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1. INTRODUCTION 
Parallel computing is receiving a rapidly increasing amount of attention. In 
theory, a collection of processors that operate in parallel can achieve substan- 
tial speedups. In practice, technological developments are leading to the actual 
construction of such devices at low cost. Given the inherent limitations of trad- 
itional sequential computers, these prospects appear to be very stimulating for 
researchers interested in the design and analysis of combinatorial algorithms. 

We will attempt to review the literature on parallel computers and algo- 
rithms as far as it is relevant for the area of combinatorial optimization. In 
comparison with a previous survey [43], the present paper not only mentions 
theoretical results but also addresses practical aspects of parallel combinatorial 
computing. For a broader survey which is, however, up to date only until July 
1983, we refer to our annotated bibliography [42]. 

The organization of the paper is as follows. 
Section 2 is concerned with machine models designed for parallel computa- 

tions. Theoretical as well as realistic models are described. While in many 
theoretical models the processors communicate through a common memory 
without delay, in more realistic models the communication is achieved through 
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a specific interconnection network. Such networks are illustrated on the prob- 
lems of matrix multiplication, determining a transitive closure, and finding a 
minimum spanning tree. We also discuss the simulation of theoretical models 
by realistic ones. In Sections 3, 4 and 5, we will restrict ourselves to theoretical 
models; in Section 6, we consider existing parallel computers as well. 

Section 3 deals with the complexity theory for parallel computations. Given 
the basic distinction between membership of 62 and completeness for %~ in 
sequential computations, we consider the speedups possible due to the intro- 
duction of parallelism. Within the class @, this leads to a distinction between 
'very easy' problems, which are solvable in polylogarithmic parallel time, and 
the 'not so easy' ones, which are P-complete under log-space transformations. 

Section 4 gives examples of polylog parallel algorithms for elementary prob- 
lems like finding the maximum and sorting, for finding shortest paths, a 
minimum spanning tree and a traveling salesman tour by the double minimum 
spanning tree heuristic, and for three problems from scheduling theory. We 
also outline a randomized polylog parallel algorithm for the maximum cardinal- 
ity matching problem. 

Section 5 discusses the °~-completeness of a variety of problems: linear pro- 
gramming, finding a maximum flow in a network, list scheduling, and finding a 
traveling salesman tour by the nearest neighbor heuristic. 

Section 6 reviews the use of parallelism in enumerative methods for %P-hard 
problems. We will discuss results in three directions: practical experience with 
the implementation of dynamic programming and branch and bound on exist- 
ing parallel computers; worst case examples exhibiting various forms of 
anomalous behavior; and some initial results on the design and analysis of a 
model for the distribution of a tree search procedure over several parallel pro- 
cessors. 

The reader will not fail to observe that the algorithms presented in this 
paper do not rely on the sophisticated refinements for sequential algorithms 
developed in the past two decades but go back to the simple and explicit basic 
principles of combinatorial computing. In that sense (and recent, more 
advanced achievements notwithstanding), parallelism in combinatorial optimi- 
zation is still in its infancy and holds many promises for a further development 
in the near future. 

2. MACHINE MODELS 
Many architectures for parallel computations have been proposed in the litera- 
ture. Some of these machines actually exist or are being built. Other models 
are useful for the theoretical design and analysis of parallel algorithms, while 
their realization is not feasible due to physical limitations. 

The most widely used classification of parallel computers is due to FL'tr~ 
[24]. He distinguishes four classes of machines (of. Figure 1). 
(1) SISD (single instruction stream, single data stream). One instruction is per- 

formed at a time, on one set of data. This class contains the traditional 
sequential computers. 
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FIGURE 1. The classification of Flynn 

(2) SIMD (single instruction stream, multiple data stream). One type of instruc- 
tion is performed at a time, possibly on different data. An enable/disable 
mask selects the processing elements that are allowed to perform the 
operation on their data. The ICL/DAP (Distributed Array Processor) and 
the Goodyear/MPP (Massively Parallel Processor) belong to this class. 

(3) MISD (multiple instruction stream, single data stream). Different instruc- 
tions on the same data can be performed at a time. This class has received 
very little attention so far. 

(4) MIMD (multiple instruction stream, multiple data stream). Different 
instructions on different data can be performed at a time. There are two 
types of MIMD computers: the processors of a synchronized MIMD 
machine perform each successive set of instructions simultaneously; the 
processors of an asynchronous MIMD machine run independently and 
wait only if information from other processors is needed. The Intel/iPSC 
(Intel's Personal SuperComputer) is an example of an asynchronous 
MIMD machine. 

If one considers the many types of algorithms that are suitable for execution 
on parallel computers, then both ends of the spectrum can be characterized in 
a way that resembles the above distinction between the two types of MIMD 
machines. Systolic algorithms lead to highly synchronized computations, where 
the processing elements act rhythmically on regular streams of data passing 
through the (SIMD or synchronized MIMD) machine. Typical examples are 
the matrix multiplication algorithm introduced later in this section and the 
dynamic programming recursions in Section 6. Distributed algorithms lead to 
asynchronous processes, in which the processors perform their own local corn. 
putations and communicate by sending messages every now and then. Branch 
and bound (see Section 6) lends itself to this approach. 

Flynn's classification is not concerned with the way in which information is 
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transmitted between the processors. This is dealt with by SCHWARTZ [64], who 
distinguishes between paracomputers and ultracomputers. 

In a paracomputer, the processors have simultaneous access to a shared 
memory, which allows for communication between any two processors in con- 
stant time. A further distinction is based on the way in which shared memory 
computers handle read and write conflicts, which occur when several processors 
try to read from or to write into the same memory location at the same time. 
Paracomputers help us in investigating the intrinsic parallelism in problems 
and algorithms. They are therefore of great theoretical interest, but current 
technology prohibits their realization. 

In an ultracomputer, each processor has its own memory and the processors 
communicate through a fixed interconnection network. Such a network can be 
viewed as a graph with vertices corresponding to processors and (undirected) 
edges or (directed) arcs to interconnections. Two parameters of the graph are 
important in this context: the maximum vertex degree dl, which should be 
bounded by a constant on grounds of practical feasibility, and the maximum 
path length d2 (the 'diameter'), which should grow at most logarithmically in 
the number p of processors to ensure fast communication. 

Of the many interconnection networks that have been proposed, five are 
briefly described below. They are illustrated in F!gure 2. 
(i) Two-dimensional mesh connected network [70]. Each processor is identified 

with an ordered pair (/,jr') ( i , j - l , . . . ,q) ,  and processor (i,j) is connected to 
processors (i___ 1,j)and (i,j+_ 1), provided they exist. Note that d l----4 and 
d2 = 2(q - 1 ) -  O(Vp). 

(ii) Cube connected network [67]. This can be seen as a d-dimensional hyper- 
cube with 2 d processors at the vertices and interconnections along the 
edges. Note that d l =d2 =d=logp.  (All logarithms in this paper have 
base 2.) 

(iii) Cube connected cycles network [60]. This is a cube connected network with 
each of the 2 d processors replaced by a cyclicly connected set of d proces- 
sors; each of them has two cycle connections and one edge connection. 
This yields dl =3 and d2 =O(logp). 

(iv) Perfect shuffle network [68]. There are p - -2  d processors with interconnec- 
tions (i, 2 i -  I), (i +p /2,2i), ( 2 i -  1,2i) for i=  1,...,p/2. The first two types 
of interconnections imitate a perfect shuffle of a deck of cards. Here, 
d I =3 and dE = 2 d - 1  =O(logp). 

(v) Binary trees network [7]. There are p - 3 . 2  d-2processors,  interconnected 
by two binary trees with common leaves. The 2aprocessors corresponding 
to these leaves perform the actual computations. The other 2 d -  1 proces- 
sors in the first tree (an out-tree) send the data down to their descendants, 
and those in the second tree (an in-tree) combine the results from their 
ancestors. An additional 'master processor' controls the network by pro- 
viding the input for one root and receiving the output from the other. 
Note that d, =3 and d2 =O(logp). 
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(i) Mesh connected 
network, q = 4 

(iv) Perfect shuffle 
network, d = 3 

(ii) Cube connected (iii) Cube connected cycles 
network, d = 3 network, d = 3 

(v) Binary trees 
network, d = 3 

FIGURE 2. Five interconnection networks 

All these networks can simulate each other quite efficiently; see SIEGEL 
[65,66] for details. Still, it appears that the cube connected cycles and perfect 
shuffle networks arereasonably versatile, while the mesh connected and binary 
trees networks have been designed for more restricted types of computations. 
Their suitability for their limited purpose will be demonstrated on some exam- 
ples below. 

The quality of the paraUelization of an algorithm will be judged on the 
resulting speedup, which is the running time of the best sequential implementa- 
tion of the algorithm divided by the running time of the parallel implementa- 
tion using p processors, and the processor utilization, which is the speedup 
divided by p. The best one can hope to achieve is a speedup of p and a proces- 
sor utilization of 1. Note that these concepts are defined here relative to a 
given algorithm, irrespective of the possible existence of more efficient sequen- 
tial algorithms for the problem at hand. 

EXAMPLE 1. Matrix multiplication. Two n×n matrices A=(aij) and B=(bij) 
can be multiplied in O(n) time on an n Xn mesh connected network. The basic 
idea is the use of the skewed input scheme illustrated in Figure 3. At each step 
of the computation, matrix A makes one step to the right, matrix B goes one 



250 G.A.P. Kindervater, J.K. Lenstra 

step down, and each processing dement (i,j) multiplies its current values aik 
and bkj and adds the result into its accumulator (which starts at 0). It is easily 
verified that after 2 n -  1 stages processor (i,j) contains the required value 
Ekaikbkj and that the procedure is best possible in terms of speedup and pro- 
cessor utilization. Furthermore, only one copy of each matrix element has to 
be kept in storage. This is a typical example of a systolic algorithm performed 
on an SIMD machine and suitable for VLSI implementation. 

B: b,u 

b43 b34 

b42 b33 b24 

b41 b32 b23 b14 

b31 b22 b13 

b21 b12 

A: 

a44 

a14 a13 a12 

a24 a23 a22 a21 

a34 a33 a32 a31 

a43 a42 a41 

t211 

FIGURE 3. Matrix multiplication on a mesh connected network 

EXAMPLE 2. Transitive closure [3I]. The transitive closure of a directed graph G 
has an arc (i,j) if and only if G has a path from i to j. If G has n vertices, the 
algorithm from Example 1 can be applied to find the transitive closure in O(n) 
time using n 2 mesh connected processors. Starting with A given by the adja- 
cency matrix of G (i.e., aij-  1 if G has an arc (i,j) and aij-0 otherwise) and 
B =A, one executes the matrix multiplication algorithm three times, with the 
modifications that addition is replaced by maximization and that any dement 
aij or b 9. that passes through processor (i,j) is updated with the value of the 
accumulator. A correctness proof of this procedure can be found in the above 
reference. 

EXAMPLE 3. Membership testing. Given a set S of n dements and an element 
e, one can test whether e~S in O(logn) time on a binary trees network with 
d =  rlog n]. Denote the processors corresponding to the common leaves by Pi 
(i = 1,...,2 a) and suppose that Pi stores the ith element ei of S (i ~<n). It takes d 
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steps for the processors in the top tree to send e down, one step for the P;'s to 
check whether e~ = e, and d steps for the processors in the bottom tree to com- 
pute the disjunction of the results. 

As an extension, one can test the membership of S for m elements 
e(l),...,e (m) in O(m +logn) time by pipelining the flow of information through 
the network. As soon as e 0) leaves the first processor, e rE) is sent to it; and, in 
general, at each step all data are going down one level. 

By asking the processors in the bottom tree to do a bit more than comput- 
ing logical disjunctions, one can use the same model to find the minimum of n 
elements and to compute the rank of a given element in O(logn) time. We 
leave details to the reader. 

EXAMPLE 4. Minimum spanning tree [6]. Given a complete undirected graph G 
with vertex set (1,...,n} and a length cij for each edge {i,j}, a spanning tree of 
G of minimum total length can be found in O(n 2) time by an algorithm from 
PeaM [61] and DIJKSTRA [20]. The algorithm is based on the following princi- 
ple. Let T(V) be the collexion of edges in a minimum spanning tree of the 
subgraph of G induced by the subset V of vertices. If i* ~ V and j* ~ V are such 
that ci.j, :mJni~v, jev(Cij }, then T(V [..j {i* })= T(V) l,.J ( (i*,j* } }. 

The algorithm starts with T((1})= O. At each iteration, a minimum span- 
ning tree on a certain vertex set V with edge set T(V) has been constructed 
and, for each i ~ V, a 'closest tree vertex' ji ~ V and a corresponding distance li 
are known, i.e., li:cij--n~j~v{Cij}. One selects an i *~V for which 
li.=mini~v{li}, adds i* to V and {i*,ji.} to T(V), and updates the values ji 
and l~ for the remaining vertices i ~ V. There are n - 1 iterations, each requiring 
O(n) time. 

It is not hard to implement the algorithm on a binary trees network with 
d =  rlogn]. The master processor stores the set T of spanning tree edges. Pro- 
cessor Pi keeps track of ji and l~ and is able to compute any cv in constant 
time. Each command that is sent down the tree is executed only by those P~'s 
that are turned on. 

We initialize by setting T--- ~ and, for i=  2,...,n, turning on P; and setting 
j~ = 1 and li =c~1. In each of the n -  1 iterations, we first apply the minimum- 
finding procedure to determine i* and add (i*,j;. } to T; we next send i* down 
in order to turn off Pi* forever (since now i* s 1'I) and to turn off each Pi with 
l~ ~<c,. temporarily for the rest of this iteration (since no update is necessary); 
and we finally instruct all remaining Pi's to set ji = i* and li = cii.. 

Since each iteration takes O(logn) time, this parallel version of the algo- 
rithm has a running time of O(nlogn) using O(n) processors and hence a pro- 
cessor utilization of only O(1/logn). We cannot improve on this by pipelining 
the loop, since each iteration needs information from the previous one. How- 
ever, we can use a smaller network with d =  [log(n/logn)], in which each Pi 
takes care of rlogn] vertices and performs all computations for them sequen- 
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tially. This modified algorithm still runs in O(nlogn) time, but now using 
O(n / log n) processors with a processor utilization of 0(1). 

The most common paracomputer model is the PRAM (Parallel Random 
Access Machine). The PRAM is a synchronized machine with an unbounded 
number of processors and a shared memory, which allows simultaneous reads 
from the same memory location but disallows simultaneous writes into the 
same memory location. The computation starts with one processor activated; 
at any step, an active processor can do a standard operation or activate 
another processor; and the computation stops when the initial processor halts. 
Simulation of the theoretical PRAM model by ultracomputers with a bounded 
degree network that allows for fast communication is usually done in two 
phases. 

First, the use of the shared memory is eliminated. We introduce an inter- 
mediate model, the MPC (Module Parallel Computer). In an MPC, each pro- 
cessor has its own memory and is connected to all other processors. By send- 
ing messages, a processor can access a variable stored in the memory of 
another processor. However, if several processors try to access a variable 
stored in the memory of the same processor simultaneously, only one will 
succeed and the others receive a message that the access failed. An n-processor 
MPC can simulate a computational step of an (n,m)-PRAM (a PRAM with n 
processors and a shared memory of size m) with high probability in time 
O(logn) [71] or in deterministic time O(logm) [2]. The proof of the probabilis- 
tic bound is constructive, but for the deterministic simulation only an existence 
proof is given. The problem of finding a constructive deterministic simulation 
of a PRAM step in logarithmic time is still open. 

The second phase eliminates the use of the complete interconnection net- 
work. One step of an n-processor MPC can be simulated in O(log n) steps by a 
bounded degree network with n processors [2]. 

Combining the two phases, we conclude that a step of an (n,m)-PRAM 
requires probabilistic time O(log 2 n) or deterministic time O(logm logn) on a 
bounded degree network. 

K.ARZIN & UP~AL [38] describe a direct simulation of a PRAM. They show 
that T steps of an (n,m)-PRAM can be simulated in O(Tlogm) steps by a 
bounded degree network, with probability tending to 1 as n or T goes to 
infinity. Until today, no deterministic simulation with the same time charac- 
teristic is known. 

In Sections 3, 4 and 5, we will restrict ourselves to the PRAM paracomputer 
model, which lends itself better to complexity considerations and to the expla- 
nation of parallel algorithms. In Section 6, we will encounter a variety of exist- 
ing parallel architectures, some of which are quite different from the models 
described above. 
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3. COMVLEX]TV THEORY 
The purpose of this section is to present an informal introduction to those con- 
cepts from the complexity theory for parallel computing that may have some 
impact on the theory of combinatorial optimization. The interested reader is 
referred to COOK [15] for a more thorough exposition and to JOHNSON [37] for 
a very readable review (on which this section is largely based). 

Central to this area is a hypothesis known as the parallel computation thesis 
[12, 28]: time bounded parallel machines are polynomially related to space 
bounded sequential machines. That is, for any function T of the problem size n, 
the class of problems solvable by a machine with unbounded parallelism in 
time T(n) °0) (i.e., polynomial in T(n)) is equal to the class of problems solv- 
able by a sequential machine in space T(n) 0(1). This thesis is a theorem for 
several 'reasonable' parallel machine models and several 'well-behaved' time 
bounds; see VAN EMDE BOAS [73] for a survey. It holds, for example, in the 
case that the machine model is a PRAM and T(n) -n  °0) (i.e., a polynomial 
function of problem size). 

According to the parallel computation thesis, the class of problems solvable 
by a PRAM in polynomial time is equal to ~SPACE, the class of problems solv- 
able by a sequential machine in polynomial space. In view of the apparent 
difficulty of many problems in ~PACE (such as the e~SVACE-complete and %6). 
complete ones), the PRAM is an extremely powerful model. It is of interest to 
see how it affects the complexity of the problems in ~, which are solvable by a 
sequential machine in polynomial time. 

It turns out that many problems in o'-2 can be solved in polylog parallel time 
(loAn) °(1), i.e., in time that is polynomially bounded in the logarithm of the 
problem size n. Some examples are given in Section 4; other, more compli- 
cated, examples are finding a maximum flow in a planar graph [36] and linear 
programming with a fixed number of variables [57]. By the parallel computa- 
tion thesis, these problems would form the class POLYLOGSPACE of problems 
solvable in polylog sequential space. They can be considered to be among the 
easiest problems in 9, in the sense that the influence of problem size on solu- 
tion time has been limited to a minimum. No single processor needs to have 
detailed knowledge of the entire problem instance. (It should be noted here 
that a further reduction to sublogarithmic solution time is generally impossible. 
One reason for this is that a PRAM needs O(log n) time to activate n proces- 
sors; a similar reason is that in any realistic model of parallelism a constant 
upper bound on the maximum 'fan-out' dt implies a logarithmic lower bound 
on the minimum 'communication time' dE.) 

On the other hand, ~ contains problems that are unlikely to admit solution 
in polylog parallel time. These are the problems that have been shown to be 
log space complete for ~ or, more precisely, g-complete under log-space 
transformations: they belong to P and any other problem in 62 is reducible to 
them by a transformation using logarithmic work space. Examples wiU be dis- 
cussed in Section 5; they include general linear programming and finding a 
maximum flow in an arbitrary graph. If any such problem would belong to 
POLYLOGSPACE, then it would follow that 62 c_ POLYLOGSPACE, which is not 
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believed to be true. Hence, their solution in polylog sequential space or, 
equivalently, polylog parallel time is not expected either. Any solution method 
for these hardest problems in P is likely to require supeflogarithmic time and is 
therefore, loosely speaking, probably 'inherently sequential' in nature. 

We have thus arrived at a distinction within o~ between the 'very easy' prob- 
lems, which can be solved in polylog parallel time, and the 'not so easy' ones, 
for which a dramatic speedup due to parallelism is unlikely. 

The picture of the PRAM model as sketched above is in need of some 
qualification. The model is theoretically very useful, but its unbounded paral- 
lelism is hardly realistic. The reader will have no dit~culty in verifying that a 
PRAM is able to activate a superpolynomial number of processors in subpoly- 
nomial time. If a polynomial time bound is considered reasonable, then cer- 
tainly a polynomial bound on the number of processors should be imposed. It 
is a trivial observation, however, that the class of problems solvable if both 
bounds are respected is simply equal to 62. Within this more reasonable model, 
hard problems remain as hard as they were without parallelism. 

Discussions along these lines have led to the consideration of simultaneous 
resource bounds and to the definition of new complexity classes. For example, 
Nick (Pippenger)'s Class 9"~ contains all problems solvable in polylog parallel 
time on a polynomial number of processors, and Steve (Cook)'s Class $C con- 
tains all problems solvable in polynomial sequential time and polylog space. 
Some sort of extended parallel computation thesis might suggest that ~ =  SC. 
This is a major unresolved issue in complexity theory, and outside the scope of 
this review. We refer to JonNsot~ [37] for further details and more references. 

4. POLYLOG PARALLEL ALGORITHMS 
We will now describe polylog parallel algorithms for ten problems. Examples 
5, 6 and 7 deal with basic operations on a set of numbers, Examples 8, 9 and 
10 discuss the problems of finding shortest paths, a minimum spanning tree 
and a traveling salesman tour by the double minimum spanning tree heuristic, 
and Examples 1 l, 12 and 13 are concerned with the scheduling of a set of jobs 
on paraUel machines. Example 14 outlines a randomized polylog parallel also- 
rithm for the maximum cardina~ty matching problem. Other problems that are 
solvable in polylog parallel time have been mentioned in Section 3 and will 
return in Section 5. 

The algorithms will be designed to run on an SIMD machine with a shared 
memory. Simultaneous reads are permitted and simultaneous writes are prohi- 
bited; the former assumption is not essential but simplifies the exposition. We 
note that the (non-randomized) polylog parallel algorithms referred to in this 
paper require a polynomial number of processors, so that the problems in 
question belong to 

In the PIDGIN ALGOL procedures in this section, we write 

par [a<~i <~z] si 

to denote that the statements si are to be executed in parallel for all values of 
the index i in the given range. 
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EXAMPLE 5. Maximum finding. Given n numbers, one wishes to find their 
maximum. We assume, for convenience, that n =2  m for some integer m and 
that the numbers are given by a,,a, +!,... ,a2,_l. Consider the following pro- 
cedure: 

for l<---m - 1 d o w n t o  0 do  

par [2t<~j~<2 t+l - 1] aj<---max{a2ja2j+l }. 

The computation is illustrated by means of a binary tree in Figure 4. At step l, 
the values corresponding to the nodes at level 1 of the tree are calculated. At 
the end, a l is equal to the desired maximum. 

The algorithm requires O(logn) time and n/2 processors. We can improve 
on this by applying a device similar to the one used in the last paragraph of 
Example 4: each processor has logn data assigned to it and computes their 
maximum sequentially, before the above procedure is executed. The resulting 
algorithm still runs in O(logn) time, but now using only [n/logn] processors 
with a processor utilization of O(1). 

/ = 0  

/ = 1  

1 = 2  

i = 3  

FIGURE 4. Maximum finding: an instance with n = 8 

EXAMPLE 6. Partial sums [17]. Given n numbers a,, an +1 , . . . ,a2n-! with n =2  m, 
one wishes to find the partial sums a, +... + a ,  +j for j = O , . . . , n -  1. Consider 
the following procedure: 

for l<---m - I downto 0 do 

par [2 t ~<j ~< 21 + 1 

b1<-.--al; 
for I<---I to m do 

par [2 t ~<j ~<2 i + I 

- 1 ]  aj~a2j  + alj + l ; 

-I] bj<-- ifj odd then b(/-l)/2 else bjn-aj+1. 
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l = 0  

1 = 1  

i = 2  

/ = 3  

.. 36 36 

a215 ............ t 213 b36 ~ 
,,4,' ,4,," 

16 . . . . .  t 06 . . . . .  
6 9 15 9 24 12 36 

I 
I 7 361 

FIGURE 5. Partial sums: an instance with n =8  

The computation is illustrated in Figure 5. In the first phase, represented by 
the solid arrows, the sum of the aj's is calculated in the same way as their 
maximum was calculated in Example 5. Note that the a-value corresponding to 
a non leaf node is set equal to the sum of all a-values corresponding to the 
leaves descending from that node. In the second phase, represented by the dot- 
ted arrows, each parent node sends a b-value (starting with b l --a i) to its chil- 
dren: the fight child receives the same value, the left one receives that value 
minus the a-value of his brother. The b-value of a certain node is therefore 
equal to the sum of all a-values of the nodes of the same generation, except 
those with a higher index. This implies, in particular, that at the end we have 
bn+j=anq-...+an+j for j=0 , . . . ,n  - 1. 

The algorithm requires O(logn) time and n processors. As before, this can 
be improved to O(logn) time and O(n/logn) processors. 

EXAMPLE 7. Sorting [58]. Given n numbers al,...,an, one wishes to renumber 
them such that a l ~<... ~<a,. We assume, for simplicity, that ai4:aj if i4:j. Con- 
sider the following procedure: 

par [ 1 ~ i , j  <~n] pq ~ if a i ~aj then 1 else O; 

par [1 <~j <~n ] ~l'j~--- sum{pig[1 <~i <.n }; 

par [l~<j~<n] a,~,--aj. 

The algorithm is based on enumeration sort: the position 7rj in which aj should 
be placed is calculated by counting the ag's that are no greater than aj. There 
are three phases: 
(i) computation of the relative ranks pgj" n 2 processors, O(1) time - or 

rn2/logn] processors, O(logn) time; 
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(ii) computation of the positions ~rj: n [n/logn] processors, O(logn) time (by 
application of the first phase of the algorithm of Example 6); 

(iii) permutation: n processors, O(1) time. 
The algorithm requires O(logn) time and O(n2/logn) processors. Simultane- 

ous reads occur in the first phase, but there is a way to avoid them within the 
same time and processor bounds. As sequential enumeration sort takes O(n 2) 
time, the processor utilization is O(1). 

EXAMPLE 8. Shortest paths [16]. Given a complete directed graph with vertex 
set (l,...,n} and a length cij for each arc (i,j), one wishes to find the shortest 
path lengths for all pairs of vertices. LAWLER [51] gives an algorithm which 
requires O(n 3 logn) time. It is based on matrix multiplication. Let ~ )  denote 
the length of a shortest path from vertex i to vertex j, containing no more than 
I arcs. Since a path from vertex i to vertex j consisting of at most 2/arcs can 
be split into two paths of no more than l arcs each, we have that 
~20=mink~{i ,n}{~)+d~)}. Taking into account that a shortest path, if it 
exists, contains'at most n -  1 arcs, we obtain the following algorithm: 

par [I <~i,j<~n] ~))~cij; 

for m ~ l  to [logn] do 

l~2 m, 

par [I ~i, j  <-n] ~ ) ~  rain (~tk:2) + d~J2)t 1 ~<k ~<n }. 

Application of the routine of Example 5 with maximization replaced by 
minimization yields an algorithm which requires O(log2n) time and 
O(n 3/logn) processors, with a processor utilization of O(1). 

EXAMPLE 9. Minimum spanning tree [63]. The Prim-Dijkstra algorithm for the 
minimum spanning tree problem was discussed in Example 4. A minimum 
spanning tree of a complete undirected graph G with vertex set { 1,...,n } and a 
length ci. for each edge {i,j} can also be found in O(n 2) time by an algorithm 
due to gOLLIN [8]. We assume that the edge lengths are all distinct (if not, we 
number the edges in some arbitrary way and say that from two edges with the 
same length the one with the lowest number is smaller). The algorithm starts 
with n components, each consisting of a different vertex, and with an empty 
set of edges belonging to the tree. At each step of the algorithm, each com- 
ponent finds an edge of minimum length between any of its own vertices and a 
vertex of a different component. Since all edge lengths are different, the edges 
thus obtained do not form cycles between the components and are added to 
the minimum spanning tree. We now merge the components which are con- 
nected by the newly found edges into a new one, and perform a nexi step of 
the algorithm as long as there is more than one component left. Because the 
number of components is at least halved at each step, the algorithm terminates 
after at most rlogn] steps. 

In the algorithm below, for each component a representative is chosen. Two 
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vertices belong to the same component if they have the same representative. 
Let ri (i = l,...,n) denote the representative of the component to which vertex i 
belongs. 

par [l~<i~<n] r i~i;  

for 1~1 to ['logn] do 

par [l~<i~n] 

find k such that rk=/=ri & cik =min{cqll <<-j<~n,rj=/=ri }, 

if k does not exist then a minimum spanning tree has 

been found & the algorithm is stopped, 

ti<-'k; 

par [1 <<.i<~n] 

find k such that rl, = ri & Ckt~ = rrim { cjt, I 1 <~j <~n,rj = ri }, 

si~-k & t i~tk ; 

par [ 1 <~i <<.n ] s i ~  if it, = si & ri <!"I, then 0 else si; 

par [ 1 ~<i <~ n ] if ri = i & si=/=O then add edge {si, ti } to the tree; 

par [l~<i~<n] r i~  if s i=0 then ri else rt,; 

for l*~1 to rlogn] do par [l~<i~<n] ri~rr.  

Each step of the algorithm does the following. First, each component finds the 
edge of minimum length between any vertex of itself and one of a different 
component. Of the edges found twice at the same step, one copy is eliminated. 
The remaining edges are added to the tree. Finally, components are merged by 
finding a common representative, using a recursive doubling technique which 
will appear in Example 13. One step of the algorithm can be performed in 
O(logn) time on O(nE/logn) processors by application of the procedure of 
Example 5 with maximization replaced by minimization. The complete algo- 
rithm requires O(log z n) time on O(nE/logn) processors, with a processor utili- 
zation of O(1/logn). 

EXAMPLE 10. Double minimum spanning tree tour for the traveling salesman 
[44]. In the traveling salesman problem, one is given a complete undirected 
graph G with vertex set {1,...,n} and a length dq for each edge {i,j} and one 
wishes to find a Hamiltonian cycle (i.e., a cycle passing through each vertex 
exactly once) of minimum total length. This is a well-known %~-hard problem, 
and rather than trying to solve it to optimality one might decide to find an 
approximate solution in polynomial time. One such approximation algorithm is 
the double minimum spanning tree heuristic. It consists of three phases: 
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(i) Construct a minimhm spanning tree. Using the routine of Example 9, we 
can perform this phase in O(log 2 n) time on O(n 2/log n) processors. 

(ii) Double the edges of the minimum spanning tree and construct an 
Eulerian cycle. We do not go into the details here, but this phase can be 
done within the same time and processor bounds using the techniques 
from [3]. 

(iii) Start at a given vertex and traverse the edges, skipping vertices visited 
before. We first have to find the first occurrence of each vertex and then 
eliminate all duplications. Let v l,...,vi,...,v2,-1 denote the Eulerian tour 
obtained in the previous phase, where v~ is the ith vertex of the tour. We 
proceed as follows. 

par [l <~i,j<~2n - I ]  cij~ if vi =v) then 1 else 0; 

par [1 ~<i ~<2n - 1] di~max(0,1 - sum(c~jl 1 <<.j<~i - 1 } }; 

par [1 ~<i ~<2n - 1] si~sum(djll <~j ~<i }. 

Note that di= 1 if vi occurs for the first time in the tour, d~ = 0 otherwise, and 
that si denotes the number of different vertices in v l,...,vi. We obtain the tour 
t ~ - t 2 - . . . - t , , - t ~  by: 

par [l~<i~<2n -1 ]  if di= 1 then ts,~vi. 

Using the partial sums algorithm from Example 6, we can implement phase 
(iii) within the same resource bounds as the previous phases. So, we end up 
with an algorithm that runs in O(lo32 n) time on O(n2/logn) processors. Since 

n z '  w V the sequential algorithm takes O( ) time, e ha e a processor utilization of 
O(1/logn). 

EXAMPLE 11. Preemptive scheduling of identical machines [18]. Given m identi- 
cal machines Mi ( i=1,  .... m) and n jobs Jj, each with a processing time 
pj ( /=  1,...,n), one wishes to find a preemptive schedule of minimum length. A 
preemptive schedule assigns to each Jj a number of triples (Mi,s,t), where 
l<~i<~m and O<~s<~t, indicating that Jj is to be processed by Mi from time s 
to time t. A preemptive schedule is feasible if the processing intervals on M; 
are nonoverlapping for all i, and the processing intervals of Jj are nonoverlap- 
ping and have total length pj for all j. It is optimal if the maximum comple- 
tion time of the jobs is minimum. 

An optimal schedule can be found in O(n) time by the classical wrap around 
ru/e of MCNAUGHTON [56]. The algorithm first computes a value t* which is 
an obvious lower bound on the minimum schedule length. It then constructs a 
schedule of length t* by considering the jobs in an arbitrary order and 
scheduling them in the m periods (0,t*), carrying over the part of a job that 
does not fit at the end of the period on Mi to the beginning of the period on 
Mi + I. More formally: 
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t* <-max{ max{pjl 1 ~<j ~<n }, sum{pjl 1 ~<j ~<n }/m }; 

s <---0; i,--1 ; 

for j<--1 to n do 

if s +pj <~t* 

then assign (Mi,s,s +pj) to Jj, 

s,--s +pj 

else assign ( Mi ,s, t* ) and ( Mi + l , 0,pj - ( t* - s ) ) to J j, 

S~-'pj--(t* --S), i<---i + l. 

An example is given in Figure 6. There are two global parameters that are 
updated sequentially as the job index j increases: the starting time s and the 
machine index i of Jj. We can calculate all starting times and machine indices 
simultaneously in logarithmic time, using the parallel procedures for finding 
the maximum and the partial sums from Examples 5 and 6 as subroutines: 

t* *--max { max {pjl l < j  ~ n  },sum{pyl l < j  <~n } / m } ; 

par [1 ~<j~<n] qj,---sum{Pkll~k<~j --1}; 

par [1 <j--.<n] 

sj,--qj mod t*, ij,--[q:/t*J + 1, 

if sj +py<-t* 

then assign (Mij,sj,sj +pj) to Jj 

else assign (Mi,,sj,t*) and (Mi, + 1,O,pj-(t* -s j ) )  to Jj. 

This algorithm can be implemented to require O(logn) time and O(n/logn) 
processors with a processor utiliTation of O(1). 

j :  1 2 3 4 ~ 5 Mt 

p j: 1 2 3 4 5 M2 

t* = 5 M 3 

Jl  J2 J3 

J3 J4 

J5 

0 1 2 3 4 5 

FIGUR~ 6. Preemptive scheduling: an instance with m = 3 and n = 5 

EXAMPLI~ 12. Preemptive scheduling of uniform machines [55]. Given are m 
machines Mi, each with a speed si (i = 1,...,m), and n jobs Jj, each with a pro- 
cessing requirement pj ( ]=  1,...,n). If Jj is completely processed on Mi, the 
processing time is pj/si on machine Mi. One wishes to find a preemptive 
schedule of minimum length. 

An optimal schedule can be found in O(n +mlogm) time by an algorithm 
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due to GONZALEZ & SAHNI [30]. As in Example 11, the algorithm first finds an 
obvious lower bound t* on the minimum schedule length and then constructs a 
schedule of length t*. Assume that the machines are ordered according to 
nonincreasing speeds and that the r n -  1 largest jobs, ordered according to 
nonincreasing processing requirements, precede the n - m  + 1 remaining jobs. 
The Gonzalez-Sahni algorithm is as follows: 

t* .-- max ((pl/Sl),(pl +pz)/(Sl +s2),..., 
+... +p,,_,)/(s, +... +... +p.)/(S, +... +Sin)}; 

construct a composite machine with speed si in the interval 
[(i-1)t*,it*) ( i=  1,...,m) and speed 0 in [mt*,oo); 
f o r j ~ l  to n do 

find the latest possible interval [s,s +t*) such that the compo- 
site machine can process Jj, assign the interval [s,s +t*) to Jj, 
replace the speed of the composite machine at time s + t by 
the original speed of the machine at time s+t*+t, for all 
t>0 .  

After scheduling the m - 1  largest jobs, the composite machine has in any 
interval of length t* with positive speed a processing capacity that is greater 
than the processing requirement of any of the remaining jobs. The parallel 
algorithm first schedules the m - 1  largest jobs; after that, the remaining jobs 
are scheduled in the same way as in Example 11. The first phase of Martel's 
algorithm is only sketched here; the full story can be found in his paper. 

For each of the large jobs, we compute an interval to which we would like 
to assign that job. Martel observes that, if the intervals of two consecutive jobs 
overlap, we may combine them into one compound job with a processing 
requirement equal to the sum of the processing requirements of both jobs and 
find an interval of twice the original length on the composite machine. We 
group consecutively overlapping jobs together. If a group contains an odd 
number of jobs, we schedule the first job in its interval (and revise the compo- 
site machine as in the sequential algorithm) and combine the second with the 
third job, the fourth with the fifth job and so on, otherwise we combine the 
first with the second job, the third with fourth job and so on. We continue this 
process until there are at most two compound jobs left. These are scheduled 
sequentially. We now call the same procedure for each of the compound jobs, 
with the individual jobs of the compound job as job set and with the interval 
assigned to the compound job (extended to infinity with speed 0) as composite 
machine. Since at each recursive step the number of jobs in a new problem 
decreases by a constant factor, the algorithm terminates after a logarithmic 
number of such steps. 

The entire algorithm can be implemented in O(logn +log 3 m) time on O(n) 
processors. It uses the sorting algorithm of AJa'AI, KOML0S & SZEME~DI [1], 
which requires O(logn) time and O(n) processors (and thereby provides a sub- 
stantial improvement over the algorithm from Example 7). 
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FI6Ur.E 7. Scheduling fixed jobs: an instance with n =5 

EXAMPLE 13. Scheduling fixed jobs [18]. Given n jobs Jj, each with a starting 
time sj and a completion time tj (j = 1,...,n), one wishes to find a schedule on a 
minimum number of machines. A schedule assigns to each Jj a machine Mi. It 
is feasible if the processing intervals (sj,tj) on Mi are nonoverlapping for all i; 
it is optimal if the number of machines that process jobs is minimum. The 
problem is also known as the channel assignment problem: n wires are to be 
laid out between given points in a minimum number of parallel channels, each 
of which can carry at most one wire at any point. 

An optimal schedule can be found in O(nlogn) time by the following simple 
rule. First, order the jobs according to nondecreasing starting times. Next, 
schedule each successive job on a machine, giving priority to a machine that 
has completed another job before. It is not hard to see that, at the end, the 
number of machines to which jobs have been assigned is equal to the max- 
imum number of jobs that require simultaneous processing. This implies 
optimality of the resulting schedule. 

For a polylog parallel implementation, we need a more detailed sequential 
description of the algorithm [32]. We introduce an array u of length 2n con- 
taining all starting and completion times in nondecreasing order; the informal 
notation 'uk.-~sj' ('uk,'-.tj') will serve to indicate that the kth element of u 
corresponds to the starting (completion) time of Jj. We also use a stack S of 
idle machines; on top of S is always the machine that has most recently com- 
pleted a job, if such a machine exists. 

sort (s 1, t 1 ,..., s,, t,) in nondecreasing order in (u 1 ,..., u 2,) whereby, 

if tj =Sk for some j & k, tj precedes Sk ; 

S¢-- stack of n machines; 

for k ~  1 to 2n do 

if Uk"'sj then take machine from top of S and assign it to Jj, 

if uk ~t j  then put machine assigned to Jj on top of S. 
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Figure 7 illustrates the algorithm as well as its paraltelization, which is 
described below. There are four phases. 
(0 First, we calculate the number oj of machines that are busy directly after 

the start of Jj and the number 'rj of machines that are busy directly before 
the completion of Jj, for j = 1,...,n: 

sort (sl,tl .... ,s,,,t,) in nondecreasing order in (ul,...,u2,) whereby, 

if tj = Sk for some j & k, tj precedes sk ; 

par [l~<k~<2n] ak~-ifuk"-'sj then 1 else - 1 ;  

par [l~<k<~2n] flk~- sum(atll <~l~k ); 

par [l~<k~<2n] 

if uk'~sj then oj~flk, 

if Uk'~tj then zj~flk + 1. 
Note that the number of machines we need is equal to maxj (oj). 

(ii) For each Jj, we determine its immediate predecessor J,~j.) on the same 
machine (if it exists). The stacking mechanism implies that this must be, 
among the Jk satisfying 'rk = oj, the one that is completed last before the 
start of Jj; if no such job exists, then it is convenient to take Jj as its own 
predecessor: 

par [1 <-j<~n] 

find k such that rk =oj & tk =max (t~lt~<~sjt-oj}, 
~r(])~ if k exists then k else j. 

(iii) For each Jj, we now turn J ~ )  into its first predecessor on the same 
machine using recursive doubling. The chains formed by the arcs (j,~r(j)) 
are collapsed simultaneously in a logarithmic number of steps (cf. Figure 
8): 

for l~-I to rlogn] do par [1---<j---<n] ~(j)~(~r(/)). 

(iv) Finally, we use the ¢dd')'s to perform the actual machine assignments: 

par [l~<j~<n] assign Mo.~, to Jj. 
Using the maximum, partial sums and sorting routines from Examples 5, 6 

and 7, we can implement this algorithm to require O(logn) time and 
O(n2 /logn) processors. 

EXAMPLE 14. Maximum cardinality matching [39]. Given an undirected graph 
with vertex set V and edge set E, one wishes to find a matching of maximum 
cardinality. A matching is a set of vertex disjoint edges. It is perfect if each 
vertex is incident to an edge. 
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(ii) 1 2 3 4 5 6 7 

(iii), 1 = 1 

(iii), t = 2 

(iii), ! = 3 

FIGURE 8. Scheduling fixed jobs: 
finding the first preceding job on the same machine 

Lovksz [54] gave a randomized algorithm for deciding whether a graph has 
a perfect matching. It is based on the following theorem of Tutte: a graph on n 
vertices has a perfect matching if and only if the determinant of the n X n 
matrix B=(bo.), with bij--xij if ( i , j } ~ E  and i< j ,  bij=-xij if ( i , j } ~ E  and 
i >  j, and bij--O otherwise, is not identically zero in the variables xij. Now, we 
choose a random number N, substitute for each variable xq a random number 
from {1,...,N} and compute the determinant. If the determinant of B is identi- 
cally zero, then we find the value zero. Otherwise, the probability that we get 
zero is very small. CSANKY [13] showed that computing a determinant belongs 
to 9rE. Therefore, the problem of deciding whether a graph has a perfect 
matching belongs to 6 X ~  i.e., the class of problems solvable by a randomized 
algorithm in polylog time on a polynomial number of processors. 

The randomized algorithm of KARP, UPFAL & WIGDERSO~ [39] which actu- 
ally constructs a perfect matching in polylogarithmic time, if it exists, is also 
based on Tutte's theorem. It is quite complicated, and we refer to their paper. 
As a result, the problems of constructing a maximum cardinality matching and 
of constructing a matching of maximum weight in a graph whose edge weights 
are given in unary notation also belong to ~6-)~. The complexity of the max- 
imum cardinality matching problem with respect to deterministic parallel com- 
putations is an open question, even for bipartite graphs. 

5. P-COMPLETEr,tESS 
The first P-complete problem was identified by COOK [14]. It involves the sol- 
vabilify of  a path system and is proved P-complete under log-space transforma- 
tions by a 'master reduction' in the same spirit as Cook's %P-completeness 
proof for the satisfiability problem. We will not define the path problem here 
and prefer to start from a different point. 
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EXAMPLE 15. Circuit value [46,27,29]. Given a logical circuit consisting of 
input gates, AND gates, OR gates, NOT gates, and a single output gate, and 
given a truth value for each input, is the output TRUE or FALSE? Cf. Figure 9. 

The circuit value problem is trivially in P. LADNER [46] indicated how to 
simulate any polynomial time deterministic Turing machine by a combinatorial 
circuit with only AND and NOT gates in logarithmic work space. It follows that 
the problem is P-complete. 

GOLDSCHLAGER [27] extended this result to the cases of monotone circuits, 
which have no NOT gates, and planar circuits, which have a cross free planar 
embedding, by giving log space transformations from the circuit value prob- 
lem. Circuits which have in addition to input and output gates, only NAND 
gates (a NAND gate is an AND gate followed by a NOT gate) or NOR gates (a 
NOR gate is an OR gate followed by a NOT gate) are able to simulate arbitrary 
circuits; this not hard to see. Therefore, the circuit value problem is also P- 
complete for circuits with only NAND gates or only NOR gates. 
GOLDSCHLAGER, SI-IAW & STAPLES [29] showed that all these results still hold 
if each input gate has fan-out one (it appears once as input to another gate) 
and each other gate has fan-out at most two. 

FIGURE 9. A logical circuit 

EXAMPLE 16. Linear programming [21,72]. Given a finite system of linear equa- 
tions and inequalities in real variables, does it have a feasible solution? 

Linear programming is known to be in P [40]. DOBKIN, LIPTON & REISS 
[21] established P-completeness of the problem by giving a log space transfor- 
mation from the unit resolution problem, a variant of the satisfiabili(y problem, 
that was already known to be P-complete. VALIANT [72] gave a more straight- 
forward transformation, starting from the circuit value problem. 

The idea is to associate a variable xj with the jth gate, such that xj = I if the 
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gate produces the value TRUE and xj =0 otherwise. More explicitly, 

if gate j is then we introduce the equations 

• an input gate with value TRUE, 
• an input gate with value FALSE, 
• an AND gate with inputs from gates h and i, 

• a NOT gate with input from gate i, 
• the output gate with input from gate i, 

and inequalities 
• x j = l ,  
. xj=O, 
. xj <~xh, xj <~x~, 
=£>10, xj>~xh +x~-  I, 

" X j - - 1 - - X i ,  
. xj = xi, x j = l .  

OR gates may be excluded• We leave it to the reader to verify that each feasi- 
ble solution is a 0-1 vector, that there exists a feasible solution if and only if 
the circuit value is TRUE, and that the transformation requires logarithmic 
work space. 

Simple refinements of this transformation show that linear programming 
remains 62-complete if all coefficients are equal to - 1 ,  0 or 1, and each row 
and column of the constraint matrix contains at most three entries. 

EXAMPLE 17. Maximum flow [29]• Given a directed graph with specified source 
and sink vertices and with capacities on the arcs, and given a value v, does the 
graph have a flow from source to sink of value at least v? 

The maximum flow problem belongs to 62 [22]. It was shown to be 62- 
complete by a transformation from the monotone circuit value problem. The 
transformation simulates the implications of boolean inputs through a circuit 
with n AND and OR gates by integer flows through a network with the gates 
and an additional source and sink as vertices and with arc capacities of O(2n). 

We conclude this section by mentioning two related results of a more posi- 
tive nature. 
(0 The maximum flow problem is solvable in polylog parallel time in the 

case of planar graphs, due to the relation of this case to the shortest path 
problem [36]. 

(ii) The problem is solvable in randomized polylog parallel time in the case of 
unit capacities and in the more general case that the capacities are 
encoded in unary. This follows, through standard transformations, from 
the complexity status of the maximum cardinality matching problem as 
described in Example 14. 

EXAMPLE 18. List scheduling [34]. In the multiprocessor scheduling problem, 
one is given rn identical machines Mi (i = 1,...,m) and n jobs Jj, each with a 
processing time pj (j=l, . . . ,n),  and one wishes to find a nonpreemptive 
schedule of minimum length. A nonpreemptive schedule assigns to each Jj a 
pair (Mi,s), with l< - i~m and s>~O, indicating that Jj is to be processed by Mi 
from time s to time s +pj. A nonpreemptive schedule is feasible if the process- 
hag intervals on Mi are nonoveflapping for all i. It is optimal if the maximum 
job completion time is minimum. 

This is an %62-hard problem• A popular approximation algorithm is the list 
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scheduling heuristic, whereby a priority list of the jobs is given and at each 
step the earliest available machine is scheduled to process the first available 
job on the list. More formally: 

for i<---1 to m do silO; 

f o r j ~ l  to n do 

i* <---min(i[si <~slc,k = 1,...,m }, 

assign (Mi,,si,) to Jj, 

Si* ~"Si* Al-pj. 

An example is given in Figure 10. The sequential algorithm requires O(nlogm) 
time. We will show that the associated list scheduling problem of deciding 
about the resulting schedule length is °~-complete for m/>2. 

0 1 2 3 4 5 6 7 

FIGURE 10. List scheduling: an instance with m =3 and n - 5  

Consider an instance of the circuit value problem with only input and NOR 
gates. First, we number the gates such that each NOR gate receives its inputs 
from higher numbered gates. We then give the incoming arcs to NOR gate i the 
weights 42i and 42i +1 The output arc gets weight 4. Cf. Figure 11. We con- 
struct the list of jobs as follows. The first has a processing time that equals the 
sum of the weights of all outgoing arcs of TRUE inputs. In decreasing order of 
i, we put seventeen jobs on the tist for NOR gate i, one with length 2"4 2i +l ,  
fourteen with length 42i/2, and two with length (42i d-Vi)/2 , where V/ is the 
sum of the weights of the outgoing arcs of gate i. On two machines, the 
corresponding list schedule has the property that, after scheduling the first job 
or after scheduling all jobs associated with a gate, the difference in the comple- 
tion times of both machines is equal to the sum of the weights of all arcs that 
have been computed to represent a "rRLrE value and have not yet been con- 
sidered as input. In the end, the difference in the completion time is 4 if and 
only if the circuit computes the value TRUE. Checking these statements is left 
as an exercise to the reader. Since the transformation can be performed in log- 
arithmic work space, the list scheduling problem is °~-complete for m I>2. 

EXAMPLE 19. Nearest neighbor tour for the traveling salesman [44]. Given a 
complete undirected graph G with vertex set (1,...,n }, a length dij for each 
edge (i,j} and two specified vertices v l and v2, does the Hamiltonian cycle 
constructed by the nearest neighbor heuristic, when started at vertex v~, visit 
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~ O R  (4)~ 4 7 

FIGURE I 1. A circuit with numbered gates and weights 
assigned to the edges 

vertex v2 as the last one before returning to vertex v l? The nearest neighbor 
heuristic is probably the simplest approximation algorithm for the traveling 
salesman problem. It proceeds as follows. 
(i) Start at a given vertex. 
(ii) Among all vertices not yet visited, choose as the next vertex the one that 

is closest to the current vertex. Repeat this step until all vertices have 
been visited. 

(iii) Return to the starting vertex. 
We will show that the nearest neighbor problem is P-complete. For each 

instance of the circuit value problem with only input gates with fan-out one 
and NAND gates with fan-out at most two, we construct a graph in such a way 
that the circuit value of the considered instance is TRUE if and only if the 
nearest neighbor problem returns a 'yes' answer. 

Let the circuit have m gates. We number them from 1 up to m such that 
they receive their inputs from gates with a lower number. Each gate in the cir- 
cuit is represented by a subgraph. The nearest neighbor tour will visit the sub- 
graphs in the order in which the corresponding gates are numbered in the cir- 
cuit. This ensures that if the tour visits a subgraph corresponding to a non- 
input gate, it has passed the subgraphs corresponding to its input gates. 

For NAND gate k (k <m)  with fan-out two (ak = ai NAND Otj), we construct 
the subgraph as shown in Figure 12. The vertex pairs (i) - ® are used to con- 
nect the different subgraphs. If gate i is input to gate k, a 0) - ® pair appears 
as output in the subgraph for gate i and also as input in the subgraph for gate 
k. The edge length zero assures that corresponding vertices 1 and 2 are always 



Parallel computing in combinatorial optimization 269 

neighbors in the obtained tour. If the fan-out is one (zero), we construct the 
same subgraph with one arbitrary • - ® pair of output vertices (without out- 
put vertices). The subgraph is constructed in such a way that if the nearest 
neighbor tour enters the subgraph at vertex A from subgraph k -  1, it leaves 
this subgraph through vertex B to subgraph k + 1. We associate a TRUE (FALSE) 
value with this subgraph if the nearest neighbor tour on its way from A to B 
passes (does not pass) through the output vertices. 

When the tour arrives at vertex A from subgraph k -  l, there are three pos- 
sibilities. 

from 0 
k - 1  

3k +2 

input i 
t I I I I I I 

3 k / ( ~ ~ 3 k  + 1 

utpu't-" " -ou tpu t "  3k 

I I I "~l 
I I I 

input j 

0 to 
k + l  

(i) 

FIGURE 12. The representation of NAND gate k 

Inputs i and j have both been visited already. In this case the tour must 
go directly to vertex B and then it will choose the edge of length zero to 
subgraph k + 1. This will be the only case where the output vertices are 
not immediately visited. Note that as a result either output vertex 2 has its 
corresponding vertex 1 left as its only unvisited neighbor within the sub- 
graph. See Figure 13. 

f r o m  

k - 1  

. : .. - 

t o  

k + l  

FIGURE 13. TRUE NAND TRUE ~ FALSE 
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Either input i or input j is still unvisited. The tour will choose vertex I of 
this unvisited input as next vertex, since the edge length is less than the 
distance to vertex B. From here it goes to the corresponding vertex 2 
(edge length is zero). As noted under (i), this vertex 2 has no unvisited 
neighbors in the subgraph where it appears as output. Therefore, the next 
vertex must belong to subgraph k, i.e., the tour arrives at the outputs. 
Because edge lengths in a subgraph are proportional to the number of 
that subgraph and outputs belong to subgraphs with a higher number, the 
nearest neighbor algorithm will visit all output vertices and after that ver- 
tex B before leaving subgraph k to subgraph k + 1. Cf. Figures 14 and 15. 

f r o m  ~ to 
k - I  k+l  

FIGURE 14. TRUE NAND FALSE --o TRUE 

from ~ to 
k - !  ~ k+l  

FIGURE 15. FALSE NAND TRUE ~ TRUE 

(iii) Both inputs are unvisited. The tour will pass through all vertices of sub- 
graph k before going to subgraph k + 1 (Figure 16). 

Note that in all cases all unvisited input vertices are included in the tour. 
To summarize the results, the nearest neighbor tour from A to B passes 

through the output vertices if and only if at least one of the input vertices is 
not yet visited. In the circuit value problem, this corresponds to the fact that a 
N ~ D  gate produces the value TRtm if and only if at least one of the inputs is 
FALSE. 
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from to 
k - !  - -  k + l  

FIGURE 16. FALSE AND NAND FALSE ---> TRUE 

For TRUE and FALSE inputs we construct the subgraphs as shown in Figure 
17. The representation of NANO gate m (the last one) has a somewhat special 
structure. The output vertices are replaced by a vertex C. Both vertex B and 
C are connected to input 1 (see Figure 18). If the tour arrives at vertex A of 
this gate and we are in situation (i), the tour will go directly to vertex B and 
from there to vertex C before it leaves subgraph m. Otherwise vertex B will be 
the last vertex to be visited of this last subgraph. 

It should now be clear that a nearest neighbor tour starting at the A-vertex 
of input 1 visits the B-vertex of the last gate as the last vertex if and only if the 
circuit computes the value TRUE. Since the transformation can be performed 
using work space which is logarithmic in the size of the circuit, the nearest 
neighbor problem is q-complete. So, the construction of a nearest neighbor 
traveling salesman tour will probably require superpolylogarithmic work space 
or superpolylogarithmic parallel time. 

from 0 ~ 0 to 
k - 1  k + l  

l I l I 
I t I l 

output 

(a) The representation of a TRIm input 

r o m  to 

k - 1  ( ~ ~  k + l  

output 

(b) The representation of a FALSE input 

FIGURE 17. The representation of input k 
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from 0 t" 
m - 1 - - ~ , .  

3m +2 

input i 
I I I I 
I I I I 

.... 

~ )3m+3 

I ~ I I 
I I I I 

input j 

tO 
1 

FIGURE 18. The representation of NAND gate m 

6. ENUMERATIVE METHODS 
The optimal solution to %6y-hard problems is usually found by some form of 
implicit enumeration of the set of all feasible solutions. In this section we will 
consider the parallelization of the two main types of enumerative methods: 
dynamic programming and branch and bound. We have already seen that, from 
a worst case point of view, intractability and superpolynomiality are unlikely 
to disappear in any reasonable machine model for parallel computations. In a 
more practical sense, parallelism has much to offer to extend the range in 
which enumerative techniques succeed in solving problem instances to optimal- 
ity. Little work has been done in this direction, but we feel that the design and 
analysis of parallel enumerative methods is an important and promising 
research area. 

6. t. Dynamic programming 
Dynamic programming algorithms for combinatorial problems typically per- 
form a regular sequence of many highly similar and quite simple instructions. 
Hence, they seem to be suitable for implementation in a systolic fashion on 
synchronized MIMD or even SIMD machines. This has been observed by 
CASTI, RICHARDSON & LARSON [11] and GUIBAS, KUNG & THOMPSON [31], 
and will be illustrated on the knapsack problem in Example 20. 

EXAMPLE 20. Knapsack. Given n items j, each with a profit c, and a weight aj 
• . J 

(j = 1,...,n), and given a knapsack capac W b, one wishes to find a subset of the 
items of maximum total profit and of total weight at most b. The problem is 
%°Y-hard [26]. 

It is convenient to introduce the notation 

C(m,n,b) = maxsc_{,n,...,n} {Xj~sCjlXj~saj <.b }. 
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According to Bellman's principle of optimality, one attains the maximum 
profit C(1,n,b) by excluding item n and taking the profit C(1,n- l,b) or by 
including item n and adding c, to the profit C(1,n-1,b-a,) .  A recursive 
application of this idea gives the following dynamic programming algorithm 
[4]: 

for z<--0 to b do C(1,0,z)~0; 

f o r j ~ l  to n do 

for z<---0 to aj - 1 do C(1,j,z)~C(1,j - 1,z), 

for z,--aj to b do C(1,j,z)~ max {C(1,j - 1,z),C(1,j - 1,z -aj)  

+cj}. 
The algorithm runs in O(nb) time. (Note that this is exponential in the prob- 
lem size. Since it is polynomial in the problem data, it is called 'pseudopolyno- 
mial'.) The obvious parallelization is to handle the stages j (O<~j<<.n) sextuen- 
dally and, at stage j, to handle the states (1,j,z) (O<~z <~b) in parallel [11]: 

ALGORITHM KS1 

par [0-<<z ~<b] C(1,0,Z)<---0; 

for j~-I  to n do 

par [O<~z <aj] C(1,j ,z)~C(I, j-  1,z), 

[aj<~z <~b] C(1,j,z)~- max {C(1 , j -  1,z),C(1,j- 1,z -aj) 

+cj}. 
This requires O(n) time and O(b) processors with a processor utilization of 
o(1). 

We can achieve a running time that is sublinear in n by observing that 

C(1,n,b) = maxo<y<b{C(1,m,b-y)+C(m+ l,n,y)} 

for any m~{l, . . . ,n-1}.  It is of interest to note that this more general recur- 
sion was proposed by BELLMAN & DREYFUS [5] in the context of parallel com- 
putations. If we choose m = n -  1, the previous recursion results as a special 
case. If we choose m =n/2, then we get another dynamic programming algo- 
rithm for the knapsack problem (where it is assumed that n is a power of 2): 

ALOOmTHM KS2 

par [l~<j~<n] par [0~<z <aj] C(],j,z)~O, 

[aj <~z <~b] C(],j,z)<---cy; 

for l<--- 1 to log n do 

k~.-2 I, 
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par [O<~j<n/k] par [0~z~<b] C(jk + 1,jk +k,z) 

maxo<~y~z{C(jk + I,jk +V2k, z -y)+C(jk  +Wk + 1,jk + k,y)}. 

The algorithm requires O(nb 2) time on a single processor and O(logn logb) 
time on O(nb2/logb) processors. While the parallel running time is probably 
the best one can hope for (it might be called 'pseudopolylogarithmic'), the 
number of processors is huge. This number can be reduced by a factor of 
logn logb by application of the first algorithm to produce starting solutions for 
the second algorithm. The modified algorithm has three phases: 
(i) Separate the n items into g groups of n/g items each. 
(ii) Apply Algorithm KS1 to each group, in parallel: O(n/g) time, O(gb) pro- 

cessors. 
(iii) Apply Algorithm KS2, starting with g groups rather than with n items: 

O0ogg logb) time, O(gb2/logb) processors. 
We now set g =  rn/(logn logb)] to arrive at an algorithm that still requires 

O (log n log b ) time but using 'only' O (nb 2 / (log n (log b)2)) processors. 

Algorithm KS1 has been implemented on two existing parallel computers. 
Before reporting on the results in Example 21, we describe the architectures in 
question. 

The ICL Distributed Array Processor (DAP) [35] is a commercially available 
two-dimensional mesh connected SIMD computer with 64×64 processors. 
Each processor is connected to its four neighbors, with wraparound connec- 
tions at the boundaries, and has its own local memory. System software makes 
it possible to look at the 4096 processing elements as if they were located in a 
one-dimensional array, each processor being connected to only two neighbors. 
The processors are capable of simultaneously performing the same instruction 
on local data, with the restriction that the data have to reside at exactly the 
same place of the respective local memories. Masking a processor has the effect 
that the result of the instruction executed is not stored; this makes conditional 
operations possible. 

If for a particular problem the number of processors is not sufficient, the 
problem has to be decomposed into subproblems and the solutions to these 
subproblems have to be combined. This corresponds to simulating a DAP of 
size bigger than 64 by 64. 

The performance of a program is measured by counting the number of 
instructions executed by the DAP. To estimate the CPU time, the number of 
instructions is multiplied by the average time needed for an instruction. How- 
ever, differences between the frequencies of the various instructions in a partic- 
ular program are neglected. There is no way to measure the CPU time of the 
DAP exactly. 

The Manchester dataflow machine [33] is an experimental computer, based on 
the concept of dataflow. This is a technique for representing computations in 
terms of directed graphs. The nodes of the graph are instructions to be per- 
formed and the arcs are data routes. The data transmitted over the arcs are 
represented as tokens. A node accepts the tokens from its incoming arcs, 
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performs an operation on them, and sends the results away on its outgoing 
arcs. Whether or not two nodes can be executed concurrently depends on 
whether or not one of the two nodes needs the output of the other as input. 
Arcs not starting at a node receive the input data and arcs not ending at a 
node produce the output. 

A node is enabled (can start its execution) as soon as the required tokens 
have arrived on the incoming arcs. The execution of a node may not be 
immediate, but will happen eventually. The time needed to execute instructions 
or to transport tokens from one node to another may vary. It is assumed, how- 
ever, that all these times are finite. The computation is completely asynchro- 
nous. It can therefore happen that tokens have to wait for others on incident 
input arcs. A second consequence is that a datattow graph in general allows for 
different execution sequences. 

Figure 19 shows a possible execution sequence in a dataflow graph which 
calculates x 2 - x y  using primitive boxes DUP (which duplicates its input), 1'2 
(which produces the square of its input), × (which multiplies its inputs with 
each other) and - (which subtracts the fight input from the left input); stars 
(*) represent the generated tokens moving through the graph. 

Exploiting the parallelism contained in the dataflow model of computation 
requires an unconventional hardware organization. A general purpose dataflow 
machine needs a data structure of some sort to represent the dataflow graph of 
any particular problem. On the Manchester dataflow machine this data struc- 
ture consists of labeled nodes containing the instruction to be performed and 
the destination of the results. 

Y 
Fmug~ 19. A datatlow graph with a possible execution sequence 

The Manchester dataflow machine consists of a ring of elements each per- 
forming a special task (see Figure 20). A token consists of a value and a desti- 
nation node. The token queue dispatches tokens, one at a time, to the matching 
unit. This is an associative memory, which groups tokens with the same desti- 
nation node into packages and sends them to the node store. The matching 
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output ~ - ~  
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token ~ ma tch ing  
queue unit 
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store 

L. 

processing unit 

]processing 
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]processing 
I element 

_ . . I  

FIGURE 20. The Manchester dataflow machine 

unit stores tokens until their partners have arrived. For efficiency reasons, only 
packages of one or two tokens are allowed. The node store contains the 
dataflow graph to be executed; each node of the graph consists of the instruc- 
tion to be performed and the destination of the results. The node store adds 
this information to the package that arrives and sends the whole as an execut- 
able package to the processing unit. The processing unit sends the package via 
a distribution network to an idle processing element. After processing, the 
results arrive via an arbitration network at the switch. The switch inserts input 
tokens into the ring and removes output tokens; non-output tokens are sent 
along to the token queue. 

The processing unit makes use of fine grained MIMD-type parallelism. The 
degree of parallelism depends on the number of processing elements. On a 
higher level, the units in the ring continuously perform operations on the flow 
of packages, which gives a parallelism as in an assembly line. 

The critical part of the system is the matching unit. All units can be tailored 
to meet its maximum throughput capacity. For example, the speed of the pro- 
cessing unit can be adapted by adding or removing processing elements. One 
way to overcome this bottleneck is to construct several rings and connect them 
through the switch, which then becomes a full interconnection network. The 
Manchester dataflow machine presently consists of a single ring with twenty 
processing dements. 

The performance of a program is measured by its CPU time. An emulator of 
the dataflow machine on a sequential computer can be used to obtain addi- 
tional information. The emulator considers the dataflow machine as a syn- 
chronized MIMD machine with an unbounded number of processors, in which 
the output of a node is immediately available to successor nodes and enabled 
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nodes are executed without delay. The two fundamental time measurements 
are S i, the number of time steps if only one processing element is available 
(i.e., the total number of instructions executed), and S=, the number of time 
steps with an unlimited number of processing elements (i.e., the critical path 
length of the underlying dataflow graph). The ratio ~r = Sl/Soo measures the 
average parallelism in a program. A more detailed trace of the behavior of a 
program can be obtained if desired. 

EXAMPLE 21. Knapsack [45]. For the implementation of Algorithm KS 1 on the 
DAP, this machine is considered as a one-dimensional array of processors, 
numbered from 0 until 4095. As in Example 20, the values C(1,j,z) are com- 
puted for z =0,...,b in parallel and for j =  1,...,n in sequence, where processor z 
computes the values C(1,1,z), C(1,2,z),...,C(1,n,z). At stage j,  a processor 
needs its own C-value, that of its aj-th left-hand neighbor, and cj. The compu- 
tations and data movements can be accomplished for all processors in parallel, 
as long as b is no greater than 4095. 

Three types of problem instances were generated. For type 1, the profits and 
weights were drawn uniformly from {1,..,64}. For types 2 and 3, 512 and 1024 
were added to all profits and weights. For each type, three instances were 
created with 100, 200 and 300 items respectively; the capacity was set at 4095, 
which is the largest problem size solvable on the DAP without decomposition. 

Results are more or less as expected. The estimated CPU time is linear in n. 
However, there is no distinction among the different types. Since the distance 
which data have to travel increases with the type number, one would expect an 
increase in computing time as well. The only information which can be 
retrieved from the DAP, however, is the number of instructions performed and 
that number appears to be the same for the three problem types. The running 
times are twenty times better than on the CDC/CYBER-170-750; cf. Figure 
21. 

n type DAP 

100 1 0.019 
100 2 0.019 
100 3 0.019 
200 1 0.038 
200 2 0.038 
200 3 0.038 
300 1 0.058 
300 2 0.058 
300 3 0.058 

CYBER- 170-750 

0.257 
0.420 
0.359 
0.832 
0.828 
0.704 
1.373 
1.238 
1.047 

FIGURE 21. Knapsack Algorithm KS1 on the DAP and the CYBER-170-750: 
running times in seconds for instances with b = 4095 
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On the Manchester dataflow machine, the computation is completely asyn- 
chronous. It may therefore happen that values of different stages are evaluated 
at the same time. However, the maximum speedup remains O(b). 

Since the dataflow computer is an experimental machine with limited 
hardware capacity, only very small problem instances could be run. The profits 
and weights are drawn from {I,..., 100}. Instances with n = 10, 20, 30, 40 and 
b = 100, 200, 300 were generated. 

n b = b = 2 0 0  b = 3 0 0  

I0 418 
20 756 
30 1091 
40 1443 

(a) Critical 

431 437 
765 784 

1109 1122 
1466 1479 

~ath length S~ 

n b = 1 0 0  
10 30 
20 37 
30 39 
40 41 

b = 2 0 0  b- -300  
70 106 
85 128 
89 135 
89 133 

(b) Average parallelism ~" 

FIGURE 22. Knapsack Algorithm KS1 on the emulator 
of the Manchester dataflow machine 

Figure 22 shows the results of the emulator. The critical path length S~ is 
about linear in n, and the average parallelism ~r grows with b. With increasing 
b more elements fit into the knapsack, which explains the increase of S~ for 
constant n. For the problem instances considered, the hardware results are 
comparable: for less than ten processors, the speedup is almost linear; beyond 
that, hardly any gain is made (cf. Figure 23). 

speedup 
I0 

8 

6 

4 

2 , 
t 

~ t  

¢ t  

S t  

f i i . , ~ . a i . . . . . . . . . . .  

2 4 6 8 10 12 14 16 18 20 
processors 

FIGURE 23. Knapsack Algorithm KSI on the Manchester dataflow machine: 
a typical speedup curve 

6.2. Branch and bound 
Branch and bound methods generate search trees in which each node has to 
deal with a subset of the solution set. Since the instructions performed at a 

• node very much depend on the particular subset associated with that node, it 
is more appropriate to implement these methods in a distributed fashion on 
asynchronous MIMD machines. An initial analysis of distributed branch and 
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bound, in which the processors communicate only to broadcast new solution 
values or to redistribute the remaining work load, is given by EL-DESSOU~:I & 
HLrEN [23]. In a sequential branch and bound algorithm, the subproblems to 
be examined are given a priority and from among the generated subproblems 
the one with the highest priority is selected next. In a parallel implementation, 
several subproblems are examined at the same time. The point in time at 
which a subproblem becomes available depends on the number of processors, 
and this influences how the tree is searched. One can construct examples of 
anomalous behavior in which p processors together are slower than a single 
processor, or more than p times as fast. 

Examples 22, 23 and 24 discuss the implementation and anomalous behavior 
of branch and bound algorithms for the traveling salesman problem and the 
job shop scheduling problem. Example 25 deals with anomalies on a more 
theoretical basis. Example 26 reports on work in progress concerning the 
development of a theoretical model to analyze the distribution of work in a 
master-slave architecture. 

EXAMPLE 22. Traveling salesman [62]. The traveling salesman problem was 
already described in Example 10. A traditional branch and bound method for 
its solution uses a bounding mechanism based on the linear assignment relaxa- 
tion, a branching rule based on subtour elimination, and a strategy for select- 
ing new nodes for examination based on depth first tree search. The details are 
of no concern here and can be found in the book by LAWLER ET AL. [52]. Fig- 
ure 24(a) shows a search tree in which the nodes have been labeled in order of 
examination. 

Pruul designed a parallel version of this method for an asynchronous MIMD 
machine. Each processor performs its own depth first search; when it 
encounters a node that has already been selected by another processor, it 
selects in the subtree rooted by that node an unexamined node at the highest 
level. Figure 24(b) illustrates the process. 

The lack of parallel hardware forced Pruul to simulate the algorithm on a 
sequential computer. An empirical analysis for ten 25-vertex problems yielded 
average speedups that were greater than the number of processors. This may 
be confusing at first sight, but the explanation is simple and lies outside the 
area of parallel computing. The simulated parallel algorithm is nothing but a 
sequential algorithm that is based on a mixture of depth first and breadth first 
tree search. Such complex strategies have not yet been explored in any detail 
and might be quite powerful. 

The IBM Loosely Coupled Array of Processors (LCAP) [19] consists of a mas- 
ter processor (IBM/4381-3) which is connected to ten slave processors 
(FPS/164); cf. Figure 25. On the master processor, at most ten processes run 
in parallel in a time sharing mode. To each of these, a slave processor can be 
assigned. A process can pass part of its work on to the slave processor, thereby 
creating true parallelism. As long as the slave is running, it cannot be 
influenced from outside and the invoking process on the master has to wait. 
Communicating with a slave processor is time consuming. Therefore, it does 
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) "Q 
(a) Sequential search; node t is selected at time t 

(b) Parallel search by the three processors; 
node t/p is selected at time t by processor p 

FIGURE 24. Depth first tree search 

not pay to send very small tasks. 
For the communication between the processes on the master, one has basi- 

cally to choose between two systems: 
(i) The processors are considered as equivalent. They share part of the 

memory of the master processor. 
(ii) The processes are considered as slave processes, and a master process is 

created. The master process is able to communicate with the slave 
processes; messages between slave processes have to be sent through the 
master pro~ss. 

The limited control over the slave processors together with the restrictions 
on the interprocess communication makes the LCAP a rather rigid MIMD 
computer. In its present state, it is not well fit for algorithms in which the need 
for communication arises at run time. 

EXAMPLE 23. Job shop [41]. Given are n jobs and m machines. A machine can 
handle at most one job at a time. A job consists of a chain of operations, each 
of which requires an uninterrupted given processing time on a given machine. 
The purpose is to find a schedule of minimum length. This %°2-hard problem 
[26] appears to be very difficult. Already small instances are hard to solve. The 
branch and bound algorithm from LAGEWEG, LENSTRA & R.INNOOY KAN [47] 
computes lower bounds by relaxing the capacity constraints on all machines 
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IBM/4381-3 I 

FIGURE 25. The IBM/LCAP 

but one, creates subproblems by scheduling operations all of whose predeces- 
sors have been scheduled, uses depth first search, and obtains approximate 
solutions on a few equidistant levels of the search tree. 

The implementation on the IBM/LCAP uses the second interprocess com- 
munication system. The master process generates the search tree up to a cer- 
tain depth. Nodes neither branched from nor eliminated are ordered according 
to increasing lower bounds and put in a queue. The master process sends 
nodes from the front of this queue to idle slave processes. A slave performs a 
complete depth first search starting from the node it receives. If a better 
overall solution is found, it is sent to the master, which in turn informs the 
other slaves. If there are idle slaves and the queue of nodes of the master is 
empty, the master asks the busy slaves to pass on some of their work so as to 
refill its queue. The master process is run on the IBM machine and the slave 
processes pass the evaluation of the search tree on to the FPS systems. Since 
the software does not allow slaves to be interrupted by the master, it is neces- 
sary that they regularly report to the master. The report period has to be care- 
fully chosen such that important news is quickly distributed and not too many 
unnecessary communications occur. 

The algorithm shows a nondeterministic behavior. When the algorithm is 
run on the same instance several times, the distribution of the work over the 
processors varies, different search trees may be generated and different optimal 
solutions may be found. 

The performance of the algorithm is illustrated on an instance with twenty 
jobs, each consisting of five operations, and five machines [59]. Reported are 
the maximum number of nodes branched by a slave, which indicates the paral- 
lel computing time, and the number of nodes branched by the master and 
slaves together, which represents the total amount of work. The master 
branches 65 nodes, resulting in an initial queue of 269 nodes. The slaves report 
to the master every 100 nodes. The results of a single run for each number of 
slaves are given in Figure 26. When the number of slaves increases from one to 
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number maximum number of nodes total number 
of slaves branched by a slave of nodes 

11358 11423 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2300 
1455 
900 
900 
900 
978 
700 
800 
800 

4609 
3320 
2268 
2667 
3397 
5143 
3364 
3457 
3646 

FIGURE 26. The job shop algorithm on the LCAP: 
an instance with twenty jobs and five machines 

four, the maximum number of nodes branched by a slave decreases more than 
proportionally; this expresses a speedup anomaly. For higher numbers of pro- 
cessors, the maximum remains about the same. This is because the master gets 
into trouble. It is too slow for serving the communication requests of the slaves 
properly. A small number of slaves is served frequently, the others are waiting 
most of the time. 

The Boulder Distributed Processing Utilities Package (DPUP) [25] has been 
developed to facilitate the use of a local area network of the University of 
Colorado at Boulder. The network consists of a small number of Pyramid and 
Sun work stations, which run the Berkeley Unix 4.2 operating system and are 
connected on an ethernet (see Figure 27). The ethernet makes it possible to 
send messages between processes on any two machines. The configuration can 
therefore be considered as an asynchronous MIMD computer. 

ethemet ] 

work 
station 

work 
station 

work 
station 

work 
station 

FIGURE 27. Work stations connected on an ethernet 

DPUP enables a process to create remote processes on any desired machines 
and to establish communication links with them. In this way, a tree of 
processes can be created. In principle, it is possible to implement any 
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communication network. Communication between processes is completely 
asynchronous. The sending process stores the message in a buffer and may 
continue immediately after that. The receiving process empties the buffer as it 
is ready to do so. A process can be interrupted, for example to force important 
messages to be read at once. This software makes the system very flexible. 

An ethernet allows for only one message to be sent at a time: communica- 
tions are handled subsequently. In case of heavy traffic, the ethernet becomes 
the bottleneck of the system. 

EXAMPLE 24. Traveling salesman [69]. The traveling salesman problem was 
described in Example l0 and a possible implementation of a parallel algorithm 
for its solution was discussed in Example 22. Trienekens considered a branch 
and bound algorithm with a lower bound based on 1-trees and a branching 
scheme of JONKER & VOLGENANT (cf. [52]). 

The implementation using the Boulder DPUP is based on the master-slave 
principle. The master process keeps track of the nodes that are to be con- 
sidered for branching. An idle slave process receives a node with the least 
lower bound from the master, branches this node, performs the lower bound 
computations, and sends the results back to the master. The advantage of this 
strategy over the one presented in Example 23 is that the master has full 
knowledge of the search tree generated so far. A disadvantage is the number of 
communications. Since a lot of work is involved in the lower bound computa- 
tions, the time for node evaluation will dominate the time for interprocessor 
communication; in Example 23, the situation is the other way around. 

The algorithm was run on a set of five Pyramid work stations, which have 
unequal processing power. Each work station executes a slave process; the 
most powerful work station also takes care of the master process. 

The algorithm displays a nondeterministic behavior. The computational 
results are promising. Already for small search trees, with 30 to 60 nodes 
branched, a processor utilization (which is corrected for the different processor 
speeds) of more than 60 percent is achieved. The largest search tree, with 260 
nodes branched for the solution of a Euclidean 75-city instance, gave a proces- 
sor utilization of 93 percent. 

EXAMPLE 25: Anomalous behavior [10, 48]. Assume that the evaluation of a 
node in a branch and bound tree takes constant time and that after the evalua- 
tion of the current set of nodes the processors collectively decide which set of 
nodes is to be evaluated next on the basis of a priority of each node. BURTON 
ET AL. [10] give examples in which two processors are more than twice as fast 
as a single processor, or slower than a single one. In Figures 28 and 29 both 
cases are illustrated. The numbers represent the priorities of the nodes; the 
node indicated by the box contains enough information to cause termination 
of the algorithm. 
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large tree with priorities greater than one 

FIGURE 28. Anomalous behavior: best case for two processors 

In the tree of Figure 28, a single processor first evaluates the root, creating 
two children. Since the right node has the lower priority of the two, the left 
node is evaluated first and the nodes of the large subtree follow. Only after the 
entire subtree is exhausted, the right node is evaluated, and one step later the 
optimal solution is found. A two-processor machine first evaluates the root. 
Then either processor takes a node, and the same happens at the next step. At 
that point the algorithm temfinates. Hence, the two-processor system needs 
only three steps, while the number of nodes in the large subtree determines the 
runnin~ time for a sin~le-orocessor comouter. 

g . /  "~2x 

large tree with priorities greater than two 

FIGURE 29. Anomolous behavior: worst case for two processors 

In the tree of Figure 29, a single processor first evaluates the root, creating 
two children. Since the fight node has the higher priority of the two, it is 
evaluated first. The box node is generated, and evaluated immediately, since it 
has a higher priority than the only other available node, the left son of the 
root. The algorithm terminates in three steps. A two-processor system evalu- 
ates the root at the first step, its two sons at the second step and after that the 
nodes of the subtree, since they have a higher priority than the box node. In 
this case, the algorithm runs longer with two processors than with only one. 

LAI & SArn~i [48] also provide examples of anomalous behavior. This work 
has been extended by LAI & SPRAGUE [49, 50] and by L1 & Whoa [53], who 
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further investigate the conditions for the occurrence of anomalies in parallel 
branch and bound. 

EXAMPLE 26. Analysis of branch and bound algorithms on a master-slave archi- 
tecture [9]. The model for parallel branch and bound discussed in Example 24 
is appealing. A master process keeps track of the set of nodes that have been 
generated but not yet evaluated, and a number of slave processes perform the 
evaluation and generation of nodes. The master orders the set of nodes accord- 
hag to a priority function. Each slave receives one node from the master and 
returns the results of its computations. If the search tree is big, the set of nodes 
the master has to handle will grow. At some point, the master becomes too 
slow to process the amount of incoming nodes. Assume that a slave receives a 
new node from the master as soon as it becomes idle, without waiting for the 
master to process its previous results. It is then possible to develop a queueing 
network model in which the trade-off between the speeds of master and slaves 
can be analyzed. It can be shown that for big search trees the number of nodes 
ordered by the master and awaiting release to the slaves will approach an 
asymptotic value, while the queue of nodes in front of the master will grow. 
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