3.16), we get a ~ 2 x 1 0 4 .  Thus, 
under the said assumptions, the particle acceleration by the Fermi statistical 
mechanism may be neglected in the entire region of interplanetary space. In this 
case, if A = const, a decreases when moving away from the Sun. If A and (u~) are 
considered distance-independent, we get a -~ 2 x 1 0  4 (r6/r) for the above values of 
Uo and <u2>, i.e., a ~< 1 only at distances r ~> 2 x 104 AU. Since, on the other hand, 
the effective boundary of the modulation region is limited by a distance ro ~< 
10 z AU, this means that particle deceleration by radially expanding streams of 
solar wind plasma is the predominant factor throughout the modulation region. 
The same conclusion follows from Equation (3.11) (Toptygin, 1973). By addition- 
ally multiplying (3.11) by ep 2 and integrating (3.11) over p, this equation will be 
reduced (at ~ = const) to the form 

=_[ tm 2 2 ] 0___W+ div Jw n 4ff~ + pv ~ - - ~ ]  - pv'ra div Uo , 
Ot za 

(3.17) 

where the horizontal line denotes the means over the particle ensemble; 

W = I dpp2eN(r '  p' t) = g:n(r, t) 

0 

(3.18) 
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is the density of particle energy; 

Jw = - J  dpp2xeVN+ Wuo (3.19) 

is the flux density; and 

ra = 9x/(u2). (3.20) 

The value in the right part of Equation (3.17) is the energy q per unit volume 
acquired by particles in unit time. The particle acceleration corresponds to the 
positive sign of the right part. In the non-relativistic case 

l 2uo o) 
q =  ra 15 (3.21) 

and in the ultrarelativistic case 

n•(4 2 ;  °ra) (3.22) 
q =  T a  \ - -  

The acceleration effect is predominant at 

r~<5r /2uo and ra<2r /uo  (3.23) 

respectively, i.e. at 

(~> > 2 v A (3.24) 
Uo 3 uor 

Then, at V = 3 x 109 cm s -t ,  Uo = 4 x 107 c m  s - 1 ,  A = 1 0  I2 c m ,  and (Ul 2) = u~ we 
find that the acceleration of particles of such low energies may prevail over their 
deceleration at r ~> 10 AU.  

It can be seen from the above estimates that the favourable conditions for 
particle acceleration can be realized only at great distances from the Sun if it is 
taken into account that Uo decreases when moving away from the Sun (whereas 
ul is either constant or even increases slightly owing to the conversion of the 
energy of the directed plasma motion into the turbulent motion energy). If at such 
distances Uo-  u, -~ 3 x 106 cm s -~, then a ~ 1.5 x 103(r6/r) according to (3.16), i.e. 
a > 1 practically throughout the modulation region. Thus, the acceleration will be 
appreciable only in regions where A is essentially smaller than the adopted values. 
One of such regions is the so-called 'buffer layer', the transient zone between the 
solar wind and the interstellar medium (Dorman and Dorman, 1968). In this 
region of space the solar wind becomes subsonic (i.e. Uo abruptly decreases as r -2 
and the effectiveness of the adiabatic cooling of particles becomes considerably 
smaller), a developed small-scale turbulence appears (the random component  of 
velocity ul increases), and favourable conditions for particle acceleration are 
created (Dorman and Dorman, 1968). Another region of interplanetary space is 
that behind the shock wave front where a pronounced hydromagnetic turbulence 
is generated (Tverskoy, 1967a). 
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We shall now discuss in brief the applicability conditions of the diffusion 
approximation equations. As usual, the diffusion approximation applies better to 
the description of particle propagation, the slower the particle flux concentration 
and density vary at distances of the order of the free transport path. In particular, 
the expression for the particle flux density were derived using the condition 

A _1 << 1 (3.25) 
v J O t  

which means that the diffusion approximation describes the particle propagation 
in time intervals t >~ A/v .  

Besides, in deriving the diffusion approximation equations it was assumed that 
Uo<< v, and the terms of the form UoJ/v z and u ~ N / v  z were included when 
series-expanding .the collision integral of the kinetic equation in powers of Uo/V. 

The series-expansion of the distribution function in spherical harmonics and the 
inclusion of only two expansion terms means that the condition J / N v  << I should 
be satisfied. It will be noted that, according to the experimental data in the energy 
range ~103 MeV, this criterion is satisfied with a large margin. For example, the 
data on the diurnal cosmic ray variations give J / N v  <~ 10 -a and only at some 
periods of large Forbush-effects J / N v  ~ (3-5)x 10 2 

If the above-said conditions are not satisfied (for example, for solar cosmic ray 
propagation, cases are sometimes observed when J / N v  ~ 1), a kinetic examination 
of the evolution of the cosmic ray distribution function is necessary. 

Turning to the specific application of Equation (3.10), consider the question of 
stationary propagation of solar cosmic rays. Solar cosmic ray propagation is 
known to be an essentially transient process. However, if the frequency of 
occurrence of solar flares is sufficiently high, solar cosmic rays accumulate in 
interplanetary space and a quasistationary background of charged particles is 

formed. 
The stationary Equation (3.10) may be used to study such a quasistationary 

background of solar cosmic rays at a high disturbance of the interplanetary 
magnetic field (A << 1 AU). In accordance with (Toptygin, 1973), we shall consider 
a spherically symmetrical model of charged particle propagation which takes into 
account diffusion, convective transfer, and adiabatic cooling. The particle diffusion 
coefficient x(r, p) will be assumed to be a power function of distance and an 
arbitrary function of particle momenta 

r t3 

where r0 and /3 are constants. This dependence of the diffusion coefficient on 
coordinates and momenta is in good agreement with the experimental data on the 
magnetic inhomogeneity spectrum and is consistent with the general expression 
for the particle diffusion coefficient (3.4). Under the above assumptions, Equation 
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(3.10) takes the form 

where 

Oog 3rO°)J _ 3q3(p) l_ra 2 + ~  0~/ ( ~ 3  6(r-ro) 8(p-po), (3.27) 
Op 2p Or 2uopr~o r Or Or roPo 

Q= 3(rl{c(mc)3uo)-~; qS(p)= q~(p) (3.28) 
cl~ 

Equation (3.27) is written in dimensionless variables (momentum is measured in 
mc, velocity in c, and spatial scales in l~) for the Green's function of the equation 
for stationary isotropic propagation of cosmic rays. 

Replacement of the independent variables 

p=ff, r=  (3.29) 

reduces (3.27) to the form 

O__~= 1 0 i5½(5+3~) _~O(ropo ) --']l(C)-~ ~ ° 0~0'0~ 2 ~ 2 8(~- poro)8(g- po). (3.30) 
Off 

where 
2 q3 (if)/.½(1_3t3) (3.31) 

Integrating (3.30) over ff from po-e to po+e(e >0), we obtain the additional 
condition 

=~O(rdpo) a(~-por~) (3.32) 

which makes it possible to formulate Cauchy's problem for Equation (3.30): 

Oag 1 0 ~½~s+3t~ O~ 
07 = -7 ( ( )  ~ 0-7 (3.33) 

2 2 - 2  2 
Nl¢=po=~O(rSpo) 8(~-por~) (3.34) 

Nl¢>po = 0 (3.35) 

Equation (3.33) has partial solutions of the form 

~x = [3(1 -/3)x] -~ exp {-h2q2(C)}J~(hx) (3.36) 

where 
Po 

q2(¢) = f d~'y(~'); 

1+t3 
I t - -  

t - / 3  

3 / 3 ) ]  1 ~(~(1--18)) X = [ ~ ( 1  - -  (3.37) 

(3.37a) 

and J~(z) is a Bessel function. 
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The general solution of Equation (3.33) may be written in the form 

°8 = [ dAA½0(A)08x, (3.38) 

0 

where 08x is determined by relation (3.36). 
Using the additional condition (3.34) and applying the Fourier-Bessel theorem, 

from (3.38) we obtain the expression for the function 

--zQr3-¢l - avI-2(1-i3)A½x-VJ~ fAX : (3.39) t ] / ( X )  - -  3 L4 ~, IO."J 0 v \  0 ] ,  

where 
3 --1 ~ (1--/3)/2 xo = [a(1-/3)] (ropo) • (3.40) 

Substituting the expression for ~(a) in (3.38), we obtain Green's function of the 
stationary equation for isotropic diffusion with regard to the adiabatic particle 
deceleration at/3 / 1: 

~(xox)  -~ f 08 c ~  exp 
2 +  2 Xo-~X" ~ j {  XoX ~. /3)]--(3+/3, / (1--¢3) ,  

4q2(C) j ~2q2(C) ], C = 30[3(1-  

(3.41) 

where J ~ ( z )  is a modified Bessel function, q2(~) is determined by expression 
(3.37); and v is determined by (3.37a). At/3 = 1, Equation (3.33) may be written 
in the form 

008 1 O 008 
~ 4  (3.42) 

Or - ~2 of  o~' 

where 
r = q2(~)[0=1. (3.43) 

Replacement of the independent variable ~= e ~ and of the sought function 
08 = f - ~ e - ~ ' g ( ~ ,  ,c) permits Equation (3.42) to be reduced to the heat conductivity 
equation 

O g  02g (3.44) 
Or Oz z 

with Green's function 

1 { 
g = ~ exp 

2 
where Zo = por~ = ~o. 

Hence 

°8 = ~7~rs  ~ - exp 

(3.45) 

- (3.46) 
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The expressions obtained for Green's function by Toptygin (1973) were used to 
examine the effect of adiabatic cooling on solar cosmic ray propagation. Numeri- 
cal calculations have shown that low-energy particles lose a considerable portion 
of their energy and that their spectrum becomes very deformed during the 
propagation. 

4. Multiple Scattering of Particles by Magnetic 
Inhomogeneities in a Strong Regular Magnetic Field 

Experimental studies of low-energy cosmic rays (1-10 MeV) (Vernov et al., 1968) 
have shown that the transport path of such particles exceeds 1 AU. Besides, a 
pronounced anisotropy was found in the particle angular distribution. Direct use 
of the kinetic equation is necessary to study the propagation of such particles. The 
processes of the low-energy cosmic ray propagation were first theoretically 
studied by Tverskoy (1967a; 1969) who paid particular attention to the analysis of 
the particle acceleration effects in interplanetary space. However, the formulation 
of the problem proposed by Tverskoy, with some modifications, formed the basis 
of most of the subsequent studies dealing with the charge particle propagation in 
space. The multiple scattering of low-energy charged particles on random in- 
homogeneities of the magnetic field was studied in detail by Galperin et al. (1971) 
and Toptygin (1973a). The kinetic equation is used in the present Section to 
examine the low-energy charged particle motion through the weakly turbulized 
and magnetized solar wind plasma in which Alfv4n waves are excited. It will be 
noted that the presence of Alfv4n waves in the solar wind plasma is confirmed by 
direct measurements (Belcher and Davis, 1969, 1971). When analyzing the 
charged particle motion, the energy exchange between magnetic field turbulent 
pulsations and charged particles due to particle interactions with stochastic 
electric fields of Alfv6n waves will be taken into account simultaneousely with 
particle scattering on magnetic field turbulent pulsations. 

We shall proceed from Equation (2.28) with the correlation tensor B~x deter- 
mined by relation (2.12a). The effect of induction electric fields associated with 
the motion of the plasma as a whole was considered in Section 3. To identify the 
effects due to stochastic fields, we shall set ao = 0. Whereas the regular magnetic 
field may be considered homogeneous at distances of the order of the correlation 
radius of the random field, the changes in the radius-vector At(r) and particle 
momentum zip(T) in the regular field are determined by the relations (D -- ecHo/e 
is the Larmor frequency): 

A r(~-)-- R(0, % r, p) = r + (vh)hr + [[vh]h] +[vh] 1 - c ° s  1%" 
12 

A p(~-) = P(O, 1", p) = (ph)h + [ph]h sin 1'}~" - [[ph]h] cos ~ - .  

(4.1) 



5 5 0  L. I. DORMAN AND M, E, KATZ 

Using (4.1) and taking into account the action of operator exp (-L0~') Equation 
(2.28) can be written in the form 

- - + v  3~+e[vH0] ~ d~-D~x (R(0, ~-, 0, p), P(0, "r, p); p, r) 
3t Or c 

0 

t))p~p. (4.2) x (~x~(r, p, , ~ R  

Following Galperin et al. (1971), we shall assume the regular magnetic field to be 
sufficiently intense. This means that the disturbance of the particle motion by 
stochastic electromagnetic fields of pulsations is weak at time intervals of the 
order of 1/~. In this case the distribution function may be averaged over the angle 
of the particle rotation around a force line of the regular field, i.e. the drift 
approximation may be used. Here, in the zero approximation over 1/~, the 
distribution function depends on the longitudinal and transverse (relative to the 
magnetic field) component of the particle momentum ~(p)=~(p±, Pit). The 
expression for the left part of the kinetic equation in this approximation is known 
from the drift theory (Chandrasekhar et al., 1958; Volkov, 1964), and the kinetic 
equation takes the form 

where z is the coordinate along the force line of the regular magnetic field and 

2 ~  

( . . . . . .  )~--=~-~ / dq~( . . . .  ) 

0 

denotes the averaging over the angle of particle rotation. 
The collision integral Sto ~ of the kinetic Equation (4.3) may be written as 

f , dp~ 09 (4.4) 0 d'rD~x (R(0, % 0, p), P(0, ~', p); p, r) ~ Opf 

0 

If Alfv6n pulsations with a frequency 

~o(k) = uaklt- i3', (4.5) 

(where ua = Ho/,f4-~'O is the Alfv6n velocity; p is the plasma density; kLl is the 
component of the wave vector of pulsation in the regular field direction; and y is 
the decrement of Alfv6n wave extinction) are excited in the plasma, the electric 
and magnetic fields of the pulsations are related by 

El(k, w)= -a[h[h[kH1(k, ~o)]]]. (4.6) 
CW 
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If these waves are isotropically distributed in space, stationary in time, and 
statistically independent, then the Fourier-image of the second-rank correlation 
tensor of the random magnetic field is of the form: 

~v . (k ,  to; k', to') = (Hlv(k,  to)Hl~(k', to')) 
[ 

= 6 ( k + k ' ) 6 ( t o +  to ')6(to- to(k)) ~ 6 v , - - ~ ) ~ ( k ) ,  (4.7) 

where ~(k)  is the spectral function of the random magnetic field. Passing in 
(2.12a) from the spatiN correlators to their spectral representations and using 
(4.5)-(4.7), we write the kinetic equation in cylindrical coordinates in the momen- 
tum~ space with the Z-axis in the regular magnetic field direction: 

3~3t ~- vll ~zz-2  (dlv h)v±~ pll ~Pi-  p± 3pll/ 

0 0) 
L 0 

x Dl(PII~p -pj_ O----t~ 
3PlI/ 

+ - - - -  

3 
+ p± OPll 

0 i  = e2c2e I 

0 

D 2-  

D 3 

1 0 

p±Op± 
p±D2 (p± 0 0 \ ~ 

p± Op± + Pi 3Pi p±D3 0p± 

xsin (~ - qh + 12":)]@(k) 

ce 

e ua d': dk~(k, ":)~ cos 12":~(k) 
to  

0 

co 

0 

+k~cos12":]°&(k) (4.8) 

£(k, ":) = exp {i(kllvLi- to).: + iA[sin (~o - ~1 + 12":) - sin (q~ - q~l)]}, (4.9) 

where ~ and ~ol are the azimuth angles of vectors p and k, respectively; 
,~ = (kl vd12). 

For the purpose of further examination, it is necessary to set the form of the 
spectral function of the random magnetic field ~(k) .  If the spatial correlation 
function of the random magnetic field is determined by relation (3.21), the 
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corresponding Fourier-image is of the form 

It 2 

~(k)=(k~+k2),,12+l, ag.= 4~#r(E~--)lc -1' ko=121. (4.10) 

Substituting (4.10) in (4.9) and using the known expansion 

exp i(h sin q~)= 2. exp i(nq~)J.()t) 

(JR (x) is a modified Bessel function), we obtain the following expressions for the 
factors D1, D2, D3 (Galperin et at., 1971; Dorman and Katz, 1972a): 

e~ 

(ec~2I(vl]" [ 2s~,, f h 2 = "x J . ( x )  ~ v ,  ~ 
. = o  o ( ~ + x 2 ) ~ 2 + ~  ( v l l _ u . )  ~ 

0 

X ~ (n+l )  2 d k - ~ - - ~ - + ~  /+13 
n=o k/Xn+l ) 3 

0 

-e2u~( s~(v--5-~t~ ~ f h(Y2(h)+Y:+2(A)) 13} 
D2-  e tvll-u~\g2! ,~=o d h - ~ ~  t- 

0 

(eu,~'~2I,~(v,-ua)evj_~2 [ ~ 1 f "'h(J2(h)+J2+2(M)cla 7 - T ~ 7 ~  
D3= \~---] [ v~ \ h i  [ .=o(n+l)  2 Uz.+~-r^ ) 

0 

= da(txz + )t2)~/2+,] + 13}, (4.11) 
0 

where 

f.. ~(k)~(k)J~.(x) mv~ = m = O, 1 ,  2 . . . . .  ( 4 . 1 2 )  [3= CtK-£~--~HZ~)2~T2(k ), ~= vll--u' ~, 

The argument of the Bessel functions J.(A) entering into the collision integral 
,~ = (k.v±/[2) is the ratio of the Larmor circle length 2rrvl/O to the transverse 
(relative to magnetic field) length of pulsation wave 2zr/k±. For great wavelengths, 

<< 1 and it may be set that Y.(h)= h"/2"n!. In this case, the expressions for the 
factors D1, D2, D3 take the form 

[ec\2F 2sgv 13], D 2  = e t_~(t)ll_Ua)Vq + D1 = ~e)  [(v+ 2)O "(vII- ua)"-I + eZual - el,, [3], 

(eu~2[sCvF ( 2 - 1 )  1 
D3 = t---c-] 1" 2"F(-v7~ (vtl- ua)~-i + [3 " (4.13) 
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It can be seen from the expression for D3 that D3 diverges at the value of the 
exponent of the turbulence spectral function v = 2. This is associated with the fact 
that at v = 2 a particle interacts with waves of arbitrarily small amplitude and, at a 
sufficiently weak dependence of the wave amplitude on the pulsation scale, the 
effective time of particle interaction with wave vanishes. In reality, when integrat- 
ing over k, the integral should be cut off at the wavelength corresponding to the 
Larmor radius of the particle. At  v = 2 this results in a logarithmic dependence of 
the particle diffusion coefficient in the momentum space on the momentum 
(Tverskoy, 1967). In the opposite extreme case, )t >> 1, we obtain the following 
expression for D1, D2, and D3: 

: (ec]2[. ~ . ( v + l ) K (  v 1)(vll-u~)~÷/3] 
D1 \ e /  L 2",~ + ' E~"vL 

v 1 ¢] 
e u~/ \2  2 ]  v + l )  (vII- u~)v ~- 

/eua\21 v \2 2 /  . + (vll-ua) ~ 1 D3= I T - )  L ~ ~ ( v  1) ~ t-/3 , (4.14) 

where ~(x) is the Riemann ~-function. 
The asymptotic of the Bessel functions with cos2x replaced by its mean value 

cos 2 x= ½ (Galperin et al., 1971) was used to derive (4.14). 
The addend /3 describes particles in the Cerenkov resonance with waves. 

Generally speaking, since we deal with particles whose velocity is much in excess 
of the Alfv6n velocity (ua ~ 60 km S - 1  in the solar wind plasma), the Cerenkov 
resonance would seem of small significance, and the particle-wave interaction is 
due to cyclotron resonances of all orders. The Cerenkov resonance is, however, 
necessary for estimating the time of particle isotropization and acceleration. The 
cyclotron addends were calculated using the limiting transition 7--~ 0 in the factors 
D1, D2, D3. 

When calculating /3, however, this approximation cannot be applied, since the 
limiting transition 7--> 0 means that the effective time of particle-wave interaction 
turns out to be infinitely great. In fact, the presence of the imaginary part of the 
frequency gives a finite width of the region of interaction between the individual 
Fourier-harmonic of the wave and the moving particles. The importance of 
inclusion of the Cerenkov resonance was first indicated by Galperin et al. (1971) 
(see also Vedenov et al., 1962). 

It is known (Braginsky, 1963) that the decrement of the Alfv6n wave extinction is 

_ C2 2 

7 (k) - zzrcr--k4 II, (4.15 ) 
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where o-i is the coefficient of transverse conductivity of the plasma. Using (4.15) 
and (4.12), we obtain the following expression for /3: 

C v (~)h~ v-J"" C 2 ~ v  f f xj2(x) 
[3 = v,l--u~ \ O 7  c~ 21r~ri J dx j d , - 2(xZ + y2)~/2+1. (4.16) 

0 0 

Another  possible cause of the broadening of the Cerenkov resonance is the 
particle scattering considered in detail by Galperin et al. (1971). 

Equation (4.8) together with (4.9) and (4.11)-(4.16) which determine the 
factors D1, D2, and D3, completely describe the charged particle propagation in a 
weakly turbulent magnetized plasma in which Alfv6n waves are excited. Let us 
consider some specific problems of the theory of cosmic ray propagation which are 
solved using Equation (4.8). 

5. Particle Scattering in the Magnetic  Field. 
The Green's  Function of the Kinetic Equation 

Let the Equation (4.8) be written in spherical coordinates in the momentum space 

(Pu = P cos 0, p± = p sin 0) 

0_~_~ + v cos 0 - (div h)v sin 0 - -  = p; 
Ot 00 sin 0 00 

x sin 0 • Doo ~ -~ sin 0 • p sin 0 O0 Dour ~p._-72 

1 0 D 0 ~ +  1 0 2 0 ~  
+ p-5 ~p P po - ~  -~i V P Dvp ~p (5.1) 

Doo = p2D1 + cos 0(cos 0 • D 3 -  2pD2) 

Dop = D~o = sin 0(cos 0 • D3 - pDz) (5.2) 

Dpp = sin 0.  D3. 

The factors D1, Dz, and D3 are determined by relations (4.11)-(4.16) with the 
corresponding replacement of variables. 

At  Dog = Dpo = Dpp = 0 Equation (5.1) describes the particle diffusion in angular 
space for the case of energy conservation. Consider the solution of (5.1) for this 
case. In the general case, at arbitrary values of particle pitch-angle 0 no solution 
to Equation (5.1) can be obtained. For the angular range 0(< 1, however, an 
analytic solution to (5.1) exists. At 0 << 1, the coefficient of diffusion in the angular 
space is determined by relations (4.14), where vii = v cos 0. Using (4.14) and (5.2), 
we can write Equation (5.1) for the stationary case including a point source with 
coordinates z0 and 0o in the right hand part of this equation, i.e. we consider the 
equation for the Green's function of the kinetic equation: 

0o~ 1 0aJ H 1 1 0 0 0 ~  1 
~(div h)0 . . . . . . . . . . . .  + 06(0 - Oo)6(z - Zo) (5.3) 

az oO AH(z) O aO aO 
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where ~-/tl = @II( z, 0; zo, 0o) is the Green's function of the kinetic equation and the 
value (Gatperin et al., 1971) 

t 4(u+2)r  ~ - ~  H2_[ lc,~ z 
Au(z) = ,/-~uF(v/2) (H~) \R]  lc (5.4) 

is the transport free path of particles along the force lines of the regular magnetic 
field. To solve (5.3) it is convenient to replace the variables O'-->llnHo(z), 
0---> e°-Q The resultant equation is 

02 
-0~9I~ = exp [ 2 ( ( -  p')]~o(p') 0@,2~+ 6(s¢'- In Oo)6(p') 
Op' 

x~(0') = a~(z) (5.5) 

The solution to (5.5) is of the following form (for details see Dorman and Katz, 
1974): 

~/ll(Z, O" Zo, 0o)- Ho(zo) exp Jo (5.6) 
, ,mo(z)O2(z--5  O2(z)/ 

z 

f Ho(z) 02(z) = 4 dz'H,(z')All(z')'v (5.7) 
z o  

In (5.6) and (5.7) we returned to the variables {z, O}; Jo(x) is a modified Bessel 
function. 

At Oo = O, the expression for the Green's function (5.6) transforms into the 
expression first found by Galperin et al. (1971) who used it to explain the cases of 
anisotropic propagation of particles with energies of 1-5 MeV, observed in direct 
measurements in interplanetary space. Thus, if the random and regular magnetic 
fields vary in space and time following the same power law Ho ~ H~ ~ (Zo/Z) ~, the 
value 02(z), which represents the mean squared particle scattering angle at a = 2 
(which corresponds to the interplanetary magnetic field model developed by 
Parker (1963)) and at the exponent of magnetic pulsation spectrum u = 1.5, is 
independent of z. Then, if 0 - ~ <  1, the spatial-angle distribution of particles 
becomes markedly anisotropic. At v = 2 the mean square of the particle scattering 
angle increases in proportion to the distance from the cource, and the anisotropy 
degree decreases. 

The Green's function (5.6) describes the distribution of particles emitted by a 
point source. The real function of the source is so far unknown. It is possible that 
the conditions imposed on the particle propagation by the conservation of 
adiabatic invariant sin 20/H make the character of particle angular distribution in 
the source insignificant. However, the knowledge of Green's function (5.6) 
becomes absolutely necessary when analyzing more subtle problems in cosmic ray 
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kinetics pertaining to fluctuation effects arising during the cosmic ray motion in 
interplanetary magnetic fields (see Section 7). 

Green's function of the kinetic equation may also be found in the transient case 
and in the case where particles propagate diffusively across the direction of the 
regular magnetic field. Write down the final expression 

= Odll(Z, O; Zo, Oo)°d±(x, y, z ;  Xo, Y0, z0), (5 .8)  

where xo, Yo, zo are the coordinates of the source; ~tl is Green's function of the 
longitudinal particle motion determined by relation (5.6); 

3[(x-xo)2+(y- yo) 2] 1 ~L 3 exp z (5.9) 

47r S dz'A±(z') 4 5 dz'A±(z') 
Zo Zo 

is Green's function of the transverse particle motion; A± is the particle transport 
path across the force lines of the regular field (Toptygin, 1973a). 

Consider the particle scattering in the angular range where the inequality 
Icos 0t = x << 1 (Galperin et al., 1971) is satisfied. The diffusion coefficient in the 
angular space Doo as a function of 0 decreases slightly with increasing 0, which is 
due to the decreasing contribution from cyclotron resonances of higher orders. At 
the same time, the presence in 19oo (4.14) of the second addend/3, associated with 
the Cerenkov resonance, leads, starting from some value of 0, to an increase in 
Doo. Such behaviour of the diffusion coefficient is also repeated at 0 > 7r/2, so that 
19oo(0) = Doo(Tr- 0). Thus the Doo(O) curve exhibits two peaks at x = xo = ]cos 0ol, 
whose position and depth depend on the relation between the Cerenkov and 
cyclotron addends. It can be shown (Toptygin, 1973) that Xo is determined by the 
relation 

Xo = (~/o/g2) 1/~+2~, 310 = v(kll = R- l ) .  (5.10) 

The values of the particle transport path and isotropization time turn out to be 
substantially different for the cases x ~ 1 and xo << 1. In the first case, the minimum 
is not deep or is quite absent and hardly affects the particle scattering. Since in the 
Cerenkov resonance range the scattering is rapid, the isotropization time is mainly 
determined by the angular range 0 <~ 0 << 1, i.e. by the region where the expression 
for D1 determined by Formula (4.14) is applicable (or, which is the same, the 
transport path is determined by Formula (5.4)). In this case, the isotropization time 
is determined by the relation "/'3 = All/ / . )"  Note the characteristic dependence of the 
transport path on the particle momentum (Galperin et al., 1971). At v > 2 ,  the 
path decreases with increasing particle momentum. This is due to the fact that, as 
the Larmor radius increases, the particles are scattered by inhomogeneities of 
ever increasing scale, whose number grows. At  v = 2, the transport path ceases to 
be dependent 'on momentum. This circumstance was first noted by Dorman and 
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Miroshnichenko (1965) who used data on cosmic ray propagation from solar 

flares. 
In the case of a narrow Cerenkov resonance, Xo<< 1, the particle pitch-angle 

scattering in the region cos 0 ~ Xo weakens drastically, which leads to a considera- 
ble increase in the isotropization time and transport path of particles. In this case, 
an analytical solution to (5.1) can be obtained at Xo-~ x ~< 1, Ho = const: 

1 0~" 0~" t O 39  
+ x  = - - - x  ~ - .  (5.11) 

v Ot Oz l Ox Ox 

The sign ± corresponds to cos 0 > 0 or <0,  respectively, and the value 

4 ( v + 2 )  H~ ( lc]  "-2 
1 - (v2_ 1)K(v + 1) ( H ~ ) \ R ]  I~ (5.12) 

differs by a factor of the order of unity from All in (5.4). 
Consider the case of v = 2. Neglect the spatial inhomogeneity of the system 

(Og/Oz = 0, I = const) and trace the filling of the angular range between x = xo and 
x = x~ (Xo<< x~<< 1). Equation (5.11) takes the form 

O~ x2029 _ 0 9  ( r '=v t / l ) .  (5.13) 
Or--S, = Ox-- ~ + 2x O"--x' 

Impose the boundary conditions ~ (x~)=~1  and ~(Xo)= 0 on the distribution 
function. We have 91 = (27r) -1, if the region x > Xl is filled by particles and the 
distribution function is normalized to unity. 

The second condition corresponds to the assumption that the particles arriving 
at the boundary x = x0 are instantaneously carried away to the rear hemisphere of 
the angular space. Such an approximation is sufficient for estimating the order of 
the isotropization time. 

The solution to Equation (5.13) with the aforesaid boundary conditions is of the 
form 

n = l  

X sin (h ,  In ~o ) (5.14) 

where )t, = ¢rn In (xl/xo); the factors h, are determined by the initial condition. It 
follows from (5.14) that the time of filling of the region Xo < x < x~ is of the order 
of 

rl-~{l+[in(~/xo)J j • (5.15) 

This time varies from zero at a broad resonance Xo ~ xl ~ 1 to 7" 1 ----4 at Xo-+ 0. 
The time ro of particle scattering through angle 0 - 1  is of the order  of unity, 
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according to the previous results. If the initial function of particle distribution is 
such that the particle number at 0 < ~'/2 and 0 > Ir/2 is approximately the same, 
the isotropization time %-~'o+~-1. If, however, the distribution function is 
pronouncedly anisotropic at the initial moment,  the isotropization time is much 
greater. This is due to the fact that the particle penetration from the forward to 
the rear hemisphere is slower at small Xo. The rate of particle transit to the rear 
hemisphere can be obtained by integrating (5.13) over x 

aN= 
- x 2 ( 0 ~ )  . (5.16) 

From this, in the order of magnitude we have 

z ~ -  2Ir . (5.17) 

If % >> z0 + 1, then at r~ >> ~- >> ~'1 a single term remains in the right part of (5.14) to 
give the quasistationary particle distribution in the forward hemisphere. Using this 
value of ~ from (5.17), we obtain 

% = Xo 1 >> 1 (5.18) 

It follows from the above-presented estimates that during the time interval 
t~ = I/vxo the corpuscular stream is of peculiar structure: the forward hemisphere 
is completely filled by particles, whereas the rear hemisphere contains few 
particles, and a pronounced gradient of angular distribution exists near x--x0.  

At v / 2 ,  the qualitative features of the isotropization process are the same as in 
the case of v = 2. The estimate Zs-~ x~ -v  valid at xl-v>> 1 is obtained for the 
isotropization time. According to this estimate and the Formulas (5.10) and 
(5.12), the path relative to the scattering through angle ~r is of the order of 

A = h-~ ~/(g2/70) (~-1)/~+2> (5.19) 

The path A is additionally increased if the regular field Ho is inhomogeneous and 
the particles move in the direction of its decrease. The particle focusing due to the 
conservation of the adiabatic invariant sin 20/Ho hampers the particle penetration 
to the rear hemisphere of the angular space. The value of z~ may be estimated for 
this case in the following way. In a weakly inhomogeneous field, Equation (5.1) 
for the stationary case takes the form: 

~, d 2 ~  - ~ - 1  d~  
x ~ x z + t V X  - 0 1 ) ~ x x = 0 ;  Xo<X<<l, (5.20) 

where 01 = (//2) div h = const; 0~ > 0 if the particles move towards the decrease in 
H0. Then, the solution of (5.20) with the same boundary conditions as for (5.11) 
at 0<< vx~ -1 gives the same result as in the case of Ho = const, and at 01 >> vx~ -1 

we get { [°l(X:-l-x3-1)]} 
~ ( X ) = ~ l  1 - e x p  - - - - - ~  . (5.21) 

[ ( v - 1 ) x 0  x ]J  
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The estimate of isotropization time gives 

-v { 01o / 
"rs= 01 exp (v_ l )x0_ t l .  (5.22) 

Hence, an additional factor (xo/01) exp {01/0'-  1)x~ -1} will appear in the expres- 
sion for the transport path A in (5.19). The low-energy particle transport path in 
interplanetary space can be estimated on the basis of the obtained relations using 
the observation data on the magnetic field inhomogeneity spectrum. However, the 
experimental data obtained by various authors at various times are markedly 
different. Using the data of Jokipii and Coleman (1968) and estimating the 
collision width of the Cerenkov resonance, we find that x0 = 0.9 for 1MeV 
protons. This means that at x = x0 the scattering is but slightly weakened. The 
estimate of the transport path according to (5.4) gives a value of the order of 
0.1 AU. Such a value of All agrees with the observation data presented by Vernov 
et al. (1968) for the low-energy particle diffusive propagation in interplanetary 
space. On the other hand, the transport path calculated according to the data of 
Sari and Ness (1969) exceeds t AU. It should be noted that, if the magnetohyd- 
rodynamic discontinuities make the major contribution to the observed spectrum 
of magnetic field inhomogeneities (as is assumed in Sari and Ness, 1969), the 
theory developed may prove inapplicable, because a particle may be immediately 
scattered through a large angle when passing through a discontinuity. 

6. Charged Particle Acceleration by Small-Amplitude 
Magnetohydrodynamic Waves 

The theory of interaction between the cosmic ray charged particles and the solar 
wind plasma, developed in the previous Sections, covers the drift, scattering, 
diffusion, and adiabatic cooling of particles due to cosmic plasma expansion. 
Charged particle acceleration was considered in brief only in Section 3 where 
particle acceleration by 'magnetic clouds' (the Fermi acceleration mechanism) was 
discussed. As was pointed out in previous Sections, however, excitation of the 
magnetized solar wind plasma and other plasma formations in space cannot be 
always realized in the form of chaotic motion of individual clusters of matter with 
a magnetic field frozen into it. Development of various kinds of instabilities in 
cosmic plasma results in formation of a broad spectrum of turbulent pulsations 
whose stochastic electromagnetic fields give rise to particle acceleration. The 
magnetohydrodynamic turbulence, i.e. excitations in the form of Alfv6n and 
magnetosound waves, are probably most characteristic of the cosmic plasma. As 
noted in Section 4, Alfv6n waves were first found in the solar wind plasma as a 
result of direct measurements; they constitute up to 50% of the total disturbance 
of the interplanetary magnetic field. That is why studies of charged particles 
acceleration by magnetohydrodynamic turbulence is of considerable interest to 
cosmic ray physics. The various problems related to this range of phenomena 
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were examined by many authors (Kurlsrud and Pearce, 1969; Kurlsrud and 
Ferrai, 1971; Tverskoy, 1967, 1967a, 1969; Toptygin, 1973a; Tsytovich, 1966, 
1971; Kaplan and Tsytovich, 1972; Ginzburg et al., 1972; Dorman, 1972). 

The kinetic equation is used in the present Section to examine the acceleration 
of cosmic ray charged particles during their interactions with the present spectrum 
of the small-amplitude magnetohydrodynamic waves with the wave vectors distri- 
buted isotropically in space. 

We shall proceed from Equation (5.1). Assume the regular magnetic field to be 
homogeneous in space. Then, Equation (5.1) takes the form 

a~ o~ 1 a aY 1 a 
- -  + v cos 0 p2 - -  sin ODoo - ~  + 
at Oz sin 0 oO p sin 0 aO 

x sin ODoo O°~ 1 O O~ 1 O 2 O~ p+ TppO oT+  pp o.v=-st , (6.1) 

and the factors Doo, Dpo, Dop and Dpp are determined by relations (5.2). Consider 
the collision integral of kinetic Equation (6.1). If the various terms in the collision 
integral are intercompared, the determinant contribution to the collision integral 
will be from the term containing the components Doo of tensor D,~x, which 
describe the elastic particle scattering on turbulent pulsations of magnetic field. It 
follows then that the effective frequency of charged particle scattering on the 
turbulent pulsations of the magnetic field Vo = p-2 Doo is considerably in excess of 
the particle collision frequency in the inelastic processes described by the factors 
Dop, Dpo and Dp, which include the energy exchange between turbulent pulsations 
and charged particles. This means that the particles are highly scattered at time 
intervals of the order of Vo I and the subsequent particle diffusion in the momen- 
tum space is described by the isotropic distribution function. 

In accordance with this, a solution to (6.1) will be sought in the form (Rutov, 
1969; Alfv6n and Feldhammer, 1967) 

 =f+ah f 

rr 

f dO sin 0~, 

0 

(6.2) 

where the anisotropic part 3f(O)<< ~ Using (6.2) and employing the averaging 
over the angular variables, Equation (6.1) will be broken into two equations for f 
and 3f. Combination of the two equations gives a single equation for the isotropic 
part of the distribution function f: 

a •  1 a 2 ~ ,  , a /  Of_Of Oz os(z) +~-5~ppP ~tP)~p, (6.3) 

where x(z) = (A,v/3) is the coefficient of particle diffusion along the force line of 
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the regular magnetic field; 

-rr 0 

All(z)=4~vp2fdOsinO cos 0 I d0Do0(o)sin0 

0 0 

(6.4) 

is the transport free path of particles along the force lines of the regular magnetic 
field. Calculation of Ahh on the basis of Formula (6.4) gives the value of All 
coinciding with Expression (5.4). The value D(p) in (6.3) is the particle diffusion 
coefficient in the momentum space: 

,re 

D(p)=~ dO sin0 Dpp Doo] 
0 

At Dpo = 0, the diffusion coefficient D(p) (together with Equation (6.3)) transforms 
into the expression for D(p) obtained by Tverskoy (1967, 1967a). The term in 
(6.5) associated with Dpo is due to the presence of the terms -(EI,~Hlx) in the 
correlation tensor D~x. 

Inclusioh of only the first term in the right hand part of (6.5) corresponds to the 
case where the distribution function of accelerated particles is completely isot- 
ropic. The effect of the crossed terms of the correlation tensor D~x results, 
however, in the fact that the particles are always distributed against a certain 
small anisotropic background. In this case, in accordance with (6.5), the diffusion 
coefficient in the momentum space decreases but remains always positive. In 
order to show this (Toptygin, 1973), we shall note that the diffusion in both 
momentum and conventional spaces is an irreversible process which leads to an 
increase of the entropy S of the particle system: 

d S > 0  S(t)= - I  dpp2fln ~ (6.6) 
dt ' 

Differentiating (6.6) in time and using expression (6.3), we get 

__=~dS 2 , - [  ' x l  0] v2  
dpp D(p)y~p). (6.7) dt J 

For the monotonic momentum dependence of D(p) taking place in this case, the 
entropy increase is possible only if D(p)>0. 

Specific calculations of acceleration processes in interplanetary space for the 
case where the Alfv6n turbulence is excited in the solar wind plasma were first 
carried out by Tverskoy (1967a, 1969) (see also Tverskoy, 1967; Toptygin, 
1973a). Direct calculations of the spectrum of the accelerated particle intensity on 
the basis of (6.3) at the exponent of the magnetic inhomogeneity spectrum ~, = 2 
show that in this case an exponential spectrum is asymptotically formed which 
satisfactorily describes the distribution of low-energy particles (1-10 MeV) accel- 
erated in interplanetary space. Interest has recently been shown again in the 
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particle acceleration mechanism for an alternating magnetic field (the Alfv6n 
magnetic pumping) (Alfv6n and Feldhammer, 1967). A consistent theory of the 
magnetic pumping mechanism was developed by Bakhareva et al. (1970; 1973). 
The quasilinear kinetics equations were used to solve the self-consistent problem 
and to find the turbulence spectrum and the distribution function of accelerated 
particles. The results obtained were used to propose a mechanism permitting the 
features of the magnetobremsstrahlung of the Crab Nebula to be explained. 
Toptygin (1973a) examined the general case when the solar wind plasma contains, 
apart from the (constant) regular magnetic field, the electric and magnetic fields 
varying slowly in time. The low-frequency part of the Alfv6n wave spectrum may 
represent such fields in the solar wind. In (Toptygin, 1973a) the kinetic equation 
was averaged over the largescale harmonics of the random field, and the particle 
propagation was analyzed in detail. 

Another region where the particle acceleration is possible is the so-called 
"buffer layer', considered in (Dorman and Dorman, 1968) (see Section 3), which 
lies at the boundary between the solar wind and the interstellar medium. In this 
region of space where the solar wind becomes subsonic (the effectiveness of 
adiabatic deceleration decreases abruptly), a pronounced small-scale turbulence 
arises and favourable conditions for particle acceleration are created. An interest- 
ing study has recently appeared (Bakhareva, 1975) devoted to the theory of 
particle acceleration in the buffer layer. 

7. Fluctuation Effects in Cosmic Rays 

A number of fluctuation events associated with multiple scattering of charged 
particles on random magnetic inhomogeneities occur in interplanetary space 
during the propagation of cosmic ray charged particles in turbulent magnetic 
fields. It should be noted that these fluctuations in the particle angular-space 
distribution are of stochastic nature and differ markedly from quasiperiodic 
cosmic ray variations which are due to the entire complex of electromagnetic 
conditions in interplanetrary space correlating with the known recurrence of solar 
activity. Even the first experimental studies of the cosmic ray intensity fluctuations 
(Danju and Sarabhai, 1967; McCoy and Anderson, 1968) showed that they were 
probably caused by stochastic pulsations of the interplanetary magnetic field. It is 
not surprising, therefore, that the theory of cosmic ray fluctuation effects was 
developed on the assumption that these effects are related to interplanetary 
magnetic field pulsations. The first theoretical studies of the cosmic ray fluctua- 
tions were carried out by Shishov (1968). It turned out that the knowledge of the 
mean function of charged particle distribution was insufficient to analyze the 
fluctuation events and that the characteristics of the fluctuations of the exact 
distribution function, which are due to the fluctuations of interplanetary magnetic 
field, had to be found. The Dolginov-Toptygin diagram technique (Dolginov and 
Toptygin, 1966) was used by Shishov (1968) to derive the equation for the 
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correlation function of the fluctuations of the cosmic ray distribution function (the 
second moment of the exact distribution function) from the collisionless kinetic 
equation. The equation obtained was then used to analyze the fluctuations in the 
high-energy range of charged particles (R = (cp/eH) >> l~). In this case, the effect of 
the regular magnetic field on the charged particle motion may be neglected, and 
the particle scattering on random inhomogeneities of the magnetic field is 
determined by the 'rough' characteristics of the random magnetic field, such as 
the mean square of the random field (H~) and its correlation radius lc. The 
equation for the correlation function 

of fluctuations of the cosmic ray correlation function fp(r, t) is of the following 
form (Shishov, 1968; Dorman and Katz, 1974) (see Appendix I): 

where 

gplp2(rl, tt;  r2, t2)= ~p~(rl,  tl)~p2(r2, t2) 

+ f dp~ dp[ d~-~ dp2 dp; dr2~p,p, (r~, h; P~, T1) 

x%~, (r2, t2; m, t 2 ) ~ ¢ ~ .  (m, ~'~; p2, r2) 

x~xp'~gp'~¢~(Pl, ~'l; P2, ~'2), 

~ . ( r ,  t) = (f .(r,  t)); %., (r ,  t; z',  t') 

(7.1) 

is Green's function of the kinetic equation for the distribution function ~p(r, t) 
averaged over the random field; ~ p =  (ec/e)[p(O/Op)],~ is the operator of the 
angular moment in the momentum space; ~3~x(r, t; r', t') = (Ht~(r, t)Hlx(r', t')) is 
the second-rank correlation tensor of the random magnetic field. The mean 
Green's function ~pp, of the kinetic equation has to be known to solve Equation 
(7.1). The stationary Green's function in the small-angle approximation is of the 
following form (Dolginov and Toptygin, 1966): 

3 
~ ¢ ( r -  r') - 4~.q[r_r,i 3 exp ( 302v 4 ~'q-~- r'[] (7.2) 

~e21c(H~)  
q=  12m2c2 v , (7.3) 

where 0 is the polar angle characterizing the momentum direction relative to the 
vector r - r ' .  Assume that the dependence of the correlation function gp¢(r, t; r', 
t') on coordinates and momenta is so weak (the first of these limitations can be 
avoided, see Appendix II) that, when solving Equation (7.1) by the iteration 
method, one may limit oneself to the first-order iteration and take ~p(r, t) outside 
the integral sign. Then, using (7.2) and expressions (2.26) and (3.6) for ~ x ,  we 
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shall get, after integrating over x and y, the following expression for the correla- 
tion function g: 

dz __ O'g~2 7 r  3 2 (7.4) 
g _ ~  +~l~(H1) f lT~oo(1 12~° ~,+,o] 

0 

where ~0 = 8qz3/3 v; z is the coordinate in the direction of cosmic ray reception. 
Since the integrand in (7.4) decreases appreciably with distance, the fluctuations 

are formed only in a small region of space adjoining the observation point and 
limited to the dimensions 

lc 4 3 l_ 1 c X<~(4q~3/~))~=~; y<~(gq~ /v) . . . .  Z<~=(312v/8q) ½. (7.5) 

In this case the fluctuation amplitude is 

k 2 2 2 2 

A ~, (l~q/v) ~ = \ 12m2c2v2 ] . (7.6) 

Time fluctuations with characteristic periods TII- ¢/Uo and T± ~ (lJ,f2 Uo) will be 
observed owing to the solar wind motion at velocity u0 for observations in 
different directions. According to the observations of Danju and Sarabhai (1967), 
A - 4  x 10 -a for galactic cosmic rays, and it follows from (7.5) and (7.6) that 

lcq = A~v; 12 - 8¢3-  8u3T~ (7.7) 
q 3v 3v 

whence 

lc= u°TII; q =  lc (7.8) 

and, for A and T b according to the data of Danju and Sarabhai (1967), we get 
lc = 1.5x 101° cm and q = 2 x  10 -5 s -1, which is in a satisfactory agreement with 

the results of direct measurements in interplanetary space. If the mean distribu- 
tion function is axially symmetrical, one can obtain the expression for the 

correlation function 

g = ~2 + 3~ ~ (7.9) 

where 0 is the polar angle measured from the symmetry axis. It can be seen from 
(7.9) that the charged-particle scattering on magnetic field random in- 
homogeneities results in fluctuations of the particle angular distribution, these 
fluctuations being due to the random variations 80-~ (q¢/v) of the particle scatter- 

ing angle. 
Expressions (7.7)-(7.9) show that knowledge of the fluctuation correlation 

function gives new information (as compared with knowledge of the mean 
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distribution function 9)  about the parameters of the medium where the particles 
propagate. As can be seen from (7.2), ~ is a function of q ~ (H~) only, and 
observations of the fluctuation scale immediately give the inhomogeneity size lc. 
Comparison of the mean square of fluctuations with the mean distribution 
function gives the parameter qlc ~ (H~)lc. If no fluctuations are observed, limita- 
tions may be imposed on the maximum size of inhomogeneities and the minimum 
field intensity in them. 

We have examined the case R >> Ic when the effect of the regular magnetic field 
on particle propagation may be neglected. In the opposite extreme case R << Ic the 
effect of the regular magnetic field on the charged particle motion must be 
included. At R << l~, in the small-angle approximation, Green's function of the 
kinetic equation is determined by relations (5.8) and (5.9). If the correlation 
function gplp2(rl, tl; r2, t2) depends little on the momentum variables, it may be 
taken outside the integral sign when integrating over p~ and p6. Substituting (5.8) 
and (5.9) in (7.1) and taking account of the fact that, owing to the rapid 
convergence of the integral, the upper integration limit may be assumed to be 
infinite when integrating over angular variables, 

f dOoOo°dLl(z, 0; z0, 0 0 ) ( 7 . 1 0 )  
Ho(z) 

I 

2rrHo(z0)' 
0 

so that from Equation (7.1) written for the stationary case we obtain 

g~(rl, r2) = ~p(rO~p(r2) + f dp~ dp2~3x(rl, pl) 

×°~z(r2, p2)~,,p~,~a(Pl--P2)~xpgp(Pl, P2). (7.11) 

In (7.11) the sought function has been replaced according to the rule 

1 
gp(r~, r2)-~ Ho(z,~)Ho(z,2)gp(r~, r2) (7.12) 

and the case Pl = P2 =P  is considered for the sake of simplicity. 
To go further in solving Equation (7.11), the specific form of the particle 

transport path across the regular magnetic field A L must be determined which, in 
turn, determines the form of Green's function of the particle transverse motion 
(see (5.9)). It is shown by Toptygin (1972, 1973) that the transport path AI across 
the force line of the regular magnetic field is determined by the relation 

H 2 
C (H~) 

Al(z) = Ho 2 l~, (7.13) 

where C is the numerical constant of the order of unity. 
If the mean square of random magnetic field and the square of regular magnetic 

field vary in space according to the same power law (see Section 5), the transport 
path A± is independent of coordinates and Green's function °8± is a function of 
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difference in the coordinates. Then, if the correlation function gp(rl, r2) varies 
gradually from one part of the turbulent region to another, i.e. the function gp(rl, 
r2) varies markedly with its arguments at distances much in excess of the 
correlation radius of the random magnetic field, we obtain the equation of 
spectral densities 

gp(kl, k2) = ~;p(kl)~p(k2) + (2~r)6°3~(k~)~.(k2) 

x ~,,p~,,;~ ( ~ ) ~ ; ~ p  y dkgp(kl + k2- k, k)(7.14) 

from Equation (7.11) using the Fourier transformation. Since we examine the 
cases where the regular magnetic field is sufficiently intense, so that the particle 
motion disturbance by random magnetic fields within a time of the order of the 
cyclotronic rotation period is small, Equation (7.14) should be averaged over the 
angle of particle rotation around a force line of the regular field (see Sections 4 
and 5; it will be remembered that the mean Green's function @ was also obtained 
as a solution to the kinetic equation in the drift approximation). Assuming that 
the random magnetic field is statistically isotropic and averaging (7.14) over the 
rotation angle, we get 

gp(kl, k2)= ~p(kl)~p(k2)+ (2qr)6~x (k~)°~±(k2)~ ( ~ ) ~  2 

x / dkgp(kl+k2-k, k) (7.15) 

where ~z is the squared operator of angular momentum in the momentum space. 
Similarly to the case R >> Ic considered above, Equation (7.15) can be solved by 

the iteration method. We shall refrain from writing down the corresponding 
relations, which are similar to the previous ones, and note that (7.15) gives an 
important relation 

~ ( ~ ) =  ~;p(kl)~p(ka)-f gp(kl, kz) .................. (7.16) 

(2~')6@~(k~)@±(k2)~ 2] dkgp(kx + k2 - k, k) 
permitting the spectral function of the random magnetic field ~(k) to be obtained 
from the given spectral densities of the mean distribution function ~p(k) and of 
the correlation function gp(k, k') (Dorman and Katz, 1974). 

It can be seen that studies of the fluctuation effects in cosmic rays make it 
possible to find the detailed characteristics of interplanetary magnetic fields. This 
is of special importance to studies of individual regions of the solar system which 
cannot at present be investigated by more direct methods. 

Conclusions 
The theory of cosmic ray propagation is being intensively developed at present. 
We did not consider a wide range of problems in the cosmic ray kinetics 
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associated with the presence of strong shock waves in interplanetary space. The 
available results cannot be reviewed within the framework of the present paper 
and we limit ourselves to pointing out the appropriate literature (Dorman and 
Shogenov, 1974). 

To compare the theory developed and the observation data, the above- 
presented results should be specified. First of all, it is necessary to go beyond the 
small-angle approximation when solving the kinetic equation and to find the 
function of particle distribution in the presence of the regular magnetic field (at 
R >> lc). Calculations of the correlation function in the low-energy range, where 
the most appreciable fluctuations of cosmic ray intensity are expected, are of 
special interest for the study of fluctuation effects. 

It will be noted in conclusion that, although the kinetic theory of cosmic ray 
propagation was set forth specifically for the solar wind plasma, the theory 
developed makes it possible to describe the processes of particle propagation in 
the magnetized plasma of the Galaxy and other cosmic objects. 

Appendix I 

Consider the derivation of Equation (7.1) for the correlation function of distribu- 
tion function fluctuations (Dorman and Katz, 1974; Shishov, 1968). It is conve- 
nient to start with the equation for Green's function of the kinetic equation. In 
this case, Equation (2.15) will be written in the form 

{ L o -  iS~aVa['l]; x1]}°~['l]; Xl, x l ] - i ~ i ~ a  ar"ld[?pj ;Xl, x ~ ] =  _ • ( x  I _ x~) 
~nat (X1) 

/20=~+L0;  V~[~l; Xl] = 8 In 4~['q] &h~(xO ' {xI---~{r, p, t}----~{x, t} 

od[li; xl, x~] = (G(xl, x~) exp i('qH0), (A.I.1) 

where G(x~, xI) is Green's function of the collisionless kinetic equation (2.10). 
The procedure borrowed from (Tatarsky, 1967; Bonch-Bruevich and Tyab- 

likov, 1961) can be conveniently used for further consideration. Let the functional 
argument in (A.I.1) be replaced according to the rule 

a I ave[n; z] 
6rt,~(x~)--->_ dz 8~(x , )  6V~[~;z] (A.I.2) 

and, using the orthogonality property of the functional @IV; xl, x~] 

f dz~[V; z, Xl]Od-l[V; z, x~] = 6(xl-xl), (A.I.3) 

Equation (A.I.1) will be written in the form 

i~,~V,,[~l; xl]}~9[V; xa, x~]- ~ dzM(xl, z)°9(V; z, x[] {£o 
=-6(x~- xi) (A.I.4) 
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where f 
M(xa, z) = - i ~ ,  [ dy dy~3[V; 

8~-~[V; y, z] 
r~[v; y, z, yd= 

,%~(xO 

D~x[0; y~, x~] = D~x(y~, x0. 

xl, y]Fx[V; y, z, yl]D~,x[~l; Yl, xl]; 

D~x[~I; y~, x~] = 8Vx[~; ya] (A.I.5) 
8n~(xO 

(A.I.6) 

For further consideration, it is convenient to use the disturbance theory and 
regard a random field as a disturbance. To the first non-vanishing approximation 
of the disturbance theory 

°~[V; xl, yl]v~0-+ exp {-Lo(txl- tyl)}8(xl-Yl) (A.I.7) 

(where tx and x are the time and spatial coordinates of the point x---~{x, tx}), and 
the functional Fa may be determined from (A.I.4). Multiplying (A.I.4) on the 
right-hand side by ~-I[V; x~, y], we integrate the obtained relation over x~, 
taking account of (A.I.3). Neglecting the second-order value for the random field, 
we get 

{/~o- iV~[~; x~]~,}a(x~- Yl)= N-~[V; xl, y]. (A.I.8) 

From this, using definition (A.I.6), we have 

F°[V; xl, y, z] = i6(x~ - z)5£a8(x~ - y). (A.I.9) 

To this approximation, the functional M is 

m(xl,  z) = ~x{exp [-L0(t~- t~)]6(x-z)Sg~D~x[~; z, x]} ~=~ (A.I.10) 

where we must set x = Xl after the action of the operator exp [-L0(t~-t,)].  
Substituting (A.L10) in (A.I.4) and setting 0-->0, we obtain Equation (2.24), 
which was derived in Section 2 using another method. Now we turn to the 
derivation of the equation for the correlation function. Similarly to the derivation 
of the equation for the mean distribution function, we shall proceed from the 
collisionless kinetic equation. Then the Green's function G(xl, xl) obeys the 
equation 

I~oG(x~, x~) + ~£~H~(xl)G(xl, xl) = -8(x l  - xl). (A.I.11) 

Multiplying (A.I.11) by 

G(x2, x~) exp i(~11) 

and averaging the obtained equation over a statistical ensemble corresponding to 
the random magnetic field, we shall obtain the functional derivative equation 

{ I~I-- ~o, ~@x1) } g[II ; Xl, Xl, X2, 

= --8(X~-- Xl)~[~l; X2, Xl] (A.I.12) 

I~ = 1~o- iY,,V~,[n; xl] (A.I.13) 
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relative to the functional 

(G(xl, X'l)G(x2, x~) exp i(~111tl)) 
g[rl; x~, x~; x2, x~]= (A.I.14) </>[',l] 

whose value coincides at ~i = 0 with the correlation function of distribution 
function fluctuations 

g[0; xl, x~; x2, x~]-=- g(xi, x~; x2, x~) = (G(xl, x~)G(x2, x~)). (A.I.15) 

For further consideration, it is convenient to write equation (1.1.12) in the matrix 
form 

9121{ f-q - i~l,~ ~--~l~ }gl,,= -- ff12 (1.I.16) 

where a-12 is the single matrix and the subscripts indicate the variables affected by 
the corresponding operators and the arguments on which the corresponding 
functionals depend. Equation (A.I.4) written in the matrix :form 

(/~1- M1)N1 = -1  (A.I.17) 

gives the relatien 

[,~ = M~ - eaT1. (A.I.18) 

Substituting (A.I.18) in (A.I.16), we obtain the equation 

0321 (~1-1-- M I +  i ~ 1 ~ ) g 1 2  = ff12. (1.1.19) 

Let the operator 012 be determined by the following equality 

(°~;*~21 - (~12)g12 = ffa2. (A.I.20) 

Comparing (A.I.19) with (A.L20), we get 

8 1 8 2 
012912 = °-t321Mlg12 - i~£1~8--~ (°J2 g12)+ i~la ~ - 1  g12 (A.I.21) 

On the basis of (A.I.20) we have 

8 6 - i  

(o-tJ21912) = ° / d , 7  (012g12) - ~ 1 ~ 2 1 g 1 2  (A.I.22) 8n1,~ O~l,x O'tha 

Substituting (A.I.22) in (A.I.21), we get 

(~,2912 = ol321M~ g~2- i~£, ,~  ~ (Q~2g12) 

/ --1. • 0301 -1 8ad21~ 
+ t~a,,|otal-g-----o-td2 + (1.I.23) \ O't/la 7 /  6 n l . / g 1 2 -  
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On the other hand, it follows from (A.I.6) that 
6°~ i 

i~l,~u~/1 T--- = -M1, (A.I.24) 
Or/l~ 

8 - i  • ~2  
z ~ £ 1 ~  g12 = i2~l~F2xDl~xgl2 (A.I.25) 

and Equation (A.I.23) can be written in the form 

= " - ~ -  (012gi2). (A.I.26) 012912 iS~laF2xDlo, xgl2- I~.1~ 8 o: 

Using the expression (A.I.9) for F2x to the first approximation for the random 
field we obtain from (A.I.26): 

I~i2g12 = i2~l~F°xDl,~xgx2.  (A.I.27) 

Substitution of (A.I.27) in (A.I.20) immediately gives the closed equation for the 
correlation function of fluctuations of the cosmic ray distribution function: 

(~ - l~ - i  2 - i~V°~D,~x)g~2 = 8,2 (A.I.28) 

or, explicitly writing out all the arguments and specifying the matrix denomina- 
tions, we obtain, after setting ~1 = 0, the equation 

g(xl, Xtl; X2, Xt2)= fflO(Xl, X~)oIJ(X2, X~)'t" f dyi dy2°lJ(Xl, Yi) 

X p x°9(x2, Y2)~ ,~x(Yl ,  Y2)~gzxg( 1, Y~; x~, Y2) (A.I.29) 

which was used in Section 7 for examining the cosmic ray fluctuations. 

A p p e n d i x  H 

Considered in this Appendix is the solution of the equation for the cosmic ray 
correlation function gpp,(r, t; r', t') in the high-energy range of particles (R >> Ic). In 
this case, we obtain a solution free of some of the limitations imposed in Section 7 
when solving Equation (7.1) by the iteration method• 

We shall use the method developed by Tatarsky (1967). To solve Equation 
(7.1), it is convenient to replace the variables of integration in the integral term of 
this equation according to the relations 

p=½(pl+p2); r=pl - -p2;  t=½(rl+r2); r = r , - r 2 .  (A.II.1) 

Then Equation (7.1) takes the form 

gp,p~(r~, h; r2, t2)= ~p,(rl, h)~p~(r2, t2)nt - f  dp dp'l dt dr dp'2 dr  

x~p,p~ r i - p - ~ ,  t e - t - ~  69p~pS r 2 - p + ~ ,  t a - t + ~  ~p;N~a(r, r) 

( '  " ' 2) x~x,~g,;p; p+~,  t + ~ ; p - ~ ,  t -  . (A.II.2) 
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The Fourier transformation of this equation gives 

gp,p=(k,, ca1; k2, ca2) = ~p,(kl, cal)~;p2(k2, (02) 

+ (2"ff)6 f dp~ dp~6tdmp'~(kl, cal)°-Idp2p'=(k2, ca2) 

X [ d k  dca~c ,p~ ,~x(k ,  ca)~xp'2 

× gplp~ (k~ - k, caa - ca; k2 + k, ca2 + o~). (A.II.3) 

To directly solve equation (A.H.3), it will be taken into account that at R >> Ic the 
spectral tensor of the random magnetic field varies weakly at spatial distances 
corresponding to the characteristic scale of the change of the correlation function 
gpp,(r, t; r', t') and Green's function ~pp,(r, t ;r ' ,  t'). Then, replacing the vari- 
ables k l -+  kl - k', ca1--+ ca1 - ca' and k2--+ ke + k', ca2"-+ ca2 + ca' in (A.II.3), we act on 
the obtained equation by the operator ~ = p ~  (k', ca')~xp~ and integrate it over k', 
ca' 

f t^ ! l dk' dca ~ o , ~ x  (k,  ca )~£xp:g(k~ - k ,  ca1 - ca'; k2 + k', o~2 + ca') 

f , ,^ , , ^ ~ + = dk dca ~£,~p,~x(k, ca )~£xo~p,(k~-k', c a 1 -  ca~)~p2(k2 + k', O) 2 ca 

(2"/r)6 f dp~ dp~ I dk' d c a ' ~ , , , ~ ( k ' ,  ' ^  + 

X . ' + ' f ^ ad,=p,~(k~+k, ca2 ca ) j  dk d c a ~ , ~ x ( k ,  Ca)~XI~2 

x g ( k ~ - k ' - k ,  cal -- ca ' -- ca ; k 2 + k ' + k ,  caa+ca'+ca). (A.II.4) 

Replace the variables k' + k = k" and ca' + ca = ca" in the integral over dk dca in the 
second addend in the right hand part of (A.II.4). Then, the difference between 
~ (k", ca") and ~ x  (k"-  k', ca"- ca') in the obtained integral may be neglected in 
virtue of the slow change of the variation iensor. 
The resultant equation is 

T~,p2(kl, ca1; k2, ca2) = I dk dca~,~p~x (k, ca)~Xp2~p~(ka - k ,  ca1 - ca) 

× ~p~(k2 + k, ca2+ ca) + (2Ir)6/dp~ dp~ I dk dca~£,,p,~,~x (k, ca) 

X ~)t pa0~p]p ', (k 1 - k, ca1 - ca)~p2¢2(k + k, ca2 -~ ca) 

× Tp',p'dk~, ca~; k2, ca2). 

Tp~p2(kl, ~1 ;  k2, ca2) = f d k  d w ~ p l ~ a l ( k  , ca) 

× ~£xp~gp,p~(k~-k, ~Ol- ca; k2+k,  ca2+ ca). (A.II.5) 

If the function Tmpi(kl, ca1; k2, ca2) is assumed to vary slowly in the momentum 
space, Equation (A.II.5) can be solved with respect to Tp~p2. Substituting the 
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obtained equation in the right part of (A.II.2), we obtain the expression for the 
correlation function of cosmic ray fluctuations 

gp~p2(kl, 091; k2, eo2)= ~p~(kl, o~l)~p2(k2, 602) 

+ (2~-)61 dp~ dp~%~(k~, ~o0%~(k2, ~o2) 

\1  - ~ dk d ~ o ~ p ~ x  (k, ~o)£gxp~ J dp~ dpz~p~p',(k~-k, ~o~- oJ)~p~(k2 ×k, ~o2+ oJ)/" 

(A.II.6) 

If the integral term in the denominator is << 1, this expression turns into the 
solution obtained by Shishov (1968) (see Section 7) using the iteration method. 

A p p e n d i x  III 

The theory of cosmic ray propagation makes use of the various forms of the 
anisotropic diffusion equation, depending on the choice of the variables (momen- 
tum p, rigidity p = (cp/eZ), energy e) describing the charged particle propagation. 
When using these equations specifically, the necessity arises to interrelate the 
values contained in these equations. The present Appendix gives the various forms 
of the anisotropic diffusion equation and establishes the relationships between the 
phase densities of particles expressed in different variables. 

We shall start with Equation (3.10), which, after the evident transformation, 
can be written in the following form 

0t = x ~ (r, p) ~r~ - u0~ (r) N(r, p, t) 

+½ d i v n o ( r ) l ~  -O p3N(r, p, t). (A.III.1) 
p op 

If the rigidity p = (cp/eZ) (Z is the charge number) is chosen as the energy 
variable, Equation (A.III.1) takes the form 

ON(r,p,t)_ O ( x~(r,p) O_O_uo~(r))N(r,p,t) 
Ot Or~ Orx 

+~ dlvuo(r) 03N(r, P, t). (A.III.2) 

Using the relation between the particle density n(r, t) and the particle density in 
the momentum space N(r, p, t) 

n(r, t) = I dpp2N(r' p' t) (A.III.3) 

Po 



COSMIC RAY KINETICS IN SPACE 5 7 3  

it can be shown that 

and 

(J N(r, p, t) = N(r, p, t) 

n(r, t) = f dpp2N(r, p, t). 

Oo 

If the energy e = c(trl~c2+p2) t12 is chosen as the energy 
(A.III.1) can be written as 

O N (r' e" t ) = o-~ ( ~'~x (r' e ) ~rx - U°~' (r) ) N (r' e" t 

(A.III.4) 

(A.III.5) 

variable, Equation 

and 

n(r, t )= f deN(r,  e, t). (A.III.8) 

Passing over to the variable 

T = e - So, (A.HI.9) 

(where T is the kinetic energy of a particle), we can write Equation (A.III.6) in 
the form often used in the literature (Jokipii, 1971): 

0N(r, T,t) =__0 (~ ,~ ( r ,  T) - Uo,(r))N(r, 0 T,t) 
Ot Or,, 

0 
+½ divuo(r) ~-~ a(T)TN(r ,  T, t), (A.III.IO) 

where 

T + 2 e o  
(A.III.11) 

a =  T + e o  

Consider the ultrarelativistic case e >> Co, when it may be set that a = 1. Then 

(7 2 

N(r, p, t) = - -  N(r, e, t) (A.III.7) 
ep 

where eo = moc 2, and the phase densities N(r, p, t) and N(r, e, t) are related by 

+½ divuo(r) 0 (e 2 -  eO)N(r,? e, t) (A.III.6) 
0e e 
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E q u a t i o n  (A . I I I . 6 )  t akes  the  fo rm 

divuo(r)  ~ eN( r ,  e, t). (A . I I I . 12 )  +1  

S ince  at  e >> 8o the  ene rgy  is r e l a t e d  to  the  m o m e n t u m  p b y  e ~ c p  = eZ0,  i t  

fo l lows f rom (A . I I I . 4 )  and  (A . I I I . 7 )  t ha t  

2 

N(r ,  e, t) = e ~  N(r ,  O, t) (A . I I I . 13 )  

and  E q u a t i o n  (A . I I I . 12 )  t akes  the  fo rm (A. I I I .2 ) .  

I t  fo l lows f rom (A . I I I . 13 )  that ,  if the  cosmic  ray  spec t rum is of p o w e r  fo rm 

N ( e ) - e - "  and  N ( O ) - O  -~, the  s p e c t r u m  e x p o n e n t s  a re  i n t e r r e l a t e d  in the  

u l t ra re la t iv i s t i c  case  as 

/3 = 3/+ 2. (A . I I I . 14 )  
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