
Annals of Operations Research 14(1988) 245-289 245

Parallel Computing in Combinatorial Optimization

G.A.P. Kindervater
Erasmus University

P.O. Box 1738, 3000 DR Rotterdam

J.K. Lenstra
Centre for Mathematics and Computer Science

P.O. Box 4079, Amsterdam
and

Erasmus University
P.O. Box 1738, 3000 DR Rotterdam

This is a review of the literature on parallel computers and algorithms that is
relevant for combinatorial optimization. We start by describing theoretical as
well as realistic machine models for parallel computations. Next, we deal with
the complexity theory for parallel computations and illustrate the resulting con-
cepts by presenting a number of polylog parallel algorithms and O2-complete-
ness results. Finally, we discuss the use of parallelism in enumerative methods.

1980 Mathematics Subject Classification: 90C27, 68015, 68025, 68Rxx.
Key Words and Phrases: Parallel computer, computational complexity, polylog
parallel algorithm, g-completeness, sorting, shortest paths, minimum spanning
tree, matching, maximum flow, linear programming, knapsack, scheduling, trav-
eling salesman, dynamic programming, branch and bound.

1. INTRODUCTION
Parallel computing is receiving a rapidly increasing amount of attention. In
theory, a collection of processors that operate in parallel can achieve substan-
tial speedups. In practice, technological developments are leading to the actual
construction of such devices at low cost. Given the inherent limitations of trad-
itional sequential computers, these prospects appear to be very stimulating for
researchers interested in the design and analysis of combinatorial algorithms.

We will attempt to review the literature on parallel computers and algo-
rithms as far as it is relevant for the area of combinatorial optimization. In
comparison with a previous survey [43], the present paper not only mentions
theoretical results but also addresses practical aspects of parallel combinatorial
computing. For a broader survey which is, however, up to date only until July
1983, we refer to our annotated bibliography [42].

The organization of the paper is as follows.
Section 2 is concerned with machine models designed for parallel computa-

tions. Theoretical as well as realistic models are described. While in many
theoretical models the processors communicate through a common memory
without delay, in more realistic models the communication is achieved through

© J.C. Baltzer A.G., Scientific Publishing Company

246 G.A,P. Kindervater, J.K. Lenstra

a specific interconnection network. Such networks are illustrated on the prob-
lems of matrix multiplication, determining a transitive closure, and finding a
minimum spanning tree. We also discuss the simulation of theoretical models
by realistic ones. In Sections 3, 4 and 5, we will restrict ourselves to theoretical
models; in Section 6, we consider existing parallel computers as well.

Section 3 deals with the complexity theory for parallel computations. Given
the basic distinction between membership of 62 and completeness for %~ in
sequential computations, we consider the speedups possible due to the intro-
duction of parallelism. Within the class @, this leads to a distinction between
'very easy' problems, which are solvable in polylogarithmic parallel time, and
the 'not so easy' ones, which are P-complete under log-space transformations.

Section 4 gives examples of polylog parallel algorithms for elementary prob-
lems like finding the maximum and sorting, for finding shortest paths, a
minimum spanning tree and a traveling salesman tour by the double minimum
spanning tree heuristic, and for three problems from scheduling theory. We
also outline a randomized polylog parallel algorithm for the maximum cardinal-
ity matching problem.

Section 5 discusses the °~-completeness of a variety of problems: linear pro-
gramming, finding a maximum flow in a network, list scheduling, and finding a
traveling salesman tour by the nearest neighbor heuristic.

Section 6 reviews the use of parallelism in enumerative methods for %P-hard
problems. We will discuss results in three directions: practical experience with
the implementation of dynamic programming and branch and bound on exist-
ing parallel computers; worst case examples exhibiting various forms of
anomalous behavior; and some initial results on the design and analysis of a
model for the distribution of a tree search procedure over several parallel pro-
cessors.

The reader will not fail to observe that the algorithms presented in this
paper do not rely on the sophisticated refinements for sequential algorithms
developed in the past two decades but go back to the simple and explicit basic
principles of combinatorial computing. In that sense (and recent, more
advanced achievements notwithstanding), parallelism in combinatorial optimi-
zation is still in its infancy and holds many promises for a further development
in the near future.

2. MACHINE MODELS
Many architectures for parallel computations have been proposed in the litera-
ture. Some of these machines actually exist or are being built. Other models
are useful for the theoretical design and analysis of parallel algorithms, while
their realization is not feasible due to physical limitations.

The most widely used classification of parallel computers is due to FL'tr~
[24]. He distinguishes four classes of machines (of. Figure 1).
(1) SISD (single instruction stream, single data stream). One instruction is per-

formed at a time, on one set of data. This class contains the traditional
sequential computers.

Parallel computing in combinatorial optimization 247

single instruction stream + ~ SISD ~ a
single data stream a,b +b

single instruction stream
multiple data stream a,q-b~ ~ a + b SIMD

c,d---~ I---~c + d

multiple instruction stream
single data stream

] +~--* MISD - b
a , b~ I

multiple instruction stream
multiple data stream a,b MIMD ~--~c-d

c,d---, I /

FIGURE 1. The classification of Flynn

(2) SIMD (single instruction stream, multiple data stream). One type of instruc-
tion is performed at a time, possibly on different data. An enable/disable
mask selects the processing elements that are allowed to perform the
operation on their data. The ICL/DAP (Distributed Array Processor) and
the Goodyear/MPP (Massively Parallel Processor) belong to this class.

(3) MISD (multiple instruction stream, single data stream). Different instruc-
tions on the same data can be performed at a time. This class has received
very little attention so far.

(4) MIMD (multiple instruction stream, multiple data stream). Different
instructions on different data can be performed at a time. There are two
types of MIMD computers: the processors of a synchronized MIMD
machine perform each successive set of instructions simultaneously; the
processors of an asynchronous MIMD machine run independently and
wait only if information from other processors is needed. The Intel/iPSC
(Intel's Personal SuperComputer) is an example of an asynchronous
MIMD machine.

If one considers the many types of algorithms that are suitable for execution
on parallel computers, then both ends of the spectrum can be characterized in
a way that resembles the above distinction between the two types of MIMD
machines. Systolic algorithms lead to highly synchronized computations, where
the processing elements act rhythmically on regular streams of data passing
through the (SIMD or synchronized MIMD) machine. Typical examples are
the matrix multiplication algorithm introduced later in this section and the
dynamic programming recursions in Section 6. Distributed algorithms lead to
asynchronous processes, in which the processors perform their own local corn.
putations and communicate by sending messages every now and then. Branch
and bound (see Section 6) lends itself to this approach.

Flynn's classification is not concerned with the way in which information is

248 G.A.P. Kindervater, J.K. Lenstra

transmitted between the processors. This is dealt with by SCHWARTZ [64], who
distinguishes between paracomputers and ultracomputers.

In a paracomputer, the processors have simultaneous access to a shared
memory, which allows for communication between any two processors in con-
stant time. A further distinction is based on the way in which shared memory
computers handle read and write conflicts, which occur when several processors
try to read from or to write into the same memory location at the same time.
Paracomputers help us in investigating the intrinsic parallelism in problems
and algorithms. They are therefore of great theoretical interest, but current
technology prohibits their realization.

In an ultracomputer, each processor has its own memory and the processors
communicate through a fixed interconnection network. Such a network can be
viewed as a graph with vertices corresponding to processors and (undirected)
edges or (directed) arcs to interconnections. Two parameters of the graph are
important in this context: the maximum vertex degree dl, which should be
bounded by a constant on grounds of practical feasibility, and the maximum
path length d2 (the 'diameter'), which should grow at most logarithmically in
the number p of processors to ensure fast communication.

Of the many interconnection networks that have been proposed, five are
briefly described below. They are illustrated in F!gure 2.
(i) Two-dimensional mesh connected network [70]. Each processor is identified

with an ordered pair (/,jr') (i , j - l , . . . ,q) , and processor (i,j) is connected to
processors (i___ 1,j)and (i,j+_ 1), provided they exist. Note that d l----4 and
d2 = 2(q - 1) - O(Vp).

(ii) Cube connected network [67]. This can be seen as a d-dimensional hyper-
cube with 2 d processors at the vertices and interconnections along the
edges. Note that d l =d2 =d=logp. (All logarithms in this paper have
base 2.)

(iii) Cube connected cycles network [60]. This is a cube connected network with
each of the 2 d processors replaced by a cyclicly connected set of d proces-
sors; each of them has two cycle connections and one edge connection.
This yields dl =3 and d2 =O(logp).

(iv) Perfect shuffle network [68]. There are p - -2 d processors with interconnec-
tions (i, 2 i - I), (i +p /2,2i), (2 i - 1,2i) for i= 1,...,p/2. The first two types
of interconnections imitate a perfect shuffle of a deck of cards. Here,
d I =3 and dE = 2 d - 1 =O(logp).

(v) Binary trees network [7]. There are p - 3 . 2 d-2processors, interconnected
by two binary trees with common leaves. The 2aprocessors corresponding
to these leaves perform the actual computations. The other 2 d - 1 proces-
sors in the first tree (an out-tree) send the data down to their descendants,
and those in the second tree (an in-tree) combine the results from their
ancestors. An additional 'master processor' controls the network by pro-
viding the input for one root and receiving the output from the other.
Note that d, =3 and d2 =O(logp).

Parallel computing in combinatorial optimization 249

(i) Mesh connected
network, q = 4

(iv) Perfect shuffle
network, d = 3

(ii) Cube connected (iii) Cube connected cycles
network, d = 3 network, d = 3

(v) Binary trees
network, d = 3

FIGURE 2. Five interconnection networks

All these networks can simulate each other quite efficiently; see SIEGEL
[65,66] for details. Still, it appears that the cube connected cycles and perfect
shuffle networks arereasonably versatile, while the mesh connected and binary
trees networks have been designed for more restricted types of computations.
Their suitability for their limited purpose will be demonstrated on some exam-
ples below.

The quality of the paraUelization of an algorithm will be judged on the
resulting speedup, which is the running time of the best sequential implementa-
tion of the algorithm divided by the running time of the parallel implementa-
tion using p processors, and the processor utilization, which is the speedup
divided by p. The best one can hope to achieve is a speedup of p and a proces-
sor utilization of 1. Note that these concepts are defined here relative to a
given algorithm, irrespective of the possible existence of more efficient sequen-
tial algorithms for the problem at hand.

EXAMPLE 1. Matrix multiplication. Two n×n matrices A=(aij) and B=(bij)
can be multiplied in O(n) time on an n Xn mesh connected network. The basic
idea is the use of the skewed input scheme illustrated in Figure 3. At each step
of the computation, matrix A makes one step to the right, matrix B goes one

250 G.A.P. Kindervater, J.K. Lenstra

step down, and each processing dement (i,j) multiplies its current values aik
and bkj and adds the result into its accumulator (which starts at 0). It is easily
verified that after 2 n - 1 stages processor (i,j) contains the required value
Ekaikbkj and that the procedure is best possible in terms of speedup and pro-
cessor utilization. Furthermore, only one copy of each matrix element has to
be kept in storage. This is a typical example of a systolic algorithm performed
on an SIMD machine and suitable for VLSI implementation.

B: b,u

b43 b34

b42 b33 b24

b41 b32 b23 b14

b31 b22 b13

b21 b12

A:

a44

a14 a13 a12

a24 a23 a22 a21

a34 a33 a32 a31

a43 a42 a41

t211

FIGURE 3. Matrix multiplication on a mesh connected network

EXAMPLE 2. Transitive closure [3I]. The transitive closure of a directed graph G
has an arc (i,j) if and only if G has a path from i to j. If G has n vertices, the
algorithm from Example 1 can be applied to find the transitive closure in O(n)
time using n 2 mesh connected processors. Starting with A given by the adja-
cency matrix of G (i.e., aij- 1 if G has an arc (i,j) and aij-0 otherwise) and
B =A, one executes the matrix multiplication algorithm three times, with the
modifications that addition is replaced by maximization and that any dement
aij or b 9. that passes through processor (i,j) is updated with the value of the
accumulator. A correctness proof of this procedure can be found in the above
reference.

EXAMPLE 3. Membership testing. Given a set S of n dements and an element
e, one can test whether e~S in O(logn) time on a binary trees network with
d = rlog n]. Denote the processors corresponding to the common leaves by Pi
(i = 1,...,2 a) and suppose that Pi stores the ith element ei of S (i ~<n). It takes d

Parallel computing in combinatorial optimization 251

steps for the processors in the top tree to send e down, one step for the P;'s to
check whether e~ = e, and d steps for the processors in the bottom tree to com-
pute the disjunction of the results.

As an extension, one can test the membership of S for m elements
e(l),...,e (m) in O(m +logn) time by pipelining the flow of information through
the network. As soon as e 0) leaves the first processor, e rE) is sent to it; and, in
general, at each step all data are going down one level.

By asking the processors in the bottom tree to do a bit more than comput-
ing logical disjunctions, one can use the same model to find the minimum of n
elements and to compute the rank of a given element in O(logn) time. We
leave details to the reader.

EXAMPLE 4. Minimum spanning tree [6]. Given a complete undirected graph G
with vertex set (1,...,n} and a length cij for each edge {i,j}, a spanning tree of
G of minimum total length can be found in O(n 2) time by an algorithm from
PeaM [61] and DIJKSTRA [20]. The algorithm is based on the following princi-
ple. Let T(V) be the collexion of edges in a minimum spanning tree of the
subgraph of G induced by the subset V of vertices. If i* ~ V and j* ~ V are such
that ci.j, :mJni~v, jev(Cij }, then T(V [..j {i* })= T(V) l,.J ((i*,j* } }.

The algorithm starts with T((1})= O. At each iteration, a minimum span-
ning tree on a certain vertex set V with edge set T(V) has been constructed
and, for each i ~ V, a 'closest tree vertex' ji ~ V and a corresponding distance li
are known, i.e., li:cij--n~j~v{Cij}. One selects an i *~V for which
li.=mini~v{li}, adds i* to V and {i*,ji.} to T(V), and updates the values ji
and l~ for the remaining vertices i ~ V. There are n - 1 iterations, each requiring
O(n) time.

It is not hard to implement the algorithm on a binary trees network with
d = rlogn]. The master processor stores the set T of spanning tree edges. Pro-
cessor Pi keeps track of ji and l~ and is able to compute any cv in constant
time. Each command that is sent down the tree is executed only by those P~'s
that are turned on.

We initialize by setting T--- ~ and, for i= 2,...,n, turning on P; and setting
j~ = 1 and li =c~1. In each of the n - 1 iterations, we first apply the minimum-
finding procedure to determine i* and add (i*,j;. } to T; we next send i* down
in order to turn off Pi* forever (since now i* s 1'I) and to turn off each Pi with
l~ ~<c,. temporarily for the rest of this iteration (since no update is necessary);
and we finally instruct all remaining Pi's to set ji = i* and li = cii..

Since each iteration takes O(logn) time, this parallel version of the algo-
rithm has a running time of O(nlogn) using O(n) processors and hence a pro-
cessor utilization of only O(1/logn). We cannot improve on this by pipelining
the loop, since each iteration needs information from the previous one. How-
ever, we can use a smaller network with d = [log(n/logn)], in which each Pi
takes care of rlogn] vertices and performs all computations for them sequen-

252 G.A.P. Kindervater, J.K. Lenstra

tially. This modified algorithm still runs in O(nlogn) time, but now using
O(n / log n) processors with a processor utilization of 0(1).

The most common paracomputer model is the PRAM (Parallel Random
Access Machine). The PRAM is a synchronized machine with an unbounded
number of processors and a shared memory, which allows simultaneous reads
from the same memory location but disallows simultaneous writes into the
same memory location. The computation starts with one processor activated;
at any step, an active processor can do a standard operation or activate
another processor; and the computation stops when the initial processor halts.
Simulation of the theoretical PRAM model by ultracomputers with a bounded
degree network that allows for fast communication is usually done in two
phases.

First, the use of the shared memory is eliminated. We introduce an inter-
mediate model, the MPC (Module Parallel Computer). In an MPC, each pro-
cessor has its own memory and is connected to all other processors. By send-
ing messages, a processor can access a variable stored in the memory of
another processor. However, if several processors try to access a variable
stored in the memory of the same processor simultaneously, only one will
succeed and the others receive a message that the access failed. An n-processor
MPC can simulate a computational step of an (n,m)-PRAM (a PRAM with n
processors and a shared memory of size m) with high probability in time
O(logn) [71] or in deterministic time O(logm) [2]. The proof of the probabilis-
tic bound is constructive, but for the deterministic simulation only an existence
proof is given. The problem of finding a constructive deterministic simulation
of a PRAM step in logarithmic time is still open.

The second phase eliminates the use of the complete interconnection net-
work. One step of an n-processor MPC can be simulated in O(log n) steps by a
bounded degree network with n processors [2].

Combining the two phases, we conclude that a step of an (n,m)-PRAM
requires probabilistic time O(log 2 n) or deterministic time O(logm logn) on a
bounded degree network.

K.ARZIN & UP~AL [38] describe a direct simulation of a PRAM. They show
that T steps of an (n,m)-PRAM can be simulated in O(Tlogm) steps by a
bounded degree network, with probability tending to 1 as n or T goes to
infinity. Until today, no deterministic simulation with the same time charac-
teristic is known.

In Sections 3, 4 and 5, we will restrict ourselves to the PRAM paracomputer
model, which lends itself better to complexity considerations and to the expla-
nation of parallel algorithms. In Section 6, we will encounter a variety of exist-
ing parallel architectures, some of which are quite different from the models
described above.

Parallel computing in combinatorial optimization 253

3. COMVLEX]TV THEORY
The purpose of this section is to present an informal introduction to those con-
cepts from the complexity theory for parallel computing that may have some
impact on the theory of combinatorial optimization. The interested reader is
referred to COOK [15] for a more thorough exposition and to JOHNSON [37] for
a very readable review (on which this section is largely based).

Central to this area is a hypothesis known as the parallel computation thesis
[12, 28]: time bounded parallel machines are polynomially related to space
bounded sequential machines. That is, for any function T of the problem size n,
the class of problems solvable by a machine with unbounded parallelism in
time T(n) °0) (i.e., polynomial in T(n)) is equal to the class of problems solv-
able by a sequential machine in space T(n) 0(1). This thesis is a theorem for
several 'reasonable' parallel machine models and several 'well-behaved' time
bounds; see VAN EMDE BOAS [73] for a survey. It holds, for example, in the
case that the machine model is a PRAM and T(n) -n °0) (i.e., a polynomial
function of problem size).

According to the parallel computation thesis, the class of problems solvable
by a PRAM in polynomial time is equal to ~SPACE, the class of problems solv-
able by a sequential machine in polynomial space. In view of the apparent
difficulty of many problems in ~PACE (such as the e~SVACE-complete and %6).
complete ones), the PRAM is an extremely powerful model. It is of interest to
see how it affects the complexity of the problems in ~, which are solvable by a
sequential machine in polynomial time.

It turns out that many problems in o'-2 can be solved in polylog parallel time
(loAn) °(1), i.e., in time that is polynomially bounded in the logarithm of the
problem size n. Some examples are given in Section 4; other, more compli-
cated, examples are finding a maximum flow in a planar graph [36] and linear
programming with a fixed number of variables [57]. By the parallel computa-
tion thesis, these problems would form the class POLYLOGSPACE of problems
solvable in polylog sequential space. They can be considered to be among the
easiest problems in 9, in the sense that the influence of problem size on solu-
tion time has been limited to a minimum. No single processor needs to have
detailed knowledge of the entire problem instance. (It should be noted here
that a further reduction to sublogarithmic solution time is generally impossible.
One reason for this is that a PRAM needs O(log n) time to activate n proces-
sors; a similar reason is that in any realistic model of parallelism a constant
upper bound on the maximum 'fan-out' dt implies a logarithmic lower bound
on the minimum 'communication time' dE.)

On the other hand, ~ contains problems that are unlikely to admit solution
in polylog parallel time. These are the problems that have been shown to be
log space complete for ~ or, more precisely, g-complete under log-space
transformations: they belong to P and any other problem in 62 is reducible to
them by a transformation using logarithmic work space. Examples wiU be dis-
cussed in Section 5; they include general linear programming and finding a
maximum flow in an arbitrary graph. If any such problem would belong to
POLYLOGSPACE, then it would follow that 62 c_ POLYLOGSPACE, which is not

254 G.A.P. Kindervater, J.K. Lenstra

believed to be true. Hence, their solution in polylog sequential space or,
equivalently, polylog parallel time is not expected either. Any solution method
for these hardest problems in P is likely to require supeflogarithmic time and is
therefore, loosely speaking, probably 'inherently sequential' in nature.

We have thus arrived at a distinction within o~ between the 'very easy' prob-
lems, which can be solved in polylog parallel time, and the 'not so easy' ones,
for which a dramatic speedup due to parallelism is unlikely.

The picture of the PRAM model as sketched above is in need of some
qualification. The model is theoretically very useful, but its unbounded paral-
lelism is hardly realistic. The reader will have no dit~culty in verifying that a
PRAM is able to activate a superpolynomial number of processors in subpoly-
nomial time. If a polynomial time bound is considered reasonable, then cer-
tainly a polynomial bound on the number of processors should be imposed. It
is a trivial observation, however, that the class of problems solvable if both
bounds are respected is simply equal to 62. Within this more reasonable model,
hard problems remain as hard as they were without parallelism.

Discussions along these lines have led to the consideration of simultaneous
resource bounds and to the definition of new complexity classes. For example,
Nick (Pippenger)'s Class 9"~ contains all problems solvable in polylog parallel
time on a polynomial number of processors, and Steve (Cook)'s Class $C con-
tains all problems solvable in polynomial sequential time and polylog space.
Some sort of extended parallel computation thesis might suggest that ~ = SC.
This is a major unresolved issue in complexity theory, and outside the scope of
this review. We refer to JonNsot~ [37] for further details and more references.

4. POLYLOG PARALLEL ALGORITHMS
We will now describe polylog parallel algorithms for ten problems. Examples
5, 6 and 7 deal with basic operations on a set of numbers, Examples 8, 9 and
10 discuss the problems of finding shortest paths, a minimum spanning tree
and a traveling salesman tour by the double minimum spanning tree heuristic,
and Examples 1 l, 12 and 13 are concerned with the scheduling of a set of jobs
on paraUel machines. Example 14 outlines a randomized polylog parallel also-
rithm for the maximum cardina~ty matching problem. Other problems that are
solvable in polylog parallel time have been mentioned in Section 3 and will
return in Section 5.

The algorithms will be designed to run on an SIMD machine with a shared
memory. Simultaneous reads are permitted and simultaneous writes are prohi-
bited; the former assumption is not essential but simplifies the exposition. We
note that the (non-randomized) polylog parallel algorithms referred to in this
paper require a polynomial number of processors, so that the problems in
question belong to

In the PIDGIN ALGOL procedures in this section, we write

par [a<~i <~z] si

to denote that the statements si are to be executed in parallel for all values of
the index i in the given range.

Parallel computing in combinatorial optimization 255

EXAMPLE 5. Maximum finding. Given n numbers, one wishes to find their
maximum. We assume, for convenience, that n =2 m for some integer m and
that the numbers are given by a,,a, +!,... ,a2,_l. Consider the following pro-
cedure:

for l<---m - 1 d o w n t o 0 do

par [2t<~j~<2 t+l - 1] aj<---max{a2ja2j+l }.

The computation is illustrated by means of a binary tree in Figure 4. At step l,
the values corresponding to the nodes at level 1 of the tree are calculated. At
the end, a l is equal to the desired maximum.

The algorithm requires O(logn) time and n/2 processors. We can improve
on this by applying a device similar to the one used in the last paragraph of
Example 4: each processor has logn data assigned to it and computes their
maximum sequentially, before the above procedure is executed. The resulting
algorithm still runs in O(logn) time, but now using only [n/logn] processors
with a processor utilization of O(1).

/ = 0

/ = 1

1 = 2

i = 3

FIGURE 4. Maximum finding: an instance with n = 8

EXAMPLE 6. Partial sums [17]. Given n numbers a,, an +1 , . . . ,a2n-! with n =2 m,
one wishes to find the partial sums a, +... + a , +j for j = O , . . . , n - 1. Consider
the following procedure:

for l<---m - I downto 0 do

par [2 t ~<j ~< 21 + 1

b1<-.--al;
for I<---I to m do

par [2 t ~<j ~<2 i + I

- 1] aj~a2j + alj + l ;

-I] bj<-- ifj odd then b(/-l)/2 else bjn-aj+1.

256 G.A.P. Kindervater, J.K. Lenstra

l = 0

1 = 1

i = 2

/ = 3

.. 36 36

a215 t 213 b36 ~
,,4,' ,4,,"

16 t 06
6 9 15 9 24 12 36

I
I 7 361

FIGURE 5. Partial sums: an instance with n =8

The computation is illustrated in Figure 5. In the first phase, represented by
the solid arrows, the sum of the aj's is calculated in the same way as their
maximum was calculated in Example 5. Note that the a-value corresponding to
a non leaf node is set equal to the sum of all a-values corresponding to the
leaves descending from that node. In the second phase, represented by the dot-
ted arrows, each parent node sends a b-value (starting with b l --a i) to its chil-
dren: the fight child receives the same value, the left one receives that value
minus the a-value of his brother. The b-value of a certain node is therefore
equal to the sum of all a-values of the nodes of the same generation, except
those with a higher index. This implies, in particular, that at the end we have
bn+j=anq-...+an+j for j=0 , . . . ,n - 1.

The algorithm requires O(logn) time and n processors. As before, this can
be improved to O(logn) time and O(n/logn) processors.

EXAMPLE 7. Sorting [58]. Given n numbers al,...,an, one wishes to renumber
them such that a l ~<... ~<a,. We assume, for simplicity, that ai4:aj if i4:j. Con-
sider the following procedure:

par [1 ~ i , j <~n] pq ~ if a i ~aj then 1 else O;

par [1 <~j <~n] ~l'j~--- sum{pig[1 <~i <.n };

par [l~<j~<n] a,~,--aj.

The algorithm is based on enumeration sort: the position 7rj in which aj should
be placed is calculated by counting the ag's that are no greater than aj. There
are three phases:
(i) computation of the relative ranks pgj" n 2 processors, O(1) time - or

rn2/logn] processors, O(logn) time;

Parallel computing in combinatorial optimization 257

(ii) computation of the positions ~rj: n [n/logn] processors, O(logn) time (by
application of the first phase of the algorithm of Example 6);

(iii) permutation: n processors, O(1) time.
The algorithm requires O(logn) time and O(n2/logn) processors. Simultane-

ous reads occur in the first phase, but there is a way to avoid them within the
same time and processor bounds. As sequential enumeration sort takes O(n 2)
time, the processor utilization is O(1).

EXAMPLE 8. Shortest paths [16]. Given a complete directed graph with vertex
set (l,...,n} and a length cij for each arc (i,j), one wishes to find the shortest
path lengths for all pairs of vertices. LAWLER [51] gives an algorithm which
requires O(n 3 logn) time. It is based on matrix multiplication. Let ~) denote
the length of a shortest path from vertex i to vertex j, containing no more than
I arcs. Since a path from vertex i to vertex j consisting of at most 2/arcs can
be split into two paths of no more than l arcs each, we have that
~20=mink~{i ,n}{~)+d~)}. Taking into account that a shortest path, if it
exists, contains'at most n - 1 arcs, we obtain the following algorithm:

par [I <~i,j<~n] ~))~cij;

for m ~ l to [logn] do

l~2 m,

par [I ~i, j <-n] ~) ~ rain (~tk:2) + d~J2)t 1 ~<k ~<n }.

Application of the routine of Example 5 with maximization replaced by
minimization yields an algorithm which requires O(log2n) time and
O(n 3/logn) processors, with a processor utilization of O(1).

EXAMPLE 9. Minimum spanning tree [63]. The Prim-Dijkstra algorithm for the
minimum spanning tree problem was discussed in Example 4. A minimum
spanning tree of a complete undirected graph G with vertex set { 1,...,n } and a
length ci. for each edge {i,j} can also be found in O(n 2) time by an algorithm
due to gOLLIN [8]. We assume that the edge lengths are all distinct (if not, we
number the edges in some arbitrary way and say that from two edges with the
same length the one with the lowest number is smaller). The algorithm starts
with n components, each consisting of a different vertex, and with an empty
set of edges belonging to the tree. At each step of the algorithm, each com-
ponent finds an edge of minimum length between any of its own vertices and a
vertex of a different component. Since all edge lengths are different, the edges
thus obtained do not form cycles between the components and are added to
the minimum spanning tree. We now merge the components which are con-
nected by the newly found edges into a new one, and perform a nexi step of
the algorithm as long as there is more than one component left. Because the
number of components is at least halved at each step, the algorithm terminates
after at most rlogn] steps.

In the algorithm below, for each component a representative is chosen. Two

258 G.A.P. Kindervater, J.K. Lenstra

vertices belong to the same component if they have the same representative.
Let ri (i = l,...,n) denote the representative of the component to which vertex i
belongs.

par [l~<i~<n] r i~i;

for 1~1 to ['logn] do

par [l~<i~n]

find k such that rk=/=ri & cik =min{cqll <<-j<~n,rj=/=ri },

if k does not exist then a minimum spanning tree has

been found & the algorithm is stopped,

ti<-'k;

par [1 <<.i<~n]

find k such that rl, = ri & Ckt~ = rrim { cjt, I 1 <~j <~n,rj = ri },

si~-k & t i~tk ;

par [1 <~i <<.n] s i ~ if it, = si & ri <!"I, then 0 else si;

par [1 ~<i <~ n] if ri = i & si=/=O then add edge {si, ti } to the tree;

par [l~<i~<n] r i~ if s i=0 then ri else rt,;

for l*~1 to rlogn] do par [l~<i~<n] ri~rr.

Each step of the algorithm does the following. First, each component finds the
edge of minimum length between any vertex of itself and one of a different
component. Of the edges found twice at the same step, one copy is eliminated.
The remaining edges are added to the tree. Finally, components are merged by
finding a common representative, using a recursive doubling technique which
will appear in Example 13. One step of the algorithm can be performed in
O(logn) time on O(nE/logn) processors by application of the procedure of
Example 5 with maximization replaced by minimization. The complete algo-
rithm requires O(log z n) time on O(nE/logn) processors, with a processor utili-
zation of O(1/logn).

EXAMPLE 10. Double minimum spanning tree tour for the traveling salesman
[44]. In the traveling salesman problem, one is given a complete undirected
graph G with vertex set {1,...,n} and a length dq for each edge {i,j} and one
wishes to find a Hamiltonian cycle (i.e., a cycle passing through each vertex
exactly once) of minimum total length. This is a well-known %~-hard problem,
and rather than trying to solve it to optimality one might decide to find an
approximate solution in polynomial time. One such approximation algorithm is
the double minimum spanning tree heuristic. It consists of three phases:

Parallel computing in combinatorial optimization 259

(i) Construct a minimhm spanning tree. Using the routine of Example 9, we
can perform this phase in O(log 2 n) time on O(n 2/log n) processors.

(ii) Double the edges of the minimum spanning tree and construct an
Eulerian cycle. We do not go into the details here, but this phase can be
done within the same time and processor bounds using the techniques
from [3].

(iii) Start at a given vertex and traverse the edges, skipping vertices visited
before. We first have to find the first occurrence of each vertex and then
eliminate all duplications. Let v l,...,vi,...,v2,-1 denote the Eulerian tour
obtained in the previous phase, where v~ is the ith vertex of the tour. We
proceed as follows.

par [l <~i,j<~2n - I] cij~ if vi =v) then 1 else 0;

par [1 ~<i ~<2n - 1] di~max(0,1 - sum(c~jl 1 <<.j<~i - 1 } };

par [1 ~<i ~<2n - 1] si~sum(djll <~j ~<i }.

Note that di= 1 if vi occurs for the first time in the tour, d~ = 0 otherwise, and
that si denotes the number of different vertices in v l,...,vi. We obtain the tour
t ~ - t 2 - . . . - t , , - t ~ by:

par [l~<i~<2n -1] if di= 1 then ts,~vi.

Using the partial sums algorithm from Example 6, we can implement phase
(iii) within the same resource bounds as the previous phases. So, we end up
with an algorithm that runs in O(lo32 n) time on O(n2/logn) processors. Since

n z ' w V the sequential algorithm takes O() time, e ha e a processor utilization of
O(1/logn).

EXAMPLE 11. Preemptive scheduling of identical machines [18]. Given m identi-
cal machines Mi (i=1, m) and n jobs Jj, each with a processing time
pj (/= 1,...,n), one wishes to find a preemptive schedule of minimum length. A
preemptive schedule assigns to each Jj a number of triples (Mi,s,t), where
l<~i<~m and O<~s<~t, indicating that Jj is to be processed by Mi from time s
to time t. A preemptive schedule is feasible if the processing intervals on M;
are nonoverlapping for all i, and the processing intervals of Jj are nonoverlap-
ping and have total length pj for all j. It is optimal if the maximum comple-
tion time of the jobs is minimum.

An optimal schedule can be found in O(n) time by the classical wrap around
ru/e of MCNAUGHTON [56]. The algorithm first computes a value t* which is
an obvious lower bound on the minimum schedule length. It then constructs a
schedule of length t* by considering the jobs in an arbitrary order and
scheduling them in the m periods (0,t*), carrying over the part of a job that
does not fit at the end of the period on Mi to the beginning of the period on
Mi + I. More formally:

260 G.A.P. Kindervater, J.K. Lenstra

t* <-max{ max{pjl 1 ~<j ~<n }, sum{pjl 1 ~<j ~<n }/m };

s <---0; i,--1 ;

for j<--1 to n do

if s +pj <~t*

then assign (Mi,s,s +pj) to Jj,

s,--s +pj

else assign (Mi ,s, t*) and (Mi + l , 0,pj - (t* - s)) to J j,

S~-'pj--(t* --S), i<---i + l.

An example is given in Figure 6. There are two global parameters that are
updated sequentially as the job index j increases: the starting time s and the
machine index i of Jj. We can calculate all starting times and machine indices
simultaneously in logarithmic time, using the parallel procedures for finding
the maximum and the partial sums from Examples 5 and 6 as subroutines:

t* *--max { max {pjl l < j ~ n },sum{pyl l < j <~n } / m } ;

par [1 ~<j~<n] qj,---sum{Pkll~k<~j --1};

par [1 <j--.<n]

sj,--qj mod t*, ij,--[q:/t*J + 1,

if sj +py<-t*

then assign (Mij,sj,sj +pj) to Jj

else assign (Mi,,sj,t*) and (Mi, + 1,O,pj-(t* -s j)) to Jj.

This algorithm can be implemented to require O(logn) time and O(n/logn)
processors with a processor utiliTation of O(1).

j : 1 2 3 4 ~ 5 Mt

p j: 1 2 3 4 5 M2

t* = 5 M 3

Jl J2 J3

J3 J4

J5

0 1 2 3 4 5

FIGUR~ 6. Preemptive scheduling: an instance with m = 3 and n = 5

EXAMPLI~ 12. Preemptive scheduling of uniform machines [55]. Given are m
machines Mi, each with a speed si (i = 1,...,m), and n jobs Jj, each with a pro-
cessing requirement pj (]= 1,...,n). If Jj is completely processed on Mi, the
processing time is pj/si on machine Mi. One wishes to find a preemptive
schedule of minimum length.

An optimal schedule can be found in O(n +mlogm) time by an algorithm

Parallel computing in combinatorial optimization 26t

due to GONZALEZ & SAHNI [30]. As in Example 11, the algorithm first finds an
obvious lower bound t* on the minimum schedule length and then constructs a
schedule of length t*. Assume that the machines are ordered according to
nonincreasing speeds and that the r n - 1 largest jobs, ordered according to
nonincreasing processing requirements, precede the n - m + 1 remaining jobs.
The Gonzalez-Sahni algorithm is as follows:

t* .-- max ((pl/Sl),(pl +pz)/(Sl +s2),...,
+... +p,,_,)/(s, +... +... +p.)/(S, +... +Sin)};

construct a composite machine with speed si in the interval
[(i-1)t*,it*) (i= 1,...,m) and speed 0 in [mt*,oo);
f o r j ~ l to n do

find the latest possible interval [s,s +t*) such that the compo-
site machine can process Jj, assign the interval [s,s +t*) to Jj,
replace the speed of the composite machine at time s + t by
the original speed of the machine at time s+t*+t, for all
t>0 .

After scheduling the m - 1 largest jobs, the composite machine has in any
interval of length t* with positive speed a processing capacity that is greater
than the processing requirement of any of the remaining jobs. The parallel
algorithm first schedules the m - 1 largest jobs; after that, the remaining jobs
are scheduled in the same way as in Example 11. The first phase of Martel's
algorithm is only sketched here; the full story can be found in his paper.

For each of the large jobs, we compute an interval to which we would like
to assign that job. Martel observes that, if the intervals of two consecutive jobs
overlap, we may combine them into one compound job with a processing
requirement equal to the sum of the processing requirements of both jobs and
find an interval of twice the original length on the composite machine. We
group consecutively overlapping jobs together. If a group contains an odd
number of jobs, we schedule the first job in its interval (and revise the compo-
site machine as in the sequential algorithm) and combine the second with the
third job, the fourth with the fifth job and so on, otherwise we combine the
first with the second job, the third with fourth job and so on. We continue this
process until there are at most two compound jobs left. These are scheduled
sequentially. We now call the same procedure for each of the compound jobs,
with the individual jobs of the compound job as job set and with the interval
assigned to the compound job (extended to infinity with speed 0) as composite
machine. Since at each recursive step the number of jobs in a new problem
decreases by a constant factor, the algorithm terminates after a logarithmic
number of such steps.

The entire algorithm can be implemented in O(logn +log 3 m) time on O(n)
processors. It uses the sorting algorithm of AJa'AI, KOML0S & SZEME~DI [1],
which requires O(logn) time and O(n) processors (and thereby provides a sub-
stantial improvement over the algorithm from Example 7).

262 G.A.P. Kindervater, J.K. Lenstra

j : 1 2 3 4 5 k : 1 2 3 4 5 6 7 8 9 10

$/:

O j"

~,(/):

0 1 3 4 7 --,- u~: 0 1 2 3 4 5 6 7 8 9
2 8 5 6 9

a~: I I - - I I I - - I - - I I - - I - - I
! 2 2 3 2 --- fl~: 1 2 1 2 3 2 1 2 1 0
2 2 3 2 1

1 2 1 4 4 ~ M~

M :

M~

0 1 2 3 4 5 6 7 8 9

FI6Ur.E 7. Scheduling fixed jobs: an instance with n =5

EXAMPLE 13. Scheduling fixed jobs [18]. Given n jobs Jj, each with a starting
time sj and a completion time tj (j = 1,...,n), one wishes to find a schedule on a
minimum number of machines. A schedule assigns to each Jj a machine Mi. It
is feasible if the processing intervals (sj,tj) on Mi are nonoverlapping for all i;
it is optimal if the number of machines that process jobs is minimum. The
problem is also known as the channel assignment problem: n wires are to be
laid out between given points in a minimum number of parallel channels, each
of which can carry at most one wire at any point.

An optimal schedule can be found in O(nlogn) time by the following simple
rule. First, order the jobs according to nondecreasing starting times. Next,
schedule each successive job on a machine, giving priority to a machine that
has completed another job before. It is not hard to see that, at the end, the
number of machines to which jobs have been assigned is equal to the max-
imum number of jobs that require simultaneous processing. This implies
optimality of the resulting schedule.

For a polylog parallel implementation, we need a more detailed sequential
description of the algorithm [32]. We introduce an array u of length 2n con-
taining all starting and completion times in nondecreasing order; the informal
notation 'uk.-~sj' ('uk,'-.tj') will serve to indicate that the kth element of u
corresponds to the starting (completion) time of Jj. We also use a stack S of
idle machines; on top of S is always the machine that has most recently com-
pleted a job, if such a machine exists.

sort (s 1, t 1 ,..., s,, t,) in nondecreasing order in (u 1 ,..., u 2,) whereby,

if tj =Sk for some j & k, tj precedes Sk ;

S¢-- stack of n machines;

for k ~ 1 to 2n do

if Uk"'sj then take machine from top of S and assign it to Jj,

if uk ~t j then put machine assigned to Jj on top of S.

Parallel computing in combinatorial optimization 263

Figure 7 illustrates the algorithm as well as its paraltelization, which is
described below. There are four phases.
(0 First, we calculate the number oj of machines that are busy directly after

the start of Jj and the number 'rj of machines that are busy directly before
the completion of Jj, for j = 1,...,n:

sort (sl,tl ,s,,,t,) in nondecreasing order in (ul,...,u2,) whereby,

if tj = Sk for some j & k, tj precedes sk ;

par [l~<k~<2n] ak~-ifuk"-'sj then 1 else - 1 ;

par [l~<k<~2n] flk~- sum(atll <~l~k);

par [l~<k~<2n]

if uk'~sj then oj~flk,

if Uk'~tj then zj~flk + 1.
Note that the number of machines we need is equal to maxj (oj).

(ii) For each Jj, we determine its immediate predecessor J,~j.) on the same
machine (if it exists). The stacking mechanism implies that this must be,
among the Jk satisfying 'rk = oj, the one that is completed last before the
start of Jj; if no such job exists, then it is convenient to take Jj as its own
predecessor:

par [1 <-j<~n]

find k such that rk =oj & tk =max (t~lt~<~sjt-oj},
~r(])~ if k exists then k else j.

(iii) For each Jj, we now turn J ~) into its first predecessor on the same
machine using recursive doubling. The chains formed by the arcs (j,~r(j))
are collapsed simultaneously in a logarithmic number of steps (cf. Figure
8):

for l~-I to rlogn] do par [1---<j---<n] ~(j)~(~r(/)).

(iv) Finally, we use the ¢dd')'s to perform the actual machine assignments:

par [l~<j~<n] assign Mo.~, to Jj.
Using the maximum, partial sums and sorting routines from Examples 5, 6

and 7, we can implement this algorithm to require O(logn) time and
O(n2 /logn) processors.

EXAMPLE 14. Maximum cardinality matching [39]. Given an undirected graph
with vertex set V and edge set E, one wishes to find a matching of maximum
cardinality. A matching is a set of vertex disjoint edges. It is perfect if each
vertex is incident to an edge.

264 G.A.P. Kindervater, J.K. Lenstra

(ii) 1 2 3 4 5 6 7

(iii), 1 = 1

(iii), t = 2

(iii), ! = 3

FIGURE 8. Scheduling fixed jobs:
finding the first preceding job on the same machine

Lovksz [54] gave a randomized algorithm for deciding whether a graph has
a perfect matching. It is based on the following theorem of Tutte: a graph on n
vertices has a perfect matching if and only if the determinant of the n X n
matrix B=(bo.), with bij--xij if (i , j } ~ E and i< j , bij=-xij if (i , j } ~ E and
i > j, and bij--O otherwise, is not identically zero in the variables xij. Now, we
choose a random number N, substitute for each variable xq a random number
from {1,...,N} and compute the determinant. If the determinant of B is identi-
cally zero, then we find the value zero. Otherwise, the probability that we get
zero is very small. CSANKY [13] showed that computing a determinant belongs
to 9rE. Therefore, the problem of deciding whether a graph has a perfect
matching belongs to 6 X ~ i.e., the class of problems solvable by a randomized
algorithm in polylog time on a polynomial number of processors.

The randomized algorithm of KARP, UPFAL & WIGDERSO~ [39] which actu-
ally constructs a perfect matching in polylogarithmic time, if it exists, is also
based on Tutte's theorem. It is quite complicated, and we refer to their paper.
As a result, the problems of constructing a maximum cardinality matching and
of constructing a matching of maximum weight in a graph whose edge weights
are given in unary notation also belong to ~6-)~. The complexity of the max-
imum cardinality matching problem with respect to deterministic parallel com-
putations is an open question, even for bipartite graphs.

5. P-COMPLETEr,tESS
The first P-complete problem was identified by COOK [14]. It involves the sol-
vabilify of a path system and is proved P-complete under log-space transforma-
tions by a 'master reduction' in the same spirit as Cook's %P-completeness
proof for the satisfiability problem. We will not define the path problem here
and prefer to start from a different point.

Parallel computing in combinatorial optimization 265

EXAMPLE 15. Circuit value [46,27,29]. Given a logical circuit consisting of
input gates, AND gates, OR gates, NOT gates, and a single output gate, and
given a truth value for each input, is the output TRUE or FALSE? Cf. Figure 9.

The circuit value problem is trivially in P. LADNER [46] indicated how to
simulate any polynomial time deterministic Turing machine by a combinatorial
circuit with only AND and NOT gates in logarithmic work space. It follows that
the problem is P-complete.

GOLDSCHLAGER [27] extended this result to the cases of monotone circuits,
which have no NOT gates, and planar circuits, which have a cross free planar
embedding, by giving log space transformations from the circuit value prob-
lem. Circuits which have in addition to input and output gates, only NAND
gates (a NAND gate is an AND gate followed by a NOT gate) or NOR gates (a
NOR gate is an OR gate followed by a NOT gate) are able to simulate arbitrary
circuits; this not hard to see. Therefore, the circuit value problem is also P-
complete for circuits with only NAND gates or only NOR gates.
GOLDSCHLAGER, SI-IAW & STAPLES [29] showed that all these results still hold
if each input gate has fan-out one (it appears once as input to another gate)
and each other gate has fan-out at most two.

FIGURE 9. A logical circuit

EXAMPLE 16. Linear programming [21,72]. Given a finite system of linear equa-
tions and inequalities in real variables, does it have a feasible solution?

Linear programming is known to be in P [40]. DOBKIN, LIPTON & REISS
[21] established P-completeness of the problem by giving a log space transfor-
mation from the unit resolution problem, a variant of the satisfiabili(y problem,
that was already known to be P-complete. VALIANT [72] gave a more straight-
forward transformation, starting from the circuit value problem.

The idea is to associate a variable xj with the jth gate, such that xj = I if the

266 G.A.P. Kindervater, J.K. Lenstra

gate produces the value TRUE and xj =0 otherwise. More explicitly,

if gate j is then we introduce the equations

• an input gate with value TRUE,
• an input gate with value FALSE,
• an AND gate with inputs from gates h and i,

• a NOT gate with input from gate i,
• the output gate with input from gate i,

and inequalities
• x j = l ,
. xj=O,
. xj <~xh, xj <~x~,
=£>10, xj>~xh +x~- I,

" X j - - 1 - - X i ,
. xj = xi, x j = l .

OR gates may be excluded• We leave it to the reader to verify that each feasi-
ble solution is a 0-1 vector, that there exists a feasible solution if and only if
the circuit value is TRUE, and that the transformation requires logarithmic
work space.

Simple refinements of this transformation show that linear programming
remains 62-complete if all coefficients are equal to - 1 , 0 or 1, and each row
and column of the constraint matrix contains at most three entries.

EXAMPLE 17. Maximum flow [29]• Given a directed graph with specified source
and sink vertices and with capacities on the arcs, and given a value v, does the
graph have a flow from source to sink of value at least v?

The maximum flow problem belongs to 62 [22]. It was shown to be 62-
complete by a transformation from the monotone circuit value problem. The
transformation simulates the implications of boolean inputs through a circuit
with n AND and OR gates by integer flows through a network with the gates
and an additional source and sink as vertices and with arc capacities of O(2n).

We conclude this section by mentioning two related results of a more posi-
tive nature.
(0 The maximum flow problem is solvable in polylog parallel time in the

case of planar graphs, due to the relation of this case to the shortest path
problem [36].

(ii) The problem is solvable in randomized polylog parallel time in the case of
unit capacities and in the more general case that the capacities are
encoded in unary. This follows, through standard transformations, from
the complexity status of the maximum cardinality matching problem as
described in Example 14.

EXAMPLE 18. List scheduling [34]. In the multiprocessor scheduling problem,
one is given rn identical machines Mi (i = 1,...,m) and n jobs Jj, each with a
processing time pj (j=l, . . . ,n), and one wishes to find a nonpreemptive
schedule of minimum length. A nonpreemptive schedule assigns to each Jj a
pair (Mi,s), with l< - i~m and s>~O, indicating that Jj is to be processed by Mi
from time s to time s +pj. A nonpreemptive schedule is feasible if the process-
hag intervals on Mi are nonoveflapping for all i. It is optimal if the maximum
job completion time is minimum.

This is an %62-hard problem• A popular approximation algorithm is the list

Parallel computing in combinatorial optimization 267

scheduling heuristic, whereby a priority list of the jobs is given and at each
step the earliest available machine is scheduled to process the first available
job on the list. More formally:

for i<---1 to m do silO;

f o r j ~ l to n do

i* <---min(i[si <~slc,k = 1,...,m },

assign (Mi,,si,) to Jj,

Si* ~"Si* Al-pj.

An example is given in Figure 10. The sequential algorithm requires O(nlogm)
time. We will show that the associated list scheduling problem of deciding
about the resulting schedule length is °~-complete for m/>2.

0 1 2 3 4 5 6 7

FIGURE 10. List scheduling: an instance with m =3 and n - 5

Consider an instance of the circuit value problem with only input and NOR
gates. First, we number the gates such that each NOR gate receives its inputs
from higher numbered gates. We then give the incoming arcs to NOR gate i the
weights 42i and 42i +1 The output arc gets weight 4. Cf. Figure 11. We con-
struct the list of jobs as follows. The first has a processing time that equals the
sum of the weights of all outgoing arcs of TRUE inputs. In decreasing order of
i, we put seventeen jobs on the tist for NOR gate i, one with length 2"4 2i +l ,
fourteen with length 42i/2, and two with length (42i d-Vi)/2 , where V/ is the
sum of the weights of the outgoing arcs of gate i. On two machines, the
corresponding list schedule has the property that, after scheduling the first job
or after scheduling all jobs associated with a gate, the difference in the comple-
tion times of both machines is equal to the sum of the weights of all arcs that
have been computed to represent a "rRLrE value and have not yet been con-
sidered as input. In the end, the difference in the completion time is 4 if and
only if the circuit computes the value TRUE. Checking these statements is left
as an exercise to the reader. Since the transformation can be performed in log-
arithmic work space, the list scheduling problem is °~-complete for m I>2.

EXAMPLE 19. Nearest neighbor tour for the traveling salesman [44]. Given a
complete undirected graph G with vertex set (1,...,n }, a length dij for each
edge (i,j} and two specified vertices v l and v2, does the Hamiltonian cycle
constructed by the nearest neighbor heuristic, when started at vertex v~, visit

268 G.A.P. Kindervater, J.K. Lenstra

~ O R (4)~ 4 7

FIGURE I 1. A circuit with numbered gates and weights
assigned to the edges

vertex v2 as the last one before returning to vertex v l? The nearest neighbor
heuristic is probably the simplest approximation algorithm for the traveling
salesman problem. It proceeds as follows.
(i) Start at a given vertex.
(ii) Among all vertices not yet visited, choose as the next vertex the one that

is closest to the current vertex. Repeat this step until all vertices have
been visited.

(iii) Return to the starting vertex.
We will show that the nearest neighbor problem is P-complete. For each

instance of the circuit value problem with only input gates with fan-out one
and NAND gates with fan-out at most two, we construct a graph in such a way
that the circuit value of the considered instance is TRUE if and only if the
nearest neighbor problem returns a 'yes' answer.

Let the circuit have m gates. We number them from 1 up to m such that
they receive their inputs from gates with a lower number. Each gate in the cir-
cuit is represented by a subgraph. The nearest neighbor tour will visit the sub-
graphs in the order in which the corresponding gates are numbered in the cir-
cuit. This ensures that if the tour visits a subgraph corresponding to a non-
input gate, it has passed the subgraphs corresponding to its input gates.

For NAND gate k (k <m) with fan-out two (ak = ai NAND Otj), we construct
the subgraph as shown in Figure 12. The vertex pairs (i) - ® are used to con-
nect the different subgraphs. If gate i is input to gate k, a 0) - ® pair appears
as output in the subgraph for gate i and also as input in the subgraph for gate
k. The edge length zero assures that corresponding vertices 1 and 2 are always

Parallel computing in combinatorial optimization 269

neighbors in the obtained tour. If the fan-out is one (zero), we construct the
same subgraph with one arbitrary • - ® pair of output vertices (without out-
put vertices). The subgraph is constructed in such a way that if the nearest
neighbor tour enters the subgraph at vertex A from subgraph k - 1, it leaves
this subgraph through vertex B to subgraph k + 1. We associate a TRUE (FALSE)
value with this subgraph if the nearest neighbor tour on its way from A to B
passes (does not pass) through the output vertices.

When the tour arrives at vertex A from subgraph k - l, there are three pos-
sibilities.

from 0
k - 1

3k +2

input i
t I I I I I I

3 k / (~ ~ 3 k + 1

utpu't-" " -ou tpu t " 3k

I I I "~l
I I I

input j

0 to
k + l

(i)

FIGURE 12. The representation of NAND gate k

Inputs i and j have both been visited already. In this case the tour must
go directly to vertex B and then it will choose the edge of length zero to
subgraph k + 1. This will be the only case where the output vertices are
not immediately visited. Note that as a result either output vertex 2 has its
corresponding vertex 1 left as its only unvisited neighbor within the sub-
graph. See Figure 13.

f r o m

k - 1

. : .. -

t o

k + l

FIGURE 13. TRUE NAND TRUE ~ FALSE

270

(i i)

G.A.P. Kindervater, J.K. Lenstra

Either input i or input j is still unvisited. The tour will choose vertex I of
this unvisited input as next vertex, since the edge length is less than the
distance to vertex B. From here it goes to the corresponding vertex 2
(edge length is zero). As noted under (i), this vertex 2 has no unvisited
neighbors in the subgraph where it appears as output. Therefore, the next
vertex must belong to subgraph k, i.e., the tour arrives at the outputs.
Because edge lengths in a subgraph are proportional to the number of
that subgraph and outputs belong to subgraphs with a higher number, the
nearest neighbor algorithm will visit all output vertices and after that ver-
tex B before leaving subgraph k to subgraph k + 1. Cf. Figures 14 and 15.

f r o m ~ to
k - I k+l

FIGURE 14. TRUE NAND FALSE --o TRUE

from ~ to
k - ! ~ k+l

FIGURE 15. FALSE NAND TRUE ~ TRUE

(iii) Both inputs are unvisited. The tour will pass through all vertices of sub-
graph k before going to subgraph k + 1 (Figure 16).

Note that in all cases all unvisited input vertices are included in the tour.
To summarize the results, the nearest neighbor tour from A to B passes

through the output vertices if and only if at least one of the input vertices is
not yet visited. In the circuit value problem, this corresponds to the fact that a
N ~ D gate produces the value TRtm if and only if at least one of the inputs is
FALSE.

Parallel computing in combinatorial optimization 271

from to
k - ! - - k + l

FIGURE 16. FALSE AND NAND FALSE ---> TRUE

For TRUE and FALSE inputs we construct the subgraphs as shown in Figure
17. The representation of NANO gate m (the last one) has a somewhat special
structure. The output vertices are replaced by a vertex C. Both vertex B and
C are connected to input 1 (see Figure 18). If the tour arrives at vertex A of
this gate and we are in situation (i), the tour will go directly to vertex B and
from there to vertex C before it leaves subgraph m. Otherwise vertex B will be
the last vertex to be visited of this last subgraph.

It should now be clear that a nearest neighbor tour starting at the A-vertex
of input 1 visits the B-vertex of the last gate as the last vertex if and only if the
circuit computes the value TRUE. Since the transformation can be performed
using work space which is logarithmic in the size of the circuit, the nearest
neighbor problem is q-complete. So, the construction of a nearest neighbor
traveling salesman tour will probably require superpolylogarithmic work space
or superpolylogarithmic parallel time.

from 0 ~ 0 to
k - 1 k + l

l I l I
I t I l

output

(a) The representation of a TRIm input

r o m to

k - 1 (~ ~ k + l

output

(b) The representation of a FALSE input

FIGURE 17. The representation of input k

272 G.A.P. Kindervater, J.K. Lenstra

from 0 t"
m - 1 - - ~ , .

3m +2

input i
I I I I
I I I I

....

~)3m+3

I ~ I I
I I I I

input j

tO
1

FIGURE 18. The representation of NAND gate m

6. ENUMERATIVE METHODS
The optimal solution to %6y-hard problems is usually found by some form of
implicit enumeration of the set of all feasible solutions. In this section we will
consider the parallelization of the two main types of enumerative methods:
dynamic programming and branch and bound. We have already seen that, from
a worst case point of view, intractability and superpolynomiality are unlikely
to disappear in any reasonable machine model for parallel computations. In a
more practical sense, parallelism has much to offer to extend the range in
which enumerative techniques succeed in solving problem instances to optimal-
ity. Little work has been done in this direction, but we feel that the design and
analysis of parallel enumerative methods is an important and promising
research area.

6. t. Dynamic programming
Dynamic programming algorithms for combinatorial problems typically per-
form a regular sequence of many highly similar and quite simple instructions.
Hence, they seem to be suitable for implementation in a systolic fashion on
synchronized MIMD or even SIMD machines. This has been observed by
CASTI, RICHARDSON & LARSON [11] and GUIBAS, KUNG & THOMPSON [31],
and will be illustrated on the knapsack problem in Example 20.

EXAMPLE 20. Knapsack. Given n items j, each with a profit c, and a weight aj
• . J

(j = 1,...,n), and given a knapsack capac W b, one wishes to find a subset of the
items of maximum total profit and of total weight at most b. The problem is
%°Y-hard [26].

It is convenient to introduce the notation

C(m,n,b) = maxsc_{,n,...,n} {Xj~sCjlXj~saj <.b }.

Parallel computing in combinatorial optimization 273

According to Bellman's principle of optimality, one attains the maximum
profit C(1,n,b) by excluding item n and taking the profit C(1,n- l,b) or by
including item n and adding c, to the profit C(1,n-1,b-a,) . A recursive
application of this idea gives the following dynamic programming algorithm
[4]:

for z<--0 to b do C(1,0,z)~0;

f o r j ~ l to n do

for z<---0 to aj - 1 do C(1,j,z)~C(1,j - 1,z),

for z,--aj to b do C(1,j,z)~ max {C(1,j - 1,z),C(1,j - 1,z -aj)

+cj}.
The algorithm runs in O(nb) time. (Note that this is exponential in the prob-
lem size. Since it is polynomial in the problem data, it is called 'pseudopolyno-
mial'.) The obvious parallelization is to handle the stages j (O<~j<<.n) sextuen-
dally and, at stage j, to handle the states (1,j,z) (O<~z <~b) in parallel [11]:

ALGORITHM KS1

par [0-<<z ~<b] C(1,0,Z)<---0;

for j~-I to n do

par [O<~z <aj] C(1,j ,z)~C(I, j- 1,z),

[aj<~z <~b] C(1,j,z)~- max {C(1 , j - 1,z),C(1,j- 1,z -aj)

+cj}.
This requires O(n) time and O(b) processors with a processor utilization of
o(1).

We can achieve a running time that is sublinear in n by observing that

C(1,n,b) = maxo<y<b{C(1,m,b-y)+C(m+ l,n,y)}

for any m~{l, . . . ,n-1}. It is of interest to note that this more general recur-
sion was proposed by BELLMAN & DREYFUS [5] in the context of parallel com-
putations. If we choose m = n - 1, the previous recursion results as a special
case. If we choose m =n/2, then we get another dynamic programming algo-
rithm for the knapsack problem (where it is assumed that n is a power of 2):

ALOOmTHM KS2

par [l~<j~<n] par [0~<z <aj] C(],j,z)~O,

[aj <~z <~b] C(],j,z)<---cy;

for l<--- 1 to log n do

k~.-2 I,

274 G.A.P. Kindervater, J.K. Lenstra

par [O<~j<n/k] par [0~z~<b] C(jk + 1,jk +k,z)

maxo<~y~z{C(jk + I,jk +V2k, z -y)+C(jk +Wk + 1,jk + k,y)}.

The algorithm requires O(nb 2) time on a single processor and O(logn logb)
time on O(nb2/logb) processors. While the parallel running time is probably
the best one can hope for (it might be called 'pseudopolylogarithmic'), the
number of processors is huge. This number can be reduced by a factor of
logn logb by application of the first algorithm to produce starting solutions for
the second algorithm. The modified algorithm has three phases:
(i) Separate the n items into g groups of n/g items each.
(ii) Apply Algorithm KS1 to each group, in parallel: O(n/g) time, O(gb) pro-

cessors.
(iii) Apply Algorithm KS2, starting with g groups rather than with n items:

O0ogg logb) time, O(gb2/logb) processors.
We now set g = rn/(logn logb)] to arrive at an algorithm that still requires

O (log n log b) time but using 'only' O (nb 2 / (log n (log b)2)) processors.

Algorithm KS1 has been implemented on two existing parallel computers.
Before reporting on the results in Example 21, we describe the architectures in
question.

The ICL Distributed Array Processor (DAP) [35] is a commercially available
two-dimensional mesh connected SIMD computer with 64×64 processors.
Each processor is connected to its four neighbors, with wraparound connec-
tions at the boundaries, and has its own local memory. System software makes
it possible to look at the 4096 processing elements as if they were located in a
one-dimensional array, each processor being connected to only two neighbors.
The processors are capable of simultaneously performing the same instruction
on local data, with the restriction that the data have to reside at exactly the
same place of the respective local memories. Masking a processor has the effect
that the result of the instruction executed is not stored; this makes conditional
operations possible.

If for a particular problem the number of processors is not sufficient, the
problem has to be decomposed into subproblems and the solutions to these
subproblems have to be combined. This corresponds to simulating a DAP of
size bigger than 64 by 64.

The performance of a program is measured by counting the number of
instructions executed by the DAP. To estimate the CPU time, the number of
instructions is multiplied by the average time needed for an instruction. How-
ever, differences between the frequencies of the various instructions in a partic-
ular program are neglected. There is no way to measure the CPU time of the
DAP exactly.

The Manchester dataflow machine [33] is an experimental computer, based on
the concept of dataflow. This is a technique for representing computations in
terms of directed graphs. The nodes of the graph are instructions to be per-
formed and the arcs are data routes. The data transmitted over the arcs are
represented as tokens. A node accepts the tokens from its incoming arcs,

Parallel computing in combinatorial optimization 275

performs an operation on them, and sends the results away on its outgoing
arcs. Whether or not two nodes can be executed concurrently depends on
whether or not one of the two nodes needs the output of the other as input.
Arcs not starting at a node receive the input data and arcs not ending at a
node produce the output.

A node is enabled (can start its execution) as soon as the required tokens
have arrived on the incoming arcs. The execution of a node may not be
immediate, but will happen eventually. The time needed to execute instructions
or to transport tokens from one node to another may vary. It is assumed, how-
ever, that all these times are finite. The computation is completely asynchro-
nous. It can therefore happen that tokens have to wait for others on incident
input arcs. A second consequence is that a datattow graph in general allows for
different execution sequences.

Figure 19 shows a possible execution sequence in a dataflow graph which
calculates x 2 - x y using primitive boxes DUP (which duplicates its input), 1'2
(which produces the square of its input), × (which multiplies its inputs with
each other) and - (which subtracts the fight input from the left input); stars
(*) represent the generated tokens moving through the graph.

Exploiting the parallelism contained in the dataflow model of computation
requires an unconventional hardware organization. A general purpose dataflow
machine needs a data structure of some sort to represent the dataflow graph of
any particular problem. On the Manchester dataflow machine this data struc-
ture consists of labeled nodes containing the instruction to be performed and
the destination of the results.

Y
Fmug~ 19. A datatlow graph with a possible execution sequence

The Manchester dataflow machine consists of a ring of elements each per-
forming a special task (see Figure 20). A token consists of a value and a desti-
nation node. The token queue dispatches tokens, one at a time, to the matching
unit. This is an associative memory, which groups tokens with the same desti-
nation node into packages and sends them to the node store. The matching

276 G.A.P. Kindervater, J.K. Lenstra

output ~ - ~

J l

token ~ ma tch ing
queue unit

node
store

L.

processing unit

]processing
element

]processing
I element

_ . . I

FIGURE 20. The Manchester dataflow machine

unit stores tokens until their partners have arrived. For efficiency reasons, only
packages of one or two tokens are allowed. The node store contains the
dataflow graph to be executed; each node of the graph consists of the instruc-
tion to be performed and the destination of the results. The node store adds
this information to the package that arrives and sends the whole as an execut-
able package to the processing unit. The processing unit sends the package via
a distribution network to an idle processing element. After processing, the
results arrive via an arbitration network at the switch. The switch inserts input
tokens into the ring and removes output tokens; non-output tokens are sent
along to the token queue.

The processing unit makes use of fine grained MIMD-type parallelism. The
degree of parallelism depends on the number of processing elements. On a
higher level, the units in the ring continuously perform operations on the flow
of packages, which gives a parallelism as in an assembly line.

The critical part of the system is the matching unit. All units can be tailored
to meet its maximum throughput capacity. For example, the speed of the pro-
cessing unit can be adapted by adding or removing processing elements. One
way to overcome this bottleneck is to construct several rings and connect them
through the switch, which then becomes a full interconnection network. The
Manchester dataflow machine presently consists of a single ring with twenty
processing dements.

The performance of a program is measured by its CPU time. An emulator of
the dataflow machine on a sequential computer can be used to obtain addi-
tional information. The emulator considers the dataflow machine as a syn-
chronized MIMD machine with an unbounded number of processors, in which
the output of a node is immediately available to successor nodes and enabled

Parallel computing in combinatorial optimization 277

nodes are executed without delay. The two fundamental time measurements
are S i, the number of time steps if only one processing element is available
(i.e., the total number of instructions executed), and S=, the number of time
steps with an unlimited number of processing elements (i.e., the critical path
length of the underlying dataflow graph). The ratio ~r = Sl/Soo measures the
average parallelism in a program. A more detailed trace of the behavior of a
program can be obtained if desired.

EXAMPLE 21. Knapsack [45]. For the implementation of Algorithm KS 1 on the
DAP, this machine is considered as a one-dimensional array of processors,
numbered from 0 until 4095. As in Example 20, the values C(1,j,z) are com-
puted for z =0,...,b in parallel and for j = 1,...,n in sequence, where processor z
computes the values C(1,1,z), C(1,2,z),...,C(1,n,z). At stage j, a processor
needs its own C-value, that of its aj-th left-hand neighbor, and cj. The compu-
tations and data movements can be accomplished for all processors in parallel,
as long as b is no greater than 4095.

Three types of problem instances were generated. For type 1, the profits and
weights were drawn uniformly from {1,..,64}. For types 2 and 3, 512 and 1024
were added to all profits and weights. For each type, three instances were
created with 100, 200 and 300 items respectively; the capacity was set at 4095,
which is the largest problem size solvable on the DAP without decomposition.

Results are more or less as expected. The estimated CPU time is linear in n.
However, there is no distinction among the different types. Since the distance
which data have to travel increases with the type number, one would expect an
increase in computing time as well. The only information which can be
retrieved from the DAP, however, is the number of instructions performed and
that number appears to be the same for the three problem types. The running
times are twenty times better than on the CDC/CYBER-170-750; cf. Figure
21.

n type DAP

100 1 0.019
100 2 0.019
100 3 0.019
200 1 0.038
200 2 0.038
200 3 0.038
300 1 0.058
300 2 0.058
300 3 0.058

CYBER- 170-750

0.257
0.420
0.359
0.832
0.828
0.704
1.373
1.238
1.047

FIGURE 21. Knapsack Algorithm KS1 on the DAP and the CYBER-170-750:
running times in seconds for instances with b = 4095

278 G.A.P. Kindervater, J.K. Lenstra

On the Manchester dataflow machine, the computation is completely asyn-
chronous. It may therefore happen that values of different stages are evaluated
at the same time. However, the maximum speedup remains O(b).

Since the dataflow computer is an experimental machine with limited
hardware capacity, only very small problem instances could be run. The profits
and weights are drawn from {I,..., 100}. Instances with n = 10, 20, 30, 40 and
b = 100, 200, 300 were generated.

n b = b = 2 0 0 b = 3 0 0

I0 418
20 756
30 1091
40 1443

(a) Critical

431 437
765 784

1109 1122
1466 1479

~ath length S~

n b = 1 0 0
10 30
20 37
30 39
40 41

b = 2 0 0 b- -300
70 106
85 128
89 135
89 133

(b) Average parallelism ~"

FIGURE 22. Knapsack Algorithm KS1 on the emulator
of the Manchester dataflow machine

Figure 22 shows the results of the emulator. The critical path length S~ is
about linear in n, and the average parallelism ~r grows with b. With increasing
b more elements fit into the knapsack, which explains the increase of S~ for
constant n. For the problem instances considered, the hardware results are
comparable: for less than ten processors, the speedup is almost linear; beyond
that, hardly any gain is made (cf. Figure 23).

speedup
I0

8

6

4

2 ,
t

~ t

¢ t

S t

f i i . , ~ . a i

2 4 6 8 10 12 14 16 18 20
processors

FIGURE 23. Knapsack Algorithm KSI on the Manchester dataflow machine:
a typical speedup curve

6.2. Branch and bound
Branch and bound methods generate search trees in which each node has to
deal with a subset of the solution set. Since the instructions performed at a

• node very much depend on the particular subset associated with that node, it
is more appropriate to implement these methods in a distributed fashion on
asynchronous MIMD machines. An initial analysis of distributed branch and

Parallel computing in combinatorial optimization 279

bound, in which the processors communicate only to broadcast new solution
values or to redistribute the remaining work load, is given by EL-DESSOU~:I &
HLrEN [23]. In a sequential branch and bound algorithm, the subproblems to
be examined are given a priority and from among the generated subproblems
the one with the highest priority is selected next. In a parallel implementation,
several subproblems are examined at the same time. The point in time at
which a subproblem becomes available depends on the number of processors,
and this influences how the tree is searched. One can construct examples of
anomalous behavior in which p processors together are slower than a single
processor, or more than p times as fast.

Examples 22, 23 and 24 discuss the implementation and anomalous behavior
of branch and bound algorithms for the traveling salesman problem and the
job shop scheduling problem. Example 25 deals with anomalies on a more
theoretical basis. Example 26 reports on work in progress concerning the
development of a theoretical model to analyze the distribution of work in a
master-slave architecture.

EXAMPLE 22. Traveling salesman [62]. The traveling salesman problem was
already described in Example 10. A traditional branch and bound method for
its solution uses a bounding mechanism based on the linear assignment relaxa-
tion, a branching rule based on subtour elimination, and a strategy for select-
ing new nodes for examination based on depth first tree search. The details are
of no concern here and can be found in the book by LAWLER ET AL. [52]. Fig-
ure 24(a) shows a search tree in which the nodes have been labeled in order of
examination.

Pruul designed a parallel version of this method for an asynchronous MIMD
machine. Each processor performs its own depth first search; when it
encounters a node that has already been selected by another processor, it
selects in the subtree rooted by that node an unexamined node at the highest
level. Figure 24(b) illustrates the process.

The lack of parallel hardware forced Pruul to simulate the algorithm on a
sequential computer. An empirical analysis for ten 25-vertex problems yielded
average speedups that were greater than the number of processors. This may
be confusing at first sight, but the explanation is simple and lies outside the
area of parallel computing. The simulated parallel algorithm is nothing but a
sequential algorithm that is based on a mixture of depth first and breadth first
tree search. Such complex strategies have not yet been explored in any detail
and might be quite powerful.

The IBM Loosely Coupled Array of Processors (LCAP) [19] consists of a mas-
ter processor (IBM/4381-3) which is connected to ten slave processors
(FPS/164); cf. Figure 25. On the master processor, at most ten processes run
in parallel in a time sharing mode. To each of these, a slave processor can be
assigned. A process can pass part of its work on to the slave processor, thereby
creating true parallelism. As long as the slave is running, it cannot be
influenced from outside and the invoking process on the master has to wait.
Communicating with a slave processor is time consuming. Therefore, it does

280 G.A.P. Kindervater, J.K. Lenstra

) "Q
(a) Sequential search; node t is selected at time t

(b) Parallel search by the three processors;
node t/p is selected at time t by processor p

FIGURE 24. Depth first tree search

not pay to send very small tasks.
For the communication between the processes on the master, one has basi-

cally to choose between two systems:
(i) The processors are considered as equivalent. They share part of the

memory of the master processor.
(ii) The processes are considered as slave processes, and a master process is

created. The master process is able to communicate with the slave
processes; messages between slave processes have to be sent through the
master pro~ss.

The limited control over the slave processors together with the restrictions
on the interprocess communication makes the LCAP a rather rigid MIMD
computer. In its present state, it is not well fit for algorithms in which the need
for communication arises at run time.

EXAMPLE 23. Job shop [41]. Given are n jobs and m machines. A machine can
handle at most one job at a time. A job consists of a chain of operations, each
of which requires an uninterrupted given processing time on a given machine.
The purpose is to find a schedule of minimum length. This %°2-hard problem
[26] appears to be very difficult. Already small instances are hard to solve. The
branch and bound algorithm from LAGEWEG, LENSTRA & R.INNOOY KAN [47]
computes lower bounds by relaxing the capacity constraints on all machines

Parallel computing in combinatorial optimization 281

IBM/4381-3 I

FIGURE 25. The IBM/LCAP

but one, creates subproblems by scheduling operations all of whose predeces-
sors have been scheduled, uses depth first search, and obtains approximate
solutions on a few equidistant levels of the search tree.

The implementation on the IBM/LCAP uses the second interprocess com-
munication system. The master process generates the search tree up to a cer-
tain depth. Nodes neither branched from nor eliminated are ordered according
to increasing lower bounds and put in a queue. The master process sends
nodes from the front of this queue to idle slave processes. A slave performs a
complete depth first search starting from the node it receives. If a better
overall solution is found, it is sent to the master, which in turn informs the
other slaves. If there are idle slaves and the queue of nodes of the master is
empty, the master asks the busy slaves to pass on some of their work so as to
refill its queue. The master process is run on the IBM machine and the slave
processes pass the evaluation of the search tree on to the FPS systems. Since
the software does not allow slaves to be interrupted by the master, it is neces-
sary that they regularly report to the master. The report period has to be care-
fully chosen such that important news is quickly distributed and not too many
unnecessary communications occur.

The algorithm shows a nondeterministic behavior. When the algorithm is
run on the same instance several times, the distribution of the work over the
processors varies, different search trees may be generated and different optimal
solutions may be found.

The performance of the algorithm is illustrated on an instance with twenty
jobs, each consisting of five operations, and five machines [59]. Reported are
the maximum number of nodes branched by a slave, which indicates the paral-
lel computing time, and the number of nodes branched by the master and
slaves together, which represents the total amount of work. The master
branches 65 nodes, resulting in an initial queue of 269 nodes. The slaves report
to the master every 100 nodes. The results of a single run for each number of
slaves are given in Figure 26. When the number of slaves increases from one to

282 G.A.P. Kindervater, J.K. Lenstra

number maximum number of nodes total number
of slaves branched by a slave of nodes

11358 11423 1
2
3
4
5
6
7
8
9

10

2300
1455
900
900
900
978
700
800
800

4609
3320
2268
2667
3397
5143
3364
3457
3646

FIGURE 26. The job shop algorithm on the LCAP:
an instance with twenty jobs and five machines

four, the maximum number of nodes branched by a slave decreases more than
proportionally; this expresses a speedup anomaly. For higher numbers of pro-
cessors, the maximum remains about the same. This is because the master gets
into trouble. It is too slow for serving the communication requests of the slaves
properly. A small number of slaves is served frequently, the others are waiting
most of the time.

The Boulder Distributed Processing Utilities Package (DPUP) [25] has been
developed to facilitate the use of a local area network of the University of
Colorado at Boulder. The network consists of a small number of Pyramid and
Sun work stations, which run the Berkeley Unix 4.2 operating system and are
connected on an ethernet (see Figure 27). The ethernet makes it possible to
send messages between processes on any two machines. The configuration can
therefore be considered as an asynchronous MIMD computer.

ethemet]

work
station

work
station

work
station

work
station

FIGURE 27. Work stations connected on an ethernet

DPUP enables a process to create remote processes on any desired machines
and to establish communication links with them. In this way, a tree of
processes can be created. In principle, it is possible to implement any

Parallel computing in combinatorial optimization 283

communication network. Communication between processes is completely
asynchronous. The sending process stores the message in a buffer and may
continue immediately after that. The receiving process empties the buffer as it
is ready to do so. A process can be interrupted, for example to force important
messages to be read at once. This software makes the system very flexible.

An ethernet allows for only one message to be sent at a time: communica-
tions are handled subsequently. In case of heavy traffic, the ethernet becomes
the bottleneck of the system.

EXAMPLE 24. Traveling salesman [69]. The traveling salesman problem was
described in Example l0 and a possible implementation of a parallel algorithm
for its solution was discussed in Example 22. Trienekens considered a branch
and bound algorithm with a lower bound based on 1-trees and a branching
scheme of JONKER & VOLGENANT (cf. [52]).

The implementation using the Boulder DPUP is based on the master-slave
principle. The master process keeps track of the nodes that are to be con-
sidered for branching. An idle slave process receives a node with the least
lower bound from the master, branches this node, performs the lower bound
computations, and sends the results back to the master. The advantage of this
strategy over the one presented in Example 23 is that the master has full
knowledge of the search tree generated so far. A disadvantage is the number of
communications. Since a lot of work is involved in the lower bound computa-
tions, the time for node evaluation will dominate the time for interprocessor
communication; in Example 23, the situation is the other way around.

The algorithm was run on a set of five Pyramid work stations, which have
unequal processing power. Each work station executes a slave process; the
most powerful work station also takes care of the master process.

The algorithm displays a nondeterministic behavior. The computational
results are promising. Already for small search trees, with 30 to 60 nodes
branched, a processor utilization (which is corrected for the different processor
speeds) of more than 60 percent is achieved. The largest search tree, with 260
nodes branched for the solution of a Euclidean 75-city instance, gave a proces-
sor utilization of 93 percent.

EXAMPLE 25: Anomalous behavior [10, 48]. Assume that the evaluation of a
node in a branch and bound tree takes constant time and that after the evalua-
tion of the current set of nodes the processors collectively decide which set of
nodes is to be evaluated next on the basis of a priority of each node. BURTON
ET AL. [10] give examples in which two processors are more than twice as fast
as a single processor, or slower than a single one. In Figures 28 and 29 both
cases are illustrated. The numbers represent the priorities of the nodes; the
node indicated by the box contains enough information to cause termination
of the algorithm.

284 G.A.P. Kindervater, J.K. Lenstra

,¢_ ,X

large tree with priorities greater than one

FIGURE 28. Anomalous behavior: best case for two processors

In the tree of Figure 28, a single processor first evaluates the root, creating
two children. Since the right node has the lower priority of the two, the left
node is evaluated first and the nodes of the large subtree follow. Only after the
entire subtree is exhausted, the right node is evaluated, and one step later the
optimal solution is found. A two-processor machine first evaluates the root.
Then either processor takes a node, and the same happens at the next step. At
that point the algorithm temfinates. Hence, the two-processor system needs
only three steps, while the number of nodes in the large subtree determines the
runnin~ time for a sin~le-orocessor comouter.

g . / "~2x

large tree with priorities greater than two

FIGURE 29. Anomolous behavior: worst case for two processors

In the tree of Figure 29, a single processor first evaluates the root, creating
two children. Since the fight node has the higher priority of the two, it is
evaluated first. The box node is generated, and evaluated immediately, since it
has a higher priority than the only other available node, the left son of the
root. The algorithm terminates in three steps. A two-processor system evalu-
ates the root at the first step, its two sons at the second step and after that the
nodes of the subtree, since they have a higher priority than the box node. In
this case, the algorithm runs longer with two processors than with only one.

LAI & SArn~i [48] also provide examples of anomalous behavior. This work
has been extended by LAI & SPRAGUE [49, 50] and by L1 & Whoa [53], who

Parallel computing in combinatorial optimization 285

further investigate the conditions for the occurrence of anomalies in parallel
branch and bound.

EXAMPLE 26. Analysis of branch and bound algorithms on a master-slave archi-
tecture [9]. The model for parallel branch and bound discussed in Example 24
is appealing. A master process keeps track of the set of nodes that have been
generated but not yet evaluated, and a number of slave processes perform the
evaluation and generation of nodes. The master orders the set of nodes accord-
hag to a priority function. Each slave receives one node from the master and
returns the results of its computations. If the search tree is big, the set of nodes
the master has to handle will grow. At some point, the master becomes too
slow to process the amount of incoming nodes. Assume that a slave receives a
new node from the master as soon as it becomes idle, without waiting for the
master to process its previous results. It is then possible to develop a queueing
network model in which the trade-off between the speeds of master and slaves
can be analyzed. It can be shown that for big search trees the number of nodes
ordered by the master and awaiting release to the slaves will approach an
asymptotic value, while the queue of nodes in front of the master will grow.

REFERENCES
[1] M. ASTAI, J. KOMLOS and E. SZEI~n~V~DI, Sorting in clogn parallel steps,

Combinatorica 3 (1983) 1-19.
[2] H. ArT, T. HAGERUP, K. MEHLHORN and F.P. P~P~tATA, Deterministic

simulation of idealized parallel computers on more realistic ones, eds. J.
GRUSKA, B. ROVAN, J. WIEDERMANN, Mathematical Foundations of Com-
puter Science 1986, Lecture Notes in Computer Science 233 (Springer,
Berlin, 1986) 199-208.

[3] B. AWEaUUCH, A. ISRAELI and Y. SHILOACH, Finding Euler circuits in
logarithmic parallel time, Proc. 16th Annual ACM Symp. Theory of Com-
puting (1984) 249-257.

[4] R.E. BELLMAN, Dynamic Programming (Princeton University Press, Prince-
ton, N3, 1957).

[5] R.E. BELLMAN and S.E. DREYFUS, Applied Dynamic Programming (Prince-
ton University Press, Princeton, N J, 1962).

[6] J.L. BENTLEY, A parallel algorithm for constructing minimum spanning
trees, J. Algorithms 1 (1980) 51-59.

[7] J.L. BENTLEY and H.T. KuNo, A tree machine for searching problems,
Proc. 1979 Internat. Conf. Parallel Processing (1979) 257-266.

[8] C. BERGE and A. GnOUILA-HOUVa, Programmes, Jeux et Rdseaux de Tran-
sports (Dunod, Paris, 1962).

[9] O.J. BOXMA and G.A.P. KINDERVATER, A Queueing Network Model for
Analyzing a Class of Branch and Bound Algorithms on a Master-Slave
Architecture, Report OS-R8717 (Centre for Mathematics and Computer
Science, Amsterdam, 1987).

[10] F.W. BURTON, M.M. HtrNTBACH, G.P. McK~owN and V.J. RAVWARD-
SMITH, Parallelism in Branch-and-Bound Algorithms, Report CSA/3/1983

286 G.A.P. Kindervater, J.K. Lenstra

(University of East Anglia, Norwich, 1983).
[ti] J. CASTI, M. RICHARDSON and R. LARSON, Dynamic programming and

parallel computers, J. Optim. Theory Appl. 12 (1973) 423-438.
[12] A.K. CHANDRA, D.C. KOZEN and L.J. STOCKMEYER, Alternation, J. Assoc.

Comput. Mach. 28 (1981) 114-133.
[13] L. CSANKY, Fast parallel matrix inversion algorithms, SIAM J. Comput. 5

(1976) 616-623.
[14] S.A. COOK, An observation on time-storage trade off, J. Comput. System

Sci. 9 (1974) 308-316.
[15] S.A. COOK, Towards a complexity theory of synchronous parallel compu-

tation, Enseign. Math. (2) 27 (1981) 99-124.
[16] E. DEKEL, D. NASSIMI and S. SAHNI, Parallel matrix and graph algo-

rithms, SIAM J. Comput. 10 (1981) 657-675.
[17] E. DEKEL and S. SAHNI, Binary trees and parallel scheduling algorithms,

IEEE Trans. Comput. C-32 (1983) 307-315.
[18] E. DEKEL and S. SAHNI, Parallel scheduling algorithms, Oper. Res. 31

(1983) 24-49.
[19] P. DI CHIO and V. ZECCA, IBM ECSEC Facilities: User's Guide, Report

G513-4080 (IBM European Center for Scientific and Engineering Com-
puting, Rome, 1985).

[20] E.W. DIJKSTRA, A note on two problems in connexion with graphs,
Numer. Math. 1 (1959) 269-271.

[21] D. DOBKIN, R.J. LIPTON and S. REISS, Linear programming is log-space
hard for P, Inform. Process. Lett. 8 (1979) 96-97.

[22] J. EDMONDS and R.M. KARP, Theoretical improvements in algorithmic
efficiency for network flow problems, J. Assoc. Comput. Mach. 19 (1972)
248-264.

[23] O.I. EL-DESSOUKI and W.H. HUEN, Distributed enumeration on between
computers, IEEE Trans. Comput. C-29 (1980) 818-825. Note: in the title,
read 'network' for 'between'.

[24] M.J. FLYNN, Very high-speed computing systems, Proc. IEEE 54 (1966)
1901-1909.

[25] T.J. GARDNER, I.M. GERARD, C.R. MOWERS, E. NEMETH and R.B.
SCHNABEL, DPUP: a Distributed Processing Utilities Package, Report CU-
CS-337-86 (University of Colorado, Boulder, 1986).

[26] M.R. GAREY and D.S. JOHNSON, Computers and Intractability: a Guide to
the Theory of NP-Completeness (Freeman, San Francisco, 1979).

[27] L.M. GOLDSCHLAGER, The monotone and planar circuit value problems
are log space complete for P, SIGACT News 9.2 (1977) 25-29.

[28] L.M. GOLDSCHLAGER, A universal connection pattern for parallel comput-
ers, J. Assoc. Comput. Mach. 29 (1982) 1073-1086.

[29] L.M. GOLDSCHLAGER, R.A. SHAW and J. STAPLES, The maximum flow
problem is log space complete for P, Theoret. Comput. Sci. 21 (1982)
105-111.

[30] T. GONZALEZ and S. SAHNI, Preemptive scheduling of uniform processor
systems, J. Assoc. Comput. Mach. 25 (1978) 92-101.

Parallel computing in combinatorial optimization 287

[31] L.J. GUIBAS, H.T. KUNG and C.D. THOMPSON, Direct VLSI implementa-
tion of combinatorial algorithms, Caltech Conf. VLSI (1979) 509-525.

[32] U.I. GOPTA, D.T. LEE and J.Y.-T. LEUNG, An optimal solution for the
channel-assignment problem, IEEE Trans. Comput. C-28 (1979) 807-810.

[33] J.R. GURD, C.C. KIRKHAM and I. WATSON, The Manchester prototype
dataflow computer, Comm. ACM 28 (1985) 34-52.

[34] D. HELMBOLD and E. MAYR, Fast Scheduling Algorithms on Parallel Com-
puters, Report CS-84-1025 (Stanford University, CA, 1984).

[35] R.W. HOCKNEY and C.R. JESSHOPE, Parallel Computers: Architecture, Pro-
gramming and Algorithms (Hilger, Bristol 1981).

[36] D.B. JOHNSON, Parallel algorithms for minimum cuts and maximum flows
in planar networks, J. Assoc. Comput. Mach. 34 (1987) 950-967.

[37] D.S. JOHNSON, The NP-completeness column: an ongoing guide; seventh
edition, J. Algorithms 4 (1983) 189-203.

[38] A.R. KARLIN and E. UPFAL, Parallel hashing - an efficient implementation
of shared memory (preliminary version), Proc. 18th Annual ACM Symp.
Theory of Computing (1986) 160-168.

[39] R.M. KARP, E. UPFAL, and A. WIGDERSON, Constructing a perfect match-
ing is in Random NC, Combinatorica 6 (1986) 35-48.

[40] L.G. KHACHIAN, A polynomial algorithm in linear programming, Soviet
Math. Dokl. 20 (1979) 191-194.

[41] G.A.P. KINDERVATER, A parallel branch and bound algorithm for the job
shop problem, presentation, 8th European Conference on Operational
Research, Lisbon, September 15-19, 1986.

[42] G.A.P. KINDERVATER and J.K. LENSTRA, Parallel algorithms, eds. M.
O'HEIGEARTAIGH, J.K. LENSTRA and A.H.G. RINNOOY K.AN, Combina-
torial Optimization: Annotated Bibliographies (Wiley, Chichester, 1985) Ch.
8.

[43] G.A.P. KINDERVATER and J.K. LENSTRA, An introduction to parallelism
in combinatorial optimization, Discrete Appl. Math. 14 (1986) 135-156.

[44] G.A.P. KINDERVATER and J.K. LENSTRA, The Parallel Complexity of TSP
Heuristics, Report OS-R8609 (Centre for Mathematics and Computer Sci-
ence, Amsterdam, 1986).

[45] G.A.P. KaNDERVATER and H.W.J.M. TRIENEKENS, Experiments with paral-
lel algorithms for combinatorial problems, European J. Oper. Res. 33
(1988) 65-81.

[46] R.E. LADNER, The circuit value problem is log space complete for P,
SIGACT News 7.1 (1975) 18-20.

[47] B.J. LAGEW~G, J.K. LENSTRA and A.H.G. RINNOOY KAN, Job-shop
scheduling by implicit enumeration, Management Sci. 24 (1977) 441-450.

[48] T.-H. LAI and S. SAHNI, Anomalies in parallel branch-and-bound algo-
rithms, Comm. ACM 27 (1984) 594-602.

[49] T.-H. LAI and A. SPRAGUE, Performance of parallel branch-and-bound
algorithms, IEEE Trans. Comput. C-34 (1985)962-964.

[50] T.-H. LAI and A. Sp~Gtm, A note on anomalies in parallel branch-and-
bound algorithms with one-to-one bounding functions, Inform. Process.

288 G.A.P. Kindervater, J.K. Lenstra

Lett. 23 (1986) 119-122.
[51] E.L LAWLER, Combinatorial Optimization: Networks and Matroids (Holt,

Rinehart and Winston, New York, 1976).
[52] E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN and D.B. SHMOVS,

eds., The Traveling Salesman Problem: a Guided Tour of Combinatorial
Optimization (Wiley, Chichester, 1985).

[53] G.-J. LI and B.W. WAn, Coping with anomalies in parallel branch-and-
bound algorithms, IEEE Trans. Comput. C-35 (1986) 568-573.

[54] L. Lovksz, Determinants, matchings and random algorithms, ed. L.
BUDACn, Fundamentals of Computing Theory, FCT '79 (Akademie Verlag,
Berlin, 1979) 565-574.

[55] C.U. MARTEL, A Parallel Algorithm for Preemptive Scheduling of Uniform
Machines, Preprint (University of California, Davis, CA, 1986).

[56] R. MCNAUGHTON, Scheduling with deadlines and loss function, Manage-
ment Sci. 6 (1959) 1-12.

[57] N. MEGIDDO, Poly-log Parallel Algorithms for LP with an Application to
Exploding Flying Objects (1982) unpublished manuscript.

[58] D.E. MULLER and F.P. PREVARATA, Bounds to complexities of networks
for sorting and for switching, J. Assoc. Comput. Mach. 22 (1975) 195-201.

[59] J.F. MLrrH and G.L. TnOMPSON, eAs., Industrial Scheduling (Prentice Hall,
Englewood Cliffs, NJ, 1963), 237.

[60] F.P. PREPARATA and J. VUILLEMIN, The cube-connected cycles: a versatile
network for parallel computation, Comm. ACM 24 (1981) 300-309.

[6I] R.C. PRIM, Shortest connection networks and some generalizations, Bell
System Tech. J. 36 (1957) 1389-1401.

[62] E.A. PRUUL, Parallel Processing and a Branch-and-Bound Algorithm, M.Sc.
thesis (Cornell University, Ithaca, NY, 1975).

[63] C. SAVAGE and J. JA'JA', Fast, efficient parallel algorithms for some graph
problems, SIAM J. Comput. 10 (1981) 682-691.

[64] J.T. SCHWARTZ, Ultracomputers, ACM Trans. Programming Languages
and Systems 2 (1980) 484-521.

[65] H.J. SIEGEL, Analysis techniques for SIMD machine interconnection net-
works and the effects of processor address masks, IEEE Trans. Comput.
C-26 (1977) 153-161.

[66] H.J. SIEGEL, A model of SIMD machines and a comparison of various
interconnection networks, IEEE Trans. Comput. C-28 (1979) 907-917.

[67] J.S. SQUIRE and S.M. PALMS, Programming and design considerations of
a higtfly parallel computer, Proc. AFIPS Spring Joint Computer Conf. 23
(1963) 395-400.

[68] H.S. Sa'o~, Parallel processing with the perfect shuffle, IEEE Trans.
Comput. C-20 (1971) 153-161.

[69] H.W.J.M. TRIENEKENS, Parallel Branch and Bound on an MIMD System,
Report 8640/A (Econometric Institute, Erasmus University, Rotterdam,
1986).

[70] S.H. UNGER, A computer oriented toward spatial problems, Proc. IRE 46
(1958) 1744-1750.

Parallel computing in combinatorial optimization 289

[71] E. UPFAL, A probabilistic relation between desirable and feasible models
of parallel computation (preliminary version), Proc. 16th Annual ACM
Syrup. Theory of Computing (1984) 258-265.

[72] L.G. VALIANT, Reducibility by algebraic projections, Enseign. Math. (2)
28 (1982) 253-268.

[73] P. VAN EMD~ BOAS, The second machine class: models of parallelism, eds.
J. VAN LE~.UWEN and J.K. LENSTRA, Parallel Computers and Computations
(CWI Syllabus 9, Centre for Mathematics and Computer Science, Amster-
dam, 1985), 133-161.

