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On the Correlation for Kac-like Models 
in the Convex Case 
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The aim of this paper is to study the behavior as m tends to co of a family of 
measures exp[-~,l'~(x)] dx ~"~ on R', where q~l,,~ is a potential on R m which 
is a perturbation "in a suitable sense" of the harmonic potential 5-'j x]. 

KEY W O R D S :  Statistical mechanics correlation; thermodynamic limit 
magnetization; maximum principle. 

1. INTRODUCTION 

In recent publications we have given a new insight into old problems 
coming from statistical mechanics. This paper is in some sense the natural  
cont inuat ion  of refs. 12 and 27. The semiclassical point  of view will not  
play an impor tant  role (see, however, Section 8), but  could be useful in 
order to give more precise results. We study here a family of measures on 
R" parametrized by m of the form 

dl ~(') = exp[  - ~ t " ) ( x ) / h ]  dx  I ')  (1.1) 

(where dx ~"~ is the Lebesgue measure on I~" and q~c,,~ is a suitable family 
of C a potentials on ~ ' )  of the type introduced by Kac "8~ and of different 
quantities attached to this measure. We consider first, for example, the 
thermodynamic limit, that is, the existence of the limit (and the speed of 
convergence) of 

2 = - lim In i~t'l(R"')/m (1 .2 )  
m ~ o o  
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We shall denote by a(m) the logarithm of the total measure: 

a(m)= --ln[#m(Rm) ] = - l n { f e x p [ - q S ( " ) ( x ) / h ] d x  } (1.3) 

Most of the time in this article we shall take h = 1, but we refer to refs. 
25-27, 15, 16, and 11 or 12 for studies of the semiclassical limit as h tends 
to + 0. We shall restrict our study to the convex case and study particularly 
the speed of convergence in (1.2) and, if g is a function of k variables, we 
shall study the convergence of the mean value of g as m tends to ~ :  

( g ) 0 o =  lim ( g ) , ,  (1.4) 
n y ~  0o  

where 

(g)r (g) , , ,=f  g dla(ml/f d# ~''~ (1.5) 

As a particular but important case, we shall analyze the case when 

gq(x) = x~ .xj (1.6) 

and will be interested in the behavior as l i - j l  ~ ~ of the correlation 

Cor(i, j ) =  (go)~ - (x~)0o (xj)0o (1.7) 

We shall prove in the convex case (in connection with results of Sokal r176 
mentioned in the book of Ellis r an exponential decay with respect to 
[ i - j l .  Let us now describe the results and the ideas. We first give a simple 
criterion for the existence of the thermodynamic limit: 

P r o p o s i t i o n  1.1.  Let C be a positive constant and let us consider 
the following family of potentials indexed by m e ~: 

X 2 

�9 "~(x) = -~+ 7""~(x) 

satisfying the following properties: 

~("~(0) = 0 

IV,/,r ~ C 

IV(7 'r +'~ - (7'r @ 7'r ~< C 

IA(~ ~ ' + " ~ -  (7 ' r174 7""~))[ ~< C 

(1.8) 

(1.9) 

(1.1o) 

(1.11) 
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Then the thermodynamic limit exists and the speed of the convergence to 
the limit is controlled in D/m: 

12+ [In #~"~(R')/m][ <<.Dim (1.12) 

where D is explicitly computable from C. 

We have used in the proposition the notation 

(~,c,,) ~ ~u~"~)(x) = ~u" ' (x ' )  + ~"~(x") ,  Vx = (x', x")  e R"  x R" 

C o r o l l a r y  1.2. Let W be a C2-function on R z such that VW and 
A W are bounded. Then the assumptions of Proposition 1.1 are satisfied for 

~ " ) ( x ) =  ~ W(x~,x i+l)  (1.13) 
i=1  

with the convention that m + 1 = 1. 

This corollary was obtained in ref. 11 or ref. 12, but similar results are 
of course older (see, for example, ref. 20). 

E x a m p l e  1 .3 .  

W(u, v) = - I n  cosh [x/~ (u + v)] 

This example was one of the motivating examples for our recent studies in 
refs. 25-27, 15, 16, l l ,  and 12 and comes from Kac. 1'SJ The corresponding 
family of potentials is convex for v ~< 1/4. 

In the proof of Proposition 1.1 we introduce the intermediate family 
(parametrized by s e [0, 1 ]) 

C1){m'nJ(x, S) = ( (1  - -  S) (~ |n '  + n) "Jl - S((~(ra)  (~  (~(n}))  

and the idea is to prove the boundedness of the logarithmic derivative: 

~sln fR.+ exp - r  ..... ' ( x , s ) d x = ( O s r  . . . .  ) ( . ,  S)  ) ~blrn, n . 

which is done by an integration by parts based on the trivial identity 

- ~x- = - Ox, exp x j e x p  I " _ �89 z 

We next discuss the more sophisticated methods leading to exponen- 
tial estimates. Our basic idea is to investigate the mean value ( c ) r  of a 
temperate function e by first solving 

c =  ( - V r  (1.14) 
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where b is a constant,  and notice that  by integration by parts we have 

b = ( c ) ~  

Similarly for the correlation 

Cor(c, d ) =  ( ( c -  ( c ) ) ( d -  ( d ) ) ) ~  

of two functions c, d, if u =  uc solves (1.14), then we get 

Cor(c, d) = ( Y d .  Vu,. ) 

and Vu is a solution of 

Vc = ( - V ~  .V + A) Vu + Hess �9 Vu (1.15) 

When �9 is strictly convex (with additional assumptions)  it turns out that  
we can get good pointwise estimates of weighted norms of Vu in terms of 
corresponding norms of Vc. Assume now that  

Hess q~(x) >~ 6o > 0 (1.16) 

I[Hess ~(x)[[ ~tl;~ ~< C (1.17) 

(where all the constants are independent of the dimension m if nothing else 
is indicated) for all p on Z/m7/satisfying 

p(v+ 1) 
e-~<~ <<.e ~, ve7?/(m+n)~_ (1.18) 

p(v) 
for ~c > O, and 

I I I -  Hess qb[[ .~t/;) ~< 6 < 1 (1.19) 

Here I f  is the weighted/~  defined by the norm 

Ix[i; = Ipxl ~ = max Ip(v)x, I 
v 

Then we have the following theorem: 

T h e o r e m  1.4.  If 

Cort"~(i, j )  = ( x i x i ) , , -  ( x i )  m (Xj)m 

then under the assumptions (1.16)-(1.19) we have 

[ C o r " l (  i, J)l ~< C, exp - [ (x  - e) distz/mz(i, j ) ]  (1.20) 

for all m, e > 0 and all pairs (i, j). 
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We shall give in Section 7 a slightly more  general result implying this 
one. In part icular  we get immediately the following corollary. 

T h e o r e m  1.5.  Let W be a C 3 function on R 2 such that  VPW is 
bounded (for p = 1, 2, 3). Then for 

~'~(x)=/~ ~ W(x~,xi+,) 
i=1 

the assumptions of Theorem 1.4 are satisfied for I/~1 small enough. 

The idea of the proof  is to use the max imum principle to estimate 
1l~Tull/~ with p ( j ) = e x p [ ( x - e ) d ( L k ) ] ,  where u solves (1.14) with c = x k  
and d(j ,  k )  = dist z/,,z(.L k ). 

Similar estimates can be given for more  .general correlations. 
A similar method can be used to prove exponential  convergence to the 

thermodynamic  limit. Consider the family ~ ' )  as in Proposi t ion 1.1. Let 
us assume 

V~r/(m)(0) = 0 (1.21)  

and that, for some C, x > 0, and 0 < 6 < 1, the following properties are 
fullfilled: 

~ l ' ) ( x l ,  x2 ..... x , , )  = ~c '~(x2 ,  x3 ..... x , , ,  x l )  (1.22) 

Similarly to the conditions of Theorem 1.4, we impose the following 
conditions that  the intermediate family q~r ..... ~(x,s) satisfies for any 
s~  I-0, 1], m and n in 1~ (m~>l;  n~>l) ,  x = ( x ' , x " ) ~ R  m+'" 

(Hess.,. ~ ..... )(x, s)) >/6o > 0 (1.23) 

IlHess qsI .... ~(x, s)[l~s,)~< C (1.24) 

with 

Bl = ( R  c'~+'~, II "11/~) 

We also introduce the family of normed spaces 

B = I  ~ 
Pm.n 

(with underlying vector space R r and where p ..... 
weights defined on 71 / (m+n)7 / sa t i s f y ing  (1.18) and 

p .... ( 1 ) = p  .... ( m ) = l  

(1.25) 

(1.26) 

is in the family of 

(1.27) 
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We shall denote by ~2 the family of these B's associated to some x 
and we assume 

[IV2(q5 ( .... )(X,S))II~cB.BI<<.C for any B ~  z (1.28) 

and more precisely 

I [ ( I -  Hessx ~l ..... ))(x, s)ll ~(s~ ~< 6 < 1 (1.29) 

Similarly to the assumptions given in Proposition 1.1, we impose also 
the following conditions on (0s~ ( .... ))(x, s) = (T( , ,+ , , I_  (T(, , I@ ~u(,,I)): 

IV(~'t"+')-(~ut")@~c")))(x)lB<~C for any B 6 . ~  2 (1.30) 

[this is a refinement of (1.10)] 

I N 2 ( ~ ( " + " ) - ( ~ u I m ) ~  ~u~'l))(x)ll,_e(nl.n)<~C for any B e ~ 2  (1.31) 

[this is a refinement of (1.11)]. Under these assumptions and other techni- 
cal conditions of the same type for derivatives of order 3 and 4 which will 
be given in Section 6.4 [(6.25)-(6.27)] we get the following theorem: 

T h e o r e m  1.6. Under these assumptions we have 

l a ( m ) / m -  lim a(m)/ml <~ Eexp  - x m / 4  (1.32) 

for some constant E (independent of m). 

This is the analog of Theorem 3.1 in ref. 27. The assumption 

V ~ ( ' ) ( 0 )  = 0 

corresponds to the fact that the unique critical point is supposed to be 0. 
This is automatically satisfied if ~u is an even function. In some cases (see 
the magnetization problem) this condition is not satisfied, but we can come 
back to this case by a translation argument. This problem will be discussed 
in more detail in Section 6 (Propositions 6.2 and 6.3). 

We shall see in Section 14 how this result can be applied in the case 
where qs(") = -ln(u(m)), where u (') is the first normalized eigenfunction of 
a Schr6dinger operator where the potential V ~'~ satisfies essentially the 
same assumptions as in Theorem 1.6. 

Outline o f  the ProoL The theorem will be proved in Section 6.4, but 
we here outline a possible slight variation in the special case where 

�9 ("~(x) = �89 ~ + ~ W ( x .  X,+l) 
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in order to emphasize the role of the correlations. Consider, for instance, 
the two-parameter family 

2 m -  1 

~12"~(x, t, s)= �89 + ~ W(xi, xi+ l) q- tW(xzm, Xl)'}- ( S -  l ) W(xk, Xk + l) 
i = 1  

where dist(k, 1)>~ m/3. Then we shall use the classical formula 

Os3, In fR~, exp _ ~c2, , )dx= <OsO,~ ~2"1 ) - Cor(O,~ 12"~, 3s~ ~z''l) 

Here the first term in the r.h.s, vanishes and we can apply a result of the 
type given in Theorem 1.4 in order to prove that the correlation term is 
(0(1) e x p - K m  for some x > 0 .  Up to an exponentially small term this 
means that lnSex p - ~ d x  is of the form f ( t)+f(s) .  In other words, 
adding an interaction between k and k +  1 and adding an interaction 
between 2m and 1 are essentially independent. Putting four modifications 
at suitable places, we then see that 

In f exp -~b  '2'', dx'Z"'=21n f exp -qs ' " , '  dx 'm~ + (_0(1) exp ~ ~ m  

for some x. I 

We shall also study the family of measures on cylindrical functions 
and obtain: 

Proposition 1.7. Let c be a C ~ function defined on R k s.t. 
Vc~ C~(R k) that we identify with a function on l~" by 

c~""(x)=c(x l ,  x2 ..... x~) 

Then, under the assumptions of Theorem 1.6, the limit as m tends to ~ of 
(c~'~),, exists and the convergence is exponentially fast as in (1.32). 

Another application is the study of the magnetization in the case of the 
following family of potentials: 

�9 r B) = �89 ~ (x l -  B) 2 q- I[JI")(x) (1.33) 
/ 

Then the magnetization is defined by 

rig(m, B)= (1/m)(Oa/OB)(m, B) (1.34) 

or tit'(m, B ) =  ( x l - B ) , , .  

T h e o r e m  1.8. Under the same assumptions as in Theorem 1.5, 
the magnetization ~ ' (m,  B) is convergent (exponentially rapidly) to a 
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continuous limit. In particular, if ~u~,-I is even, then the limit as B tends to 
0 is zero. 

The last statement in the theorem can be interpreted as a statement 
of absence of magnetization in the convex case, which of course is not 
surprising. 

This paper is organized in three parts. Part I is devoted to the existence 
of the various limits mentioned above. Section 2 is technical and devoted to 
the existence and uniqueness of a solution for the "basic" equation 
[cf. (1.15)] 

V g =  ( V ~ V - , J ) v  + Hess q~v 

with v = f t ~ ) = V f ,  where ~ is defined above and g is a suitable C ~ func- 
tion which is slowly increasing. Section 3 is devoted to precise estimates 
using the maximum principle in the spirit of refs. 24 and 27. Here the 
convexity of the family plays an important role. These estimates are first 
obtained for ~ " )  and g 's  with compact support. Section 4 will analyze 
weighted estimates for higher Hessians. The argument of cutoff permitting 
the elimination of this restriction is explained in Section 5. Section 6 is 
devoted to the study of the thermodynamic limit and Section 7 to the study 
of the "limit" measure and the proof of Proposition 1.7. 

Part II is devoted to more precise estimates for the correlations. 
In Section 8, we make a preliminary analysis of the problem using a 
semiclassical heuristical approach. In Section 9, we establish weighted 
11 ~ l  ~ estimates for inverse matrices. In Section 10, we come back to 
improvements of estimates given in Section 3. Section 11 treats one basic 
example which was suggested by statistical mechanics and motivates the 
title of our paper. Section 12 is devoted to a new approach of the sign 
of the correlation in connection with the celebrated F K G  inequalities. 
Section 13 is devoted to the study of the higher-order correlations. 

Part III  is devoted to the Schr6dinger equation and we analyze how 
the results of Part II give apparently new results for the correlation or the 
magnetization. This will be the object of Section 14. 

PART L ON T H E  EXISTENCE OF D I F F E R E N T  
T H E R M O D Y N A M I C  LIMITS AS THE 
D I M E N S I O N  m TENDS TO oo 

2. EXISTENCE OF S O L U T I O N S  FOR A S Y S T E M  OF PARTIAL 
D IFFERENTIAL  E Q U A T I O N S  

Let us consider in this section the problem of solving in suitable spaces 
the following problem: 

w = ( --A + V ~  -V)v + (Hess ~ ) v  (2.1) 
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Here w is a C ~' vector field on R"' and the unknown is the vector field v. 
The aim of this section is to prove the existence of a unique " temperate"  
solution of the equat ion if w is temperate.  More  precisely, we shall prove 
the following proposit ion:  

Proposition 2.1.  If O ( x ) = x 2 / 2  + ~(x) with ~ (x )  satisfying 

for Ictl/> 1 and 

1(8.~ ~)1 ~< C~, (2.2) 

Hess �9 >/p > 0 (2.3) 

then for any C ~ vector field w satisfying 

I(c~.7.w)l ~< C~(1 + Ixl )q" (2.4) 

for every ct E N "  with some C~ and some q~, there exists a unique C ~ 
vector v solution of (2.1) such that  

exp[--O(x)/2]v~ Bt(~'; •') (2.5) 

where, for k, p, m ~ I~, 

nk(Rm; R p) = {ueZ2(R"'); x=d~u~L2(R"; R p) for I~1 + I/~l ~<k} (2.6) 

Proof of Proposition 2. 7. We just come back to an easier situation 
by making the following change of function: 

u=exp(-O/2)v; q = e x p ( -  O/2)w (2.7) 

The system (2.1) is t ransformed in the following system for (u, q): 

( - A + I VOI 2/4 - A 0 /2  ) u + Hess Ou = q (2.8) 

Our  assumptions imply in particular that q is in L2(R";  R"') and we can 
find u as the unique solution of the associated solution of the variational 
problem on the Sobolev space B ' (R" ' ;  R").  We define as usual by duality 
the spaces Bk(R'; R p) for k~Z; k < 0  and using the positivity of the 
opera tor  

( - ~ +. I VOl 2/4 - A 0 /2  ) = (d x + VO/2 ) * (3,. + VO/2 ) 

and the strict positivity of the Hessian given by assumption (2.3), we see 
that the solution u is unique in B~(R'; R") for any q in B-~(~'; Rr,). Then 
classical results (see, for example,  ref. 19) on the global regularity of the 
opera tor  give that  if q is in B~ R'), then u is also in B ~ ( R " ;  R"'). One 
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way here is to use the fact that the inverse is a pseudodifferential operator 
which is continuous from B k into B k § 2 for any k in N. Another way is to 
use the method of the differential quotients. The results announced in 
Proposition 2.1 are then easy to obtain. I 

R e m a r k  2.2. It is relatively classical to prove an analog of Proposi- 
tion 2.1 with dependence with respect to a parameter s. If we consider a 
family q~(x, s)=x2/2+ ~U(x, s) and w(x, s) with (1) ~U(x, s) satisfying (2.2), 
(2.3) uniformly with respect to s, (2) a , T ( x , s )  satisfying (2.2) uniformly 
with respect to s, and (3) w and Osw(x, s) satisfying (2.4) uniformly with 
respect to s, then u and 0~u are in B~(R'; ~") uniformly with respect to 
s in [0, 1]. In particular, (0.~.v) and (&s0]v) are continuous functions of 
(x, s) with values in R"'. 

We observe here that the result is rather weak, but will be sufficient for 
us and in this section we shall give more precise results under the assump- 
tion that ~ and w have compact support and under weaker assumptions 
in Section 5 as a consequence of the maximum principle estimates obtained 
in Section 4. This is the object of the next proposition: 

Proposition 2.3, Under the assumption (2.3), if w and 7' are 
compactly supported, then the solution v constructed in Proposition 2.1 
satisfies the following property: 

10~o(x)l ~ C=<x > -'/2-1=1 (2.9) 

Proof of Proposition 2.3. The proof of the preceding proposition 
gives us only an exponential control. We follow here the proof given 
in a similar context in ref. 27. Actually, what we need is to give an 
asymptotic expansion of the solution at ~ .  For this we choose a large ball 
B containing the supports of u and q and with a radius greater than v /~ .  
The solution u we have found in the preceding proof is an L 2 solution of 

u/OB=r; (--A+JxJZ/4--m/2+ l)u=O, xeCB (2.10) 

where r is the C~-vector  field on OB defined as the trace of u on 0B. 
We observe that this system is a diagonal system and we can now work 
components by components and the situation is reduced to the scalar 
case which is essentially treated in ref. 27. Let us establish the following 
proposition (for the scalar case): 

Proposi t ion 2.4. The Z 2 solution u of 

u/OB=r; ( - z l+ lx l2 /4 -m/2+l )u=O,  x~CB (2.11) 
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satisfies 

u(x) = e x p ( -  Ixl 2/2) Ixl- ~/2 h(x) (2.12) 

where h(x) is C ~176 and satisfies 

D~h(x) = O(Ixl-IPl), V/~ e •"  (2.13) 

Proof of Proposition 2.4. As in ref. 27, we observe by the maximum 
principle that the operator K which associates to r the solution u of (2.11) 
is monotone. In particular, if we introduce 

u o = K 1  (2.14) 

we get the positivity of u0. 
We write the general solution u in the form 

u(x) = Uo(X ) j (x)  

and we get from the maximum principle that j is bounded. We observe also 
that using techniques of differential equations, we can get a complete 
asymptotics of Uo and of its derivatives at oo. Observing that j (x )p lays  the 
role of exp k in Section 1 in ref. 27, we see that the proof given in this 
paper between (1.10) and (1.18) is unchanged and gives the result. II 

Using this proposition, for each of the components of the vector field 
u, we get immediately Proposition 2.3. II 

R e m a r k  2.5. Dependence with respect to a parameter s. We observe 
here that, under the conditions of Proposition 2.4 (assumed to be uniform 
with respect to s) and the conditions added in Remark 2.2, we obtain that 
(2.9) is also true with v replaced by asv. The only point to remark is that 
the restriction to ~3B of u is regular in (x, s) according to Remark 2.2. 

3. E S T I M A T E S  BY T H E  M A X I M U M  PRINCIPLE  
( P R E L I M I N A R I E S )  

3.1. I n t roduc t ion  of  the  Basic Equat ion 

In this section (and the next one), we forget the explicit reference 
to m, but let us emphasize that all the dependence on this parameter is 
controlled very explicitly once the norms are chosen. In particular, we 
never use the general result of equivalence of the different norms on a 
finite-dimensional normed space, because the constants appearing in this 

822/74/I-2-24 
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equivalence depend in general on the dimension. We shall work with a 
function �9 of the form xZ/2 + ~ with ~ compactly supported, and we shall 
use in this section the results of existence given in the preceding section. 
In particular, we shall always have the property, when we have to apply 
the maximum principle, that the functions tend to 0 at or. Our problem is 
here to deduce universal estimates relating the solution of the equation to 
the assumptions. These universal estimates will allow us in the next section 
to justify estimates in the general situation by a control Of the cutoff 
argument. If g is a C ~ function with compact support, we shall meet in 
Section 6 the problem of finding a contant b and a vector field v such that 

g = b + v.Vx �9 - divx v for x e ~m (3.1) 

Then we shall see that it is natural to derive with respect to x and that we 
shall find this constant after using, for example, that 

g(O)=O, vx~(o)=o 

We then obtain the equation (where v is a vector field on R") 

ajg = o / v , o , ~ -  ~,v,) 

(with the usual conventions of summation) and 

If we look for a v as a gradient, we observe that 

a~,jv,=O~,,vi 

and that 

Ojvl = Oivj 

and we obtain the equation 

w=  ( - d  + V O  .V)v+  (Hess O)v 

with 

(3.2) 

w = V g  (3.3) 

Equation (3.2) is the equation that we discussed in Section 2 and we call 
it the "basic" equation. 



Correlation for Kac-like Models in Convex Case 361 

3.2. On the Uniqueness and the Existence of 
"Gradient  Solut ions" 

In order to be coherent, we recall that we have to verify first that if v 
is a solution of (3.2) and if w is a gradient, then v is a gradient, that is, 
there exists a function f such that v = Vf. This will be obtained also as an 
application of the maximum principle: 

Proposition 3.1.  Let v a C3-solution of (3.2) s.t. all the derivatives 
of v of order ~<2 tend to 0 as Ix[ ~ or. Let us assume that 

(HessqS)(x)>~I/C (with C > 0 )  (3.4) 

If w satisfies O~w i = 0;w~, then the same is true for v. 

Proof of Proposition 3. 1. As a preliminary remark, we explain how 
to recover the uniqueness of v through the maximum principle. For  the 
moment,  the choice of the norm on R"  is not decisive and we choose the 
l-' norm. Because v tends to 0 at oo, we can consider a point x0 at which 
IIv(x)[] is maximal. Taking the scalar product  in (3.2) with V(Xo), we get the 
equation 

( w(x) [ V(Xo) ) = ( - A  +Vq~ .V)(v(x)  [ V(Xo) ) + ( (Hess  r v(x) ] V(Xo) ) 
(3.5) 

Taking x = x o, we obtain 

(W(Xo) [ V(Xo)} >>. ( (Hess  ~)(Xo) V(Xo) [ V(Xo)) (3.6) 

where we have used that (v(x) lv(Xo)) takes its maximum at Xo. We use 
now the strict convexity assumption on �9 given in (3.4): 

sup IIv(x)ll ~< C s u p  IIw(y)ll (3.7) 
x x 

and in particular the uniqueness of v. 
In order to prove the proposition, we derive once again the equation 

with respect to x .  and we get 

OiWj=O,~ "02Vj-~VI'O~,j,i~--O~IiVjJt-O~.i~ "OIUj'~-OiOI'O~,j~ ( 3 . 8 )  

Let us introduce 

oO .as _-- (O ivy_  Ojvi)/2; n. as = (OiW j __ OyWi)/2 

the antisymmetric parts of the matrices (O~vi) and (Oiwj). We then deduce 
from (3.8) the following system: 

Wi j a s _ ( _ o 2 . . } _ O l ~ ) . O I ) v i  j -  a s  +(O,tqS)v~.~ +v~S.Ooq~ (3.9) 
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This new equation can be seen as an equation between antisymmetric 
matrices, which we write 

W a S = ( - A + V c b . V ) V a S + ( H e s s ~ ) o V ~ + V ~ o ( H e s s ~ )  (3.10) 

We use again the maximum principle and take the Hilbert-Schmidt 
norm on the antisymmetric matrices. We recall that this is the norm 
attached to the following scalar product (we work with real matrices): 

( V 1 ,  V 2 )  ~ - tr(V,o V2) 

As in the proof of (3.7), we get at a point xt where II Vxll is maximal the 
inequality 

(WaS(x) [ VaS(xl) ) >1 - 2  tr((Hess q~)(xl) o V(x,)o V(xl) ) 

and finally 

sup IIVa~(x)ll ~<2Csup IIWa~(x)ll II (3.11) 
x x 

4. E X P O N E N T I A L L Y  W E I G H T E D  E S T I M A T E S  FOR 
H I G H E R - O R D E R  H E S S I A N S  

All estimates are uniform with respect to m, unless otherwise specified. 
Let ~ = ~ "  be a set of weights p: {1 ..... m} ~ ]0, + o r [  satisfying 

1 
p , t ~ l = ~ p ' i t t - ' ,  - e ~ l ,  0~<t~<l, 2 p e ~ ,  V2~ ]0, + o o ]  

P 
(4.1) 

Let 

~k = {(Px ..... p k ) ~ l k ; p ~ e ~ l ,  J c  {1 ..... k}} (4.2) 

Here p x(v)=1-Ij~.r pj(v), Po - 1. 
We shall also need some extra parameters s I ..... sp, belonging to 

some compact set Y in R p, and we associate a weight t~jet~ to each sj. 
Following the definition introduced in ref. 29, a function ur176 R) 
is called O-standard (in the parameter-dependent sense) if (uniformly in 
L, x, p, ~, sj) for k~>l 

(vkO~u, t lQ  "'" Q t k )  =Ok. ~L(1) l--I ItjIpj.O, O~ := 0,, (4.3) 
j = l  
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when 

and 

k 

1, 1 ~< I-I f~," 1-I Pj (4.4) 

((fi)L, Pl . . . . .  Pk)~'-'~(#L+k), P I ~ P !  

Here we recall also that it is convenient to write 

tl(O,.) "-" tk(Ox)U = <V*u(x), tl @ "'" @ tk > 

and that A, V, and Hess refer to derivations with respect to x. 
Let us now come back to our basic equation: 

g = ( V q ~ . O x - h A ) f - c ,  c = c o n s t  (4.5) 

Under suitable assumptions on q~, we shall show that f is 0-standard when 
g is. The assumptions are: 

q5 satisfies (4.3) for L, x, p, ~, sj, k, but here with the additional 
condition that 

k>~2 for L = ~  
and 

q f ~ [ 0 ,  1[ s.t. IlHessq~(x)-Ill.~,9<~f 

for p~yl ,  l <~p<~ ~ ,  x ~ R ' ,  s e ~  

We have 

/,(O,)..-tk(Ox) Of(V~.  Vf)  

= V ~ -  Ox(t,(Ox).--tk(Ox) O~f) 
k / ~  

-F Z < tj(Ox) " Vcr~, t x(C3.~) " " " t j ( O x )  " " " t k ( O x )  o L  v f  > 
j=] 

+ ~. <tt(Ox) O• V~,  t,r(Ox) Of  Vf> (4.8) 
J wJ,"= { L.. ,k},J r~ar =O 

#...~r = L =,. # . Y , r  <~ k - -  2 

Here we notice for later use that the sum of the first two terms of the r.h.s. 
of (4.8) can also be written as 

V ~  O~(tl(O~)...tk(O~) o L f ) +  k L �9 . . . k < V O s f ,  t l@ . . .@tk> 
k 

+ ~ <VkO~f, t l@ --- @(Hess ~ - I ) t j @  ... @tk> (4.9) 
j = l  

(4.6) 

(4.7) 



364 Helffer and Sj6strand 

Proposi t ion  4.1. Assume that g is 0-standard and that (4.5) has a 
smooth solution f such that Vkf (x ) -*  0 as [xL--* oo for every k ~> 1. Then f 
is 0-standard. 

Proof. Differentiating (4.5) and using (4.8) and (4.9), we get 

<WO~ g, t l |  . . .  | 

= (V~.  0 x -  h~)(<Vk0~ f ,  t, | -.. | tk >) 

+k(VkO~u, t l |  "'" |  
k 

+ ~. <VkOC~f, t~| ... |  ~ - - I )  t j |  .-. |  
j = l  

+ ~, <tt(Ox) O~ V~,/~r(O.,.) O f  Vf>  (4.10) 
j ,-, ~ = { 1,.... kL J ,-, ~ = 0 

# dl" = L ~ # .~g- <~ k -- 2 

We proceed by induction over L, adding an element stepwise, and for each 
L, we make an induction over k = 1, 2,...: 

Step 1. Let L=~Z;, k =  1. We observe that we have P l = l .  Then 
(4.10) reduces to 

<Vg, t, > = (V~ .  0x -- hA)(<Vf, t, >) + <Vf, tl > + <Vf, (Hess �9 - I)t ,  > 

(4.11) 

and we are supposed to estimate IVfl ~.  
Let mo = supx IVf(x)lo~. If m o = 0, there is nothing to prove. If mo r  

let x o be a point where mo = IVf(xo)l and let tt e l  ~ be a normalized vector 
with mo=(Vf(xo) ,  t l ) .  Then ( V ~ . r ? x - h A ) ( ( V f ,  tj))>~O at Xo, so (4.11) 
and (4.7) give 

(1-6)mo~< sup IVg(x)l 
x ,~ R M 

Since g is 0-standard, we obtain (4.3) [under  the assumption (4.4) which 
gives p i >/1 ] in the special case L = ~ ,  k = 1. 

Step 2. Let L = ~ ,  k>~2 and assume that (4.3) and (4.4) have been 
established for L =  ~ and for k replaced by any ~:<k.  Now (4.10) reads 

<V~g, t l |  "'" |  

= ( V ~ . 0 x - h A ) ( < V k f ,  t=| ... |  t , |  ... |  
k 

+ ~ <Vkf, t l |  ... | [Hess ~ ( x ) - I ]  tj| ... |  
j = l  

+ }". <t ~(O~)V~, tjc(Ox)Vf> (4.12) 
J ~ ~Y" = { 1,..., k } ,  J r~ J~" = E~l 

#a t~  ~ < k -  2 
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Let 1 = Z  (l/pj), 1 ~<l--Ik=l Pj, (P~ ..... Pk)e~k,  which is (4.4) in this case. 
In the last sum we have J : ~  ~ ,  so applying the induction hypothesis 
and (4.6), we obtain 

ItflOx)Vr 1-I IOIpj,pj 
j e J  

if t" ~ ,==j2  P ~< I-I P;', , (P,)~' ~ ~ , + # ,  
j ~ J  

)tx(Ox) Vflq.,/p=(9(1) I-[ IOIp,.p, 
j 6 a f  

1 1 
if ~ ~rt'j=--jE2-" I~<P" I-[ P J ' . / ~  (P '(PJ)~r)e~l+#~r 

A possible choice of p is p = ]--[j~ t PJ, and we see that 
k 

(tl(O-,-)VO, t~r(0x)Vf)--tP(1) I-[ [tlp,.oj 
j = l  

Using the maximum principle, we can then conclude as before, introducing 

me = sup (vkf(x), t l |  "'" |  
(x~R m, Itilo.o= 11 

Step 3. Let L 4 = 0  and assume that (4.3) [under the assumption 
(4.4)] has been established with k, L replaced by k, r,, with r, c L, L, V= L, 
and no restriction on k. We shall then establish (4.3) for k =  1. (4.10) 
becomes 

tt(Ox)O~g=(VO. Ox-hA)((VOsf,L t~)) 

+ ( very ,  t~ ) + t ( V O  f ,  (Hess O-I)t~ ) 

+ Z (t,(Ox) O~ y VO, Of V f )  

.,r L 

+ E (O~ y VO, t~(O.,,) Of V f )  (4.13) 
o,T~ # L 

According to (4.4), we shall take 

l <~(H ~,)m, ~,<~,, ((Pl)I~L, P l ) ~ ( # L + I )  p l = l ,  
\ L 

The general term of the second to last sum in the r.h.s, of (4.13) can be 
rewritten as 
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<tl(Ox) Off V~, O f  Wf) 

= <VZOfa~, tl| 11.0, IOf Vfloo.~i 

if l~<(I-I  pj)olo'l, ((pj)j~],pl,p'l)~ll#~+2~ 
\je~ 

On the other hand, by the induction hypothesis 

j e .,r 

The choice p'~ = l-Ii~ar Pj satisfies the requirement above and we conclude 
that the second to last sum in (4.13) is d)(1)I/tit.p,. In the same way, we 
can estimate the last sum, and using the maximum principle, we obtain 

( r o O f ,  t , ) =  (9(1)It, I l.o, 

Step 4. Let L :/: ~ ,  k i> 2, and assume that (4.3) [under the assump- 
tion (4.4)] has been established for all ~c, L,, with L c L, L :/: L, and for all 
/~, L, with l ~ < / ~ < k - l .  

Take ~j, pj, pj as in (4.4). We shall estimate the general term in the 
last sum in (4.10). For suitable (p, p) and with l/p+ lip'= 1, the modulus 
of this term can be estimated by 

It r Off VOlp, o It~c(0x) O f  Vflp,,,/p 

Moreover, since .r # ~ when ~ = Z ,  

It~(Ox) a~ VOlp.a 

=tp(1) l-I Itjl,j.pj i f  
j E ,=,r 

I t~(Ox) Of Vfl.. ,/o 

- ~ ( 1 )  I-I Itylpj.pj if 
j~av 

I=; L 
P J~s P~ 

((RJ)3'(Pj).C'~)E"~#~+#,r 
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The choice of p, p '  is then clear, and with p=( I - I j~ ) t~ j ) ( l - - I j~ /h ) ,  the 
conditions involving Px, PJ, P are also fulfilled. The last term in (4.10) is 
therefore 0(1)I-I~=~]txlpj,p x, and after that verification we can apply the 
maximum principle as before. 1 

R e m a r k  4.2. If we want, for example, to have (4.3) for f corre- 
sponding to # L ~< 1, k ~< 2, then we need only to have the same estimates 
on g for # L  ~< 1, k ~< 2 and the corresponding information about ~b for 
# L ~ < I  a n d 2 ~ < # L + k ~ < 4 .  

5. UNIFORM ESTIMATES (THE GENERAL CASE) 

We recall that under the weak assumptions (2.2), (2.3) 

1O~V~l ~C, vae N" 

IO~wl <<. C= w e N "  

and 

(5.1) 

(5.2) 

Hess ~/, ~> p > 0 (5.3) 

(for some 0 < p  < 1), we have proved in Section 2.1 the existence of a C ~ 
vector field v for a given w. Moreover, under the additional assumption 
that w and ~ are with compact support, we have proved (2.4), that v and 
all its derivatives tend to zero when lxl ~ oo, and in Section 3.2 that v is 
a gradient if w is a gradient and a precise control of norms on v under 
suitable assumptions on w and ~ (see Section 4). In this section, we want 
to relax the assumptions of compact support used in the preceding section. 
For this we introduce as in ref. 27 a family of cutoff functions Z=X~ 
(e~ [0, 1]) in C~(R)  with values in [0, 1] such that 

- 1  

(5.4) 
z = l  for [tl<~e 

Ixtkl(t)l<~C~e/It[ Ik~ for k e n  

We can take, for example, g~( t )= f (e  ln(Itl )) for a suitable f .  We then 
introduce 

and 

~ ( x )  = x=(Ixl) ~ (5.5) 

we(x) = V()c~([xl) g) (5.6) 

We first verify that the assumptions in Section 2 are uniformly satisfied 
for all the family of ~ and w~. 
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The Hessian of #~ is uniformly minorized. We have indeed 

Hess ~e/> p -  1 

Hess ~U~(x) ~> (p - 1) zAIxl)- C~ 

for all e and some constant C. It follows immediately that 

Hess ~ >1 (p - Ce) 

If we choose p ' < p ,  then we observe that the condition (5.3) is satisfied 
with p replaced by p' for e small enough. Here we emphasize that our '% 
small enough" is possibly m dependent. It is also easy to get the existence 
of C', > C,, ~ e 1~ % such that, for all e, 

I(0:. V ~ ) l  ~< C', 

for all ct and the same property is true for the family w~. Finally, we 
observe, under the assumptions (5.1)-(5.3), that the family of vector fields 

q~ := exp - ~ - .  w~ 

is bounded (by a possibly m-dependent constant) in Bk(Rm; R "n) for any k. 

B o u n d e d n e s s  of  u , .  The proof given in Section 2 gives first a 
uniform control of the solution u~ in B ~ (take the scalar product with u~ 
and use the uniform strict convexity). We then deduce that 

where 

~ ~ = q , + - - - ~  u~ - Hess  ~ , u, 

is bounded in B ~ Taking again the scalar product with u,, we get the 
uniform control of Vu~ and of (Vr in B ~ We then obtain easily a 
uniform control of u, in B'. Observing now that 

VcP~-V~ =Vz~. ~ +  (X~- 1 ) V ~  

is uniformly bounded with all its derivatives, this permits us now to see 
that 
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where 

I V ~ - V ~ l  2 ( v ~ - v ~ ) .  ( v ~ )  
q ' = q ~ ' +  4 u~ 2 u~ 

is bounded in B ~ By classical results on the harmonic oscillators we get 
immediately that u~ is uniformly bounded in B 2. This property of u~ permits 
us to get now that ~ is bounded in B l and we can continue by a bootstrap 
argument. We have consequently obtained that 

u, is uniformly bounded in B k for any k (5.7) 

Convergence o f  u . .  We shall now analyze the convergence of u~ 
to u. 

The first point is here to remark that 

IIq~-qollso <<. Ce (5.8) 

We have indeed 

q, - qo = [exp( - ~ ) (  w~ - w) ] + { [exp( - ~ )  - exp( - ~ )  ] w } 

If we observe that for a suitable constant C, we have for all e 

X 2 

~(x) ~> T -  c 

the two terms are easily controlled. For  the first term we have the bound 

Ixl* I [ e x p ( - - ~ . ) ( w ~ -  w)-I(x)l ~< D Ixl k Iwl (1 -x~) (x )  exp - 

<~ De lxl k + l Iwlexp - <~ D' e 

For  the second term, we write 

,x[ k [exp( - -~ , ) - -exp( - -~)w](x )  <~ C lxlk exp (--x---4 )1(1--X~)(x), . I~(x) l  

X -  t 
<~De Ixl k+2 Iwl exp -- ~<D e 

The second point is to observe that 

( - A - t  IV~12 Af lb+Hess~)  

= (q _ q ) +  ([V~ ~[2 IVY, [ 2.) 
4 u ~ + ( A ~ - A ~ ) u ~  

+ (Hess ~ - Hess ~ ) u ~  (5.9) 
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Using that [xlk.u~ is bounded in B ~ for any k, we get easily that the r.h.s. 
of this last equation is tP(e) in B ~ and consequently that ( u , - u )  is d~(e) 
in B 2. Then it is not more difficult to prove that the r.h.s, is (_9(e) in B k for 
all k, and we get the property that ( u ~ - u )  is tP(e) in B k for all k. We can 
now obtain: 

Proposition 5.1. Under the assumptions (5.1)-(5.3), the family v~ 
is convergent as e ~ 0 to the solution v in C ~. 

End of the Proof of the Proposition. We just observe that v~ = 

(exp ~/2)u~ and use the convergence of u, to u in C ~176 We recall also that, 
for a given x, ~b,(x)= ~(x)  for e small enough, l 

Once we have this weak convergence result (with no control at oo), we 
shall apply the estimates of the Section 4 to v,. 

We now assume that g is 0-standard (w= Vg)  and that �9 satisfies 
(4.6)-(4.7). In particular, the conditions (5.1)-(5.3) are satisfied. We 
explain for the moment the case without parameter. Let us consider as 
before the approximate family (g~, ~ ) .  As in ref. 27, we observe now that 
the approximate family satisfies the same estimates modulo (.9(e). This (9(e) 
is uniform with respect to x, but may depend on the dimension. Let us just 
give an example of the technique: 

w~= z~(Ixl)w + z'~(Ixl) g(x)x/Ixl 

We observe now that g(x)= x .  S~ w(tx)dt with the assumption g ( 0 ) =  0. If 
B is a normed space with underlying space R m, we get 

sup I w~(x)l B ~< (sup I w(x)l 8) + C(e)(sup I w(x)l B) 
x .r  x 

More generally, if g is 0-standard, we get 

k 

sup (Vku, t l |  "" |  [(-gk.#Z(1)+e(9(c.,.,')(1)] I-[ Itilp~,oj (5.10) 
x j = l  

Observing that we have similar properties for the family ~ and that 
f , (x)  tends to 0 at ~ as proved in Section 2, we can follow the proof of 
Proposition 4.1, and we get uniform estimates for f ,  modulo (9(e). The 
weak convergence result of f~ to f in C ~ permits us to conclude that f is 
0-standard. Finally, we have proved: 

Proposi t ion  5 , 2 .  Assume that g is 0-standard, and that tp satisfies 
(4.6), (4.7) and has the form x2/2 + ~g(x) with V~g(x) bounded; then the 
solution f of (4.5) is 0-standard. 
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R e m a r k  5.3. If ~(X, s) = x2/2 q- ~(X, S) and V~(x,  s) is bounded in 
(x,s), then Proposition 5.2 is true in the parameter sense. The weak 
dependence with respect to the parameter permits us indeed to prove an 
analog of Proposition 5.1 with parameters. The proof is left to the reader. 

R e m a r k  5.4. The notion of 0-standard is very convenient because 
it permits us to control all the derivatives, but by looking at the proof we 
can also give minimal assumptions in order to control some specified 
derivative of f .  We shall sometimes use this remark in order to give weaker 
assumptions for our statements. For example, the proof of Theorem 1.6 
with minimal assumptions will be a consequence of Remark 4.2. 

6. THE T H E R M O D Y N A M I C  LIMIT 

In this section we shall analyze more precisely the existence of the 
thermodynamic limit and control the speed of convergence of the limit in 
the spirit of ref. 27. 

5.1.  P r o o f  o f  P r o p o s i t i o n  1.1 

We recall that we are considering a family 

X 2 
�9 ~"~(x) = ~-  + ~c'~(x) 

satisfying the following properties: 

~ ' ~ ( 0 )  = 0 (6.1) 

IV.~ ~"'~lt~ <~ C (6.2) 

IVx(7 t ~ ' + " ) -  (~c"~0~ ~uc")))lt, ~< C (6.3) 

]. 't( ~t ~r + n} - -  ( ~ / ( m )  (~  ~E/(n)))[ ~ C (6.4) 

In order to get the existence of the thermodynamic limit, it is sufficient to 
prove a result of "approximative additivity." It is sufficient to prove that 

la(m + n ) - a ( m ) - a ( n ) l  < D 

for some D, where we recall that 

a ( m ) = - l n { f e x p [ - ~ l m ' ( x ) / h ] d x }  
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The assumptions given here seem the optimal if we follow the proof 
proposed in ref. 12. We introduce the family 

~c .... ~(x, s) = (1 - s )  ~r + s[cI)C"~ ') + q~(")(x")] (6.5) 

with x = ( x ' , x " ) e R " + " ;  s e  [0, 1]. 
We shall study the logarithmic derivative of 

~m§ --[~C .... ~(x,s)/h] dx e x p  

with respect to s, which is given by 

-~  ~o+. [a,(~ .... '(x, ~)3 e x p  - [~' ..... '(x, ~)/h] d x "  +"' (6.6) 

We have just to prove a uniform bound on this logarithmic derivative with 
respect to s e [0, 1 ], m, n. We have 

and 

( ~u~m + ,,, _ ( ~l-,~ ~ 7-'"))(x) 

= xl [0x,(gt( , -+, , )  (gtv,,l(~ ~(")))(tx)] dt 
I=1 

An integration by part gives 

1 
-~{Inm+ (0 ,*  r .... ' ) - e x p - [ * " ' " ' ( x , s ) / h ] d x }  

= - {fro,,11 " .... A ( ~ ' ' + " ' -  (gt ' r" '*  7tC"'))(tX ) 

xexp--[qSI .... J (x , s ) ] t dxd t}  

1 
+ ~ (Ito, l, I , ,+ [ V ( ~ "  +"' - (g t 'm '*  gtc"'))(tx)] 

x { [(1 - s )  7 ~ ' + "  + sV(~U~"~ ~ ~U~"~)] }(x) 

x exp - [ ~  .... )(x, s)/h] dx dt))  

(6.7) 
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We can then use the uniform estimates given by the assumptions and we 
get the Proposition. We observe that the constant D with respect to h is 
~(l/h). | 

R e m a r k  6.1. "Boundary Effect." This very explicit proof permits us 
to see that we can perturb the function ~tm)(x) by adding a term of the 
form: ff(-,i satisfying the conditions 

(a) ~,l'}(0) = 0 

(b) sup Iv~tm)(x)lt,=o(1)m 
"~ (6.8) 

(c) sup IA~U')I = o ( l ) m  
.v 

(d) sup IV~kl"~lr=o(1)m 1/2 
. r  

Using H61der, (d) is, for example, a consequence of (b) and 

(e) sup IV@C'~l+ . . . .  ~(1) 
.v 

Under these conditions the thermodynamic limit is unchanged by the 
addition of ~,l-,). 

6.2.  T h e  G e n e r a l  S t r a t e g y  

We introduce first a new parameter t and consider the family of 
potentials 

X 2 

~'~l(x,t)=-~+t~u"(x); tel-0, 1] 

and we are interested in the behavior with respect to m of the quantity 

a(m, t)= -ln {I exp[-~("(x, t)/h] dx } 

for t = l .  
We shall see that the family ~("~(x, t) satisfies all the assumptions of 

Section 5 in the t-dependent sense. Because a(m, 0) is well known and we 
are interested in a(m, 1), it is natural to study the derivative with respect 
to t, a'(m, t): 

1 t)) ) ~,.~ (6.9) a'(m, t ) = ~  ((8,~" '~( . ,  
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and we get the information on a(m, 1) by integration over [0, 1] with 
respect to t. We are then reduced to the proof that a'(m, t)/m converges 
exponentially rapidly with respect to m to a "thermodynamic limit" and 
uniformly with respect to t. We forget now an explicit reference to m and 
introduce 

b(t)=a'(rn, t) 

Following an idea of ref. 29, we are looking for a vector field v(x, t) with 
temperate coefficients such that 

(O,q~)(x, t ) = b ( t ) +  v(x, t ) . V x ~ ( x ,  t ) - d i v x  v(x, t) (6.10) 

and observe that if �9 and v satisfy this equation, then 

b = - a'(m, t)/h 

If we find such a vector field v(x, t), then we get an expression for b(t) by 
observing that at the (unique) critical point x(t) of �9 we have 

b(t) = (O,q~)(x(t), t) - (divx v)(x(t), t) (6.11) 

Good estimates on divx v and on (O,q~)(x(t), t) will give good estimates on 
b(t). If we define 

g(x, t) = (O,~)(x, t) 

and differentiate Eq. (6.10) with respect to x, we get, as observed in 
Section 2, the "basic" equation 

V x g ( x , t ) = [ - A + ( V ~ ) ( x , t ) . V , . ] v ( x , t ) + H e s s . ~ c b ( x , t ) v ( x , t )  (6.12) 

(assuming v to be a gradient), which was studied in the preceding sections. 
Let us also observe that in our example 

(Vx g)(x, t)= (Vx ~)(x) 

and that we have assumed in Theorem 1.6 that V ~ t ' ~ ( 0 ) = 0 ,  which 
implies, using the convexity of q~, 

x(t)=0 

We then get in this case b(t) by the formula 

b ( t )=  - ( d i v x  v)(t, O) 
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6.3.  R e m a r k s  on t h e  C r i t i c a l  P o i n t s  

Here we want to relax the assumption that x ( t ) = 0 .  This appears  
useful in the study of the magnet izat ion and also in the study of the 
Schrrdinger  operator .  

For  this we first observe that x ( 0 ) =  0 and it is consequently sufficient 
to study x ' ( t ) .  Recall that  x ( t )  is a solution of the equat ion 

Vx q~(x(t), t ) = O  (6.13) 

Differentiating with respect to t, we get 

(Hessx ~ ) .  (dx /d t ) ( t )  = - (0 ,Vx~)(x( t ) ,  t) = - (V~) (x ( t ) )  (6.14) 

In particular, due to (1.9) and (1.23), 

(dx /d t ) ( t )  ~ l ~ (6.15) 

We can now ask for convergence properties of this critical point as m tends 
to ~ .  The proof  can also be considered as a prepara t ion in order to under- 
stand in a simpler context what is going on in the next subsection. Let us 
also mention that in a related context, the study of the critical points was 
made in ref. 29. We introduce the family [cf. (6.5)] ~ .... I(x, t, s), depend- 
ing on two parameters  (t, s ) e  [0, 1] 2, indexed by the two integers (m, n), 
and defined on R m+" by 

.X 2 
�9 1 ...... I(x, t, s ) = - ~ - +  t{(1 - - s )  ~ F ~ " + m ( x ) + s [ ~ t l ' ~ ( x ' ) +  ~l" ) (x" ) ]  } 

for x = ( x ' , x " ) e • ' + " = R " •  " (6.16) 

More  briefly, we shall write sometimes 

X 2 X2 
(j~( . . . .  }(X, t, S) : =  T + ~r . . . .  )(X, t, S) : =  2 "~ t~'/( ..... }(X, S) 

We work under the assumptions given in Theorem 1.6, but we need much 
less, as can be seen from the analysis of the proof  we giv e now. Let us start  
again from the formula (6.13), which depends now on the new parameter  
s and the critical l~oint is now denoted by x~""~(t,  s). Differentiating with 
respect to s, we get 

(Hessx r ...... ~)( x(  t, s ), t, s )( O , x (  t, s ) ) = - t (V  x( ~u ~" + " 1 -  ~ l ' l  t~ ~ , 1 )  ) 

(6.17) 

82Z74/I-2-25 
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This gives us a good control  of (Osx(t, s)) in B using the assumptions (1.30) 
and (1.29). This means that  there exists a constant  C such that  for any m, 
n, t, s, and weight p,, . ,  we have 

IlOsx(m'")(t, S)II t~.,., ~< C (6.18) 

Differentiating with respect to t gives 

(Hess~ q~c"'")(x(t, s), t, s)(O,x(t, s ) ) =  - (Vx ~c"" ) ) (x ( t ,  s), s) (6.19) 

This gives us a good control of (O,x(t, s)) in B1 

I}O,x ( .... )(4 s))l/~ ~< C (6.20) 

For  s = 0 ,  we have x(m'")(t, 0)=XC"+")( t ) ,  and for s =  1, we get 

xC"'")(t, 1 ) =  (x(')(t), x(")(t))~ W" x R" 

We now differentiate (6.19) with respect to s and we get for any vector v 
in R (" +") 

( (Hessx  r .... ))(x(t, s), t, s)(O2sx(t, s)), v) 

= - ( (Hess  x Os~ ( .... ))(x(t, s), t, s)(O,x(t, s)), v) 

-- ( ( V ] ~ ( " " ) ) ( x ( t ,  s), t, s), (O,x(t, s))|  (Osx(t, s ) ) |  ) 

- ((Vxc3s~("'"))(x(t,s), t,s), v) 

- ( ( V ]  ~(m'"))(x(t,  S), t, S), (O,X)(t, S) |  (6.21) 

with x(t, s)=x("'")(t, s). 
Using these computat ions  and (1.29), (1.28), (6.25), (1.30), and (1.31), 

we get that  

I(O~sx ~ .... ))(4 s)ll~.,. ~ < C (6.22) 

In particular, we obtain for any i ~ { 1,..., m } and any n >/0 

,x ,"+"l(1)-  x,~)(1)l = l ~ f ~ (OZ,,x,"'"))( t,s) dt ds 

~< C e x p  - x  inf(i, m -  i) (6.23) 

But we have seen that  x l "  + ,o(1 ) is independent of i and we get immediately 
for any i ~ { 1 ..... m } and any n >/0 

Ix~ '+" ) ( l )  - xlm)(1)l ~< C e x p  --xm/2 
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This proves that m ~ x l  ")  is a convergent sequence and that the 
convergence is exponentially rapid. We have finally proved the following: 

P r o p o s i t i o n  6.2. Let ~r be a family of potentials satisfying the 
assumptions of Proposition 1.1, (1.22), (1.24), (1.29), (1.28), (6.25), (1.30), 
and (1.31 ). Then there exists y e I~ s.t. the critical point x c"~ of ~ t ' )  satisfies 
for all i the property 

Ixl " ) -  Yl ~< Cexp - x m / 2  

This proposition will be sufficient for most of the problems we shall 
meet, but if we return to the problem of the study of the thermodynamic 
limit we will have to compute the quantity 7't"~(xtml(1 )) and need to prove 
that ~ut"~(xC')(1))/m is convergent. In order to prove convergence, we 
consider again the family r  ~ t ' ) ( x t ' l ( t ) )  and we observe that 

~ ' ( o ) = o  

and that 

d~km( t )/dt = V x t[t(m)( x('n)( t ) ) . ( dx(ml( l )/dt ) 

and using the fact that ( x t ' ) ( t ) )  is the critical value, we get 

d~b'( t ) /dt  = - {x(m)(t). [dxC')( t ) /d t]  }It 

= - ( m / 2 t )  x l  "~ . { d [ x l " ~ ( t ) ] / d t }  

for any i (we have used here the invariance by circular permutation). 
We know already that x l '~ ( t )  converges exponentially rapidly (and 

uniformly with respect to t �9 [0, 1 ]) to a limit y(t) .  We have just to prove 
the convergence of d(x l " ) ( t ) ) /d t  for fixed i as m tends to oo. But the proof 
is similar to what we do in order to obtain (6.23) and we get 

I ( dx l "  + "~/dt )( t ) - ( dx l ' ) / d t  )( t )l 

f~ 2 (m,n) = (t~,sx ~ ) ( t , s ) d s  ~ < C e x p - ~ c i n f ( i , m - i )  (6.24) 

We get, for a convenient choice of i ( i=  [m/2]), the uniform exponential 
convergence with I:espect to t of m ~ (dxl."~/dt)(t), which implies also the 
uniform exponential convergence with respect to t of m ~ ( x l ' ) ) ( t ) / t .  
Finally we have proved: 

Proposition 6.3. Under the assumptions of Proposition 6.2, the 
function ~(m)(x (" ) ) /m converges exponentially rapidly to some ~o~ �9 I~. 
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R e m a r k  6.4.  It is clear that  we have the same proper ty  for 
~ t " ~ ( x t ' ) ) / m .  Let us only recall that  

( x ~ " ' )  "-/m = ( x l " l ) ,  

6.4. 

Vi= 1,..., m 

Proof of the Existence of the Thermodynamic Limit 

We first give the complete assumptions of Theorem 1.6. With the same 
notat ions we add 

[IV3(q~ ( .... ))(x, s)H ~B,  • B.B> ~< C 

IIV4(r I ...... I)(x, s)[I ~ s ,  ~ B, • n.o~ ~< C 

IIV3( ~g~" +"~ - ( 7/~'~ G ~gl"b)(x)ll..v'lB, ,, B,.B~ <<- C 

for any B e , ~  (6.25) 

for any B~,~2 (6.26) 

for any B ~ _ ~  (6.27) 

We observe first that  the assumptions given in Theorem 1.6 permit  us 
to verify the assumptions of Proposi t ion 5.2, or, more precisely, the 
modified version of this proposi t ion suggested in Remarks  4.2 and 5.4. Let 
us consider again the family (cf. Section 6.2) with two parameters  
(sl, s2)~ [0, 1] 2 (but we have changed the notat ions in order to use the 
results of Section 4): 

):2 
r ...... ~(x, s , ,  s2) = 5-  + s, {(1 - s2) ~ "  + " ( x )  + s2[ ~ ' " ' ( x ' )  + ~u~"~(x")] } 

(6.28) 

The corresponding family g~ ...... I is defined by 

gl ..... ~ (x , s~ , s2)=  ~u~ ...... ~(x, s2) 

= {(1 - s z )  ~ " + " l ( x ) + s 2 [ ~ P l " l ( x ' ) +  ~ul"~(x")] } (6.29) 

and we are looking at the equat ion [see (6.12)] 

V.,.T ~ ..... ~(x, s2) = V ,. g ~ ..... ~(x, s2) 

= [ - Z  + (V,.q~ ~ ..... ~) "V,-] v C . . . .  ~(x, s l ,  s2) 

+ H e s s x  Ct ..... ~v I ..... ~(x, s l , s z )  (6.30) 

with 

v ~ .... l(x, s l , s 2 ) = V , . f  ~ .... ~(x, s l , s2 )  

Let us define now the corresponding weights in the sense of Section 4. Our  
family of weights is the following. The class ~ is the class of constant  multi- 
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pies of weights satisfying (1.27) and (1.18), but in this application we shall 
only use pro. ,= 1. But we shall associate to the two extra parameters  
(sL, s2) the following family of weights: 

~ = 1 (6.31) 

and 

/52(j)= ~ ..... ( j ) = l  for m<~j<~m+n 
(6.32) 

152(j) = ~m.,(j) = exp x i n f ( j -  l, m - j) for l <~ j <~ m 

We observe now that  according to the assumpt ion (1.22) and due to 
the uniqueness of  the solution v, we get (with t=s~) 

div v~"~ t)/m = (aivl~"~ t); Vi=  1 ..... m (6.33) 

This permits us, in particular,  in order  to estimate 

b(rn, t)= (Oivlml)(O, t) 

to choose i depending on m. In order to get a control  of the convergence, 
we shall bound (b(m +n, t ) - b ( m ,  t)), observing that  

1 

b(m+n,  s l )_b(m,  s l )=fo 2 I,~.,~ (c3i.s2vi )(0, s,, s2) ds2 

for any i ~ N s.t. 1 ~< i ~< m. 
We observe now the inequality 

1(~2vl  .... ')(O, s , ,  s2)l 

~< Eexp - r c  inf(i, rn - i ) ] (  sup I(O~s2v I, .... I)(x, s l ,  s2)l ~(1~.1~)) 
~x, s l , s2)  

The choice of i =  I-m/2-] and the proof  of Proposi t ion 5.2 gives finally 

I(b(m+n, t ) / (m+n) ) - (b (m ,  t)/rn)l ~<Dexp - (xm/2) (6.34) 

This proves that  (b(m, t)/m) is a Cauchy sequence (uniformly with respect 
to t) and taking the limit n ~ oo in (6.34), we get finally 

[( lim b(p, t ) /p ) -  (b(m, t)/m)l <~ D exp - ( x m / 2 ) .  I (6.35) 
p ~  oO 

R e m a r k  6.5.  According to what is proved in Section 6.3, Theorem 
1.6 is valid without assumpt ion (1.21). As mentioned between (6.11) 
and (6.12), we have just to control  the terms O,q~")(x~ml(t),t)/m= 



380 Helffer and Sj6strand 

~t")(xtml(t))/m, which was the object of Proposition 6.3, and the term 
(divx vC'))(xt")(t), t)/m, which was already proved [after a translation 
by xl")(t)] .  

7. PROPERTIES OF THE L IMIT  M E A S U R E S  

In this section we shall study more precisely the family of measures 
i~ c'~ introduced in Section 1. In particular we shall analyze the behavior of 
these measures when restricted to functions depending only on a fixed 
(independent of m) number of variables. 

7.1. Existence of the Limit Mean  Value  

We shall prove in this subsection Proposition 1.7. We recall that we 
consider a C ~' function c defined on R k s.t. Vc~ C ~ ( R  k) that we identify 
with a function on R"  

c~"J(x) = c ( x , ,  x2 ..... xk )  (7.1) 

and we are interested in the behavior of the mean value <cr of c with 
respect to the measure pc.,) as m tends to ~ .  We shall only analyze the 
convergence of (ctm~)., and the rate of convergence. As in the case of 
the study of the thermodynamic limit in Section 6, we arrive naturally at 
the study of the equation 

cC"~(x) = b + v(x).  VxqS(x)-  divx v(x) 

and we observe that 

and also that 

(7.2) 

c~'l(0) = c(0) = b - div x v(0) (7.4) 

Here we use the assumption that ~ " ) ( 0 ) = V ~ C " ~ ( 0 ) = 0 .  As before, we 
have to estimate divx v(0), but under other conditions. In particular, we 
have partially lost the invariance by circular permutation which was very 
useful in order to get the existence of the thermodynamic limit. What we 
need is to prove the convergence of (tr Hess f ) (0) ,  which usually is a 
consequence of estimates in ~ ( l  ~, l ' )  or in s *, l~) .  A more detailed 
study will be given in Part II. We concentrate here on the proof of the 
convergence. 

b= ( c t ' l ) , ,  (7.3) 
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As for the study of the thermodynamic limit, we replace Eq. (7.2) by 

w = ( V ~ V -  A)v + Hess q~v (7.5) 

where w=Vc,  c = c  Imp, and v=Vf .  In order to apply the results of 
Section 5, we first observe that Vc t"~ is bounded in B_, with B2 = l ;  and 

= p~' given by 

p"~(j)=exp[xd(j, {1 ..... k})]  

where d(j, {1 ..... k }) measures the distance o f j  to the set {1 ..... k } in 2Z/rnZ. 
We have similar properties for the derivatives of c. 
We then obtain, through the proof of Proposition 5.2, in a case 

without parameters, the existence of v with the following properties: v ~'~ is 
bounded in B 2 and Vvl"~= Hess ft- , i  is bounded in .Z'(B,, B2). This gives 
in particular that the map 

m ~ tr Hess f~')(O) 

is bounded uniformly. This is not surprising if one thinks of the expression 
of the quantity as an integral. But our problem is here to prove convergence. 
We observe here that the proofs of convergence seem to be usually based 
in the classical literature on monotonicity arguments and correlation 
inequalities. We proceed here differently and we hope that this new 
approach will give more applications. In order to prove the convergence, 
we have to control 

tr Hess fc'+")(O) - tr Hess fl'~(O) 

in order to prove that tr Hess f " ~ ( 0 )  is a Cauchy sequence. Note that, for 
the moment, we have not used the invariance by circular permutation, 
which is in some sense broken by the choice of the identification we 
have made between a function of k variables c and the function c c"~. We 
shall use this invariance by circular permutation in a different way, by 
playing with the way we realize the identification. Let us introduce, for 
1 <~l<<. ( m - k ) ,  

c " U ( x ) = c ( x , +  ~ ..... x ,+~)  

and let us observe that 

We choose now 

(cm'l)ra-..~(Cm)m 

1= Era/2-1 
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and we shall compute,  for p =  (re+n),  (CP)p by the formula (cP'~)p. By 
solving Eq. (7.5), with w = V c  p'I, we obtain a solution v Ip'/) = V f  tpm and we 
are interested in the computa t ion  of 

P 

p -~ ~(p) =- AflP'll= ~ (Hess f tP ' l ) ) i  i 
i = 1  

and of 

6 ( m + n ) - - a ( m )  

We can forget in the sum all the terms such that  

d(i, [m/2 ] )  >/m/4 

because it is easy to see that  the sum of all these terms is bounded by 

[(Hess f~P'l~)ii[ ~ D e x p ( - x m / 8 )  (7.6) 
dli,  [m/2 ] )  ~ m/4 

and we now have to study for p = m  and p = m + n  the terms in the sum 
which are "near" m/2. 

Let us consider, as in Section 6, the family ~ ..... ~(x, s) and the corre- 
sponding v c . . . .  t~(x,s) obtained by solving Eq. (7 .5)  with w = V c  ''~, 
r = q~"'"~(x, s). Here we observe that  

O,w=O 

By the unicity argument ,  we have 

v I ....... t~(x, O) = v ~" + "re(x) and v I . . . .  t~(x, 1 ) = v~'m(x ' ) 

In particular,  we observe that  for 1 < i < m 

(Hess f~ . . . .  I~(0, 1 ))ii 

is independent of n. It is consequently natural  to study the expression 

(Hess(O,f~ . . . .  / ) ) ( 0 ,  S ) ) i i  
d( i, Ira~2 ] ) < m/4 

But we know from Proposi t ion 5.2 (more precisely, from the proof  of 
this proposi t ion)  that  ( H e s s ( a , f  ~ . . . .  ~))(0, s)) is bounded [ independently of 
(m, n)]  in ~ ( B l ,  B2) with 

co B~ = l ~J, Bz = l ~ 

and t~ = p,,. ,  as introduced in (6.32). 



Correlation for Kac-like Models in Convex Case 383 

Integrating with respect to s between 0 and 1, we get 

(d(i.[m/~2]) . . . .  /4 ( H e s s  f (  ..... 1'(0, l)),i)--(d(i.[m/2~])<m/4(nessf( ..... I)(o,o))ii) 

dlL [m/2] ) < m/4 
using the estimates coming from the proof of Proposition 5.2. 

Using this with the inequality (7.6), we obtain finally the result. I 

R e m a r k  7.1. The result is still true [at least in the case (1.13)] if 
c is a function of k variables with polynomial growth. We write indeed c 
in the form 

c(x) = ~(x) P(x )  

where P ( x )  is a polynomial and where ? belongs to C~ .  By integration 
by parts we can decrease the degree of the polynomials and arrive at the 
bounded case. 

R e m a r k  7.2. Proposition 1.7 is still true without the assumption 
(1.21). According to the preceding proof, we have just to analyze the 

o f  C(Xtl + 1),..., " ( k  +/)Y, convergence ~'~ ,'~'~ ~ and recalling that all the components of 
x ~''1 are equal, we get the exponential convergence from Proposition 6.2. 

7.2.  A n o t h e r  L o o k  a t  t h e  Bas ic  E q u a t i o n  

In the preceding subsection, we have seen how Eq. (7.5) appears 
naturally in the study of ( c " ~ ) , , .  This equation was studied in Section 2 
in the case where ~ ( x ) =  x2/2 for Ixl large. We are again interested in the 
integral 

J c(x)  e x p E - ~ ( x ) / h ]  I =  dx 

where c is with polynomial growth. Let us introduce [compare with (2.8)] 

= _ h2A q- - -  
IVqSI2 hAcb 

4 2 

The first eigenvalue of P is zero and a corresponding (nonnormalized) 
eigenvector is exp(-q~/2h). If we now decompose L 2 in R exp( -qS /2h)~  
[ e x p ( - ~ / 2 h ) ]  -u, it is clear that one can solve 

c(x)  e x p ( - ~ / 2 h )  = P(u e x p ( -  ~/2h)) + b exp(-q~/2h) (7.8) 
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with b e R, which is uniquely determined by 
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b Ilexp( - q,/2h)[I 2 = (c exp( - qb/2h) I exp( - q'/2h)) 

that  is, 

b = S c e x p ( - ~ / h )  dx 
exp( - ~/h ) dx - ( c > 

Of course, because 

exp(q,/2h) P exp( - ~/2h) = ( - h V  + Vq,) .  (hV) = h( - hA + Vq,.  V) 

(7.8) is equivalent to the usual equat ion 

c(x) = ( - h 3  + Vq~ . V)(hf(x)) + b (7.9) 

The opera tor  ( - h A  + V q , - V )  is self-adjoint in L2(R";exp(-@(x)/h)dx) ,  
with a discrete spectrum. Its lowest eigenvalue is 0 and a corresponding 
eigenvector is given by 1. 

7.3. Existence of  the  Limit  Cor re la t ion  

We want  to treat the impor tant  case where c(x)=x~ .xj. We prove 
here a part  of  Theorem 1.5 which assumes more information on the 
structure of the family of functions @t'):  

~m~(x)=f l  ~. W(xi, Xg+,) (7.10) 
i = 1  

Propos i t ion  7.3.  Under  the preceding assumptions and if Ifll is 
small enough, then the correlation 

Cort"~(i, j) = ( x i x j ) . , -  (x~)., <xj)., 

admits, for all pair  (i, j )  s.t. d(i, j ) />  2, a limit as m ~ ~ .  

We first explain here how we can arrive at the assumptions of 
Section 7.1. We have already observed that  <x;>.,  and ( x j ) , .  have a limit. 
(If we assume that ~u is even, we have <xj>,.  = (X~>m =0 . )  A first inte- 
gration by parts in the computa t ion  of <xixj> gives 

<xixj> = < x , . a j ~ >  

We can work directly with this new expression, or perform a new integra- 
tion by parts: 

<xix+> = < - a ~ >  + <a,~.o+~> (7.11) 
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In the case where (7.10) is satisfied, we get for d(i, j)>1 2 

(x,xj) = (a ,~ , .  aj ~,) (7.12) 

which depends only on the variables (xt, x~+ 1, x~_ 1) and (xj, xj+ 1, xj_ l) 
and is independent of m for m large. The assumption on Hess W is made 
in order to verify (1.23) and (1.29). All the other assumptions are easy to 
verify and we can apply Proposition 1.7. If we want now to prove the 
estimate on the correlations, we just observe that, if v~ is the solution of the 
basic equation corresponding to c(x)= x~, then the correlation is given by 
((Vl)j) , ,  by a simple argument of integration by parts. Then using the 
weight pm(j)=exp[xd(j, 1)], we obtain, in the same way essentially that 
we arrive at (7.6), the estimate 

sup I(v,)j(x)l ~<Cexp -xd(j, 1) I (7.13) 
x 

We shall come back to this estimate and its improvement in Sections 
10 and 11. 

R e m a r k  7.4. We have implicitly assumed in the proof that 
VW(0) = 0. This assumption can be eliminated using Remark 7.2. 

7.4. Extension to More General Interactions 

In order to get analogous results for the Schr6dinger operator in 
Part I I [ ,  we shall need a more general result if we make more general 
assumptions on the r which no longer have a "finite-range" interaction. 
Inspection of the proof of Propositions 7.3 and 1.7 gives that Proposition 
7.3 is also true under the weaker assumptions given in Theorem 1.6 and the 
following additional condition: 

IIVA(~/'(m+")-- ( ~ ( " ) ~  ~U(")))II ,_..(n,• B,• ~< C for any B in M2 

(7.14) 

We now have to analyze for fixed i and j two terms ( - 0 2 . ~ )  and 
( O i ~ - O j ~ ) ,  which no longer depend on a finite number of variables. 

T h e  Fi rs t  T e r m .  The estimate corresponds to different steps: 

Step a. We remark that 

t//(m) 

and we shall take l =  [m/2]. 
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S t e p  b. We observe t h a t  (O~i+/).(j+l)~l(m))(X (m)) is exponentially 
convergent. This is a consequence of (1.31). which gives for any x in El,,,+,,~ 

t32 q j (m i+ ~1. I~+ tl --  + "))(x) - (O~i + ~. (j+ ~ ~ul'"l)(x') <~ C exp - (xm/2) 

and of the exponential convergence of .,"~"~ to y for any k given by 
Proposition 6.2. We have indeed 

la~,+,~.~+/)~J(m)(xn')--a~i+/).(j+/)~Y(m)(Y ..... Y)I <. Cm l y -  x~,"~l 

using the invariance by permutation and (6.25). 

S t e p  c. For l = [ m / 2 ]  we observe that IVO~+z~.(j+~l~"~l 
bounded in lp:?~.~ with p . . . , l (p )  satisfying 

pa..,~(q) = 1 for I q -  II ~< m/8 

plC,,,l(q) = exp xm/8  for I q -  II >1 m/2 

is 

This is a consequence of the assumption (6.25). 
In the same way, using the assumption (6.26), we obtain that 

V[2)02  .+/) ij+t) TJl"l[ is bounded in s  and by (the proof of) 
Proposition 5.2. we consequently get the control of Hess f . , ,+ , ,m given by 
(7.6) with l = [m/2], if we have the control of the family of functions 

2 ttr/(m + n)) _}_ 2 gl ..... ~(x, s) =s(c'~l/+/i. Ij+/) (1 - -  S)(O(i+l), [ j+ / ) I [_ / �91  

When we solve the basic equation with 

w I ...... ) ( x , s ) = V g  ( ...... i (x ,s) ,  ~ = q g l  ..... ) (x , s )  

we have to apply a parameter-dependent version of Proposition 5.2 with 
p = l  and /5=p ...... . We observe that 

c9 V ~ .... ~lx s ) =  2 �9 ~ ~-, ( 0 , i + ~ , . ~ j + ~ V ~ ' " ' + " ' ) - ( ( O ~ i + ~ . ~ j + ~ l V ~  ' '~) 

= 0~i+t~, ~j + ~,V(~Ul" + " ( x ) -  [ ' /""(x ' )  + ~ ' ' l (x") ] )  

Here we observe that the assumption (6.27) gives the condition that 
O, Vg  I ..... }(x, s) is bounded in l~ ,  as needed in order to obtain (7.7). Now 
we observe that the control of O, VZg ~ .... I(x, s) is given using the assump- 
tion (7.14), which implies the control of O,,V2g { ..... )(x, s) in .L~'(l ~ lp~,). 

The  S e c o n d  T e r m  ( d ; t P . O i t g ) .  Following the proof which was 
made for the first term, we observe that 

and we take again l =  [m/2]. 
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We prove next the exponential  convergence of the expression 

V(O~+ ~ ~ul.,I, c~+ ~ ~'"'J)(x I''~) 

For  the third step, we observe, using the assumptions (1.9) and (1.29), that 
IV(O~+~ ~''~ . O j + / ~ t ' ) ) l  is bounded in l ~: To  end the proof, we observe p ( l . m )  �9 

the following properties: 

Vg c .... ~(x,s) i s i n l  ~ wi thg t  ...... ~ ( x , s ) = 0 ~ + / ~  t ..... I . O j + t ~ l  ..... ~(already 
observed). 

V-'g ~ .... ~(x, s) is in LP(I ~ [using (1.28)-(6.25)]. 

O~Vg I ..... I (x,s)  is in l ~ [using (1.28)-(1.31)]. 
�9 .Omn 

0~V-~g ~ ..... I(x, s) is in s ~176 l~,~) [using (1.28)-(6.27)]. 

This permits us to conclude the proof  of the statements given at the 
beginning of this subsection. ] 

In the same way, we can probably  treat more general correlations (see 
Section 13), but we shall have to use more explicitly the theory of the 
0-standard functions. We emphasize that  for the moment  we are just 
analyzing the convergence of these correlations. It appears  to be a problem 
which is partially independent of the problem of obtaining bounds on the 
correlations. This problem will be analyzed in Part  II. 

7.5.  E x i s t e n c e  o f  t h e  L i m i t  M e a s u r e  

In this subsection we shall briefly describe how we can as a 
consequence of Proposi t ion 1.7 deduce the existence of a "limit" measure. 

P r o p o s i t i o n  7.5. Under  the assumptions of Proposi t ion 1.7, there 
exists a unique measure /t I ~  on [ ~  such that by introducing the 
projections rr k from R ~ onto •k: x--* (x, ..... xk), and, for k ~< m, ~zk.,, from 
0~" onto Rk: x ~'" --* (x~ ..... Xk), we have, for all c in C~(ff~k), 

with 

lim (ct '"~) , , ,= fa c.dlat, ~) (7.15) 
m ~ .:t5 k 

~ =  ~l~lO(~k)-' 

Remark 7.6. One can reformulate (7.15) by saying that, for any k, 
the family of probabil i ty measures ll '~'=~l"lo(rrk.,,,) -~ converges as m 
tends to oo in the weak sense to p~k ~'~. 
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This type of problem occurs of course quite naturally in statistical 
mechanics and in field theory and we refer to the book of Glimm and 
Jaffe (9) for an introduction. At the level of probability theory our reference 
is, as suggested in the same book, the book by Billingsley. ~2~ 

Proof of the Proposition. By use of Kolmogorov's Theorem, and 
according to the compatibility conditions satisfied by the measures/~'  

,,, ort-~ _ m >~k+l  ~k+l (k.k+l}--~k for m 

we can work for fixed k and prove the existence of a limit measure #~: 
on R k. The only problem is to prove that 

d "  f--* lim f /~k 
m ~  c o  

defines a probability measure. One way is to prove that the family 
(/~')r,~N,,,>~k is relatively compact (for the weak convergence topology) 
and Prohorov's Theorem says that it is sufficient to prove that the family 
is tight, that is: For any s > 0 there exists a compact K in ~R k such that 

#~. (K) >/1 - s; Vm >/k 

In order to verify this last point, we observe that if we take K =  
B(O, L) c R k, there exists a constant Ck, independent of m, such that 

#~'(CK) ~< Ck/L 2 

For this we observe that (we take h = l) 

" 'CK'-  fc~.~, exp[-cI)U"'(x)] dx/IR exp[-@c'*~(x)] dx ~tkt )-- 

, 
~<~-5 fcK• ,~, Ix'12 exp[-c~'"(x)]dx mexp[-~tm'(x)]dx 

f.., ,~, Ix, I z e x p [ - ~ ' m ' ( x ) ]  dx e x p [ - ~ ' " ( x ) ]  dx 

But the last sum, 

k 

is bounded independently of m (make, for example, the integration by parts 
as in Section 7.1). | 
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7.6. Existence of the Magnetization, Regularity 

Let us consider the following family of potentials: 

- -  1 �9 l"~(x, B) - ~ ~ ( x l -  B) 2 + ~ t" l (x)  (7.16) 
/ 

Then (inspired by connected problems given, for example, in ref. 18) we 
define the magnetization by 

i f (m,  B) = ( llm)(O( 1 ),,,/OB)/ ( 1 ),,  (7.17) 

Let us now prove Theorem 1.8. 
JC(m, B) is convergent (exponentially rapidly) to a continuous limit. 

In particular, if ~ ' ~  is even, then the limit as B tends to 0 is zero. We 
observe that 

M/(m, B )=  ( ( x , -  B)),,, (7.18) 

It is then immediate to apply Proposition 1.7, observing that all the 
assumptions are uniformly satisfied with respect to B if II WII is small 
enough. One point, however, is different because the critical point xt')(B) 
is moving with B. But we have seen how to control this problem in 
Proposition 6.2. As a consequence, x~'~(B) is exponentially convergent and 
this permits us to solve the difficulty. Because all the proofs are based on 
the Cauchy criterion, it is clear that the limit is continuous with respect 
toB.  II 

R e m a r k  7.7. Using Proposition 5.2 and adding in all the proofs 
the parameter B in the parameter-dependent class of 0-standard functions, 
we can probably obtain the C ~ dependence with respect to B. In particular 
the C 1 control will permit us to study the susceptibility which corresponds 
to the derivative with respect to B of the magnetization. 

R e m a r k  7.8. As in the case of the correlation, we can also analyze 
the more general interactions introduced in Theorem 1.6 and without the 
condition (1.21). 

PART II. PRECISE ESTIMATES FOR THE CORRELATIONS 

8. SEMICLASSICAL COMPUTATIONS 

Assume r  convex and even. We are interested in 

S xjxk exp[ - O(x)/h] dx 
S exp[ -qS(x)/h] dx 

(8.1) 
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This quanti ty is equal to ct.k(h), where we solve 

x j x  k exp[  - qS(x)/h ] dx  

=ci ,  k(h ) e x p [ - ~ b ( x ) / h ]  dx  + h . ~ , , ( e x p [ - ~ ( x ) / h ]  dx )  (8.2) 

or more explicitly 

x j x k  = cj.k - v(x,  O~; h ) ( r  + h div v (8.3) 

We then try formal expansions of  the type 

cs,,(h ) ~ c), ,h + ~ , h  ~ + .- .  

v ~ v~ + hv j + . . .  

(vector fields in x). 
This gives the equations 

x j x k  = - ( v ~  O~), V ~  ) 
(8.4) 

c). k + div Vo(0) = 0 

Taking v ~  V f  ~ we get 

x jx ,  = V r  0 , . f  ~ c)., = - Af~  (8.5) 

s o f  ~ vanishes to the second order at 0. The first equat ion of (8.5) implies 
for the Hessians 

xsx ~ = ( (Hess  r  ((Hess f ~  (8.6) 

Let ~s.k be the m x m matrix: 

(Ej, k )pq = 6 pj " (~ qk 

Then (8.6) means that 

~s.k + ~k,j = (Hess r  (Hess f~  + (Hess f~  o (Hess ~(0) )  (8.7) 

which can be rewritten as 

,(nes,,t,(o))to ~ ,nes,r  ~ (e,in~s~r f O ( O ) ) e , ( m ~ ( o ) )  ) e ~c,j, k + 8k, j t e  = 

S O  

I ~ (Hess f~  = ~'(Hess ~0)h'o~j,k + ek.js ,(Hr r dt (8.8) 
oc 

(This would also follow from taking Hessians of the direct solution of (8.5): 

f ~  = fo  ~ (.x]x~.)[exp(t V r  Ox)(x)] dt 
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Here 

f 
O 

Af~ = tr(Hess f~  = tr 2 e,Incs, ~lo,o o,,n.~,.c0. ,4, 
- - o c ,  t ' J ' k r  ~ "  

P 0 

2 J-o~ oj.k~~ ,2,~Hess ~lo~l dt = tr((Hess q~(0))-l tr ~j.k) 

= ((Hess qs(0))- ') j ,  (8.9) 

We can now formulate the difficulty: Under reasonable assumptions 
((Hess ~(0))-~)jk will be exponentially decaying when [ j - k [  --. c~, and in 
order to get a satisfactory asymptotic result valid uniformly w.r.t, h when 
h > 0 is sufficiently small, we would like (at least) to control the whole pro- 
cedure with exponential weights which decay (or increase) with the same 
rate as the decay in ((Hess q~(0))-~)jk. It would therefore not be sufficient 
to have estimates with weights p for which ((Hess ~(0)) -~) is uniformly 
bounded from loP into itself, as can be understood if we think of the case 
when ((Hess qs(0))-~) is something like exp - [ J - k l .  In this case the norm 
in 5a(loP), now with p=p,(j)=exp(1 -e) j ,  is (_0(I/e). The idea is then that, 
in order to control the element at (j, k) of (Hess ~ (0 ) ) -  ~, it is enough to 

oo control the l~p ~ lp for suitable weights, and for such weaker estimates we 
can hope for a larger class of weights. [-If we think about the example 
exp - [ j - k l ,  we see that this norm is 0(1) for p(j)=expj,  so we have 
then avoided the e loss.] We shall see in the next section how to get 
efficient lip ~ l ~ bounds for (Hess ~ ( 0 ) ) - L  First we end this section by 
doing what we did in Section 7.3. We first solve 

Xk exp[ - ~(x)/h ] dx 

= c~(h) e x p [ -  qS(x)/h] dx + h~o~(exp[-  ~(x)/h] dx) (8.10) 

(and here we observe that ck= ( x ~ ) = 0 ,  since we assumed �9 to be even). 
Then, as in Section 7.3, we get 

f xjx k e x p [ - ~ ( x ) / h ]  dx 

= ck cj ~ e x p [ .  45(x)/h] dx + h I (s (dxj, vk )) e x p [ -  ~(x)/h] dx I 

=ckcj f exp[-cb(x)/h] d x - h  f vk, j(x;h)exp[-~b(x)/h] dx (8.11) 

where vk(x, a,.; h) = Z/v~.jOx. 

82274' -2-26 
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Using that CjCk = 0, we get the h-asymptotic  expansion of the quanti ty 
(8.1): 

cj.,,(h ) ~ - hv~ j(O ) + ~.~(h ~) + . . .  

The absolute value of (8.1) is then smaller than or equal to h IIVk.jIIL~- 
Writing Xk = - - ( v ~  differentiating with respect to x, and putt ing 
x = 0, we get 

6, . j  = - ~" v~ O~,axf1'(O) 

o r  

ek = -- (Hess r  v~ 

(where ek is the k th  unit vector). 
Hence 

v~ = - (Hess q~(0)) - l  ek 

and -v~  is (again of course) equal to ((Hess ~(O))-~)j.k.  

9. WEIGHTED 11 -~/| ESTIMATES FOR INVERSE MATRICES 

Consider first the situation as it will appear after conjugation with a 
weight. Let D be a diagonal matrix >~ro>0, Let A be a matrix (not 
necessarily symmetric)  with IIa I1~.~ < ro. Let x ~  R "  and assume for some 
j e  {1,..., m} that  x j = l x l  and that  ((D+A)x)j=O, i.e., djxj+(Ax)i=O. 
Then x j = - ( 1 / d j ) ( A x ) j  and we get [xl = x j < ~ ( l l Z l l / d j ) I x l  and I lZl l /dj< 1, 
so necessarily x = 0. Hence we get, under the assumptions D diagonal 
>_-r o > 0 and IIAII ~c1~1 < ro, the inequality 

Ixl~ ~< max [xjL (9.1) 
(j: ((O + A )x)j ~= 0) 

We now slightly change the assumptions and let D +  A be the uncon- 
jugated matrix corresponding to Hess q~(x). We still assume that D is 
diagonal >/ro > 0 and we assume that (D + A ) -  ~ exists and satisfies 

II (D + A)-' II ~ect~< Co (9.2) 

Let p = p(j)> 0 and assume that  

IIPAp- '11 ~r < ro 
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Consider the equation 

which can be rewritten as 

(D+ A ) x =  y 

(D + pAp- l )  px=  py 

We can then apply the earlier discussion and obtain 

[px[o~ <<. max [(px)j[ (9.3) 
(.i: ~ 0) 

Assuming that p( j )=  1 whenever y j 4 : 0  (so the choice of p will depend 
on y), we get from (9.2) and (9.3) 

Ipxl ~ <<. Co lYl ~ (9.4) 

The nice thing with these estimates is that we do not have to introduce any 
factor I/e, with e = ro-IIpAp-III ,_e,~, into the r.h.s. 

10. N E W  ESTIMATES FOR THE VECTOR-F IELD EQUATION 

We neglect in the application of the maximum principle the problem 
at ~ ,  which can be solved as in Section 5. Equations (8.3) and (8.10) are 
of the type 

g ( x ) = c - v ( x ,  0x; h ) (~)  + h div v 

and if we look for v of the type Vf, we get 

g ( x ) = c - V c ~  .Oxf  +h Af  

Taking the gradient, we get 

w(x) = - (Vr  (Oxv )(x) + h(Av)(x) - Hess r  v(x) 

with w = Vg, v = Vf. 
We assume that v(x) tends to 0 as Ix[ --* c~. We also assume that 

Hess ~ (x)  = D(x) + A(x) (10.1) 

with D(x) diagonal and ~>r o > 0, 

][pA(x ) p -Ill-~'tt~l < ro (10.2) 

for some weight p = p( j )>  0, independent of x. Let us also assume 

]lHess ~(x)-l[l~e,| < Co, Vx~ •" (10.3) 
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Let x 0 e R "  be a point where supx Ipv(x)l is attained and denote this 
supremum by M. L e t j e  {1 ..... m} have the property that ]p(j) vj(xo)[ = M. 
Then (O,vj)(xo)= 0 and vj(xo). (Avj)(xo)<<, O. Hence, if we rewrite (10.2) as 

pw = - (VO)- (Oxpv) + h(Apv) - (p Hess Op-~)(pv) (10.4) 

we get [assuming in order to fix the ideas that vj(xo)> 0] that 

p(j) wj(xo) <<, - ((p Hess O(Xo) p-](pv(xo)))j 

Adding the assumption that wj(xo)= 0 (for the j in consideration), we get 

Dj(xo) pvj(xo) + ( (pA(xo) p - ~)(pv(xo) )j <~ 0 

and, as in Section 9, we get a contradiction unless M =  0. We have then 
showed that 

sup Ipv(x)l ~ max [p(j) vj(Xo) [ (10.5) 
x ~ R "  ( j ,  w i ( x o ) )  ~ 0 

We apply this to (8.10). Then w is the kth unit vector and if we assume 
(after renormalization of p) that p(k)= 1, we get from (10.3), (10.5) 

sup ]pv(x)l <~ Co (10.6) 
x ~ ~ rn 

In other words, 

J vkj(x)t <~ Co(1/p(j)) 

provided that p has all the required properties and that p(k) = 1. Combining 
this with (8.10), we get 

l[. X iXk e x p [ - O ( x ) / h ]  dx] Coh 
~ - -  (t0.7) .[ exp[- O(x)/h ] dx p(j) 

We shall present in the next section an example coming from statistical 
mechanics where these assumptions are satisfied. 

11. AN  E X A M P L E  

As already mentioned in the introduction, this potential appears in a 
course by Kac. tlSJ The estimates we give here are reminiscent of ref. 27. Let 
v ~ ]0, 1/4[ be fixed, and consider 

O(x) = �89 y" x] - 2 ~ in cosh[(v/2) '/2 (xj + xj+~ )] 
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with j~ Z/mZ. Then czT) Hess q~ = I+ A(x) with 

A(x)  = 

f d,(x) 
cdx )  

0 

0 
c.,(x) 

c,(x) 0 0 

0 0 C m _ I ( X )  

C m _! (X) )  
din(x) / 

with IdAx)l ~< 2v, Icj(x)l ~< v, dj(0) = - 2v, cj(0) = - v. 
Then, if p(j) > 0, we have 

IlpA(x)p-~llw.=)<~sup v ( 2 +  [p(j)/p(j+ I ) ]  + [p(j)/p(j-1)]) 
J 

= 2 v ( l + s u p  [~(j)+l/#(j+l)]/2) (11.1) 
J 

with 

#(j)~r(p(j)/p(j_ 1) )~fexp(co( j ) )  (11.2) 

[so Z j  co(J)= 0, since we are in the cyclic case]. 
According to the earlier discussion, we are interested in choices of p 

with 

or equivalently 

2v(1 + sup [/~(j) + 1 / ~ ( j +  1)]/2) < I 
J 

sup [ /a(j)  + l/It(j + 1 ) ] / 2  < (1 -- 2v) /2v (I 1.3) 
J 

Here we shall take co to be a cont inuous m-periodic function which is linear 
on I-j, j + 1 ] for every j and which satisfies 

cosh co(j) < (1 - 2v)/2v; 
m - -  1 

Y. co(j) = o (11.4) 
0 

The question is then to find some further sufficient condition which implies 
(11.3). We have 
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�89 o9(j) + exp - o g ( j +  1)] 

= cosh co(j) + 3 [exp - r + 1 ) - exp - co(j) ] 

~< cosh og(j) + sup(exp - o g ( j  + 1), exp -o9 ( j ) )  [og'(j + 3)[ 

cosh co(j) + 3 sup(cosh og(j + 1 ), cosh o9(j)) Iog'(J + 3)1 

~<cosh co( j )+  [-(1 -2v)/2v] Io9'(J+ 3)[ (11.5) 

Let O9o>0 be the solution of cosh o9o = ( 1 - 2 v ) / 2 v .  In order to have (11.3)  
it then suffices to have (11.4) and 

[ ( 1 - 2 v ) / 2 v ]  log'(j+ �89 < cosh o9o-  cosh w(j),  Vj 

or equivalently, 

log'( j+ �89 <~ [cosh o9o-  cosh og(j)]/cosh(ogo), Vj (11.6) 

W e  have 

[cosh o9o - cosh m(j)]/cosh(ogo) 

= { [ ogo - og(j) ]/cosh ogo } { f~;  sinh t dt/[ ogo - og(j) ] } 

If we assume for some j that co(j) t> 0, we get, since sinh t is increasing on 
[0, +oo], 

[cosh o9o - cosh og(j)]/cosh o9 o 

>~ { [o90 - o g ( j ) ] / c o s h  o9o} j-:o sinh t dt/ogo 

= { [o9 o - og(j)]/cosh o9o }(cosh o90 - 1)/o9o = [o9o - og(j)]/C(v) 

with 

C(v) = o90 cosh ogo/(cosh 090 - 1 ) 

= (1 - 2v)/(1 - 4 v ) . c o s h -  t [ ( l  -2v)/2v] (11.7) 

A similar discussion holds in the case og(j)-.<0, so in order to have (11.3), 
it suffices to have (11.4) and 

log'(J+ �89 min [ (ogo -  og(j)], [ogo+og(j)])/C(v) (11.8) 

(Notice that (11.4) implies that og(j)e ] - o 9 o ,  O9o[). 
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Roughly we are then al lowed to take co approach ing  o9o or  - o 9  o 
exponent ia l ly  fast. More  precisely, if C(v)>0 is sufficiently large, we can 
take o) piecewise l inear with 

og(j) = o9o(1 -- exp[  - j /C(v ) ]  ), 

og(j) = o9((m/2) - j ) ,  (11.9) 

og(j) = -- og(-- j ) ,  

F o r  this choice of 09 we get 

p(j) = exp[ogo IJl + (9(1)], 

Final ly,  re turning to (10.7), we obta in  

I[. XoXj exp -- [O(x)/h] dxl 
exp - [O(x)/h] dx 

~< C,(v)  h exp( -o90 IJl ), 

j ~  [0, m/4] m 7] 

j ~  [m/4, m/2 ] n 21 

j e  [ - - ( m / 2 ) , O ]  n77 

IJl <~ m/2 

IJl ~ m/2 (ll.lO) 

The constant  o) 0 seems to be optimal .  It might  be of interest to push this 
even further and get some explicit  C~(v). 

12. FKG INEQUALITIES W I T H  THE M A X I M U M  PRINCIPLE 

In this section we shall discuss with a new approach  the celebrated 
F K G  inequalities. 18) The following propos i t ion  is the corresponding analog 
of these inequalit ies in our  context and is due to Cart ier  t61 (we refer also 
to refs. 21, 22, and 9 for interesting discussions or presentat ions of the 
mater ia l  ): 

Proposition 12.1. If �9 is of class C 2 on R "  and such that  
IO(x)l >(Ixl~/C-C), for some k, C > O ,  and if 

O20/8xiaxj<~O for i # j  (12.1) 

then we have the following inequali ty for the correlat ions a t tached to the 
measure exp - �9 dx/(~ exp - �9 dx): 

(12.2) 

The result is true more  generally if one replaces x~, xj by two functions 
(g,(x), g2(x)) on R"  which are mono tone  increasing with respect to each 
variable. 



398 Helffer and Sj6strand 

P r o o f  o f  P r o p o s i t i o n  12.1. (In the strictly convex case when the 
Hessian is uniformly bounded, using the maximum principle): Let f~ be a 
solution of 

g l ( x )  = c I + VcP V f  l -- A f  z 

The quantity we want to compute is given by 

( g i g 2 ) * -  ( g l ) ~  ( g 2 ) ~ =  ( v l " V g 2 ) *  

with v, =Vf l .  
It is consequently sufficient to prove that: 

Lemma 12.2. Under the assumptions (2.2), (2.3), and if the 
coefficients of o~ = Vg are positive and satisfy 

IO~wl ~C~,, vote N" 

then the coefficients of v = V f  solutions of Eq. (3.2) are positive. 

P r o o f  o f  I_emma. Let us start from the basic equation (3.2): 

w = Vcb Vv  - Av + Hess Cv (12.3) 

We treat the case where w and ~ are with compact support. We 
decompose v in the form v = v §  v -  where v f = sup(0, vs). We want to 
prove that v -  is equal to 0. Let xo be a point where IIv-(x)llz2 attains its 
maximum. We multiply Eq. (12.3) by v - ( x o )  and we get 

( w ( x ) , v - ( x o ) ) = ( V q b V - A ) ( v , v - ( x o ) ) + ( H e s s q ~ v , v - ( x o ) )  (12.4) 

We observe now that x--* ( - ( v ,  v - ( X o ) ) )  has a maximum at Xo and we 
get 

(W(Xo),  v - ( X o ) )  <<. (Hess  Cv +, v -  ) ( X o ) -  (Hess  q~v-, v -  )(Xo) 

and finally 

(Hess ff~v-, v -  )(xo) ~< (Hess  Do +, v -  )(Xo) 

We observe that the r.h.s, is negative and, if Hess cP(x) is positive definite, 
we obtain v - ( x 0 ) = 0  and the lemma is proved with the restriction on the 
support on w and ~. The argument of regularization is then analogous to 
the argument given in Section 5. 
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13.  

by 

exp( - r  - ( x j )  ) dx = - hs - ~lh)  dx), 

Here 

( a ) =~ a(x) e x p ( -  qS/h) dx 

exp( - ~/h)  dx 
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E S T I M A T E S  F O R  T H E  H I G H E R - O R D E R  C O R R E L A T I O N S  

Let �9 and ~ be as in Section 4. Let oj be the vector fields determined 

vj = Vfj (13.1) 

We now use that 

~av = av id+ do av j = a(vJd + do v j) + da" v J = aN, + da ^ v j 

which on forms of maximal degree becomes 

.LP,,v=a.~v + da^v:  + v-Jda ̂  = a.L~av + (v, da)  = a . ~  + v(a) 

Hence 

a ( x ) ( x j -  ( x j )  ) e x p ( - r  dx = - h ~ a(x) .L-aoj((exp(-r dx) 

or, in other words, 

Let j ,  ..... j k e  {1 ..... m} 

(13.2) 

= - h f [ ~ o j  - vj(a)]  [exp( - r  dx] 

= f (hvja) exp( - r  ) dx ( 13.3 ) 

( ( x j -  ( x j )  ) a )  = ( hvj(a) ) 

with j , ~ j p  if cr (Here {j, ..... Jk} may vary 
with m, but k is assumed to be fixed.) We are interested in estimating the 
higher-order correlation that we define as 

(xj, ..... X j k ) k = ( ( X j - - ( X j , ) ) ' . ' ( X j ~ - - ( X j k ) ) )  (13.4) 

This definition appears for example in the article of Cartier3 6~ Using (13.3) 
several times, we get (xj,  ..... xjk),, , is equal to a finite sum of terms of the 
form h k - I ( v ~ , ( x ) . . . v ~ , ( x ) ) ,  where #~>_-2 ,  J , c ~ J t ~ = f ~  for c~g:/~, 
{ 1 ..... k} = ~ u . . .  to ~ ,  and ~ are viewed as ordered sets: I f J  = (Jl ..... Jp), 
then 

v j ( x )  ~~ = v ~ , ( x ,  ~.,.).--%_,(x, 0,.)(%) 
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Let t~jet~ with ~ j ( j ) = l ,  and introduce the parameter  sje[O, 1] 
associated with the weights t~j. Then sjxj is 0-standard in the parameter-  
dependent  sense of Section 4. Then Proposi t ion 4.1 gives the same result 
for sjfj. By induction over k = 2, 3, 4 ..... we shall show: 

(Ik) For  # J = k ,  we have for all l>~0 

when 

/ 

(Vtvc(x) ,  t , |  . . .  |  (gk.t(1)I- I Itjl~,~, 
1 

1<<. ~,. pj , ~ , .<~v,  ((P, ')s ,P~ ..... p+)e~#~,++ 
v 

with the convention that  for l =  0 the estimate above reads 

For  1 >1 1 

Proof. 

1 
Ivflx)l = t~(1 )inf,,E {~ ...... } I-I,,+., tS,.(n) 

In the case k = 2, let ] = {Jl,  J2}, vt (x)  = ( V f  A, Vxj2). Then 

Iv+(x)l < - -  
1 1 

inf t~j,~j2 IVfj, I +.++,' IVx/: I '.~,2 = 0(1)  inf t~j,t~j 2 

t , (0 , . ) . . ,  tt(O.,.)(VfA, Vxj2 ) = (Vt+ ifj,, Vxj2 | t, | ... | tt) 
/ 1 

= t0(1) [Vxj21 ~.~J2" I-I Itjl ~o.pj = tp(1) I-I Itjl ~.pj 
1 1 

if 

(0) 1 <~ fij, fiJ2 PJ ' flit <" 15A' 

We have then verified (I2). 
For  some k~>2, we now assume that  (12) ..... ( I , )  hold, and we shall 

verify (Ik + l)- Let J = (Jo, Jl ..... Jk), J = (Jl ..... Jk)- Then 

v~ = %(x ,  ~.,.) v f l x ) =  (Vvflx),  Vfgx) ) 

and using (Ik), we get 

v3(x)= to(l) IVfgx)l ~.,, 
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when 

Take p l = tSjo where we assume that 

PJo<~:Jo , (~Jo, (~,,):)~.~./+, 

If I ~< (l-[,.~:/~,')f~Jo' then 

(Vv: (x ) ,  Vfjo(x ) ) = (9(1) IVfjo I ~.~, ~ = r ) 

Replacing PJo by js j [ inf (1-[v~:  is,,) .jS:o], we get 

1 
(Vv: (x ) ,  Vfjo(X ) ) = •( 1 ) inf(~SJo "I-I,, ~ :  p,.) 

For 1/> 1, we have 

tt(O.,-)"'" tl(d,.)(Vv:, Vfjo> 

= ~. ( tA(O. , . )Vv/(X)s t s(d.,.) Vfjb ) 
, 4 , ~  B = { t, . . . ,  t} 

A ~ B = O  

= E 
A~B={I,...,I} 

A c~ B =  fZJ 

where (V #s+ lfjo, t s )  ) is defined by 

< <v  ~ +  %o, t~> 5, s5 = <v  ~ +  %0, t~| 

Here the general term in the last sum is 

i f  

l~<l- [ 
v~J  

Moreover, 

((:,,):,p,)e~#:+, 

:,,'l-[ pj ~, 
j e A  

(VI+#AV:(X),tA| #n+~f ts)} (13.5) J j o  s 

. (V,~B+I/- (9(1) I-[ It:l~.p, 1. JJo, tB)l~,: (13.6) 
] c A  

~,.<~:,., ((~,.),,~ :, (PAj, A, ,~) e ~'#: + ,,A+~ 

(13.7) 

[(V'~n+ Jfjo, to)[oo.~=(9(1) I-[ [tjloo.p, (13.8) 
j E B  
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if 

1 
PJo ~ PJo, (:jo,_~,l (pj)j,n)~yl#s+ "- (13.9) 

Assume now that 

(/~o, (L,),,o~,, pl ..... p , ) ~ ,  +, ,~ ,+,  

1 ~</~Jo" I-I /~ ,  Pjo~<Pjo , /3,,~</~,, 
(13.10) 

Choose/5 =/S j01-IJ= l Pj. Then (13.10) gives (13.7), so we have the estimate 
(13.6) for the general term in the last member  of (13.5). We also have 
(13.9) and hence (13.8), so under the assumption (13.10), we get the 
estimate (9(1)1-Ij, a Itjl~_.p, for the quanti ty (13.5). We have then showed 

(Ik+,). I 
Now recall that (xj,  ..... xj, )k is a finite sum of terms of the form 

h k - / ( 1 ) j ,  1)j,_ . . "  I) i 1 )  

with 

J t ~  " "  w J / =  {1 ..... k } ,  

Let 

(Pj, ..... t~j,) ~ ~ - ,  

Then applying (Ik) for 1=0,  we get 

1 
vl,,(x ) = (9(1) inf 1-L ~ s,, ~Sj,, 

and consequently 

/ 1 
v~, vr vs, = (.9( 1 ) ,.FI= 1 inf 1-L ~ .f, :3j, 

Hence (for/1 ~< 1 ) 

(xj,  ..... xj~ )k = (9(h ~- ~/21) 
/ 

x [1/( inf sup l--I inf l-I ,6~,,)] 
JlW . - .  w f / =  { l . . . . , k }  (/3Jl'""'SJk)E~h}'k v =  I u ~ ,  

{d i s jo in t  u n i o n )  tSh, ~< '6tt~ 

(13.11) 
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Example 13.1. Let d be a distance on {1 ..... m} and let 

~l = {p: {1 ..... m } ~ ]O' + ~176 P(P) <<" exp d(#' 

Put ~ i (k )=exp  d(j, k) and consider 

1 
(xj , ,  x j : )2  = (;(1) 

Choose 

sup~,,.~.)~2. ~j ~<~,, inf 13k/gj. 

~j: = exp [d( j t ,  J2) - d ( j t , .  )] /~j, = exp d(j I , �9 ), 

Then we get 

(xj.,  xj ,)z = (P(h) exp - d ( j , ,  Jz) 

E x a m p l e  13.2. We make the same assumptions as in the preceding 
example, but we shall consider the correlation of arbitrary order k >/2. 
As before, we put ~j (v )=expd( j , v )  and consider (:% ..... xjk). Put 
15j(v) = exp(1/k) d(j, v), so that 

(~j(1) ..... ~ j ( k ) ) e ~ ,  t~i(/) ~< r VI ~ l ~ k  

Assume 

d ( n , v ) > ~ 2 [ ( # J ) - l ]  ~ d(n,v) 
n � 9  

{Jl ..... j k } = J l w  "" w ~  

(disjoint union) with #~>~  2. 
Fix a J = N and consider 

1 
In H p , ,=~  ~ d(n,.) 

neJ  n � 9  

We notice that 

E E d ( n , v ) + d ( v , n ' ) = 2 E  E 
n, n ' G J  n, n ' e J  

so  t h a t  
1 

d ( n , v ) = 2 [ ( # j ) _ l ] ~  ~ d(n,v)+d(v ,n ' )  
n�9162 n.n' e J 

n # n '  

>~E E d(,,n') 
n ~ n" 

1 >1_ 
>~-~ • d ( n , J \ { n } ) ~ .  2 • d(n, J f f \ {n})  

n �9 ~r n �9 , y  
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where we put of" = {j~ ..... j ,} .  It follows that 

l 1 
I-[ inf l-I t~,,~>exp ~-~,~,  d(n. of ' \ {n} )  

j=  1 n~Jj  

Using this in (13.11 ), we get 

(xj~ ..... xjk) = #k(h k-  [k/2]) exp -- min d(jp, jq) (13.12) 
q ~ P  

Example 13.3 .  We keep the same assumptions as in the preceding 
examples, but  we assume in addition that we are in the one-dimensional 
case in the sense that 

1 <~j<<.l<~n<~m=~d(j, n ) = d ( j ,  l )+d(l ,  n) 

We restrict attention to the case k = 3. Then the only decomposit ion of 
Jet/" = { J l ,  J2, J3} is Jet" = ,c at. W e  may assume for simplicity that j~ <J2 <J3"  

Define pj~, P J2' P J3 by 

v<~jl jl<~v<<.j2 j2<~v<~j3 j3<~V 

ln~j, d(v, j l  ) d(v, j t )  d ( j l , j 2 )  d ( j t , j 2 )  

ln fij 2 d ( j l , j 2  ) d(v,j~) d(v, j2 ) d( j2 , j3  ) 

In,j3 d(j2, j3) d(j2, J3) d(v, js) d(v, J3 ) 

It is then clear that (Oj,,~j2, OJ3)e~t3 and that Oj.Oj2-Oj3>~exp d(j~, J3)" 
We conclude that 

(xj , ,  xj~, xjs ) = 60(h 2) e x p [ - d ( j ~ ,  J3)] 

PART III 

14. APPLICATION TO THE SCHRODINGER OPERATOR 

14.1, On the Logconcavity of the First Eigenfunction 

We first recall that the strict convexity of the potential V implies the 
same property for �9 = - I n  u~'~(x), ts~ We also recall that Proposit ion 2.1 
in ref. 27 gives that if 

sup II Hess V(x) - Ill ~e~/2)= 0 < 1 (14.1) 
x 
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then we have 

sup IlHess r  ~,2j = 0/[1 + (1 - 0 )  I/2] (14.2) 
x 

In order to apply the results of the other parts, we need the more precise: 

Proposition 14.1. If V cm~=x:/2 + W ~''~ satisfies the assumptions 
of Theorem 1.6 with V c') replacing ~1,,I, then the logarithm -ln(uC~ ")) of 
the first normalized eigenfunction u~ "~ of the Schr6dinger operator on 
R ' -  zl + V ~"1 satisfies the same conditions with ~ " J  = - ln(u~ "~) and for 
some new constants (independent of m). 

We observe that Proposition 14.1 is a consequence of Theorem 2.1 (A) 
in ref. 27 for (1.23), (1.24), (1.26), (1.28), and (6.25), of Theorem 2.1(B)in 
ref. 27 for (1.30) and (1.31), and of Section 4 of the same article to obtain 
the missing (6.26) and (6.27). The condition of (1.22) is clearly satisfied 
because we are considering the first eigenvector. The condition (1.21) is 
not satisfied, but Proposition 6.2 gives what is needed to work without 
this assumption. We can also remark that this condition is satisfied if, for 
example, V ~"~ is an even function I-with respect to x---, - x .  It could also 
be interesting to analyze the condition (1.9). This condition is deduced 
from (2.18) in ref. 27 (with Vo=x2/2  and Vl=  V] and the assumption 
(1.9) on V a - Vo. The condition (1.8) is not satisfied, but its introduction 
is not necessary (see, however, Section 6.2). 

14.2. FKG Inequalities Relative to Schr6dinger 

We have observed how the techniques using the maximum principle 
can be used in order to analyze the correlations. We have recalled in 
the previous subsection how the assumptions on the potential V of the 
Schr6dinger operator can be transferred to - l n  u~ where ut=u~t"~ is 
the first normalized eigenfunction. We shall see here how the properties on 
the sign of the correlations can be followed in the same spirit. For this, we 
come back to Eq. (2.5) in ref. 27. We write 

VC, V(Hess r + (Hess r o (Hess r = Hess V+ d(Hess 4~) (14.3) 

We want to prove that under suitable assumptions on Hess V we obtain 
the assumptions of Section 12 for Hess ~. We know already from ref. 27 
that the strict convexity of Hess V gives the same property for Hess r As 
in Section 12, we decompose P = Hess r in the form 

P = D + P  + - P -  (14.4) 
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where 

e~(x )=sup(O,~(x ) ) ,  for i~j ,  Pi+ (x) = 0 

P ~  ( x ) =  - inf (O,  i2~ ~ij  (x)), for i# j ,  PiT(x)=O 

and we want to prove that  P + ( x ) = 0 .  
This decomposi t ion is an or thogonal  decomposi t ion for the Hi lber t -  

Schmidt scalar product  and we assume the following decomposi t ion for 
Q = Hess V: 

Q= D - Q -  (14.5) 

We observe that  this class of matrices has very nice properties, as 
described, e.g., in the Appendix in ref. 10. It is then convenient to use the 
Hi lber t -Schmidt  norm as in Section 3.1, but we are working now with 
symmetric  matrices. Let x o be a point where IIe+(x)l[ is maximal.  We take 
the scalar product  with P+ (Xo) in (14.3). We then observe that  the function 

x ~ tr(Hess �9 o P + (Xo)) = t r ( e  + (x) o P+ (Xo)) - t r ( P -  (x) o P+  (Xo)) 

attains its max imum at the point x o and we get at this point 

( (Hess  ~ ) o  (Hess ~) ,  P+  ) ~< (Hess  V, P+  ) 

The r.h.s, is negative and we get finally at the point xo 

tr((Hess ~ )  o (Hess q~) o P+  ) ~< 0 

We shall now compute  

tr(Hess ~ )  o ((Hess qs) - p +  )o p +  ) 

= t r ( ( O + P  + - P - ) o ( D - P - ) o P  +) 

= t r ( ( p  + - p -  )o(D-  P-  )o p +) 

= tr(D oP + o P + )  + t r ( (P  + - p - ) o ( - p - ) o p + )  

= t r ( ( D - P - ) o P +  o P + ) + t r ( P -  o P -  o P + )  

From these computat ions  we obtain at the point Xo 

t r (P  + o [ D - P -  + (Hess ~ ) ]  oP+)~<0  

2 t r (P + ~ ~ ) o  P + )  ~< t r (P  + o P +  o P + )  

Using the assumption of strict convexity, we get the following inequality at 
the point Xo [if IlP+(xo)ll 4:0] :  

0 < 2p <~ lIP +(Xo)ll ~,-7 
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where p is the infimum over x of the smallest eigenvalue of Hess ~. But if 
we deform V on xZ/2 and keep the assumption of strict convexity, we 
observe that we have necessarily P+(xo)=0. 

We have proved the following: 

Proposition 14.2, I f  

0 < ro ~< inf Hess V(x) (14.6) 
x 

and if Hess V(x) is uniformly bounded and admits the decomposition 
(14.5), then Hess ~(x)  has the same property. 

R e m a r k  14.3. As in all the proofs we have developed using the 
maximum principle, we have to justify the argument by a cutoff procedure 
which is here exactly the same as in ref. 27 (more precisely in Section 2, 
before the proof of Theorem 2.1). We have first to replace the potential V 
by a family of potentials 

v~=T+ z~(x) 

where Z~(x) is defined as in Section 5. 

14.3. Correlation and Magnetization in the Schr~dinger Case 

According to Proposition 14.1, we get that Proposition 1.7, Theorem 
1.5, and Theorem 1.8 are satisfied if we take ~(,-I= _ ln(u~,-)). 

In the case of Theorem 1.8, we are looking more precisely at the 
Schr6dinger operator relative to the potential 

VI')(x, B) = �89 ~ ( x t -  B) z + Vc"~ 
I 

We have recalled in ref. 13 how this type of potential appears in the context 
of statistical mechanics (starting with the spin models on two-dimensional 
lattices introduced by Kac, 1~8) but adding a magnetic field). We just 
recall here that the magnetization, which is defined by [see (7.18)] 
((xl-B)),, ,  can also be seen, using the Feynman-Heilmann formula, as 
(02(")/OB)(B)/m, where 2(')(B) is the first eigenvalue. 
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