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Abstract 

This paper illustrates how the application of integer programming to logic can 
reveal parallels between logic and mathematics and lead to new algorithms for 
inference in knowledge-based systems. If logical clauses (stating that at least one of 
a set of  literals is true) are written as inequalities, then the resolvent of two clauses 
corresponds to a certain cutting plane in integer programming. By properly enlarging 
the class of  cutting planes to cover clauses that state that at least a specified number 
of literals are true, we obtain a generalization of resolution that involves both 
cancellation-type and circulant-type sums. We show its completeness by proving 
that it generates all prime implications, generalizing an early result by Quine. This 
leads to a cutting-plane algorithm as well as a generalized resolution algorithm for 
checking whether a set of propositions, perhaps representing a knowledge base, 
logically implies a given proposition. The paper is intended to be readable by 
persons with either an operations research or an artificial intelligence background. 
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O. Introduction 

George Boole believed that mathematical rigor can be achieved in logic, and if 
we ignore some minor lapses, he proved it with his famous logical algebra. However, 
Boolean algebra is "mathematical" only in the sense that it is rigorous and permits 
one to calculate logical consequences. Although Boole styled logical operations after 
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arithmetical ones, he did not really seek to make logic a branch or application of 
mathematics traditionally conceived, and it did not worry him that his calculations 
differed from ordinary addition and multiplication ([4] ,  opening section). He wanted 
only to realize Leibniz's idea of a calculus of reasoning, a calculus ratiocanator, for 
the logic of  classes and of  propositions. 

Recent work in automatic deduction and knowledge-based systems has revived 
Boole's project. Although most modern methods are like Boole's in that they involve 
symbolic processing rather than traditional calculations with numbers, one approach 
really is mathematical. It applies one of  the standard techniques of  operations research, 
mathematical programming, to logical inference. Papers by Blair, Jeroslow and Lowe 
[3] and Lowe [18], as well as this author [11], suggest that by solving a certain 
integer program, one can determine quickly whether a given proposition logically 
follows from a large set of propositions, perhaps representing a knowledge base. 
Other papers by Jeroslow [ 1 2 - 1 4 ]  show how mixed integer linear models can be 
applied to inferences involving uncertainty, inferences in the predicate calculus, data- 
base queries, etc., although it is unclear at this stage how efficient these methods are. 

These truly mathematical models of logic are in a way more Boolean than the 
others in that they, like Boole's original system, use intermediate steps that have no 
interpretation other than as technical devices for obtaining the solution. For instance, 
if one uses the simplex method to help solve an integer programming model, he would 
not necessarily try to find logical meaning in the simplex pivots. The presence of un- 
interpreted steps has traditionally been regarded as undesirable, and Boole's immediate 
successors eliminated them from his system (see [16], sect. VI. 3-4). This attitude may 
be appropriate if one aim of a logical calculus is to serve as an explanatory model of 
deduction in some sense, but if the aim is merely to provide a fast procedure for 
checking the validity of an inference, such scruples are out of place. As it happens, 
the uninterpreted steps of Boole's procedure serve no useful purpose and are just as 
well eliminated. However, a willingness to tolerate them when they are part of a 
powerful mathematical model can bring two advantages. It can lead one to see con- 
nections between logic and mathematics that Boole never imagined, and these con- 
nections can suggest new algorithms, both mathematical and symbolic. 

The intent of this paper is to illustrate these two advantages by applying 
mathematics to the technique of resolution in propositional logic. We will observe that 
resolvents have a simple but  striking resemblance to a special class of Chv~tal cutting 
planes in integer programming, and we will show that by enlarging this class we can 
generalize resolution to cover a larger class of logical formulae. Ordinary resolution 
applies to statements in conjunctive normal form, i.e. to conjunctions of  clauses, 
each of  which asserts that at least one of  a set of literals is true. Our generalized 
resolution will apply to conjunctions of clauses, each of which asserts that at least 
a certain number of  a set of  literals in true. 

We will prove the completeness of generalized resolution by showing that it 
yields all the prime implications of any consistent set of clauses to which it is applied. 
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The proof will be built upon Quine's [22,23] early proof of  the same for ordinary 
resolution. Moreover, these prime implications supply all of  the cutting planes one 
needs to solve an integer programming model of  logical inference. Thus, the con- 
nection between resolution and integer programming yields both a symbolic algo- 
rithm (generalized resolution) and a mathematical algorithm (integer programming 
with cutting planes) for logical inference. 

1. Clauses  

We will restrict ourselves to logical formulae that are conjunctions of  clauses. 
Suppose we begin with a set of atomic propositions x~ . . . . .  x n . A clause in the 
ordinary sense is a statement like 

X1 V 7 X 4  V - l X  5 VX8 , (1) 

where " v "  is an inclusive "or" and " 7 "  means "not". Statement (I)asserts that at 
least one of  the literals x l ,  q x 4 ,  qXs, xa is true. 

We will adopt the common device of  writing (1) as a mathematical inequality, 

xl + ( l - x 4 )  + ( 1 - X s )  + x 8  ~> 1. (2) 

Here, xj  is a mathematical variable interpreted as having the value 1 when the proposi- 
tion x / i n  (1) is true and 0 when xj  is false. Thus, if we suppose that each xj is binary 
(i.e. can take only the values 0 and 1), (2) again asserts that at least one of the four 
literals in (1) is true. In what follows, we will loosely refer to an inequality repre- 
senting a clause as a clause. 

Note that (2) can be written xl - x4 - Xs + xs /> 1 - 2. This suggests the 
following general notation for clauses: 

cx  >1 [3 - n ( c ) ,  (3) 

where c is a row vector and x a column vector, and where n(c) is the number of 
negative components in the vector c. Each c/is 1 to indicate that the literal x i appears, 
-1  to indicate that q x j  appears, or 0 to indicate that neither appears; we suppose that 
not all cj's are zero. This notation cannot represent tautological clauses, but this will 
be convenient. 

In ordinary clauses,/3 = 1, but we wish to allow 13 to take larger integer values, 
in which case (3) asserts that at least/3 of  the literals are true. Naturally, we require 
that/3 be no greater than the number of  nonzero components of  a. We refer to (3) as 
a {3-clause, or a clause o f  degree (3; a clause is any/3-clause. We refer to a clause in the 
traditional sense as a 1-clause. (Kov~cs [17] has called (3)an extended covering con- 
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s traint ,  and Balas and Jeroslow [ 1] refer to the halfspace it defines as a canonical  c u t  

for the unit cube.) 
There are at least two benefits in introducing B-clauses. One is that a single 

/3-clause can replace several 1-clauses and thereby represent information more com- 
pactly. For instance, xl + x2 + x3 >t 2 can replace xl + x2 i> 1 ,x l  + xa i> 1,and 
x2 + xa I> 1. Another is that B-clauses are a natural way of expressing some thoughts. 
One may simply want to assert that at least B of  a set ofliterals are true; or in a rule- 
based system, one may want to say of  a rule, " i f  x l  and . . .  and x m , then Yl and . . .  
and y~", that no more consequents are false than antecedents (which reduces to the 
assertion of  an ordinary rule when there is one consequent). Such an assertion can be 
expressed with the/3-clause, " - x ~  - . . .  - x  m + Y l  + • • • + Ya >t B - m('  

There are various procedures for writing an arbitrary logical formula as a 
conjunction of 1-clauses; one may, for instance, use De Morgan's and distributive 
laws [19]. If  the procedure adds no new variables, its running time and the length of 
the resulting conjunction are, in the worst case, exponential functions of  the number 
of  variables in the  given fo rmula .  There are procedures that achieve linear time in the 
worst case by adding new variables [3,6] ,  but there is usually no compelling reason to 
use them. Since a knowledge base is the conjunction of its formulae, one can put the 
entire knowledge base into conjunctive normal form simply by doing so for its indi- 
vidual formulae. The formulae are usually short, so that even exponential time is small. 
Also, formulae in many applications, notably knowledge-based systems, are typically 
production rules like, " i f  7 x l  and x4 and xs ,  then xa ", which is already essentially a 
1-clause because it is readily rewritten, " x l  v 7 x 4  v -7xs  v xa" .  

We will say that a set S of  inequalities logically impl ies  another set T if any 
binary solution of  S is a binary solution of  T. If S and T are sets of  1-clauses, this 
corresponds to implication in the propositional calculus. 

2. A n  in t ege r  p r o g r a m m i n g  m o d e l  

Suppose we want to determine whether a clause c x  >1 B - n ( c )  logically 
follows from a set of  m clauses. The set o f  clauses can be written as a system of linear 
inequalities A x  >t a, where A is an m x n matrix, each row of which corresponds to a 
clause. If we formulate the integer program 

minimize c x  

subject to A x  >1 a 

x j E  10, 1}, j = 1 . . . . .  n, (4) 

A x  >1 a logically implies c x  >1 [3 - n ( c )  if and only if the minimum value of  the 
objective function in (4) is at least $ - n (c). 
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Another test for implication is simply to use integer programming to check 
whether A x  >t a, cx <<. ~ - n(c) - 1 has a feasible binary solution, but  the model (4) has 
two advantages. The objective function in (4) provides a natural search direction, a 
perennial concern in resolution-based methods. Also in applications, A x  >1 a will 
presumably represent a database known to be consistent. Thus, a feasible binary 
solution o f A x  >~ a can be stored and serve as a starting point for solving (4). 

To check whether A x  >~ a logically implies an arbitrary formula F, we can 
write q F as a conjunction of clauses, let us say the clauses in the system Bx >1 b. Then 
there is implication if and only if the system A x  >1 a, Bx/> b has no feasible binary 
solution. If we know that A x  >1 a is consistent, we can solve the problem by checking 
whether A x  >1 a, Xo + Bx  >1 b logically implies xo; if so, A x  >1 a logically implies F. 
The absence of  the artificial variable Xo from A x  >1 a exploits the fact that A x  >1 a is 
consistent and directs the search in a natural way. 

One way to solve (4) is to use cutting planes. We first solve the linear program- 
ming relaxation of (4), which is obtained by replacing x~ E {0, 1} with 0 <~ x~ <~ 1. If 
the solution is integer, we are finished; otherwise, we add a cut (an inequality that any 
integer solution satisfes) that the current solution violates. We keep adding cuts and 
re-solving the resulting linear programs until an integer solution is achieved. One type 
of  cut is a Chvhtal cut, obtained by taking a positive linear combination of two or 
more constraints. The resulting coefficients and right-hand side are rounded up if non- 
integer, so as to produce a new constraint that the current solution may violate but  
that is clearly valid. Chv~tal [5] proved that any valid inequality with integer co- 
efficients and RHS can be obtained by repeating this procedure often enough, so that 
one can always solve (4) by adding the right ChvAtal cuts. 

3. O r d i n a r y  r e s o l u t i o n  a n d  c u t t i n g  p lanes  

Robinson [24] showed that resolution, conceived as a refutation method,  is 
complete for first-order predicate calculus and afortiori complete for propositional 
calculus (i.e. for "ground clauses" in the predicate calculus). That is, he proved that a 
formula is inconsistent if and only if the resolution algorithm determines as much. 
(Resolution is used to check whether A logically implies B by testing A & 7 B  for 
consistency.) A decade earlier, however, Quine [23,24] had proved a result that 
subsumes Robinson's when the latter is restricted to ground clauses. Quine proved 
that a procedure essentially the same as resolution, albeit not called resolution at the 
time, yields all of  the "prime implications" of a 1-clause. We will work with Quine's 
resolution procedure, since it is more conducive to our purpose, and show presently 
that a refutation method follows as a special case. (Since Quine worked with dis- 
junctive rather than conjunctive normal form, we consistently describe the dual of his 
procedures and results.) 
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Given two 1-clauses between which exactly one variable changes sign, such as, 

x a + x 2 + x a  - x s - x 6  t> 1 - 2  

- x l + x 2  + x 4 - x s  - x 7  /> 1 - 3 ,  (5) 

their r e s o l v e n t  is obtained by cancelling the variable that changes sign and retaining 
on the left-hand side all of  the other variables that appear in either clause: 

x2  + xa  + Xa - Xs  - X6 - X7 >l 1 - 3 .  

The right-hand side of the inequality is adjusted to reflect the number of negative 
terms on the left-hand side. It is not difficult to see that the resolvent logically follows 
from the conjunction of  the clauses resolved, but not from either clause individpally. 

We will say that a clause (of any degree) d o m i n a t e s  another when the former 
logically implies the latter; that is, every Boolean vector satisfying the former satisfies 
the latter. Clearly, a 1-clause b x  >t 1 - n (b )  dominates another c x  >t 1 - n (c)  if and 
only if the former absorbs  the latter; i.e. each bj is either cj or 0, which is to say that 
the terms occurring in b x  >1 1 - n (b ) form a subset of  those occurring in c x  >1 1 - n (c) .  

T h e  r e s o l u t i o n  a l g o r i t h m  begins with a set of  1-clauses, which can be regarded 
as a formula in conjunctive normal form. It finds any pair that yield a resolvent that 
is dominated by no clause already in the set. The resolvent is added to the set and 
another pair found. The algorithm terminates when no more such pairs can be found. 
Sometimes a resolvent dominates one or more clauses already in the set, and these 
can be deleted so as to reduce the size of the set. In fact, Quine put forward his 
procedure as part of  a method for simplifying formulae in normal form. 

A set A x  >i a of  1-clauses is said to have a 1-clause C as a p r i m e  i m p l i c a t i o n  

when A x  >1 a logically implies C, but no other 1-clause that dominates C. Quine 
proved that if A x  >i a is consistent, the resolution algorithm generates all prime impli- 
cations of  A x  >i a. Having carried out the algorithm, one can readily determine 
whether A x  >i a logically implies a given 1-clause C by checking whether any clause 
in A x  >f a or any clause so generated dominates C. 

We can use the resolution algorithm to test for the consistency of A x > / a  by 
adding a new term x n . 1 to every clause. The resulting system A x + e x  n + 1 >~ a (where 
e is a column vector of  m ones) is logically consistent because it is satisfied by setting 
Xn + 1 = 1. The original system A x  >1 a is logically inconsistent if  and only if 
A x  + e x  n + x >~ a logically implies x n . x, and thus (by Quine's result), if and only 
if resolution applied to A x  + e x  n + x >~ a yields the only 1-clause that dominates 
x n  + 1 >~ 1, x n ÷ ~ t> 1 itself. We therefore see that the completeness of resolution as 
a refutation procedure follows from Quine's result. 

The connection between resolution and cutting planes has been remarked else- 
where [8,26] and is as follows. Suppose that the two clauses (5) occur in the integer 
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program (4). We can obtain a Chv~tal cut by taking the following sum of the con- 
straints in (5) and bounds of  the form 0 ~< x i <~ 1 : 

x~ + x 2 +  xa - x s -  x6 /> 1 - 2  

x4 t> 0 

- x 7  I > - 1  

- x l + x 2  + x 4 -  xs - x7 /> 1 - 3  (6) 

xs i> 0 

- x 6  />  - 1  

2x2+  2 x s +  2 x 4 - 2 x s - 2 x 6 - 2 x 7  t> 2 - 7 .  

Note that bounds are added so as to make all the coefficients on the left-hand side 
equal to 2. Dividing the result by 2 and rounding up the right-hand side, we obtain a 
Chv~ital cut that is identical to the resolvent of  the clauses in (5). In general, i f  
b x  >>- 1 - n (b)  and c x  >i 1 - n (c) have a resolvent, it is the result of  (a) adding these 
two clauses, x] >i 0 for all ] for which b / +  c] = l , and  - x ] > ~  - 1 for all ] for which 
b I + c] = - 1; and (b) dividing the sum by 2 and roundingup the RHS. Thus, resolvents 
form a special class of  Chvdtal cuts. 

Quine's result applies here as well. A x  >1 a logically implies c x  1> 1 - n ( c ) i f  
and only if the resolution algorithm eventually obtains from A x  f> a a resolvent that 
dominates c x  >1 1 - n (c). When such a resolvent is added to the constraint set of  (4), 
then obviously the minimum value of the objective function in the LP relaxation of 
(4) is at least 1 - n (c). 

This means that we can determine whether A x  >1 a logically implies 
c x  >1 1 - n (c)  by (partially) solving (4) with a cutting plane method that uses a 
restricted class of cuts: namely, Chvdtal cuts that correspond to resolvents. We keep 
adding resolvents until (i) c x  + n (c) > 0, in which case we have implication (since 
an integer solution would necessarily put c x  + n ( c )  >1 1); (ii) the solution is integer, 
in which case we have implication iff  c x  + n (c) i> 1; or (iii) no further resolvents can 
be added, in which case we again have implication iff c x  + n (c) i> 1. This may not 
yield a solution of  the integer program itself, because x may be noninteger when 
case (i) or even case (iii) halts the algorithm. As an example, suppose we want to 
determine whether xx + x2 + xs /> 1 follows from the clauses in the constraint set 
below: 
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minimize x~ + x2 + xs 

subject to xl + x 2  /> 1 

xl  + x3 >I 1 (7) 

x2 + x3 i> 1 

x l ,  x2, xa E {0, 1}. 

The minimum value of  the objective function in the relaxed problem is 3/2, which 
already indicates that xl  + x2 + xa >/ 1 is logically implied. However, the solution is 
noninteger, even though no further resolvents can be added to the constraint set. 

4. D o m i n a t i o n  b e t w e e n  c lauses  

Recall that one clause dominates another if the former logically implies the 
latter; i.e. any Boolean vector satisfying the former satisfies the latter. The concept of  
an inequality being a "weakening" of another [15] is reIated to domination but 
differs from it. An inequality cx  >t Co is a weakening of  bx  >t bo when bo/> Co and 
b i <~ c~ for all ]. Any x / >  0 satisfying bx  >1 bo satisfies any weakening of  bx  >i bo. 
This is in particular true of  any binary x, so that a clause dominates all its weakenings. 
However, the converse is not true, since xl  - x2 /> 1 dominates - x 2  i> 0 even 
though the latter is not a weakening of  the former. 

It is useful to remark some properties of  domination between clauses. Note 
first that - x x  + x2 + x3 + x4 >/ 3 - 1 dominates xa + x4 >1 1 because we can add 
the valid bounds xx >/ 0 and - x 2 / >  - 1 to the former to get the latter. Thus, we can 
remove 2 literals from the former and obtain a clause it dominates, provided we reduce 
the degree by 2. We will say that the latter is a reduction of the former, and in general 
that cx  >i [32 - n(c)  is a reduction of  b x  >t [31 - n(b)  when cx  >~ [J2 - n(c)is  the 
result of  adding b x  >i [Jl - n(b)  and zero or more clauses of  the form xi~> 0 where 
b i = - 1, and of  the form - x / > I  - 1 where b i = 1; or, equivalently, when c can be 
obtained by setting exactly ~1 - /]2 nonzero components of  b to zero (/3t I> ~2). A 
clause is a reduction of  itself, and a clause clearly dominates all its reductions. We can 
also say that one /3-clause bx  >f [31 - n(b)  absorbs another cx  >1 [32 - n(c)  when 
~ >t [32 and b i = c i or b i = 0 for all ]. Clearly, a clause dominates any clause it 
absorbs. To prove the following lemma, it is useful to adopt the notation: 

x ( S )  = Y.  x. 
j ~ S  1' 

where S C { 1 . . . . .  n} = Nis  a set of  indices. 
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LEMMA 1 

Consider two clauses, which we may respectively write: 

x (S )  - x ( T )  + x(P1) - x (N l )  >1 ~1 - ITI - INll ,  (8) 

- x ( S )  + x ( Z )  + x(P2) - x(N2) >1 3o- - IS I - INo-I, (9) 

where S, T,/ '1,  NI are pairwise disjoint, and similarly for S, T,/'2, No, for PI, N2, 
and for/ '2, NI.  Then the following are equivalent: 

(a) / ~ - / 3 2 / >  ISl + IZl + IP~\eo-I + IN~XNO-I; 

Co) some reduction of (8) absorbs (9); 

(c) (8) dominates (9). 

(See Kov~ics [17] for a related result.) 

Proof 
To see that (a) implies (b), consider the clause 

x(e  n e2 )  - x(N  n N2 

>>- (fSl - I S U  

) 

T I -  I P I \ P 2 1 -  INlkN21)- IN1 n N21. (10) 

but (a) implies that (10) absorbs (9), and Co) follows. Clearly, (10) is a reduction of (8); 
Obviously, (b) implies (c). 
To show that (c) implies (a), suppose that (a) is false. It suffices to exhibit a 

binary x* that satisfies (8) and violates (9). We can define x* so that: 

x*(S) = ISI, x * ( T ) =  O, x*(PI\P2) = O, x*(NxkN2) = ]NI\N21. 

If  we let 6 = I S I + I T I + I PI\ P21 + I N~\ N2 l, then since (8) contains at least ~i terms, 
we can luther define x* so that 

x*(P1cqP2)+ [ [ N 1 N N 2 1 - x * ( N 1 N N 2 ) ]  : m a x { 0 , ~ l - 6 } ,  (11) 

and x* satisfies (8). However, since (a) is false, we have El - 8 </~2, so that 

- x * ( S )  + x*(Z)  + 131 - 6 < 82 - ISI. (12) 

Equations (11) and (12) yield that 
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- x * ( S )  + x * ( T )  + x*(Pa N / 2 )  - x*(Nl  ¢3 N2) >1 132 - ISI - IN, N N21. (13) 

We are still free to define x* so that x*(P2\P1) = 0 and x*(N2\Na) = IN2\NII.  Add- 
ing these equations to (13), we obtain the denial of  (9). [] 

5. Gene ra l i zed  r e so lu t i on  b y  cance l l a t ion  

We will see that generalized resolution requires two types of sums, a sum that 
involves cancellation of terms and a sum of  clauses showing a circulant pattern. We 
deal with cancellation in this section, and circulant sums in the next. 

We require that generalized resolution be complete in that it generate all 
prime implications of a consistent set of  clauses to which it is applied. Here, a clause 
C is a prime implication of a system A x  >1 a of clauses i f A x  >t a logically implies C 
but no other clause that dominates C. 

If the resolvent of  two 1-clauses is a Chv~tal cut obtained by adding the 
clauses and certain bounds, one may expect to obtain a useful resolution of 13-clauses 
by taking a similar sum. We will pursue this idea so as to generalize resolution by 
cancellation. 

Let us now try taking a sum analogous to (6). We let (8) and (9) represent any 
two clauses we wish to resolve, and we add them to the bounds 

x.>. o, an ?, ® P2, 
] 

- x.  >~ - I all ] E N, @ N2 , 
I 

where ® indicates symmetric differences. The sum divided by 2 with the RHS 
rounded up (if necessary) is: 

x(P~ U P2) - x (N l  to N2) >1 [-(131 + 132 - IStJ  T[)/2"l - IN, u N21, (14) 

where I-a-I indicates the smallest integer greater than or equal to ~. We want neither 
(8) nor (9) to dominate (14), since otherwise we have achieved nothing. However, 
note that (8) and (9) contain exactly IS to TI terms that do not occur in (14). Thus, 
by lemma 1, (8) dominates (14) iff  

13, - ISU TI 1> r-(13~ +132 - ISU TI)/2-1. (15) 

We can suppose, without loss of  generality, that/3, i> 132, so that (8) dominates (14)if  
either (8) or (9) does. We achieve nothing, then, i f (15)holds ,but i f  t31 + 132 - IS t3 TI 
is even, (15) is equivalent to 131 - t32 >/ IS U T1. If131 + 132 - IS U TI is odd, (15)is 
equivalent to 131 - 132/> ISU TI + 1, whichis again equivalent to 131 - 132 >I ISU TI, 
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since we cannot have ~ - /~2 = IS u TI when /31 +/~2 - IS U TI is odd. We 
conclude that (14) should be regarded as a resolvent of  (8) and (9) only when 
/~1 - t2 < ISU TI and (of course)/31 +/~_ - ISU TI/> 1. 

We will see, however, that resolution when /~ :/: /~2 is redundant of a second 
(indirect) kind of  resolution we must introduce momentarily. Let us say, there- 
fore, that (14) is a direct cancellation resolvent of (8) and (9) when ~1 =/32' and 
/~1 +/~2 > ISU TI >t 1.We have proved : 

LEMMA 2 

The direct cancellation resolvent of  two clauses is logically implied by the 
conjunction of  the clauses, but is dominated by neither. 

It will turn out that generalized resolution is still complete even if we directly 
resolve (8) and (9) only when I S U T I = 1 ; we may, however, reduce the number of 
resolution steps by resolving when IS U T I 3, 1 as well. 

Direct cancellation resolution is not by itself enough. Consider, for example, 
the clauses: 

x~ + x2 + x3 + x4 + x s  /> 4,  

- x ~ - x 2 + x a  I> 2 - 2. 

(16)  

(17) 

Since /~1 - /~2 = IS U TI, no cancellation of  the types discussed so far (even the type 
that permits /3a :/: 132) is possible. However, one implication, in fact a prime implica- 
tion, of  (16) and (17) is x3 >/ 1, and it is dominated by neither (16) nor (17). We 
note, however, that one reduction of  (16) is x~ + x2 + x3 >1 2. This and (17) have 
xa ~> 1 as their direct cancellation resolvent. We will say that x3 /> 1 is an indirect 
cancellation resolvent of  (16) and (17). 

In general, an indirect cancellation resolvent of (8) and (9) is the direct can- 
cellation resolvent (if any) of  any two clauses of the form 

x ( S ' )  - x ( T ' )  + x(P' l )  - x (N ' l )  >1 "r - I T'I - IN'~I, 

- x ( S ' )  + x ( T ' )  + x(P'2) - x(N'2) >i 7 - IS'I - IN~I, 

(18) 

(19) 

where (18) is a reduction of (8), (19) is a reduction of  (9), S'  C S, T' C T, 
and Pi  C I C I t t P/ and N/ N i for i = 1,2. We also require that P1 N P2 = P1 N P2 and 
N'I N N~ = N1 t3 N2. When (18) and (19) are, respectively, identical to (8) and (9), 
the resolution is of  course direct. 

It is not difficult to see that any cancellation resolvent is a Chv~tal cut. If 
bx  >f ~1 - n(b)  and cx  >1 ~2 - n(c)  have d x  >1 "r - n(d)  as a cancellation resolvent, 
then d x  >1 7 - n(d)  is the result of  (a) adding bx  >i ~1 - n(b),  c x  >1 ~2 - n(c),  
x~ >1 0 for all ] for which b~ + c~ < 2 d/and - x j  >/ - 1 for all / for which b i + c/3> 2d j;  
and (b) dividing the sum by 2 and rounding up the RHS. 
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THEOREM 1 

A cancellation resolvent (direct or indirect) of  two clauses is logically implied 
by the conjunction of  the clauses, but dominated by neither. 

P r o o f  

The resolvent is implied by the conjunction of the clauses because it is a Chv~tal 
cut derived from them and bounds from 0 ~ x ~ 1. To show that it is dominated 
by neither, we note that a resolvent has the form 

x(PIUe ) -x(N;UN ) >1 3" - L I S ' U  T ' I / 2 j  - IN'I U N I, (20) 

where l_a__l is the greatest integer less than or equal to a. Suppose contrary to the 
claim that, say, (8) dominates (20). Then by lemma 1, some reduction of  (8) absorbs 
(20). It is clear that any reduction of  (8) that absorbs (20) must absorb 

x ( P [ )  - x ( N ' ~ )  >1 3' - L I S ' U  T'I/2J - I N ' l l .  (21) 

However, a reduction of (8) absorbs (21) only if 

3' - L ( I S ' U  T ' I / 2 ) / ~ <  /~x - ISU TI - IPx\P'II - INx\Ntll = 3' - IS tU  T'I,  

where the equality is due to the fact that (18) is a reduction of (8). This is, however, 
impossible because IS' U T'I /> 1. Thus, (8) cannot dominate (21) and therefore 
cannot dominate any clause that (21) absorbs, which means that (8)cannot dominate 
(20). By similar argument, (9) cannot dominate (20), either. [] 

6. Gene ra l i zed  r e so lu t i on  b y  c i r cu lan t  s u m m a t i o n  

Cancellation resolution alone is not enough to generate all prime implica- 
tions, as the three clauses of  (7) demonstrate. One (prime) implication of these 
clauses is xl  + x2 + xa /> 2, which none of the clauses dominates. We can obtain 
xl  + x2 + xa/>  2,however, by summing the three inequalities, dividing the sum by 2, 
and rounding up the RHS. The result, which we call a circulant resolvent, is logically 
implied by the conjunction of  the clauses, but is dominated by none. It is clear that 
this sort of Chv~tal cut can be obtained whenever one adds clauses exhibiting 
a circulant pattern like that in (7). Since (4) is related to set covering and set packing 
problems, it is not surprising that similar circulant patterns have played a role in their 
investigation [ 10,20,21 ] .  

We can also obtain a circulant resolvent when two or more of the clauses in 
the circulant pattern are implicit in a single clause, i.e. if we start with clauses 
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x~ +x2  >1 1 

x3 >i 1. (22) 

The clause x3 /> 1 absorbs the last two clauses of (7), so that they are implicitly 
present in (22). We can therefore derive the resolvent x l  + x2 + x3 1> 2, which 
neither clause of  (22) dominates. 

We need one further extension of  circulant resolution, as the following example 
makes clear: 

x l + x 2  - x 4 - x s  >t 3 - 2 ,  (23) 

xl + x 3 - x 4  t> 2 - 1 ,  (24) 

- x l  + x 2 + x a - x 4 - x s  >~ 4 - 3 .  (25) 

The clause xl  + x2 + x3 1> 2 is a prime implication of  (23) - (25) ,  and we have 
provided no way to obtain it by resolution. To remedy this, we combine the 
reduction xl  + x2 /> 1 of  (23), the reduction xl  + xa />  1 of  (24), and the reduction 
x2 + xa /> 1 o f (25)  to produce the circulant resolvent x~ + x2 + Xa + x4 + xs 1> 2. 
A cancellation resolvent of  this with (23), (24) or (25) is Xl + x2 + xa + x4 />  2, 
whose cancellation resolvent with (23), (24)or  (25) is the desired x l + x2 + xa >f 2. 

In the above example, we do not derive x~ + x2 + xa />  2 directly as a circu- 
lant resolvent, because we require that the terms removed to effect the reductions 
have signs opposite those of terms in the resolvent. This simplifies the search for 
resolvents without sacrificing the completeness of  generalized resolution. 

For an index set J C N, define c j  by (c~)/= cj for / E J and (c j)~ = 0 for 
/ E N \ J .  Then a clause cx >1 (7 + 1) - n(c) is a circulant resolvent on J of a set S 
of  clauses aix >1 (J i -  n(ai), i E 1, if  each aix >1 (3 i -  n(a i) has a reduction 
bix >I 7 - n(b i) that absorbs c j x  >1 7 - n(c~), such that for all ], (a) b~ = 0 for some 
i ~ I, and (b) aj : b~ or a j -  b~ : - c/ for all i E I. 

We can show that the circulant resolvent cx >t (3' + 1) - n(c) is a Chvhtal 
cut. For each k ~ J,  pick an i E I for which b~ = 0 and consider the sum Cg of 
(a) aex >1 #i - n(ai); (b) x i >>- 0 for all / for which a] " b~ = - 1, and - x /  >t - 1 
for all ] for which a / -  b~ = 1; and (c) x~ >i 0 for all/." ~ J \  (k} for which c / -  b} = 1, 
and - x j / >  - 1 for all/" E J k { k )  for which c k - b~ = - 1. The sum of  C k over all 
k E  J ,  (I J1 - 1)xj >>- 0 for all ] E  N \ J f o r w h i c h c j =  1,and - ( I J I  - 1)x/>~ - 1 
for all j E N \ J for which c~ = - 1 is ( I J I - 1)cx >f I J 13' - ( I J I - 1)n (c). Dividing 
by IJI - 1 and rounding up the RHS, we get the resolvent cx  >t (7 + 1 ) -  n(c), 
which is therefore a Chv~tal cut. 
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THEOREM 2 

A circulant resolvent is logically implied by the conjunction of the clauses 
resolved, but is dominated by none of them. 

Proof 
A circulant resolvent c x  >t (7  + 1) - n ( c )  is logically implied by the set S of 

clauses resolved because it is a Chv~tal cut derived from S and bounds in 0 ~< x <~ 1. 
To show that no clause in S dominates c x  >t (7 + 1) - n(c ) ,  we note that any (7 + 1)- 
clause that is a reduction of  a clause in S must contain at least one variable x i whose 
coefficient has a sign opposite that of  c i .  Thus, no reduction of a clause in S can 
absorb c x  >i (7 + 1) - n (c), which means by lemma 1 that no clause of S can dominate 
c x  >f (7 + 1) - n (c). [] 

7. A genera l i zed  r e so lu t i on  a lgo r i thm 

In this section, we state a generalized resolution algorithm that generates all 
prime implications of  a consistent set S of logical formulae. We must convert any 
formula of  S that is not a clause to a conjunction of  1-clauses using any convenient 
algorithm. S thus becomes a system A x  >1 a. 

We can use the generalized resolution algorithm to check whether A x  >i a 

logically implies a logical formula C. If C is not a clause, we convertit to a conjunction 
of  1-clauses, and we separately check whether each is logically implied. To check 
x~hether A x  >1 a implies a clause c x  >I (3 - n ( c ) ,  we let the algorithm proceed until 
it generates a clause that dominates c x  >1 fl - n (c ) .  If it has not done so at termina- 
tion, A x  >1 a does not logically imply c x  >1 fl - n (c ) .  

S t e p  O. Le t  A x  >i a be the original system of clauses, and delete all clauses that are 
dominated by others. 

S tep  1. If some clause in A x  >1 a dominates c x  >t (3 - n (c ) ,  stop; the original system 
implies c x  >i fl - n (c). 

S t e p  2. If possible, find a pair of  clauses of A x  >I a having at least one cancellation 
resolvent that is not already dominated by clauses in A x  >t a. Delete from 
A x  >/ a all clauses dominated by the undominated cancellation resolvents 
of  this pair, and augment A x  >i a by the resotvents. 

S t e p  3. If possible, find a set S of clauses of A x  >t a that has a circulant resolvent 
that is not already dominated by a clause in A x  >1 a. Delete from A x  >I a all 

clauses dominated by this resolvent, and augment A x  >1 a by the resolvent. 

S t e p  4. If  no resolvents were added to A x  >t a in steps 2 or 3, stop; the original 
system does not imply c x  >f (3 - n ( c ) .  Otherwise, go to step 1. 
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The above procedure is clearly finite, because any resolvent generated must 
have degree n or less, and there are finitely many such clauses. 

As an example, suppose we wish to generate all the prime implications of the 
system below. For brevity, we indicate only the matrix A on the left-hand side and 
the vector a on the fight-hand side. 

i - 1 1 1 1 0 3 - 1 (26 )  

1 - 1 - -  1 0 0 1 2 - 2 (27)  

1 0 1 0 0 0 1 (28)  

- 1  - 1  1 0 0 0 2 - 2 (29)  

1 - 1  0 1 0 0 2 - 1 (30 )  

1 0 I 1 0 0 2 (31) 

0 - 1  1 1 0 0 2 -  1. (32) 

We can 

which we add to the system: 
apply cancellation resolution to (26) and (27) to obtain the following resolvents, 

1 - 1 0 1 0 1 2 - 1 (33 )  

1 - 1 0 0 1 1 2 - 1 (34 )  

1 - 1  o o o o 1 - 1 .  (35) 

from (35), (28) and (29) a circulant resolvent on J = {1,2, 3}, We can derive 

1 - 1  1 0 0 0 2 -  1. (36) 

We delete (35) and (28) because (36) dominates them. We resolve (27) and (29) to get: 

0 - 1  0 0 0 1 1 - 1.  (37) 

We delete clauses (36) and ( 3 0 ) - ( 3 2 )  and substitute their circulant resolvent on 
J =  {1,2,3,4},  

1 - 1  1 1 0 0 3 - 1 .  (38 )  

We delete (26) and (33) because (38) dominates them. We delete (29) in favor of its 
one undominated cancellation resolvent with (38), 

0 - 1  1 0 0 0 2 - 1 ,  (39) 

and we delete (37) because (39) dominates it. Finally, we replace (27)withits resolvent 
with (38) or (39), 
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1 - 1  0 0 0 1 2 -  1. (40) 

Removing (34) because (40) dominates it, we obtain the following system: 

1 - 1 1 1 0 0 3 - 1 (38 )  

0 - 1  1 0 0 0 2 -  1 (39) 

1 - 1  0 0 0 1 2 -  1. (40) 

Since there are no further resolvents, these are the prime implications of (26)- (32) ,  
and they are logically equivalent to (26)- (32) .  

We can use the above algorithm to test for the consistency of a system A x  >>- a. 

If ~ is the largest degree of the clauses in A x  >t a, we form the system: 

A x  + E x ' > ~  a, (41) 

where E is an m x/3 matrix of  ones, and x '  = (Xn÷ l , "  " " ,  xn+o)"  The  system (41)is 
consistent because setting x '  = ( 1 , . . . ,  1) yields a binary solution (for any x ) .  A x  >i a 

is inconsitent iff some component of x '  is nonzero in any binary solution of (41). 
Thus, A x  >1 a is inconsistent iff some prime implication of (41) dominates 

Xn+ 1 + . . . +  Xn+#>~ 1. 

8. P r o o f  o f  c o m p l e t e n e s s  

The proof that generalized resolution is complete begins with two lemmas 
whose proof is an extension of  Quine's original proof [22,23]. 

LEMMA 3 

Let  d x  >>- ~ - n ( d )  be a longest /~-clause logically implied by a consistent 
system A x  >>- a but dominated by no clause in A x / >  a, and suppose that d k = 0 for 
some k. Then one can derive from clauses in A x  >i a a cancellation resolvent that 
dominates d x  >1 ~ -  n (d).  

Proof 
Since d x  >1 I3 - n(cO is a longer /Lclause logically implied by A x  >>- a but 

dominated by no clause in A x  >>- a, the longer /3-clauses x k + d x  >>- fJ - n ( d )  and 

- x  k + d x  >>- f3 - n ( d )  - 1, which A x  >1 a logically implies, must be dominated by 
clauses in A x  >/ a. We will show that these dominating clauses yield a cancellation 
resolvent that dominates d x  >1 [3-  n ( d ) .  

Any clause dominating x k + d x  >>- ~ - n (d)  must contain xk, else it would domi- 
nate d x  >>- ~ - n ( d ) ,  arid similarly, any clause dominating - x  k + d x  >>- {J - n ( d )  - 1 
must contain - x k. Thus, if we write d x  >1 [3 - n (d)  as 
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x ( P )  - x ( N )  >t ~ - INI ,  (42) 

where x k q~ P, N, then we may write the two dominating clauses as, respectively, 

x k +  x ( P ~ )  - x ( N 1 )  >~ ~ - IN~I, 

- x k +  x ( P 2 )  - x ( N 2 )  >t ~2 - IN21 - 1 . 

(43) 

(44) 

Since (43) dominates x k + d x  >1 ~ - n (d), lemma 1 implies/~1 - I PI\ P I - IN1\ N I/>/~. 
However, since (43) does not dominate (42), we have/~1 - IPI \PI  - I N I \ N I  - 1 < ~, 

so that #t - IP~\PI - I N x \ N I  =/~. Similarly,/32 - IP2kPI - IN2kNI = ~. Thus, the 
following are reductions of (43) and (44), respectively: 

x k + x ( P ~ n P ) - x ( N ~ n N ) > ~ f J - I N ~  n N I ,  

- x k  + x(/'2 n P) - x ( N 2 n f l )  >>- ~ - IN2 n N I -  1. 

(45) 

(46) 

The following clause is the direct cancellation resolvent of  (45) and (46) and therefore 
a cancellation resolvent of  (43) and (44): 

x((P~ U P2) O P) - x((N~ U N : )  n N) >l ~ - t(N~UN2) n N I .  (47) 

However, (47) absorbs and therefore dominates (42). [] 

The next lemma will serve as the initial step of an inductive proof of the main 
theorem. Let us say that a consistent system A x  >1 a is comple te  with respect to 
cancellation resolution if all cancellation resolvents of clauses in A x  >i a are domi- 
nated by clauses in A x  >1 a. 

LEMMA 4 

A consistent system that is complete with respect to cancellation resolution 
contains a dominating clause for any given 1-clause logically implied by the system. 

Proof 
Let  A x  >1 a be complete with respect to cancellation resolution. Suppose, 

contrary to the claim, that A x  >f a logically implies some 1-clause that no clause of  
A x  >~ a dominates. We will derive a contradiction. 

Let  d x  >~ 1 - n (d )  be the longest 1-clause that A x  >1 a logically implies, but 
no clause of  A x  >1 a dominates. We claim that d~ = 0 for some k. For suppose other- 
wise. The unique binary value x* of  x that violates d x  >i 1 - n (d) is given by x 7 = 0 
if dj = 1 and x7 = 1 if dj = - 1. Since A x  >i a logically implies dx>~ 1 - n ( d ) , x *  
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must violate A x  /> a and therefore some clause b x  >1 (3-  n (b) o f  A x  >1 a. This means 
that we can have b i = - d  i ¢ 0 for at most /3 - 1 ]'s. Thus,by lemma 1 b x  >1 (3 - n (b)  

dominates b~x >1 1 - n(br) ,  where b = b ~ except that b~ = 0 whenever b i = - d  i ~ O. 
Since btx >i 1 - n (b  ) absorbs and therefore dominates d x  ~ 1 - n (d) ,  we have that 
b x  >f (3 - n (b) dominates d x  >t 1 - n (d), which is contrary to the hypothesis that no 
clause o f  A x  >~ a dominates d x  >1 1 - n(d) .  

Since d e = 0, we conclude by lemma 3 (setting (3 = 1) that we can derive a 
cancellation resolvent that dominates d x  >1 1 - n(d) .  However, since A x  >1 a is com- 
plete, some clause of  A x  >i a dominates this resolvent, which means that some clause 
dominates d x  >1 1 - n (d), a contradiction. [] 

Since testing for consistency involves checking whether a certain 1-clause is 
logically implied by a certain consistent system, we have the immediate corollary. 

COROLLARY 1 

Cancellation resolution alone suffices to check a system for consistency. 

Let us say that a system is complete with respect to generalized resolution if 
all generalized resolvents of  clauses in the system are dominated by clauses in the 
system. The main theorem below says that the algorithm of the previous section 
delivers all prime implications. 

THEOREM 3 

A consistent system that is complete with respect to generalized resolution 
contains all of  its prime implications. 

Proof 

Let  A x  >1 a be a system that is complete with respect to generalized resolu- 
tion. We will prove by induction on 3' that any given 3'-clause that A x  >f a logically 
implies is dominated by some clause in A x  >1 a. It follows that A x  >i a contains all 
of  its prime implications. 

By lemma 4, the claim is true for V = 1. 
We therefore assume the claim is true for 3' and show it is true for 3' + 1. 

Suppose to the contrary that A x  >i a logically implies some (3' + 1)-clause that no 
clause of  A x  >i a dominates. We will derive a contradiction. 

Let  c x  >t (3' + 1) - n(c)  be a longest (3' + 1)-clause logically implied by 
A x  >t a, but dominated by no clause in A x  >I a. There are two cases. 

Case 1: ci¢ = 0 for some k. By lemma 3 we can obtain a resolvent that dominates 
c x  >i (3" + 1) - n(c) .  By completeness, some clause of A x  >i a dominates 
the resolvent and therefore c x  >1 (3" + 1) - n (c), a contradiction. 
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Case 11: c k q: 0 for all k. We have by lemma 1 that for each k, A x  >1 a logically 
implies ckx  >1 3' - n ( ck ) ,  where c k = c except that cff = O. Thus, by  the 
inductive hypothesis, some clause o f  A x  >1 a dominates c k x  >1 3" - n (ek ) .  

For each k ~ N, let a k x  >i/3k - n ( a k )  be a clause in A x  >1 a dominating 
c k >t 3" - n(ck) .  By lemma 1, a k x  >1 /3k - n (ak )  contains at most/3 - 3' 
terms absent from ckx  >i 3" - n(ck) .  However, since a k x  >t [3 k - n(ak~does 
not dominate cx  >1 (3" + 1) - n(c) ,  it contains at least /3k - 3 '  terms 
absent from cx  >1 (3" + 1) - n(c)  and therefore from ckx  >i 3" - n(ck) .  
Thus, akx  >~ {3g - n(a k) contains exactly /3~: - 3' terms absent from 
ckx >t 3" - n(ct~). So if we let bkx  >t 3, - n (b  k)  contain the terms present in 
both akx  >I /3k - n (ak )  and ckx  >t 3 " -  n(ck) ,  it is a reduction of  
a tCx/> /3k - n (a k). 

We now show that cx  >1 (3' + 1) - n(c)  is a circulant resolvent on J = N of 
the clauses akx  >1 {3 k - n (ak ) ,  k E N.  It suffices to show that (a) b~ = 0 for 
all k E N, and (b) every term ajxj  absent from bkx  >1 3' - n (b  to) has a sign 
opposite that of  c ix  j . (a) is true by definition of  b g. Since each c i --/= O, (b) is 
clearly true when / ~ k. To see that a~ = - ck, note that otherwise the clause 
ckx  k + bkx  >1 (3"+ 1) - n(clc ) - n(bk) ,which absorbs cx  >1 (3"+ 1) - n(c), 
would be a reduction of  a k x  >1 (Jk - n(al¢), which would therefore dominate 
cx  >1 (7 + 1) - n(c), contrary to hypothesis. 

However, if cx  >t (3' + 1) - n(c)  is a circulant resolvent, it is dominated by 
some clause in the complete system A x  >i a, contrary to hypothesis. I-1 

The following corollary is evident in the previous three proofs. 

COROLLARY 2 

Generalized resolution is complete even when direct cancellation resolution is 
restricted to clauses between which exactly one variable changes sign. 

9. T h e  s e p a r a t i o n  p r o b l e m  

A major task of a cutting plane algorithm is not just to find cuts, but to fred 
separating cuts, or cuts that are violated by the current solution of  the linear program- 
ming relaxation. Here, we prove some easily checked conditions that the parents of  a 
separating resolution cut must satisfy. These conditions can speed the search for 
separating cuts. 

For a given solution x of  the LP relaxation of  (4), define the truth value v( t )  
of  a literal t by v ( x j )  = xj  and o ( - x j )  = 1 - x j .  Also, the truth value of  a sum of 
literals is the sum of their truth values, and the truth value of  a clause is the truth value 
of  its left-hand side. 
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LEMMA 5 

A cancellation resolvent on s variables can be separating only if the following 
conditions are satisfied: 

(a) sis odd; 
(b) each parent has a truth value strictly less than 3 + (s + 1)/2, where 3 is the 

degree of the parent; 
(c) the sum of  the truth values of  the variables on which the resolution takes 

place lies strictly between (s - 1)/2 and (s + 1)/2; 
(d) each parent contains at least one variable with a fractional truth value. 

Proof 

To show (a), let the current solution x of (4) violate cancellation 
resolvent (20) of  (8) and (9). Then v(x(P~ U P~) - x (N~ U N~))  < 3" - o, where 
o = L I s '  U T ' I / 2 A  = Ls/2_I. Thus, v ( x ( P ~ )  - x(N'x)) < 3' - o, and since x 
satisfies (18), we have v ( x ( S ' )  - x ( T ' ) ) >  3 ' -  ( 3 ' -  o) = o. Similarly, since x 
satisfies (19), we get o ( x ( T ' )  - x ( S ' ) ) >  o, or s - v ( x ( S ' )  - x(T ' ) )  > o. Thus, 
o < v ( x ( S ' )  - x(T ' ) )  < s - a, which implies that 2e  < s. It follows that s is odd. 

To show (b), observe that since s is odd, a = ( s -  1)/2. Also, since 
v ( x ( P ~ )  - x(N'l))  < 3' - o = 3' - (s - 1)/2, the truth value r of  (8) is strictly less 
than 3' - (s - 1)/2 + IS U TI + IPI\P'xl + INIkN'II. However, since (18) is a 
reduction of (8), I S \ S t l  + I T k T ' I  + IPakP'II + INlkN'll  = 31 - 3', whence 
r < 3 1  - ( s -  1)/2+ I S ' U  T'I = 31 + ( s+  1)/2. 

Finally, (c) follows from the facts that tr < o ( x ( S ' )  - x ( T ' ) )  < s - o and 

o = (s - 1)/2, and (d) follows immediately from (c). [] 

LEMMA 6 

A circulant 
v(csx) < 3, + 1. 

resolvent c x  >1 (3" + 1 ) -  n(c)  on J is separating only if 

Proof 

If the current solution x violates cx  >i (7  + 1) - n(c), then v (cx )  < 7 + 1, 
which implies v ( c j x )  < 3' + 1. [] 

10. A cu t t i ng  p lane  a lgo r i t hm 

We can now generalize the simple cutting plane algorithm described in sect. 2. 
The object is to determine whether A x  >1 a logically implies cx  >t ~ - n(c).  Recall 
that a knowledge base can be put into the form A x  >i a by converting each formula 
that is not a conjunction of clauses to a conjunction of 1-clauses. It may be worth- 
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while to apply the above generalized resolution algorithm to the conjunction of 
clauses representing each formula so as to obtain a more compact representation. 

Step O: Let A x  >I b be the original system, and delete all clauses dominated by 
other clauses. 

Step 1." If cx  >1 fl - n(c)  is dominated by any clause of A x  >1 a, stop; the original 
system implies cx  >i f l -  n (c). 

Step 2: Solve the linear programming relaxation of (4), and let x* be a solution. 
If cx* + n ( c ) >  ~ -  1,stop; the original system implies cx  >t ~ -  n(c)  (since 
any integer solution will put cx  + n (c) >i fl). 

Step 3: If x* is integer, stop; the original system does not imply c x  >1 ~ -  n(c).  

Step 4: Generate the cancellation resolvents of A x  >1 a that x* violates. Do this by 
considering all pairs of clauses of A x  >1 a that satisfy lemma 5 and generating 
all separating resolvents of which they are parents. Delete from A x  >1 a all 
clauses the resolvents dominate, and add the resolvents to A x  >1 a. 

Step 5: Generate circulant resolvents of A x  >1 a that x* violates. Do this by con- 
sidering all possible resolvents that satisfy lemma 6 and that have K or 
fewer literals, where K is fixed beforehand. For each such resolvent C, search 
for a set of clauses and a set of K variables such that those clauses yield C 
when resolved on those variables. Delete from A x  >1 a all clauses dominated 
by resolvents so obtained, and add the resolvents to A x  >1 a. 

Step 6: If at least one separating resolvent was generated in steps 4 or 5, go to step 1. 
If not, generate some non-separating generalized resolvents of A x  >1 a. If 
such resolvents are found, delete from A x  >1 a all clauses they dominate, add 
the resolvents to A x  >1 a, and go to step 1. Otherwise, stop; the original 
system does not imply cx  >1 fl - n(c)  (iffl ~< K). 

Although the non-separating cuts generates in step 6 do not force a new 
solution in step 2, the nex t  execution of step 6 may find separating cuts. The details 
are omitted, and in practice one may wish to look for other sorts of cuts or revert to 
branch-and-bound. 

It may be useful to keep track of the cuts whose generation involves exclusively 
the constraints in the original database (such as the "inference rules" of an expert 
system) and involve no constraints added for thb purpose of the current inference 
(input data). These cuts can be made a permanent part of the knowledge base, and 
their presence may speed the solution of the next problem. 

The separation algorithm in step 4 has polynomial complexity, since there 
are polynomially many pairs of constraints to consider. The algorithm in step 5 is 
likewise polynomial for fixed K. However, a more important question is how well 
the separation algorithm performs in practice. Computational tests have been carded 
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out using only ordinary resolution cuts (direct cancellation resolvents of I-clauses) 
[11]. Separating cuts were generated automatically as in step 4 above, but involving 
1-clauses only. The tests indicate that in random problems, separating resolvents 
exist in about 80% of cases in which cuts are needed, tend to be easy to generate, 
and solve the problem quickly. In fact, this rudimentary cutting plane method solved 
random implication problems in which the premises fail to imply the conclusion at 

"least 1000 times faster than set-of-support resolution, even when the problems had as 
few as 20 variables and 40 clauses. It solved problems in which the premises imply 
the conclusion only slightly faster than resolution, however. The latter result is due 
to the nature of random problems, in which the conclusion, if implied at all, is 
generally derivable from only one or two premises, so that relatively few resolutions 
are needed to detect the implication. Thus, the resolution algorithm is fast for these 
problems, nearly as fast as the cutting plane method. 

These results indicate that even though resolution cuts tend to be weak - one 
of the reasons, in fact, that resolution-based symbolic methods are inefficient - 
separating resolution cuts can be quite effective. The discovery of separating cuts 
adds a powerful direction-finding capability to a cutting plane method, beyond that 
provided by the objective function. This suggests that the advantage of a cutting plane 
method, relative to resolution, could be even greater in "real" problems in which 
implications are less trivial than in random problems. 

Nonetheless, stronger cuts than ordinary resolvents may be necessary for 
deeply-imbedded implications in highly-structured problems. An extreme example is 
the class of pidgeon-hole problems [25,7,9], in which resolution requires exponential 
time. A thorough investigation of this area has yet to be carried out. 
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