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On the Correlation for Kac-like Models
in the Convex Case
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The aim of this paper is to study the behavior as m tends to oo of a family of
measures exp[ —®™(x)] dx'"™ on R™, where &' is a potential on R™ which
is a perturbation “in a suitable sense” of the harmonic potential 3, x.
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1. INTRODUCTION

In recent publications we have given a new insight into old problems
coming from statistical mechanics. This paper is in some sense the natural
continuation of refs. 12 and 27. The semiclassical point of view will not
play an important role (see, however, Section 8), but could be useful in
order to give more precise resuits. We study here a family of measures on
R™ parametrized by m of the form

du™ = exp[ — ®"(x)/h] dx‘™ (1.1)

(where dx'™ is the Lebesgue measure on R™ and @ is a suitable family
of C = potentials on R™) of the type introduced by Kac!'® and of different
quantities attached to this measure. We consider first, for example, the
thermodynamic limit, that is, the existence of the limit (and the speed of
convergence) of

A= — lim In g™ (R™)/m (1.2)

m — oo
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We shall denote by a(m) the logarithm of the total measure:

a(m)= —In[g™(R™)] = —In {j exp[ — & (x)/h] dx} (1.3)

Most of the time in this article we shall take A= 1, but we refer to refs.
25-27, 15, 16, and 11 or 12 for studies of the semiclassical limit as A tends
to +0. We shall restrict our study to the convex case and study particularly
the speed of convergence in (1.2) and, if g is a function of k variables, we
shall study the convergence of the mean value of g as m tends to oo:

(g)m= lim (g>, (14)

where

(gon= <g>,,,=jgdu‘""/j du™ (L5)

As a particular but important case, we shall analyze the case when
gi{x)=x;-x; (1.6)
and will be interested in the behavior as |i — j| = oo of the correlation
Cor(i, ) =<8y w — (XD {XD (L.7)

We shall prove in the convex case (in connection with results of Sokal*®
mentioned in the book of Ellis'” an exponential decay with respect to
|i — j|. Let us now describe the results and the ideas. We first give a simple
criterion for the existence of the thermodynamic limit:

Proposition 1.1. Let C be a positive constant and let us consider
the following family of potentials indexed by me N:

xZ
SI(x) = T+ ¥ 7(x)

satisfying the following properties:

Pim(0)=0 (1.8)
V)|, < C (1.9)
V(P _ (g g gy < C (1.10)

AP (e Py < C (1.11)
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Then the thermodynamic limit exists and the speed of the convergence to
the limit is controlled in D/m:

1A+ [In x™(R™)/m]| < D/m (1.12)

where D is explicitly computable from C.

We have used in the proposition the notation
(P@ P ") (x)= " (x')+ P (x"), Vx=(x,x")eR"x R"

Corollary 1.2. Let W be a C2function on R? such that VI¥ and
AW are bounded. Then the assumptions of Proposition 1.1 are satisfied for

PN x)= T W(x,xi0) (1.13)

with the convention that m+1=1.

This corollary was obtained in ref. 11 or ref. 12, but similar results are
of course older (see, for example, ref. 20).

Example 1.3.
W(u, v) = —In cosh[/v (u+ )]

This example was one of the motivating examples for our recent studies in
refs. 25-27, 15, 16, 11, and 12 and comes from Kac.""®) The corresponding
family of potentials is convex for v < 1/4.

In the proof of Proposition 1.1 we introduce the intermediate family
(parametrized by se [0, 1])

D (x, 5)=((1—5)@"+" 4+ (D @ D))
and the idea is to prove the boundedness of the logarithmic derivative:

0
_ lnf exp _(p(m.n)(x’ s) dx = <as¢(m.n)(., s)>w(m‘".
as Rm+n

which is done by an integration by parts based on the trivial identity
x;exp —3x’ = —0, exp —3x*
We next discuss the more sophisticated methods leading to exponen-

tial estimates. Our basic idea is to investigate the mean value {c), of a
temperate function c¢ by first solving

c=(—V® -V+d)u+b (1.14)
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where b is a constant, and notice that by integration by parts we have
b=<c)e
Similarly for the correlation
Cor(c, d) =< (c—<e))d—<dD))e
of two functions ¢, d, if u=u, solves (1.14), then we get
Cor(c,d)=<Vd-Vu, )
and Vu is a solution of
Ve=(—V® .V + 4)Vu+ Hess & Vu (1.15)

When @& is strictly convex (with additional assumptions) it turns out that
we can get good pointwise estimates of weighted norms of Vu in terms of
corresponding norms of V¢. Assume now that

Hess @(x)=6,>0 (1.16)
[[Hess tD(x)ll_(t,(,;o)gC (1.17)

(where all the constants are independent of the dimension m if nothing else
is indicated) for all p on Z/mZ satisfying

e_"<%<e", veZ/(m+n)Z (1.18)

for k>0, and
| I — Hess ¢5||g,(,f)<6<1 (1.19)

Here /° is the weighted /*-space defined by the norm
x5 = lpx|o, = max [p(v)x, |

Then we have the following theorem:

Theorem 1.4. If
Cor™(i, j) = ;%Y = XD XD
then under the assumptions (1.16)—(1.19) we have
|Cor'™(i, j)I < C,exp —[(kx—¢) dist 5, z(i, /)] (1.20)

for all m, ¢>0 and all pairs (i, j).
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We shall give in Section 7 a slightly more general result implying this
one. In particular we get immediately the following corollary.

Theorem 1.5. Let W be a C? function on R? such that V?W is
bounded (for p=1, 2, 3). Then for

m

P x)=B Y Wi(x;, Xxiyy)

i=1
the assumptions of Theorem 1.4 are satisfied for || small enough.

The idea of the proof is to use the maximum principle to estimate
(IVull . with p(j)=exp[(x—¢)d(j, k)], where u solves (1.14) with c=x,
and d(j, k)=dist,,z(J, k).

Similar estimates can be given for more .general correlations.

A similar method can be used to prove exponential convergence to the
thermodynamic limit. Consider the family & as in Proposition 1.1. Let
us assume

V@ (0)=0 (1.21)

and that, for some C, k>0, and 0<d <1, the following properties are
fullfilled:

PO Xy X)) = PN X5, X300y Xy Xy) (1.22)

Similarly to the conditions of Theorem 1.4, we impose the following
conditions that the intermediate family ®“"")(x,s) satisfies for any
se[0,1],mandnin N (m=1;n=21), x=(x',x")eR"*":

(Hess, @'""(x, §)}=6,>0 (1.23)
|Hess @™ (x, 5)]| ey SC (1.24)

with
B, =(R"*" | -[I;») (1.25)

We also introduce the family of normed spaces

B=|* (1.26)

Prm.n

(with underlying vector space R *") and where p,, , is in the family of
weights defined on Z/(m + n)Z satisfying (1.18) and

Ponn(1) = P u(m) =1 (1.27)
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We shall denote by %, the family of these B’s associated to some k
and we assume

IV D™, ) o8 < C for any Be %, (1.28)
and more precisely
(1 — Hess, @) (x, )| g5, <O <1 (1.29)

Similarly to the assumptions given in Proposition 1.1, we impose also
the following conditions on (3,8™™")(x, s)= (P +™ — (P @ Py

(V(Fm+m (@ Pi)x)|,<C for any Be%, (1.30)
[this is a refinement of (1.10)]
[V + — (P DN pp,.8 < C for any Be%, (1.31)

{this is a refinement of (1.11)]. Under these assumptions and other techni-
cal conditions of the same type for derivatives of order 3 and 4 which will
be given in Section 6.4 [(6.25)-(6.27)] we get the following theorem:

Theorem 1.6. Under these assumptions we have

la(m)/m — lim a(m)/m| < Eexp —xm/4 (1.32)

for some constant F (independent of m).

This is the analog of Theorem 3.1 in ref. 27. The assumption
Ver0)y=0

corresponds to the fact that the unique critical point is supposed to be 0.
This is automatically satisfied if ¥ is an even function. In some cases (see
the magnetization problem) this condition is not satisfied, but we can come
back to this case by a translation argument. This problem will be discussed
in more detail in Section 6 {Propositions 6.2 and 6.3).

We shall see in Section 14 how this result can be applied in the case
where @ = —In(u'™), where u'™ is the first normalized eigenfunction of
a Schrodinger operator where the potential V'™ satisfies essentially the
same assumptions as in Theorem 1.6.

Outline of the Proof. The theorem will be proved in Section 6.4, but
we here outline a possible slight variation in the special case where

Sx) = x4+ X W, xi)
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in order to emphasize the role of the correlations. Consider, for instance,
the two-parameter family

2m—1
5(2"')(3‘: 8 S)=%x2+ Z Wi(x;, Xj 1)+ tW(xg,, X )+ (s—1) Wlxk, Xi 4 1)

i=1

where dist(k, 1) = m/3. Then we shall use the classical formula

8.0,In [ exp —BO™ dx=(0,0,8°™ — Cor(8,8, 5,8™)

R2m

Here the first term in the r.h.s. vanishes and we can apply a result of the
type given in Theorem 1.4 in order to prove that the correlation term is
O(1)exp —km for some x>0. Up to an exponentially small term this
means that lnj'exp — & dx is of the form f(1)+ f(s). In other words,
adding an interaction between k& and k+1 and adding an interaction
between 2m and 1 are essentially independent. Putting four modifications
at suitable places, we then see that

anexp — ) gxm =) 1njexp — @) dx™ 4 O(1) exp —xm

for some x. ||

We shall also study the family of measures on cylindrical functions
and obtain:

Proposition 1.7. Let ¢ be a C* function defined on R* s.t.
Vce C#(R*) that we identify with a function on R™ by

C(m)(x) = C(xl s Xagerns xk)

Then, under the assumptions of Theorem 1.6, the limit as m tends to oo of
ey, exists and the convergence is exponentially fast as in (1.32).

Another application is the study of the magnetization in the case of the
following family of potentials:

&"(x, B)=13Y (x,— B)*+ ¥"(x) (1.33)

!
Then the magnetization is defined by
M (m, B)=(1/m)(0a/0B)(m, B) (1.34)
or .//l(m, B)= <xl _B>m'

Theorem 1.8. Under the same assumptions as in Theorem 1.5,
the magnetization .#(m, B) is convergent (exponentially rapidly) to a
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continuous limit. In particular, if ¥ is even, then the limit as B tends to
0 is zero.

The last statement in the theorem can be interpreted as a statement
of absence of magnetization in the convex case, which of course is not
surprising.

This paper is organized in three parts. Part I is devoted to the existence
of the various limits mentioned above. Section 2 is technical and devoted to
the existence and uniqueness of a solution for the “basic” equation
[cf. (1.15)]

Vg=(V®V — 4)v+ Hess dv

with v= f"=Vf, where & is defined above and g is a suitable C* func-
tion which is slowly increasing. Section 3 is devoted to precise estimates
using the maximum principle in the spirit of refs. 24 and 27. Here the
convexity of the family plays an important role. These estimates are first
obtained for ¥ and g’s with compact support. Section 4 will analyze
weighted estimates for higher Hessians. The argument of cutoff permitting
the elimination of this restriction is explained in Section 5. Section 6 is
devoted to the study of the thermodynamic limit and Section 7 to the study
of the “limit” measure and the proof of Proposition 1.7.

Part II is devoted to more precise estimates for the correlations.
In Section 8, we make a preliminary analysis of the problem using a
semiclassical heuristical approach. In Section 9, we establish weighted
I' - [= estimates for inverse matrices. In Section 10, we come back to
improvements of estimates given in Section 3. Section 11 treats one basic
example which was suggested by statistical mechanics and motivates the
title of our paper. Section 12 is devoted to a new approach of the sign
of the correlation in connection with the celebrated FKG inequalities.
Section 13 is devoted to the study of the higher-order correlations.

Part III is devoted to the Schrodinger equation and we analyze how
the results of Part II give apparently new results for the correlation or the
magnetization. This will be the object of Section 14.

PART 1. ON THE EXISTENCE OF DIFFERENT
THERMODYNAMIC LIMITS AS THE
DIMENSION m TENDS TO o

2. EXISTENCE OF SOLUTIONS FOR A SYSTEM OF PARTIAL
DIFFERENTIAL EQUATIONS

Let us consider in this section the problem of solving in suitable spaces
the following problem:

w=(—4+V® -V)jv+ (Hess ®}v 2.1}
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Here w is a C* vector field on R” and the unknown is the vector field v.
The aim of this section is to prove the existence of a unique “temperate”
solution of the equation if w is temperate. More precisely, we shall prove
the following proposition:

Proposition 2.1. If &(x)=x%/2 + ¥(x) with ¥(x) satisfying
(03P <C, (2.2)
for Ja| =1 and
Hess@>2p>0 (2.3)
then for any C* vector field w satisfying
1(@3w)l < Co(l + |x])* (2.4)

for every a e N™ with some C, and some g,, there exists a unique C*
vector v solution of (2.1) such that

exp[ — P(x)/2]ve BYR™; R™) 2.5)
where, for k, p, me N,
BY(R™; R?) = {ue LX(R™); x*0%ue L*(R™; R?) for |a| + |B| <k} (2.6)

Proof of Proposition 2.1. We just come back to an easier situation
by making the following change of function:

u=exp(—®/2)v; g=exp(—D/2)w (2.7)
The system (2.1) is transformed in the following system for (i, ¢):
(—4+|VD|* /4 — AD/2)u+ Hess Pu=gq (2.8)

Our assumptions imply in particular that ¢ is in L*(R™; R™) and we can
find u as the unique solution of the associated solution of the variational
problem on the Sobolev space B'(R™; R™). We define as usual by duality
the spaces B*(R™;R”) for keZ; k<0 and using the positivity of the
operator

(=4 +|V®|/4— AD[2) = (3, + VB/2)* (3, + VP/2)

and the strict positivity of the Hessian given by assumption (2.3), we see
that the solution u is unique in 8'(R”; R™) for any ¢ in B~'(R™; R™). Then
classical results (see, for example, ref. 19) on the global regularity of the
operator give that if ¢ is in B*(R™; R™), then u is also in B*(R™; R™). One
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way here is to use the fact that the inverse is a pseudodifferential operator
which is continuous from B* into B**2 for any k in N. Another way is to
use the method of the differential quotients. The results announced in
Proposition 2.1 are then easy to obtain. |

Remark 2.2. It is relatively classical to prove an analog of Proposi-
tion 2.1 with dependence with respect to a parameter s. If we consider a
family @(x, s)=x%/2 + ¥P(x, s) and w(x, s) with (1) ¥(x, s) satisfying (2.2),
(2.3) uniformly with respect to s, (2) d, ¥(x, s) satisfying (2.2) uniformly
with respect to s, and (3) w and d,w(x, s) satisfying (2.4) uniformly with
respect to s, then u and J,u are in B®(R"™; R™) uniformly with respect to
s in [0,1]. In particular, (d%v) and (9,0%v) are continuous functions of
(x, s) with values in R™.

We observe here that the result is rather weak, but will be sufficient for
us and in this section we shall give more precise results under the assump-
tion that ¥ and w have compact support and under weaker assumptions
in Section 5 as a consequence of the maximum principle estimates obtained
in Section 4. This is the object of the next proposition:

Proposition 2.3. Under the assumption (2.3), if w and ¥ are
compactly supported, then the solution v constructed in Proposition 2.1
satisfies the following property:

[8%0(x)] < C (xp 121 29)

Proof of Proposition 2.3. The proof of the preceding proposition
gives us only an exponential control. We follow here the proof given
in a similar context in ref. 27. Actually, what we need is to give an
asymptotic expansion of the solution at co. For this we choose a large ball
B containing the supports of ¥ and ¢ and with a radius greater than ﬂ
The solution u we have found in the preceding proof is an L? solution of

u/0B=r; (—d+|x|*/4—m2+ DHu=0, xeCB (2.10)

where r is the C*®-vector field on 0B defined as the trace of u on 8B.
We observe that this system is a diagonal system and we can now work
components by components and the situation is reduced to the scalar
case which is essentially treated in ref. 27. Let us establish the following
proposition (for the scalar case):

Proposition 2.4. The L? solution u of

u/oB=r; (—4+\x1*4=m/2+u=0, xeCB  (2.11)
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satisfies

u(x) = exp(—[x|?/2) |x| =/ h(x) (2.12)
where A(x) is C® and satisfies

D?h(x)=0O(|x| ~'), Ve N™ (2.13)

Proof of Proposition 2.4. As in ref. 27, we observe by the maximum
principle that the operator K which associates to r the solution u of (2.11)
is monotone. In particular, if we introduce

ug=K1 (2.14)

we get the positivity of u,.
We write the general solution u in the form

u(x) = uo(x) j(x)

and we get from the maximum principle that j is bounded. We observe also
that using techniques of differential equations, we can get a complete
asymptotics of u, and of its derivatives at co. Observing that j(x) plays the
role of exp k in Section 1 in ref. 27, we see that the proof given in this
paper between (1.10) and (1.18) is unchanged and gives the result. ||

Using this proposition, for each of the components of the vector field
u, we get immediately Proposition 2.3. |

Remark 2.5. Dependence with respect to a parameter s. We observe
here that, under the conditions of Proposition 2.4 (assumed to be uniform
with respect to s) and the conditions added in Remark 2.2, we obtain that
(2.9) is also true with v replaced by d,v. The only point to remark is that
the restriction to @B of u is regular in (x, s) according to Remark 2.2.

3. ESTIMATES BY THE MAXIMUM PRINCIPLE
{PRELIMINARIES)

3.1. Introduction of the Basic Equation

In this section (and the next one), we forget the explicit reference
to m, but let us emphasize that all the dependence on this parameter is
controlled very explicitly once the norms are chosen. In particular, we
never use the general result of equivalence of the different norms on a
finite-dimensional normed space, because the constants appearing in this

822/74/1-2-24
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equivalence depend in general on the dimension. We shall work with a
function @ of the form x%/2 + ¥ with ¥ compactly supported, and we shall
use in this section the results of existence given in the preceding section.
In particular, we shall always have the property, when we have to apply
the maximum principle, that the functions tend to 0 at co. Our problem is
here to deduce universal estimates relating the solution of the equation to
the assumptions. These universal estimates will allow us in the next section
to justify estimates in the general situation by a control of the cutoff
argument. If g is a C* function with compact support, we shall meet in
Section 6 the problem of finding a contant b and a vector field v such that

g=b+v-V, d—-div, v for xeR™ (3.1)

Then we shall see that it is natural to derive with respect to x and that we
shall find this constant after using, for example, that

g(0)=0, V.#(0)=0
We then obtain the equation (where v is a vector field on R™)
0,8=10;(v,0,9—0,v))
(with the usual conventions of summation) and
0,8=1(0,0,)- (0,9 +v,-8;6—37,v,)
If we look for a v as a gradient, we observe that

2, _ a2
6,‘jtv,—6,‘,vj—

and that
0,0,=0,v,
and we obtain the equation
w=(—d4+Vd-V)v+ (Hess ®)v (3.2)
with
w=Vg (3.3)

Equation (3.2) is the equation that we discussed in Section 2 and we call
it the “basic” equation.
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3.2. On the Uniqueness and the Existence of
*Gradient Solutions’’

In order to be coherent, we recall that we have to verify first that if v
is a solution of (3.2) and if w is a gradient, then v is a gradient, that is,
there exists a function f such that v =V/. This will be obtained also as an
application of the maximum principle:

Proposition 3.1. Let v a C3-solution of (3.2) s.t. all the derivatives
of v of order <2 tend to 0 as x| — co. Let us assume that

(Hess @)(x)=I/C  (with C>0) (3.4)

If w satisfies d,w,=0,w,, then the same is true for v.

Proof of Proposition 3.1. As a preliminary remark, we explain how
to recover the uniqueness of v through the maximum principle. For the
moment, the choice of the norm on R™ is not decisive and we choose the
[? norm. Because v tends to 0 at co, we can consider a point x, at which
flo(x)| is maximal. Taking the scalar product in (3.2) with v(x,), we get the
equation

(w(x) | v(x0) ) = (=4 + V@ -V){u(x) | v(xo)) + {(Hess @) v(x) | v(x0)>
(3.5)
Taking x = x,, we obtain
{wlxo) | v(x0) ) 2 {(Hess @)(x;) v(xo) | v(x0)> (3:6)

where we have used that (v(x) | v(x,)) takes its maximum at x,. We use
now the strict convexity assumption on @ given in (3.4):

sup llo(x)ll < C sup [fw(y)ll (3.7)

and in particular the uniqueness of v.
In order to prove the proposition, we derive once again the equation
with respect to x,, and we get

Ow;=0,®-0jv;+v,-3}, ,®—0yv,+0;,D-0,0,+0,0,-0; , @ (3.8)

1i% 1 ji
Let us introduce
vy =(0,v;,— 0,;v,)/2; wii=(0,w;—0;w;)/2

the antisymmetric parts of the matrices (d,v;) and (,w;). We then deduce
from (3.8) the following system:

wi=(—02+ 0,® -0, o5 + (0, P)vi5+ vy -0, (3.9)
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This new equation can be seen as an equation between antisymmetric
matrices, which we write

W =(—A+V®.V)V*+ (Hess ®)o V* + V*o(Hess &) (3.10)

We use again the maximum principle and take the Hilbert-Schmidt
norm on the antisymmetric matrices. We recall that this is the norm
attached to the following scalar product (we work with real matrices):

Vi, V)= —t(VyoV,)

As in the proof of (3.7), we get at a point x, where | V.| is maximal the
inequality

(W(x) | V¥(x,)> 2 —2 tr((Hess @)(x,)° V(x,)° V(x,))
and finally
sup [ V**(x)I <2Csup [W*(x)] § (3.11)

4. EXPONENTIALLY WEIGHTED ESTIMATES FOR
HIGHER-ORDER HESSIANS

All estimates are uniform with respect to m, unless otherwise specified.
Let 2 =%" be a set of weights p: {1,.., m} — 0, + co[ satisfying

1
P UER=p'u' !, ;e.@, 0<r<l, lpeR, VYie]0, +0]

(4.1)
Let

Re={(prrr PL)ER" peR, F{l,.. k})} (4.2)

Here p4(v) =Hjej p;(v), pp=1.

We shall also need some extra parameters s,,..., s,, belonging to
some compact set & in R”, and we associate a weight §,€ # to each s;.
Following the definition introduced in ref. 29, a function ue C*(R™; R)
is called O-standard (in the parameter-dependent sense) if (uniformly in
L x p, p,s)fork>1

k
V0 6,® - ®1,5 =0 (1) T 1], (af:=nas,) (43)
i=1

le L
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when

1 .

1=Y—, 1<, Tlp (4.4)

Pj

and
((B)rs Provws P)E R4 4 1) Pi<h
Here we recall also that it is convenient to write
tl(a_\') e tk(ax)u= <Vku(x), tl ® ot ® tk>

and that 4, V, and Hess refer to derivations with respect to x.
Let us now come back to our basic equation:

g=(V®.0,—hd)f—c, ¢ = const (4.5)

Under suitable assumptions on &, we shall show that fis 0-standard when
g is. The assumptions are:

& satisfies (4.3) for L, x, p, p, 5;, k, but here with the additional
condition that

k=2 for L=y (4.6)
and
I6e[0, 1[ s.t. |[Hess @(x)—I| 2un S 0 4.7)
for pea, I1<p<g oo, xeR™, se¥
We have

1,(0,) -+ 14(0,) 05 (VP -Vf)
=V&-0.(1,(0,) - 1,(9,) &5 f)

k

+ Y <00 VD, 1,(8,) - 1,(82) - 14(3,) LV D

+ Y (t,0,)07 V&b, 1,,(8,)0F Vfy  (48)
JouX={l.kl. FaX =0
,}u.}?’:L.in.ﬁ?:
#H =L= N <hk—~2

Here we notice for later use that the sum of the first two terms of the r.h.s.
of (4.8) can also be written as

VO -0.(1,(0.) - 1:(8) 87 /) +hCVROS £, 1,® -+~ ® i)

k
+ Y (V1@ - ®(Hess@—D) 1,® - ®1,>  (49)
j=1

j=
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Proposition 4.1. Assume that g is O-standard and that (4.5) has a
smooth solution f such that V¥f(x) =0 as |x| -» oo for every k> 1. Then f
is O-standard.

Proof. Differentiating (4.5) and using (4.8) and (4.9), we get
(V¥olg, 1,® - @)
=(VP -0, —hA) (VO £, 1,® - ® 1))
+hVFOEu, 1@ - @1

k
+ Y (VLS 0 ® - ®(Hess 81 ,® - ® 1)

J=1

+ Y (1,007 V@, 1,.(9,) 07 Vfy  (4.10)
FoX={l.. .k}, FrnX =
FuX =L FAFX=

We proceed by induction over L, adding an element stepwise, and for each
L, we make an induction over k=1, 2,...:

Step 1. Let L=, k=1. We observe that we have p, =1. Then
(4.10) reduces to
Vg, 1,>=(V® -0, —hA)VSf, 1, 5)+ VS, 1, + (Vf, (Hess @ — D)1, )
(4.11)
and we are supposed to estimate |Vf| ..

Let mgy = sup, |Vf(x)|,. If my=0, there is nothing to prove. If my #0,
let x, be a point where my= |Vf(x,)| and let 7, /' be a normalized vector
with mg= (Vf(x,), £,>. Then (V& -3, — hd) VS, t,>)=0 at x,, so (4.11)
and (4.7) give

(1—8)my < sup |Vg(x)|
xeRM
Since g is O-standard, we obtain (4.3) [under the assumption (4.4) which
gives p, = 1] in the special case L=, k=1.

Step 2. Let L=, k=2 and assume that (~4.3) and (4.4) have been
established for L = ¢ and for k replaced by any k < k. Now (4.10) reads
Vg, 1,® - @ 1)
=(V® -0, —hA) V¥, 1,® - @) +k<(VS 1, ® - ® 1)

k
+ Y V1,® - @[Hess P(x) -1 1,® - @1,
+ ) 1,0 )VD, 1, (0,)Vf) (4.12)

Juf={l,...‘kl,jn.x’=®
#H <k—2
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Let 1=3% (1/p)), 1<]_[J’-‘=l Pjs (P1ses Pi) € By, which is (4.4) in this case.
In the last sum we have # # (J, so applying the induction hypothesis
and (4.6), we obtain

|t;(6.r)v¢|p.p=0(l) H IthPj-ﬂj
je s

1 1 1
if =% —, p<[]0r; <_’ (pj)l>€'@l+#1
P jesPi jes p
'tx(a\’)vflql/p=@(1) l_[ ‘tjlpj,pj
jeX
1 1
if == —, 1<p- [l pp (0 (P))ER, 4 n
9 jexPi jex

A possible choice of p is p=]];. , p;, and we see that

k
(ty(8,) VD, 1,(0)Vf>=0(1) ‘l—[ 12,0

Using the maximum principle, we can then conclude as before, introducing

my = sup V() ,® - @1,

(xR, 1475, = 1)

Step 3. Let L#F and assume that (4.3) [under the assumption
(4.4)] has been established with k, L replaced by k, L, with Lc L, L#1L,

and no restriction on k. We shall then establish (4.3) for k=1. (4.10)
becomes

1(8,) 07 g= (V@ -0, — ha) (VoL f, 1,))
+ (V3L f, 1)+ (VoL f, (Hess ®—1)t,>
+ ) (t(9,) 07 Vb, 0F Vf )

FuX =L Fn¥ =0
H %L

+ )3 (87 Vb, 1,(8,) 87 Vf >  (4.13)
Ful =L FnX =0
N AL

According to (4.4), we shall take
=1, 1<<H ﬁ/)Pl, pi< Py, ((ﬁl)leLapl)E'%(#L-Fl)
lel

The general term of the second to last sum in the r.h.s. of (4.13) can be
rewritten as
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(1,(8,) 87 V&b, 0F Vf )
=V b, 1,07 Vf>=0(1) |t,1,,,10F Vfls .
if 1 << 1_[_ ﬁj) P1P'1s ((ﬁj)jej, Pis Plx)e‘@(#}+z)
je S

On the other hand, by the induction hypothesis
1 . 1
|a:ivf|oo.pi=(9(1) if 1<(I—I P,) A <(pj)jei’_,>e'@(#i+l)
Y pj 1

exX

The choice p =[], # 9, satisfies the requirement above and we conclude

that the second to last sum in (4.13) is @(1) |¢,], ,,- In the same way, we

can estimate the last sum, and using the maximum principle, we obtain
(Vos £ty =0(1) |11, ,

Step 4. Let L+ &, k=2, and assume that (4.3) [under the assump-
tion (4.4)] has been established for all k, I, with L< L, L+ L, and for all
k L, with 1 <k<k—1.

Take j;, p;, p; as in (4.4). We shall estimate the general term in the
last sum in (4.10). For suitable (p, p) and with 1/p+ 1/p’ =1, the modulus
of this term can be estimated by

|1 4(8,) 87 V@I, , 1t ,(3.) 87 Vfl,. .,
Moreover, since £ # & when ¢ = &,
It,(2,) 87 V&,

(1
= Z —
P jesbi
( )7 (p/).l"‘)eg?#,}+ #£5+1

(o) e),

=0 [T I4l,,, if
jeJs

.

|l_;((ax) aj? Vflp’,l/p

1 1
Losl
p jefpj
=0(1) l_[ |tj|p,-.p,- if (( ;)i,(p;)x’p)e'@#i+#f+l

jex 1<(jg? ﬁj)(,gr p,)p



Correlation for Kac-like Models in Convex Case 367

The choice of p, p’ is then clear, and with p=(I];. 5 5;)(IT;c, p;) the
conditions involving §;, p;, p are also fulfilled. The last term in (4.10) is
therefore (1) J’.‘=1 |15, and after that verification we can apply the

maximum principle as before. ||

Remark 4.2. If we want, for example, to have (4.3) for f corre-
sponding to #L <1, k<2, then we need only to have the same estimates
on g for #L <1, k<2 and the corresponding information about & for
#L<land 2< #L+ k<4

5. UNIFORM ESTIMATES (THE GENERAL CASE)
We recall that under the weak assumptions (2.2), (2.3)

[0sVP|<C, VaeN™ (5.1)
0iw] < C, Vae N™ (5.2)

and
Hess ®>p>0 (5.3)

(for some 0 < p < 1), we have proved in Section 2.1 the existence of a C*
vector field v for a given w. Moreover, under the additional assumption
that w and ¥ are with compact support, we have proved (2.4), that v and
all its derivatives tend to zero when {x| — oo, and in Section 3.2 that v is
a gradient if w is a gradient and a precise control of norms on v under
suitable assumptions on w and ¥ (see Section 4). In this section, we want
to relax the assumptions of compact support used in the preceding section.
For this we introduce as in ref 27 a family of cutoff functions y =y,
(e€[0,1]) in CP(R) with values in [0, 1] such that

x=1 for |1 <e! 54)
() < Ceg/lt]®  for keN '

We can take, for example, yx(t)= f(¢In(|¢])) for a suitable /. We then
introduce

Y. (x)=xAlx)¥ (5.5)
and

wo(x) =V(x.(I1x]) g) (5.6)

We first verify that the assumptions in Section 2 are uniformly satisfied
for all the family of ¥, and w,.



368 Helffer and Sjostrand

The Hessian of &, is uniformly minorized. We have indeed

Hess ¥=2p—1
Hess ¥.(x) = (p~1) x.(Ix]) — Ce

for all ¢ and some constant C. It follows immediately that
Hess @, = (p — Ce)

If we choose p’ < p, then we observe that the condition (5.3) is satisfied
with p replaced by p’ for ¢ small enough. Here we emphasize that our “¢
small enough” is possibly m dependent. It is also easy to get the existence
of C,>C,, aeN"™, such that, for all ¢,

(65 V¥ < C,

for all o and the same property is true for the family w,. Finally, we
observe, under the assumptions (5.1)~(5.3), that the family of vector fields

e dﬁ
=exp ——w
qe P—7W

is bounded (by a possibly m-dependent constant) in B(R™; R™) for any k.

Boundedness of u,. The proof given in Section 2 gives first a
uniform control of the solution u, in B® (take the scalar product with u,
and use the uniform strict convexity). We then deduce that

Ve, |? 5
—d+ U=,

where
AP
2

£

qs=q5+ MC—HCSS ¢e U,

is bounded in B° Taking again the scalar product with u,, we get the
uniform control of Vu, and of (V®,)u, in B°. We then obtain easily a
uniform control of «, in B'. Observing now that

Vo, -V =Vy, ¥+ (1,—1) V¥

is uniformly bounded with all its derivatives, this permits us now to see

that
( Iprlz) )
_A + 4 uczqe
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where

|V, — V|2 (Vo,— V) - (Vd,)
+ u,— u,

4 2

is bounded in B°. By classical results on the harmonic oscillators we get
immediately that u, is uniformly bounded in B2 This property of u, permits
us to get now that §, is bounded in B' and we can continue by a bootstrap
argument. We have consequently obtained that

4.=4.

u, is uniformly bounded in B* for any k (5.7)

Convergence of u_.. We shall now analyze the convergence of u,
to u.
The first point is here to remark that

9. — qoll o< Ce (5.8)
We have indeed
g.—qo=[exp(— P, )(w,—w)] + {[exp(— P,) —exp(—D)]w}

If we observe that for a suitable constant C, we have for all ¢

2
¢£(x)>x7—c

the two terms are easily controlled. For the first term we have the bound

1% |Lexp(— @) w, = w)I(x) < D [xI* [w] (1= x)(x) exP<_%>

-

< De x|+ |w] exp(—%)SD'e

For the second term, we write
2

¥ Lexp(— @,) —exp( = @)w]x) < C x1¥ exp ( — 7 ) 101 = 200N - #00)

2

< De |x|* 2 |w exp(—%)gD’s

The second point is to observe that

Vo|?
(—A+I 4I —A<D+Hessd5> (u,—u)

iy )+ IVo|* Vo, |*
+ (Hess @ — Hess @, )u, (5.9)

) U, + (4P, — AP)u,
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Using that |x|*-u, is bounded in B° for any k, we get easily that the r.h.s.
of this last equation is @(¢) in B® and consequently that (v, ~u) is O(¢)
in B2 Then it is not more difficult to prove that the r.hs. is @(g) in B* for
all k, and we get the property that (u,—u) is @(¢) in B* for all k. We can
now obtain:

Proposition 5.1. Under the assumptions (5.1)-(5.3), the family v,
is convergent as ¢ — 0 to the solution v in C*.

End of the Proof of the Proposition. We just observe that v, =
(exp @,/2)u, and use the convergence of u, to u in C*. We recall also that,
for a given x, @,(x)= &(x) for ¢ smalil enough. |

Once we have this weak convergence result (with no control at o), we
shall apply the estimates of the Section 4 to v,.

We now assume that g is O-standard (w=Vg) and that @ satisfies
(4.6)-(4.7). In particular, the conditions (5.1)-(5.3) are satisfied. We
explain for the moment the case without parameter. Let us consider as
before the approximate family (g, @.). As in ref. 27, we observe now that
the approximate family satisfies the same estimates modulo @(e). This @(e)
is uniform with respect to x, but may depend on the dimension. Let us just
give an example of the technique:

we = x(Ix])w + x:1x]) g(x)x/x|

We observe now that g(x) = x - ¢ w(tx) dr with the assumption g(0)=0. If
B is a normed space with underlying space R™, we get

sup [w(x) 5 < (sup [w(x)|5) + C(e)(sup |w(x)|5)

X X

More generally, if g is O-standard, we get
k
sup NVu 1, ® - @1, )= [(Ok‘#L(l)'*'e@(L.p'p')(l)] H |tj|p,,p,- (5.10)
x J=1

Observing that we have similar properties for the family @, and that
f.(x) tends to 0 at oo as proved in Section 2, we can follow the proof of
Proposition 4.1, and we get uniform estimates for f, modulo @(¢). The
weak convergence result of f, to fin C™ permits us to conclude that f is
0-standard. Finally, we have proved:

Proposition 5.2. Assume that g is 0-standard, and that & satisfies
(4.6), (4.7) and has the form x%/2 + ¥(x) with V¥(x) bounded; then the
solution f of (4.5) is 0-standard.
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Remark 5.3. If &(x, s)=x%/2+ P(x, s) and V¥(x, 5) is bounded in
(x, 5), then Proposition 5.2 is true in the parameter sense. The weak
dependence with respect to the parameter permits us indeed to prove an
analog of Proposition 5.1 with parameters. The proof is left to the reader.

Remark 5.4. The notion of O-standard is very convenient because
it permits us to control all the derivatives, but by looking at the proof we
can also give minimal assumptions in order to control some specified
derivative of f. We shall sometimes use this remark in order to give weaker
assumptions for our statements. For example, the proof of Theorem 1.6
with minimal assumptions will be a consequence of Remark 4.2,

6. THE THERMODYNAMIC LIMIT

In this section we shall analyze more precisely the existence of the
thermodynamic limit and control the speed of convergence of the limit in
the spirit of ref. 27.

6.1. Proof of Proposition 1.1

We recall that we are considering a family
x2
@"(x) =7+ ¥ "(x)

satisfying the following properties:

m(0)=0 (6.1)

V¥, C (6.2)

V(P rm—(gm@ )< C (6.3)
l[a(p D — (e )< C (64)

In order to get the existence of the thermodynamic limit, it is sufficient to
prove a result of “approximative additivity.” It is sufficient to prove that

la(m +n)—a(m)—a(n)| <D

for some D, where we recall that

a(m)= —In U exp[ — ®"(x)/h] dx}
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The assumptions given here seem the optimal if we follow the proof
proposed in ref. 12. We introduce the family
@ mM(x, 5)=(1—5) D" (x)+s[@"(x') + D" (x")] (6.5)
with x=(x', x")eR"*"; se [0, 1].
We shall study the logarithmic derivative of

[ exp ~[0™"(x, s)/h] dx
Rm+n

with respect to s, which is given by
1
_Z_J.Rm+n [as(¢(m.n)(x, S)] exp — [dj(m.n)(x, S)/h] dxtm+m (66)

We have just to prove a uniform bound on this logarithmic derivative with
respect to se [0, 1], m, n. We have

ajq;(m.n)(x, S) — (u{/(m+n) _(W(M)(_B l{/(ﬂ)))
and
(q_’/(m-}vn)_ (g/(m)@ ‘I"")))(x)

m+n

—_-zl

1=

{x, [, (@ — (@ # ) (10)) dz} (6.7)

An integration by part gives

_% {J (0,9 7)-exp — [@™"(x, 5)/h] dx}

- _{f [ agpmen —(wm e we)ix)
[0,1] YR +n
xexp — [@"™"(x, 5)] t dx dt}

1 +n ™m n :
+Z<I[0‘1]IRM+" [V(y! — (Y@ i )))(IA)]
X {[(L =) VE D 4 V(P @ P)] 1)

xexp —[D"™"(x, 5)/h] dx dt))
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We can then use the uniform estimates given by the assumptions and we
get the Proposition. We observe that the constant D with respect to 4 is

o(i/n). 1

Remark 6.1. “Boundary Effect.” This very explicit proof permits us
to see that we can perturb the function ¥")(x) by adding a term of the
form: " satisfying the conditions

(a) ¢"™(0)=0

(b) sup VY (x)|=0(1)m
x (6.8)
(c) sup |4y =o(l)m

(d) sup Wy |p=0(1)m"?

Using Hélder, (d) is, for example, a consequence of (b) and

(€) sup |Vy"™|,x=0(1)

Under these conditions the thermodynamic limit is unchanged by the
addition of y'™.

6.2. The General Strategy

We introduce first a new parameter ¢ and consider the family of

potentials
X2
®"(x, 1) =7+ t¥"(x); te0,1]

and we are interested in the behavior with respect to m of the quantity

a(m, t)= —1In “ exp[ — @ (x, 1)/h] dx}

for t=1.

We shall see that the family @""(x, t) satisfies all the assumptions of
Section 5 in the r-dependent sense. Because a(m, 0) is well known and we
are interested in a(m, 1), it is natural to study the derivative with respect
to 1, a’'(m, t):

1
am t)=2 (0,2, 1)) pim (6.9)
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and we get the information on a(m, 1) by integration over [0, 1] with
respect to t. We are then reduced to the proof that a'(m, t)/m converges
exponentially rapidly with respect to m to a “thermodynamic limit” and
uniformly with respect to t. We forget now an explicit reference to m and
introduce

b(ty=a'(m, t)

Following an idea of ref. 29, we are looking for a vector field v(x, 1) with
temperate coefficients such that

(0,P)Nx, )=b(t)+v({x,1) -V, P(x, 1) —div, v(x, t) (6.10)
and observe that if @ and v satisfy this equation, then
b= —a'(m, t)/h

If we find such a vector field v(x, ), then we get an expression for b(t) by
observing that at the (unique) critical point x(¢) of ¢ we have

b(1)=(9,®D)(x(1), t) — (div, v)(x(2), 1) (6.11)

Good estimates on div, v and on (8,®)(x(t), t) will give good estimates on
b(1). If we define

glx, )= (9,P)(x, 1)

and differentiate Eq. (6.10) with respect to x, we get, as observed in
Section 2, the “basic” equation

V.glx,)=[—4+ (V,D)x, 1)-V,]v(x, )+ Hess, &(x, 1) v(x, t) (6.12)

(assuming v to be a gradient), which was studied in the preceding sections.
Let us also observe that in our example

(Veg)x, )=(V . ¥)(x)

and that we have assumed in Theorem 1.6 that V¥(0)=0, which
implies, using the convexity of @,

x(t)=0
We then get in this case b(¢) by the formula

b(t)= —(div,.v)(1, 0)
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6.3. Remarks on the Critical Points

Here we want to relax the assumption that x(¢)=0. This appears
useful in the study of the magnetization and also in the study of the
Schrodinger operator.

For this we first observe that x(0)=0 and it is consequently sufficient
to study x'(¢). Recall that x(¢) is a solution of the equation

V. ®(x(2), £)=0 (6.13)
Differentiating with respect to z, we get
(Hess, @) - (dx/dt)(t) = —(8,V.@)(x(1), 1) = — (V¥)(x(1)} (6.14)
In particular, due to (1.9) and (1.23),
(dx/dt)(t) e[ (6.15)

We can now ask for convergence properties of this critical point as m tends
to co. The proof can also be considered as a preparation in order to under-
stand in a simpler context what is going on in the next subsection. Let us
also mention that in a related context, the study of the critical points was
made in ref. 29. We introduce the family [cf. (6.5)] &“™"(x, 1, 5), depend-
ing on two parameters (¢, s)e [0, 1]? indexed by the two integers (m, n),
and defined on R™*" by

2

" (x, ¢, 5) =§2—+ {(1—5) P (x)+s[P(x)+ P"(x")]}
for x=(x" x")eR"*"=R"xR" (6.16)
More briefly, we shall write sometimes
x?2 x?
&, 1, 5) :='7+ pomn(x, 1, 5) = >+ tym(x, s)

We work under the assumptions given in Theorem 1.6, but we need much
less, as can be seen from the analysis of the proof we give now. Let us start
again from the formula (6.13), which depends now on the new parameter
s and the critical point is now denoted by x™"(, s). Differentiating with
respect to s, we get

(Hess, @™ ") (x(t, 5), t, s)(0,x(1, 5)) = — {(V (P +7 — @i g piny)
(6.17)

822,74/1-2-25
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This gives us a good control of (0,x(z, s)) in B using the assumptions (1.30)
and (1.29). This means that there exists a constant C such that for any m,
n, t, s, and weight p, , we have

12,57, 5)ll < C (6.18)
Differentiating with respect to ¢ gives
(Hess . @™"(x(2, 5), t, $)(8,x(1, 5)) = — (V¥ ™) (x(1, 5), 5) (6.19)
This gives us a good control of (4,x(¢, s)) in B,
9, x""(t, $) = < C (6.20)
For s =0, we have x"")(t,0) = x"*")(¢), and for s =1, we get
Xy, 1) = (x™(1), x™(1)) € R™ x R"

We now differentiate (6.19) with respect to s and we get for any vector v
in Rm+™

{(Hess, @"™")(x(1, 5), 1, $)(0%,x(¢, 5)), v
= — {(Hess, 8,D'"™")(x(1, ), 1, s)(8,x(t, 5)), v>
= (VI M) (x(1, 5), 1, 5), (3, x(1, 5)) ® (9,x(¢, 5)) @ v
— (V0,2 ™M) (x(t, 5), 1, 5), 0
— (V) (x(e, 5), 8, 5), (8, x)(1, ) ® V) (6.21)

with x(z, s) = x"™")(4, s).
Using these computations and (1.29), (1.28), (6.25), (1.30), and (1.31),
we get that

@51, s) = <C (6.22)

In particular, we obtain for any i€ {1,..,m} and any n >0
1 1
le-"‘*"’(l)—x?’"’(l)l=U f (@2 x\™MY(1, 5) dt ds
0 Y0

£ Cexp —«kinf(i, m —i) (6.23)

But we have seen that x{™*")(1) is independent of i and we get immediately
for any ie {1,.,m} and any n>0

[x{™ (1) — x{™(1)| < C exp —km/2
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This proves that m— x™ is a convergent sequence and that the
convergence is exponentially rapid. We have finally proved the following:

Proposition 6.2. Let @™ be a family of potentials satisfying the
assumptions of Proposition 1.1, (1.22), (1.24), (1.29), (1.28), (6.25), (1.30),
and (1.31). Then there exists y € R s.t. the critical point x™ of ¢ satisfies
for all i the property

|x{™ — y| < Cexp —km/2

This proposition will be sufficient for most of the problems we shall
meet, but if we return to the problem of the study of the thermodynamic
limit we will have to compute the quantity ¥ "(x‘"(1)) and need to prove
that ¥ (x")(1))/m is convergent. In order to prove convergence, we
consider again the family ¢™(¢) = ¥ "(x""(r)) and we observe that

¥"(0)=0
and that
Ay (1)/dt =V M (x")(1)) - (dx"(2)/dt)
and using the fact that (x'™(¢)) is the critical value, we get
dy™(t)fdt = — {x"(1) - [ax"(e)/dr]}/1
= —(m/20) x™ - {d[x{"(1)]/d1}

for any i (we have used here the invariance by circular permutation).

We know already that x!")(r) converges exponentially rapidly (and
uniformly with respect to 7€ [0, 1]) to a limit y(¢). We have just to prove
the convergence of d(x"(¢))/d: for fixed i as m tends to oc. But the proof
is similar to what we do in order to obtain (6.23) and we get

[(dx{™*™/dr)(1) — (dx{™/dt)(1)|
H (32 xmm)(1, s) ds| < Cexp —k inf(i, m—i)  (6.24)

We get, for a convenient choice of i (i=[m/2]), the uniform exponential
convergence with gespect to ¢ of m— (dx{™/dt)(t), which implies also the
uniform exponential convergence with respect to r of m— (x!™)(t)/t.
Finally we have proved:

Proposition 6.3. Under the assumptions of Proposition 6.2, the
function @")(x")/m converges exponentially rapidly to some ¢, € R.
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Remark 6.4. It is clear that we have the same property for
wim(xmYyim. Let us only recall that

(x")m = (x\"), Vi=1,.,m

6.4. Proof of the Existence of the Thermodynamic Limit

We first give the complete assumptions of Theorem 1.6. With the same
notations we add

VD" )%, ) 5,05y <C  forany Beds, (6.25)
VD)X, )l oy i x 55y SC  forany Bed, (6.26)
W3 lmtm _(gim gy 'I""’))(x)]ly,(ﬁlxﬂ'.ms C forany Be%, (627)

We observe first that the assumptions given in Theorem 1.6 permit us
to verify the assumptions of Proposition 5.2, or, more precisely, the
modified version of this proposition suggested in Remarks 4.2 and 5.4. Let
us consider again the family (cf. Section 6.2) with two parameters
(s,,5,)€[0,1]* (but we have changed the notations in order to use the
results of Section 4):

\.2

¢(m.n)(x, Sy, 52) -l

5 +5,{(1=5,) P (x) 4+ 5, [ P(x) + PUx") T}

(6.28)
The corresponding family g™ is defined by
g m(x, 5y, 55) = P (x, 5,)
={(1=5;) P (x) +5,[ P (x)+ FP(x)]Y (6.29)
and we are looking at the equation [see (6.12)]
VP, 53) =V, g7 )(x, 5,)
=[—4+(V,0"").V, ] 0" x, 5., 5,)
+ Hess, @' ™" (x, 5y, 5,) (6.30)
with
V" (x, 51, 8.) =V, f"(x, 5, 5,5)

Let us define now the corresponding weights in the sense of Section 4. Our
family of weights is the following. The class £ is the class of constant multi-
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ples of weights satisfying (1.27) and (1.18), but in this application we shall
only use p, ,=1. But we shall associate to the two extra parameters
(54, 5,) the following family of weights:

py=1 (6.31)
and
6:(J/)=Pmnali)=1 for m<j<m+n
pa(j)=p 632)
o) =Pmalj)=exprinf(j—1,m—j) for 1<j<m

We observe now that according to the assumption (1.22) and due to
the uniqueness of the solution v, we get (with 1=5,)

div o'"™(0, t)/m = (3;v")(0, 1); Vi=1,.,m (6.33)
This permits us, in particular, in order to estimate
b(m, 1)=(8,v{")(0, 1)

to choose i depending on m. In order to get a control of the convergence,
we shall bound (b(m + n, t) — b(m, t)), observing that

is2”i

1
b(m+n, s,)— b(m, s;) =j (02,00, 5,, $,) d,
0

for any ieN st. I<i<m.
We observe now the inequality

|(62 v('m'"))(ov Sl ’ SZ)I

52"

< [exp —x inf(i, m—)]( sup (37,01 ")(x, 51, 82)| w=sz))

wans)
The choice of i=[m/2] and the proof of Proposition 5.2 gives finally
[(b(m + n, t)/(m +n)) — (b(m, t)/m)| < D exp —(km/2) (6.34)

This proves that (b(m, 1)/m) is a Cauchy sequence (uniformly with respect
to ¢) and taking the limit n — co in (6.34), we get finally

l(plimm b(p, 1)/p) — (b(m, t)/m)| < D exp —(xm/2). | (6.35)
Remark 6.5. According to what is proved in Section 6.3, Theorem

1.6 is valid without assumption (1.21). As mentioned between (6.11)
and (6.12), we have just to control the terms 4,0 (x“(s), t)/m=
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Y (x"(1))/m, which was the object of Proposition 6.3, and the term
(div, v"™)(x"™)(¢), t)/m, which was already proved [after a translation
by x'")(1)].

7. PROPERTIES OF THE LIMIT MEASURES

In this section we shall study more precisely the family of measures
1™ introduced in Section 1. In particular we shall analyze the behavior of
these measures when restricted to functions depending only on a fixed
(independent of m) number of variables.

7.1. Existence of the Limit Mean Value

We shall prove in this subsection Proposition 1.7. We recall that we
consider a C* function ¢ defined on R* s.t. Vce C °(R*) that we identify
with a function on R”

(X)) = c(xy, X350y Xg) (7.1)

and we are interested in the behavior of the mean value (¢, of ¢ with
respect to the measure u™ as m tends to oo. We shall only analyze the
convergence of {c¢“>, and the rate of convergence. As in the case of
the study of the thermodynamic limit in Section 6, we arrive naturally at
the study of the equation

c"(x)=b+v(x)-V,D(x)—div, v(x) (7.2)
and we observe that
b=, (7.3)
and also that
c(0)=c(0) = b —div, v(0) (7.4)

Here we use the assumption that ¥ (0)=V¥"(0)=0. As before, we
have to estimate div, (0), but under other conditions. In particular, we
have partially lost the invariance by circular permutation which was very
useful in order to get the existence of the thermodynamic limit. What we
need is to prove the convergence of (tr Hess f)(0), which usually is a
consequence of estimates in £(/®,[') or in L(I®, [?). A more detailed
study will be given in Part II. We concentrate here on the proof of the
convergence.
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As for the study of the thermodynamic limit, we replace Eq. (7.2) by

w=(V®V — A)v+ Hess dv (7.5)

(m)

where w=Ve¢, ¢=c¢"", and v=V/f. In order to apply the results of
Section 5, we first observe that Ve is bounded in B, with B,=/ 2 and

p=p¥ given by
pi(j)=explrd(j, {1,... k})]

where d(j, {1,.., k}) measures the distance of j to the set {1,.., k} in Z/mZ.

We have similar properties for the derivatives of c.

We then obtain, through the proof of Proposition 5.2, in a case
without parameters, the existence of v with the following properties: v*™ is
bounded in B, and Vv =Hess " is bounded in £(B,, B,). This gives
in particular that the map

m — tr Hess f“"(0)

is bounded uniformly. This is not surprising if one thinks of the expression
of the quantity as an integral. But our problem is here to prove convergence.
We observe here that the proofs of convergence seem to be usually based
in the classical literature on monotonicity arguments and correlation
inequalities. We proceed here differently and we hope that this new
approach will give more applications. In order to prove the convergence,
we have to control

tr Hess /" *"(0) — tr Hess f"(0)

in order to prove that tr Hess f"(0) is a Cauchy sequence. Note that, for
the moment, we have not used the invariance by circular permutation,
which is in some sense broken by the choice of the identification we
have made between a function of k variables ¢ and the function ¢™. We
shall use this invariance by circular permutation in a different way, by
playing with the way we realize the identification. Let us introduce, for
I<iS<(m—k),

Ny = (X g g Xp 4 k)
and let us observe that
™=,

We choose now
I=[m/2]
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and we shall compute, for p=(m+n), {c”), by the formula {c¢*),. By
solving Eq. (7.5), with w=Vc?/, we obtain a solution v'»" = Vf») and we
are interested in the computation of

posd(p)=4f PN =3 (Hess /),

i=1
and of
o(m+n)—06(m)

We can forget in the sum all the terms such that
dagi, (m/23) =z m/4

because it is easy to see that the sum of all these terms is bounded by

)y |(Hess f7"),;| < D exp(~km/8) (7.6)

d(i,[m/2]) = m/4

and we now have to study for p=m and p=m+n the terms in the sum
which are “near” m/2.

Let us consider, as in Section 6, the family @ "(x, 5) and the corre-
sponding v™™(x,s) obtained by solving Eq.(7.5) with w=Vc™/
& = d'™")(x, 5). Here we observe that

o,w=0
By the unicity argument, we have
v 0(x, 0) =0 **N(x)  and  v"™"I(x, 1)= " (x")
In particular, we observe that for 1 <i<m
(Hess f™m™(0, 1)),

is independent of n. It is consequently natural to study the expression
)y (Hess(d, £ ™")(0, 5)),;
d(i,[m/2]) < m/4

But we know from Proposition 5.2 (more precisely, from the proof of
this proposition) that (Hess(d, f™™")(0, s)) is bounded [independently of
(m,n)] in £(B,, B,) with

and p=p,,, as introduced in (6.32).
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Integrating with respect to s between 0 and 1, we get

< Y (Hess [0, 1)),,)-( Y (Hess £, 0)),.,.)‘

di,[m/2]) < my/4 d(i,[m/2]) < m/4

< Dexp(—xm/8) (71.7)

([ % @Hess 0,0,

O a(i,[m/2]) < m/4

using the estimates coming from the proof of Proposition 5.2.
Using this with the inequality (7.6), we obtain finally the result. ||

Remark 7.1. The result is still true [at least in the case (1.13)] if
¢ is a function of k variables with polynomial growth. We write indeed ¢
in the form

c(x)=2(x) P(x)

where P(x) is a polynomial and where ¢ belongs to C°. By integration
by parts we can decrease the degree of the polynomials and arrive at the
bounded case.

Remark 7.2. Proposition 1.7 is still true without the assumption
(1.21). According to the preceding proof, we have just to analyze the
convergence of c(x{7) ..., x{¢') ), and recalling that all the components of
x" are equal, we get the exponential convergence from Proposition 6.2.

7.2. Another Look at the Basic Equation

In the preceding subsection, we have seen how Eq. (7.5) appears
naturally in the study of {c¢**),. This equation was studied in Section 2
in the case where @(x)= x?/2 for |x| large. We are again interested in the
integral

1=jc(x)exp[—¢(x)/h] dx

where ¢ is with polynomial growth. Let us introduce [compare with (2.8)]

Vo Vo L. Vo2 hA®
P=(—hd+—|(ho,+—=— )= —n4+—_"—
< o 2)(ha,‘+ 2) R+ >

The first eigenvalué of P is zero and a corresponding (nonnormalized)
eigenvector is exp(— ®/2h). If we now decompose L? in R exp(— ®/2h) @
[exp(—®/2h)]*, it is clear that one can solve

c(x) exp( — D/2h) = P(u exp(— ®/2h)) + b exp( — B/2h) (1.8)
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with b e R, which is uniquely determined by

b llexp(—®/2h)|| 72 = (c exp(—P/2h) | exp(— B/2h))

that is,
b_jcexp(—rp/h)dx_
~ [exp(—®/h)dx

{ed
Of course, because
exp(®D/2h) Pexp(—P/2h)=(—hV + VD) - (hV)=h(—hd + VP -V)
(7.8) is equivalent to the usual equation
c(x)y=(—h4+VD -V)hf(x))+b (7.9)

The operator (—hd +V®-V) is self-adjoint in L2(R™; exp(— ®(x)/h) dx),
with a discrete spectrum. Its lowest eigenvalue is 0 and a corresponding
eigenvector is given by 1.

7.3. Existence of the Limit Correlation

We want to treat the important case where c(x)=x,-x;. We prove
here a part of Theorem 1.5 which assumes more information on the
structure of the family of functions @

) =B Y Wi xi,) (1.10)

Proposition 7.3. Under the preceding assumptions and if [f| is
small enough, then the correlation

Cor('")(ia j)= <xixj>m’ <xi>m <xj>m
admits, for all pair (4, j) s.t. d(i, j) =2, a limit as m — c0.

We first explain here how we can arrive at the assumptions of
Section 7.1. We have already observed that (x;),, and {x;),, have a limit.
(If we assume that ¥ is even, we have <{x;>,, =<x;>,=0.) A first inte-
gration by parts in the computation of {x;x;) gives

<xixj> = <xi'aj b

We can work directly with this new expression, or perform a new integra-
tion by parts:

(xxy=(—03W) + (8, ¥-8,¥) (7.11)
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In the case where (7.10) is satisfied, we get for d(i, j) =2
{xpx; ) =40;¥-0,¥> (7.12)

which depends only on the variables (x;, x;,, x;_) and (x;, x;, 1, x;_;)
and is independent of m for m large. The assumption on Hess W is made
in order to verify (1.23) and (1.29). All the other assumptions are easy to
verify and we can apply Proposition 1.7. If we want now to prove the
estimate on the correlations, we just observe that, if v, is the solution of the
basic equation corresponding to ¢(x)= x,, then the correlation is given by
{(v,);>, by a simple argument of integration by parts. Then using the
weight p™(j)=exp[xd(j, 1)], we obtain, in the same way essentially that
we arrive at (7.6), the estimate

sup [(v,); (x)| < Cexp —xd(j, 1) 1 (7.13)

We shall come back to this estimate and its improvement in Sections
10 and 11.

Remark 7.4. We have implicitly assumed in the proof that
VW(0)=0. This assumption can be eliminated using Remark 7.2.

7.4. Extension to More General Interactions

In order to get analogous results for the Schrodinger operator in
Part III, we shall need a more general result if we make more general
assumptions on the @’s which no longer have a “finite-range” interaction.
Inspection of the proof of Propositions 7.3 and 1.7 gives that Proposition
7.3 is also true under the weaker assumptions given in Theorem 1.6 and the
following additional condition:

VAP em — (P @ ) 2mxmx8.8SC for any B in %,

(7.14)

We now have to analyze for fixed i/ and j two terms (—6;'1’) and
0,¥-0;¥), which no longer depend on a finite number of variables.

The First Term. The estimate corresponds to different steps:

Step a. We remark that

OGP 5 =405 s 1 e ¥ " Do
and we shall take /=[m/2].
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Step b. We observe that (97, .,%"")x") is exponentially
convergent. This is a consequence of (1.31), which gives for any x in R *"
0% sy, e n T ™MIX) = (004 iy, o ¥ ")) S Cexp —(km/2)
and of the exponential convergence of x{"' to y for any k given by

Proposition 6.2. We have indeed

2 2
|5(7i+/), (j+/)'{’(m)(xm)‘“a(i+/). G+D 'p(m)(}’w-a »I<Cm ly—x‘,'"’l

using the invariance by permutation and (6.25).

Step c. For [=[m/2] we observe that |Va;, , ;. ,P"| is
bounded in /%, with p"”)(p) satisfying
ptm(g)=1 for [g—Ill<m/8
p"™(g)=expxm/8  for |qg—I =m/2
This is a consequence of the assumption (6.25).
In the same way, using the assumption (6.26), we obtain that
V202 1 i+ is bounded in £(/*,/%.m), and by (the proof of)

Proposition 5.2, we consequently get the control of Hess £ *"™" given by
(7.6) with /= [m/2], if we have the control of the family of functions

g(m,n)(x, S) =S(a2 QI[("I+I!)) + (1 _s)(az (I/(m))

i+, (j+1) G+ G+

When we solve the basic equation with
w""'"’(x, S) — Vg(m.n)(x’ S), b= @"""”(x, S)

we have to apply a parameter-dependent version of Proposition 5.2 with
p=1and g=p,,,. We observe that

ax Vg(m.n)(x’ S) — (62 Vlll("'+")) _ ((6(2“’”‘ G V.{/(m))

i+ G+D

=02, 1 e V(P = [P (x) + P (x")])

Here we observe that the assumption (6.27) gives the condition that
9, Vg!"™"(x, 5) is bounded in /7, as needed in order to obtain (7.7). Now
we observe that the control of 8, V3g!™")(x, s) is given using the assump-
tion (7.14), which implies the control of 9, V?g*")(x, s) in L(I*=, 17 ).

The Second Term (9,¥W-9,W). Following the proof which was
made for the first term, we observe that

<5i[II(m) . ajlll(m)> — <ai+[|I/(m) .aj+lq/(m)>

and we take again /= [m/2].
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We prove next the exponential convergence of the expression
V(@i 0y ) ()

For the third step, we observe, using the assumptions (1.9) and (1.29), that
IV(0;,, %" -8;,,%"")| is bounded in /... To end the proof, we observe
the following properties:

Vg™ (x, 5) is in = with g""(x, s)=0,,, """ -6, ,,¥"" (already
observed).

Vigt™™(x, s) is in L(I*) [using (1.28)-(6.25)].

0, Vg™ ™(x, s) is in I [using (1.28)-(1.31)].

Pmn

3, Vg™ "(x, s) is in L(1=,1% ) [using (1.28)-(6.27)].

This permits us to conclude the proof of the statements given at the
beginning of this subsection. [

In the same way, we can probably treat more general correlations (see
Section 13), but we shall have to use more explicitly the theory of the
0-standard functions. We emphasize that for the moment we are just
analyzing the convergence of these correlations. It appears to be a problem
which is partially independent of the problem of obtaining bounds on the
correlations. This problem will be analyzed in Part IL

7.5. Existence of the Limit Measure

In this subsection we shall briefly describe how we can as a
consequence of Proposition 1.7 deduce the existence of a “limit” measure.

Proposition 7.5. Under the assumptions of Proposition 1.7, there
exists a unique measure u'*’ on R™ such that by introducing the
projections w, from R™ onto R*: x - (x,,.., x;), and, for k <m, n, ,, from
R” onto R*: x" — (x,..., x;), we have, for all ¢ in CF(R¥),

lim (c""’),,,=J e dug (7.15)
w

mn o= 0
with

(o)

pit = pt o () !

Remark 7.6. One can reformulate (7.15) by saying that, for any k,
the family of probability measures uf =u"¢(n,,,)""' converges as m
tends to oo in the weak sense to u{™’.
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This type of problem occurs of course quite naturally in statistical
mechanics and in field theory and we refer to the book of Glimm and
Jaffe® for an introduction. At the level of probability theory our reference
is, as suggested in the same book, the book by Billingsley."”’

Proof of the Proposition. By use of Kolmogorov’s Theorem, and
according to the compatibility conditions satisfied by the measures uj'

—1
B e o Mt 1) = B for m>k+1

we can work for fixed & and prove the existence of a limit measure p;°
on R*. The only problem is to prove that

f— lim deu',:'

m — oo

defines a probability measure. One way is to prove that the family
(Y)Y men. m>k 18 relatively compact (for the weak convergence topology)
and Prohorov’s Theorem says that it is sufficient to prove that the family
is tight, that is: For any £> 0 there exists a compact K in R* such that

HP(K) 21 —¢; Vm=k

In order to verify this last point, we observe that if we take K=
B(0, L) = R, there exists a constant C,, independent of m, such that

ui(CK)< C,/L?

For this we observe that (we take h=1)

WCK) = [ expl— 0" dx (] _expl—0(x)] dx

x

1

< —
X732
L Jegxmm

k
(Z |x,|2) exp[ - &")(x)] dx/ [ expl~@(x)] ax
I=1 R

k
<71 (Z |x,|2)exp[—¢<""(x)]dx/j exp[ —&"(x)] dx
L™ e \ /2 R™
But the last sum,
k
Joo (T 112 expl =0T [ ]_expl— @)1 a
R™ \,2) R

is bounded independently of m (make, for example, the integration by parts
as in Section 7.1). |



Correlation for Kac-like Models in Convex Case 389

7.6. Existence of the Magnetization, Regularity

Let us consider the following family of potentials:

®(x, B)=1Y (x,— B)?+ ¥")(x) (7.16)
{

Then (inspired by connected problems given, for example, in ref. 18) we
define the magnetization by

A (m, B)=(1/m)(<15,,/0B)/{1},, (7.17)

Let us now prove Theorem 1.8.

4 (m, B) is convergent (exponentiaily rapidly) to a continuous limit.
In particular, if ¥ is even, then the limit as B tends to 0 is zero. We
observe that

M(m, B)={(x,—B)) (7.18)

It is then immediate to apply Proposition 1.7, observing that all the
assumptions are uniformly satisfied with respect to B if |[W] is small
enough. One point, however, is different because the critical point x"™(B)
is moving with B. But we have seen how to control this problem in
Proposition 6.2. As a consequence, x'\"™(B) is exponentially convergent and
this permits us to solve the difficulty. Because all the proofs are based on
the Cauchy criterion, it is clear that the limit is continuous with respect
to B. |

Remark 7.7. Using Proposition 5.2 and adding in all the proofs
the parameter B in the parameter-dependent class of 0-standard functions,
we can probably obtain the C* dependence with respect to B. In particular
the C'! control will permit us to study the susceptibility which corresponds
to the derivative with respect to B of the magnetization.

Remark 7.8. As in the case of the correlation, we can also analyze
the more general interactions introduced in Theorem 1.6 and without the
condition (1.21).

PART II. PRECISE ESTIMATES FOR THE CORRELATIONS
8. SEMICLASSICAL COMPUTATIONS
Assume @P(x) convex and even. We are interested in

| x;x, exp[ — P(x)/h] dx
[ exp[ —®(x)/h] dx

8.1
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This quantity is equal to ¢, .(h), where we solve
x;x, exp[ —@(x)/h] dx

=c; ((h) exp[ — @(x)/h] dx + hL (exp[ —D(x)/h] dx) (8.2)

or more explicitly
XX, =Cip=0(x, 03 h)(P)+ hdivo (8.3)
We then try formal expansions of the type
ciulh)~clh+cl B2+ -
o~vl o+ -

(vector fields in x).
This gives the equations

xjxk = - <Uo(x, 6.\‘)7 V¢>

o (8.4)
¢ +divog(0)=0
Taking v®=V/f°, we get
X =VP-3,.f°  c'y= —4f%0) (8.5)

so f° vanishes to the second order at 0. The first equation of (8.5) implies
for the Hessians

x;x, = ((Hess ®(0))x, ((Hess /°)))x) (8.6)

Let ¢;, be the m x m matrix:
(8j.k)pg = 6/’] Ok
Then (8.6) means that

£, + & ;= (Hess ©(0))- (Hess /°(0)) + (Hess f°(0)) o (Hess ®(0)) (8.7)

which can be rewritten as

el(Hess 0(0))(8* + 8,\ ')er(Hcss 0(0))=i (euHess w(o))(HCSS fO(O))el(Hess CD(O)))
’ i ot
SO
0
(HCSS fO(O))zj‘ el(HESS 0(0))(£j,k+8k,j)e’(Hess &(0)) dt (88)

—

(This would also follow from taking Hessians of the direct solution of (8.5):

0
L) =] (xolexplt V@ -2,)(x)] dr



Correlation for Kac-like Models in Convex Case 391

Here

0
4f°(0) = tr(Hess fO(0) =tr2 [ e!tHess 00y, pittess 200 gy
0
=tr2[ g, et dr = tr((Hess 9(0)) ' &)

= ((Hess @(0)) ™), (89)

We can now formulate the difficulty: Under reasonable assumptions
((Hess @(0)) '), will be exponentially decaying when |j— k| — co, and in
order to get a satisfactory asymptotic result valid uniformly w.r.t. 7 when
h >0 is sufficiently small, we would like (at least) to control the whole pro-
cedure with exponential weights which decay (or increase) with the same
rate as the decay in ((Hess d5(0))“)jk. It would therefore not be sufficient
to have estimates with weights p for which ((Hess #(0))~") is uniformly
bounded from /7 into itself, as can be understood if we think of the case
when ((Hess @(0)) ~') is something like exp — |j— k|. In this case the norm
in £(17), now with p = p (j) =exp(1 —¢), is O(1/¢). The idea is then that,
in order to control the element at (j, k) of (Hess #(0)) ™!, it is enough to
control the 1:, — [ for suitable weights, and for such weaker estimates we
can hope for a larger class of weights. [If we think about the example
exp —|j—k|, we see that this norm is O(1) for p(j)=exp j, so we have
then avoided the ¢ loss.] We shall see in the next section how to get
efficient [:,—vlf bounds for (Hess @(0))~!. First we end this section by
doing what we did in Section 7.3. We first solve

X, exp[ —@(x)/h] dx
=ci(h) exp[ —P(x)/h] dx+ hZ, (exp[ —P(x)/h] dx) (8.10)

(and here we observe that ¢, = (x> =0, since we assumed @ to be even).
Then, as in Section 7.3, we get

jx,xk exp[ — @(x)/h] dx

= <ck f x, exp[ — B(x)/h] dx) +h <j X, %, (exp[ — B(x)/h] dk))
=i f exp[—P(x)/h]dx+h I (Lo — <dx;, v, ) exp[ — D(x)/h] dx

=CiC; J exp[ —P(x)/h]ldx—h J ve ;(x;h)exp[ —D(x)/h]dx  (8.11)

where v,(x, 0, h) =3, v, ;0.

822,74/1-2-26
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Using that ¢;c, =0, we get the h-asymptotic expansion of the quantity
(8.1):
c;x(h)~ —hv2‘1(0)+ Oulh) + -+

The absolute value of (8.1) is then smaller than or equal to A& ||v, |l ;.
Writing x, = — (v}, V&), differentiating with respect to x, and putting
x=0, we get .

Or,=— 3, vg_‘,(O)a_Wa,p(O)
v=1

or
e, = — (Hess @(0)) v2(0)

(where ¢, is the kth unit vector).
Hence

v)(0)= — (Hess &(0)) ! e,

and —vg_j(O) is (again of course) equal to ((Hess @(0)) '), ;.

9. WEIGHTED /" - /= ESTIMATES FOR INVERSE MATRICES

Consider first the situation as it will appear after conjugation with a
weight. Let D be a diagonal matrix >ry;>0. Let 4 be a matrix (not
necessarily symmetric) with || 4| o) <ro. Let xe R™ and assume for some
je{l,.,m} that x,=|x| and that ((D+ A)x);=0, ie., dx;+(A4x);=0.
Then x;= —(1/d;)(Ax); and we get |x| =x;<(||4]//d;) |x| and lA4ll/d; <1,
so necessarily x=0. Hence we get, under the assumptions D diagonal
=2ro>0 and || 4[| &= <y, the inequality

[x] o < max [x; 9.1)

(D + A)xy %0y 7

We now slightly change the assumptions and let D+ A4 be the uncon-
jugated matrix corresponding to Hess @(x). We still assume that D is
diagonal >r,>0 and we assume that (D + 4) ™' exists and satisfies

1D+ A) 'l gy < Co (9.2)
Let p=p(/j) >0 and assume that

lpdp~! ”g’(/w) <rg
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Consider the equation

(D+A)x=y
which can be rewritten as
(D+pAp~') px=py

We can then apply the earlier discussion and obtain

lpxl. < max |(px),] (93)

(j:yj#0)

Assuming that p(j)=1 whenever y;#0 (so the choice of p will depend
on y), we get from (9.2) and (9.3)

lpx| o € Co | Ve (94)
The nice thing with these estimates is that we do not have to introduce any

factor 1/e, with e=ro— |pAp ~'|| 4=, into the rhs.

10. NEW ESTIMATES FOR THE VECTOR-FIELD EQUATION

We neglect in the application of the maximum principle the problem
at oo, which can be solved as in Section 5. Equations (8.3) and (8.10) are
of the type

g(x)=c—v(x, d,;h)(P)+ hdivy
and if we look for v of the type Vf, we get
gx)=c—Vo .4 . f+hAf
Taking the gradient, we get
w(x)= — (V®)(x)-(0,v)(x)+ h(dv)(x) — Hess ®(x) v(x)

with w=Vg, v=Vf.
We assume that v(x) tends to 0 as |x| - co. We also assume that

Hess @(x)= D(x)+ A(x) (10.1)
with D(x) diagonal and 2r,>0,
lpAG) L™ ey <o (102)
for some weight p = p(j) >0, independent of x. Let us also assume

IHess ®(x) ™| yyey<Co»  ¥xeR™ (10.3)
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Let xo,eR™ be a point where sup, |pv(x)| is attained and denote this
supremum by M. Let je {1,.., m} have the property that |p(j) v,(x,)| = M.
Then (9. v;)(xo) =0 and v;(x,) - (4v;)(x,) < 0. Hence, if we rewrite (10.2) as

pw= —(V®)-(d.pv)+ h(4pv)— (p Hess ®p~")(pv) (10.4)
we get [assuming in order to fix the ideas that v;(x,)> 0] that
p(j) w;(xe) < — ((p Hess P(xo) p~'(pv(xo)));
Adding the assumption that w;(x,)=0 (for the j in consideration), we get
D;(x0) pu;(x0) + ((pA(x0) p ™" )(pv(x0)); < O

and, as in Section 9, we get a contradiction unless M =0. We have then
showed that

sup |pv(x)i<  max |p(j)v;(xo)l (10.5)

xeR™ (. wj{xo)) #0

We apply this to (8.10). Then w is the kth unit vector and if we assume
(after renormalization of p) that p(k)=1, we get from (10.3), (10.5)

sup |pv(x)| < Co (10.6)

xeR™

In other words,

[og, (X)) < Co(1/p()))

provided that p has all the required properties and that p(k) = 1. Combining
this with (8.10), we get

I x;x, exp[ — ®(x)/h] dx| < Coh
fexp[—®(x)/h)dx  ~ p(j)

We shall present in the next section an example coming from statistical
mechanics where these assumptions are satisfied.

(10.7)

11. AN EXAMPLE

As already mentioned in the introduction, this potential appears in a
course by Kac.""® The estimates we give here are reminiscent of ref. 27. Let
ve 0, 1/4[ be fixed, and consider

P(x)=3) x; —2 3 Incosh{(v/2)" (x;+x;, )]
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with je Z/mZ. Then*” Hess @ = I + A(x) with

di(x) c(x) 0 - - 0 Cu(x)
¢,(x) . .o . 0
0 . .o . 0
A(x)= :
. . .. . 0
0 . .. . o 1(x)
C,(X) 0 o 0 c(x) d(x)

with |d,(x)| <2v, |¢;(x)| <V, 4;(0)= —2v, ¢;(0) = —v.
Then, if p(j) >0, we have

lpACx)p ™M oy < sUP W2+ [p()/p(j+ DI+ Lp()p(G—1)])

= 2v(1 +sup [p(/)+ 1/u(j + 1)]/2) (1L.1)

with
1) E (p()p(— 1)) E exp(())) (11.2)

[so 3, w(j)=0, since we are in the cyclic case].
According to the earlier discussion, we are interested in choices of p
with

2v(1 +sup [pu(/)+ Vulj+1))/2) <1

J

or equivalently

sup [u())+1/u(j+1)]/2< (1 =2v)/2v (11.3)

Here we shall take w to be a continuous m-periodic function which is linear
on [j, j+ 1] for every j and which satisfies

m—1

coshw(j)<(1=2v)/2v; ¥ w(j)=0 (11.4)

\]

The question is then to find some further sufficient condition which implies
(11.3). We have
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{lexp w(j)+exp —w(j+1)]
= cosh w(j)+ $[exp —w(j+ 1) —exp —w(j)]
< cosh w(j) + sup(exp —w(j+ 1), exp —w(j)) |@'(j + 3)|
< cosh w(j) + § sup(cosh w(j + 1), cosh w()) @' (j+ )|
<cosh w(j)+ [(1=2v)/2v] [0'(j+ 1) (11.5)

Let wy> 0 be the solution of cosh wy = (1 —2v)/2v. In order to have (11.3)
it then suffices to have (11.4) and

[(1=2v)/2v] |@'(j+ 3)| <cosh wg—cosh w(j),  Vj
or equivalently,

|w’(j + 4)] < [cosh wy — cosh w(j)]/cosh(w,), Vi (11.6)
We have

[cosh wy — cosh w(j)]/cosh(w,)

= {[wo— () eosh ) {

(/)

sinh ¢ dt/[wqy — w(j)]}

If we assume for some j that w(j) >0, we get, since sinh ¢ is increasing on
[0, +o0],

[cosh wy — cosh w(j)]/cosh wy
2 {[wo— w(j)]/cosh we} jwo sinh ¢ dt/w,
0
= {[wo — w(/j)]/cosh we}(cosh wo — 1)/we = [wo — w(/)]/C(v)
with
C(v) = wy cosh wy/(cosh wg— 1)

= (1=2v)/(1 —4v)-cosh~'[(1 — 2v)/2v] (11.7)

A similar discussion holds in the case w(j) <0, so in order to have (11.3),
it suffices to have (11.4) and

lo'(j + 2 <min[(wo — ()], [wo+ w(})1)/C(v) (11.8)

(Notice that (11.4) implies that w(j)e J—wq, wol).
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Roughly we are then allowed to take w approaching w, or —w,
exponentially fast. More precisely, if C(v)>0 is sufficiently large, we can
take w piecewise linear with

w(j)=wo(l —exp[—j/C()]),  je[0,m/d4]1nZ
w(j)=w((m/2)— j), Jjelm/4, mi21nz (11.9)
w(j)= —o(-)), jel—(m/2),01nZ
For this choice of w we get
p(jy=explawg [/l +0O()],  |jl<m/2
Finally, returning to (10.7), we obtain

[ xox;exp — [P(x)/h] dx|
[exp — [D(x)/h] dx

SC(v)hexp(—woljl),  1Jlsm/2  (11.10)

The constant w, seems to be optimal. It might be of interest to push this
even further and get some explicit C,(v).

12. FKG INEQUALITIES WITH THE MAXIMUM PRINCIPLE

In this section we shall discuss with a new approach the celebrated
FKG inequalities.®® The following proposition is the corresponding analog
of these inequalities in our context and is due to Cartier® (we refer also
to refs. 21, 22, and 9 for interesting discussions or presentations of the
material )

Proposition 12.1. If @ is of class C> on R™ and such that
|®(x)] = (]x]*/C — C), for some k, C>0, and if

0°®[0x, 0x,<0  for i#] (12.1)

then we have the following inequality for the correlations attached to the
measure exp — P dx/({ exp — P dx):

XX 20— XD {X;D620 (12.2)

The result is true more generally if one replaces x;, x; by two functions
{g1(x), g2(x)) on R™ which are monotone increasing with respect to each
variable.
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Proof of Proposition 712.1. (In the strictly convex case when the
Hessian is uniformly bounded, using the maximum principle): Let f; be a
solution of

gi(x)=c, + V@ Vf, — 4f
The quantity we want to compute is given by

(8182708100 <82006=40,-Vg21)0

with v, = Vf .
It is consequently sufficient to prove that:

Lemma 12.2. Under the assumptions (2.2), (2.3), and if the
coefficients of w = Vg are positive and satisfy

|0%w| < C,, Voae N™
then the coefficients of v = Vf solutions of Eq. (3.2) are positive.
Proof of Lemma. Let us start from the basic equation (3.2):

w=V® Vv — Av + Hess dv (12.3)

We treat the case where w and ¥ are with compact support. We
decompose v in the form v=v* —v~ where v =sup(0, v;). We want to
prove that v~ is equal to 0. Let x, be a point where ||v~(x)||,> attains its
maximum. We multiply Eq. (12.3) by v~ (x,) and we get

{w(x), v (x0) ) =(VOV —A) v, v (x0) ) + (Hess Pv, v (x,)>  (12.4)

We observe now that x — (— (v, v (xg)») has a maximum at x, and we
get

{w(xg), v (x0) > < (Hess Pv*, v D(xo) — (Hess v, v~ H(xq)

and finally
{Hess ®v~, v )(xy) < (Hess dv™, v~ H(x,)

We observe that the r.h.s. is negative and, if Hess @(x) is positive definite,
we obtain v~ (x,)=0 and the lemma is proved with the restriction on the
support on w and @. The argument of regularization is then analogous to
the argument given in Section 5.
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13. ESTIMATES FOR THE HIGHER-ORDER CORRELATIONS
Let @ and # be as in Section 4. Let v; be the vector fields determined
by
exp(—®/h)(x;— {x;>) dx = —h.?,,/(cxp(—di/h)dx), v;=Vf, (13.1)

Here
[ a(x) exp(—P/h) dx

ay= [exp(— ®/h) dx

(13.2)

We now use that
Z=avid+doavi=a(vid+dovl)+da*vi=a¥, +da" v’
which on forms of maximal degree becomes
Lo=a¥,+da"vi+vida” =a¥,+ (v,dad =a¥, +v(a)
Hence

[ ata)x,— Cx») exp(—@/h) dx = — h [ alx) 2, (exp(— B/h) dx)
= —h | [%,—v,(a)][exp(— B/h) dx]

= j (hv,a) exp(— ®/h) dx (133)

or, in other words,
<(xj_ <xj>)a> = <hvj(a)>

Let j,., jy€{l,.,m} with j, #j,; if a# . (Here {j,,., .} may vary
with m, but k is assumed to be fixed.) We are interested in estimating the
higher-order correlation that we define as

<le,---’ xjk>k = <(ij - <ij >)-- (xjk - <xjk>)> (13.4)

This definition appears for example in the article of Cartier.‘® Using (13.3)
several times, we get <Xx; ,.., X >, is equal to a finite sum of terms of the
form A*~'(v,(x)---v,(x)>, where # 622, £n =0 for a#p,
{L.k}=40U - U4, and ¢ are viewed as ordered sets: If # = (jy ..., j,),
then

v, (x) E 0,(x, 8,) -0, (% 3,)(x;,)
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Let p,e# with p;(j)=1, and introduce the parameter s;e[0, 1]
associated with the weights 4;. Then s;x; is O-standard in the parameter-
dependent sense of Section 4. Then Proposition 4.1 gives the same result
for s, f;. By induction over k=2, 3, 4,.., we shall show:

(I,) For # ¢ =k, we have for all />0

{

<V[U;(X), He® - @1,>=0,1]] 1] 0.,

1
when
!
1<<n [)‘)(H p,), ﬁv<ﬁv, ((ﬁ\');a Pirsens p,)E(@#]_H
ve § 1

with the convention that for /=0 the estimate above reads

1

v, (X} =0O(1)

Proof. In the case k=2, let # = {j,, j2}, v ,(x)=<Vf}, Vx, ). Then

1 1
2 < - — ;; . o - . ;_{ : A _— a 1 - ~ -
v, (x)] P, V7! Py Vx| LAy () inf p; 4,

inf
Fori>1

’l(a.\')"'ll(a.\')<vj;“a ijz> = <Vl+lfjl,vsz®[; ® -1,
] !
=0 Vx5, [T 1] = O [T 1810,
1 1
if
]
ISﬁjlﬁjz <1—ij>5 ﬁjlsﬁjla ﬁjzsﬁjza (ﬁjl’ ,5,'2, Pisees P/)E-@H.z
1

We have then verified (/).
For some k> 2, we now assume that (I,),.., ({,) hold, and we shall

verify (I, ). Let F =(jos jiswr i) F = (1 Ji)- Then
vz =10;(x, 0,) v, (x)= Vv ,(x), Vf; (x))
and using (/. ), we get

U](X) = (9(1) |ijo(x)| 00, py
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when

lg(n ﬁv)pl’ p-.vsﬁw ((ﬁv);,pl)e'@#1+1
ve §

Take p, = p,, where we assume that
B <bip (B (B))ER, .,
f1<(I,., p.)p;,, then
(V0 (x), Y (x)> = O(1) IV, |, = O(1)
Replacing 4, by ,,/[inf([T,. , 3.)- 5,1 we get

1
Vo, (x), ijo(x)>=@(1)m
o 1lie s Pv

For /=1, we have
tl(a.\') T tl(a.\')<VUJ9 VL0>
= Z <tA(a.\')Vv;(x)s tB(a.v)Vf_}o>

AuB={1,.1}
AnB=

[
™

<Vl+ #AU](X), tA® <V#B+lf}0, ’B>>

where (V*E*1f 1,5 is defined by
<<V#B+Vj01 [B>>,s>=<v#8+lf;‘o’ IB®S>

Here the general term in the last sum is

O T 1651w, 1<V*2* s 165

je A

if

1< l_l ﬁ\"l—[ pj'ﬁ,

ve § jeA

ol
VAN
_b’

Moreover,

|[(V*E+ ]ffo’ 150w p=0(1) H |tj|oo.ﬂ/

jeB

401

(13.5)

(13.6)

((Pedveys (P)icas PYER 4yt pavh

(13.7)

(13.8)
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if

1<pfo.

- . 21
: H Pjs Piy S Pjy (Pjo, Ew (pj)jeﬂ)e'%#3+2 (13.9)
JjEB

) -

Assume now that

(ﬁfo’ (ﬁv)ue], Pisess pl)e'@l+#/+l (1310)
1<ﬁlo l_[ ﬁva ﬁjosﬂjoﬁ ﬁ\'sﬁ"
ve g

Choose p=p;, H}=l p;- Then (13.10) gives (13.7), so we have the estimate
(13.6) for the general term in the last member of (13.5). We also have
(13.9) and hence (13.8), so under the assumption (13.10), we get the
estimate O(1) 1,514, for the quantity (13.5). We have then showed

(Iesn) N
Now recall that {x;,..., x; > is a finite sum of terms of the form
hk_I(vllez T D,/l>
with
Ao ug={l.,k} AnS =0 if v#pu, # 5,22
Let
(ﬁjl9"" Pi) € A, P, <P,
Then applying (/) for =0, we get

1

v (x)=001) ————F
’ mfn#e.lv P,

and consequently

!
1
Ortr0n= O 1 Ser——

Hence (for h<1)

X s Xp, D = O(R*~ 1421 (13.11)

!

x[1/C  iof sup [ inf [ 2,)]
= TH ] R v= !
Jru o=l k}(pj'- i”‘_)e kv=1 ue s
(disjoint union) PiyS Py,
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Example 13.1. Let d be a distance on {1,.., m} and let

.@:{p: {1,..,m}— 10, +oo[;M<exp d(u, v)}
p(v)
Put g,(k)=exp d(J, k) and consider
1

SUD (5, 5,,) € 2. 3y, < 3, inf §;, 5,

(X %3,02 = 0(1)

Choose
ﬁjl=exp aj,, ), ﬁj2=exp[d(j1,jz)"'d(jn )]
Then we get
<Xj|1 xj2>z=0(h)eXp —d(jy, J2)

Example 13.2. We make the same assumptions as in the preceding
example, but we shall consider the correlation of arbitrary order k= 2.
As before, we put g;(v)=expd(j,v) and consider {x x. >. Put
p;(v)=exp(1/k)d(j, v), so that

J’ "_IA

B (1r ) €, BN P, VISISK
Assume
{Jisw s} =AU F

(disjoint union) with # ¢, > 2.
Fix a # = _# and consider

lnnﬁ,, Zd

ne y ne,}
We notice that

Y ¥ dnvy+dv,n')=2Y Y dnv)=2[(#J)—1] Y dn,v)

nney nn'eyd ne g
n#En n#n
so that
1
dnv)=—r——— d(n,v) +d(v, n’)
nezj 2[(#'] I]Zn_n'zej
n#n
2y Y dnn)
n‘n;e'/

Y din A\(n)25 T din A\ (n))

ne g ne_ gy
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where we put X" = {j,,.., j,}. It follows that

I
1
[Tinf [] pnzexp= 3 dn, A \{n})
Jj=1 ne g; 2k"51

Using this in (13.11), we get

k
Y min d(j,, jq):| (13.12)

k, 2y a®r

(e X5 = O~ ) exp [

Example 13.3. We keep the same assumptions as in the preceding
examples, but we assume in addition that we are in the one-dimensional
case in the sense that

I<jsisnsm=d(j,n)=d(j, 1)+ d(l, n)

We restrict attention to the case k=3. Then the only decomposition of
H ={Jji, 2, j2} is X = ¢. We may assume for simplicity that j, < j, < j;.
Define p;, p;,, p;, by

VL, JISVE, JaSVE)y jiSvy
In ﬁj. d(v, j;) d(v, j,) d(jy, J2)  dj, Ja)
In )5;‘2 d(jy, Jj2) d(v, j,) d(v, j,) d(j2s j3)
In ﬁj, d(js, j3)  dljzs J3) d(v, j3) d(v, J3)

It is then clear that (p;, j,,, f;)€%; and that ), Py, Pz exp d(jy, Ja)-
We conclude that

g0 X0 X, = O(h*) exp[ —d(jy, j3)]

PART III
14. APPLICATION TO THE SCHRODINGER OPERATOR

14.1. On the Logconcavity of the First Eigenfunction

We first recall that the strict convexity of the potential ¥ implies the
same property for @ = —In u!{"(x).*) We also recall that Proposition 2.1
in ref. 27 gives that if

sup |Hess V(x) — 1|l o2, =0< 1 (14.1)
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then we have

sup |Hess ®(x) — 1|l 42, =6/[1+ (1 —6)"*] (14.2)

In order to apply the results of the other parts, we need the more precise:

Proposition 14.1. If ¥ =x?%/2 + W satisfies the assumptions
of Theorem 1.6 with V') replacing @', then the logarithm —In(u!™) of
the first normalized eigenfunction u!™ of the Schrodinger operator on
R™— 4 + V' satisfies the same conditions with &= —In(x!™) and for
some new constants (independent of m).

We observe that Proposition 14.1 is a consequence of Theorem 2.1(A)
in ref. 27 for (1.23), (1.24), (1.26), (1.28), and (6.25), of Theorem 2.1(B) in
ref. 27 for (1.30) and (1.31), and of Section 4 of the same article to obtain
the missing (6.26) and (6.27). The condition of (1.22) is clearly satisfied
because we are considering the first eigenvector. The condition (1.21) is
not satisfied, but Proposition 6.2 gives what is needed to work without
this assumption. We can also remark that this condition is satisfied if, for
example, V) is an even function [with respect to x - — x. It could also
be interesting to analyze the condition (1.9). This condition is deduced
from (2.18) in ref 27 (with Vy=x7/2 and ¥, = V] and the assumption
(1.9) on V', —V,. The condition (1.8) is not satisfied, but its introduction
is not necessary (see, however, Section 6.2).

14.2. FKG Inequalities Relative to Schrodinger

We have observed how the techniques using the maximum principle
can be used in order to analyze the correlations. We have recalled in
the previous subsection how the assumptions on the potential ¥ of the
Schrodinger operator can be transferred to —Inwu, where u,=u{" is
the first normalized eigenfunction. We shall see here how the properties on
the sign of the correlations can be followed in the same spirit. For this, we
come back to Eq. (2.5) in ref. 27. We write

V& V(Hess &) + (Hess @) (Hess @)= Hess V' + 4(Hess @) (14.3)

We want to prove that under suitable assumptions on Hess V' we obtain
the assumptions of Section 12 for Hess @. We know already from ref. 27
that the strict convexity of Hess V gives the same property for Hess &. As
in Section 12, we decompose P = Hess @ in the form

P=D+P*—P" (14.4)
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where
P (x)=sup(0, ' (x)), for i#}j, Pr(x)=0
P (x)=—inf(0, ' (x)), for i#j, P;(x)=0

i

and we want to prove that P*(x)=0.

This decomposition is an orthogonal decomposition for the Hilbert-
Schmidt scalar product and we assume the following decomposition for
QO =Hess V:

Q=D-0- (14.5)

We observe that this class of matrices has very nice properties, as
described, e.g., in the Appendix in ref. 10. It is then convenient to use the
Hilbert-Schmidt norm as in Section 3.1, but we are working now with
symmetric matrices. Let x, be a point where |P*(x)| is maximal. We take
the scalar product with P*(x,) in (14.3). We then observe that the function

x = tr(Hess @ o P (xq))=tr(P*(x)o P (xy)) —tr(P~(x}o P*(xo))
attains its maximum at the point x, and we get at this point
{(Hess ®)o (Hess @), P* > < (Hess V, P*)
The r.hs. is negative and we get finally at the point x,

tr((Hess @)o (Hess @) P*) <0
We shall now compute
tr(Hess @)o ((Hess @)— P*)o P™)
=tr((D+P*~P )o(D—P )oP™)
=tr((P* =P )e(D—P")oP*)
=tri(DoP*oPY)+tr((P* —P 7 )o(—P 7 )oP™)
=tr((D—P )oPT o P*)+tr(P o P o P™)
From these computations we obtain at the point x,
tr(P*o[D—P~ + (Hess )] P*)<0
2tr(P* o(Hess @)o PY)<tr(PYoP*oPY)

Using the assumption of strict convexity, we get the following inequality at
the point x, [if | P*(xo)|| #£07]:

0<2p<||1PH(xo)ll L7
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where p is the infimum over x of the smallest eigenvalue of Hess &. But if
we deform ¥ on x%2 and keep the assumption of strict convexity, we
observe that we have necessarily P*(x,)=0.

We have proved the following:

Proposition 14.2, 1If

0 < ro < inf Hess V(x) (14.6)

and if Hess ¥(x) is uniformly bounded and admits the decomposition
(14.5), then Hess @(x) has the same property.

Remark 14.3. As in all the proofs we have developed using the
maximum principle, we have to justify the argument by a cutoff procedure
which is here exactly the same as in ref. 27 (more precisely in Section 2,
before the proof of Theorem 2.1). We have first to replace the potential ¥
by a family of potentials

x? x?
e ?+ Xe(x) ( V— 7)
where y.(x) is defined as in Section 5.

14.3. Correlation and Magnetization in the Schrodinger Case

According to Proposition 14.1, we get that Proposition 1.7, Theorem
1.5, and Theorem 1.8 are satisfied if we take & = —In(u{™).

In the case of Theorem 1.8, we are looking more precisely at the
Schrodinger operator relative to the potential

vi(x, B)=1Y (x,— B)? + V(x)
!

We have recalled in ref. 13 how this type of potential appears in the context
of statistical mechanics (starting with the spin models on two-dimensional
lattices introduced by Kac,"'® but adding a magnetic field). We just
recall here that the magnetization, which is defined by [see (7.18)]
{(x,—B)),,, can also be seen, using the Feynman—Heilmann formula, as
(844/0B)(B)/m, where A“"(B) is the first eigenvalue.
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