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Movements in space-time: the author composes a hole diffeomorphism 
for a 3+l-dimensional space-time manifold, which is required in the 
so-called Hole Argument. The composition applies directly to the uni- 
verse. 
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1. I N T R O  ( P R E S T O )  

In foundational analyses of and philosophical debates about the Gen- 
eral Theory of Relativity (GTR), Einstein's Lochbetrachtung from 1913 
has recently become a major issue. Earman and Norton [1] have in- 
geniously amended this argument, purporting to show that GTR is 
a necessarily indeterministic theory if one assumes the independent 
existence of bare space-time points ('substantivalism'). This 'Hole Ar- 
gument' has caused and is causing an avalange of responses; see for 
example Butterfield [2], Stachel [3], Maudlin [4], Rynasiewicz [5] (rec- 
ommended), and references in Earman [6]. 

A hole diffeomorphism eH is a map from one space-time manifold 
M to another one .A//~ (or to itself: M '  = M) ,  meeting a few strong 
conditions (Section 2), such that eH acts like the identity outside a 
hole H C M but acts non-identically inside H. The Hole Argument 
requires the existence of such a hole diffeomorphism; thus its existence 
is always asserted. Although not a soul doubts this assertion, the best 
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possible reason for the absence of doubt would be the presence of an 
example; if only for the sake of reference, for one searches in vain for 
such an example in all writings about the Hole Argument (supra).  The 
sole aim of the present Letter is to provide such a reference, which is at 
least eight years overdue. We shall not be satisfied with some boring 
trivial example for a 1 + 0-dimensional manifold, but define our goal as: 
constructing a non-trivial hole diffeomorphism for a 3+l-dimensional 
manifold that applies directly to the universe, and that has some vim 
and spunk. 

After a few preliminary mathematical movements (Section 2), we 
compose a hole diffeomorphism for a 3+l-dimensional space-time man- 
ifold, such that all points are shaken in all four dimensions (Section 3). 
This 3+l-dimensional example applies directly to a Robertson-Walker 
manifold, which is used by cosmologists to describe the universe; the 
construction is however not limited to such a manifold. 

2 .  M A T H E M A T I C A L  M O V E M E N T S  

( A L L E G R O )  

A function f : IR --. ~ is smooth  iff it is continuously differentiable 
to all orders; C°°[IR] is the space of all smooth functions on IR, closed 
under summation, multiplication, and composition whenever defined; 
see Corollary 2.4 in Boothby [8]. The molli f ier is the following non- 
negative, smooth function f~(~,b) C C°°[IR] of bounded support (a,b) 
[7]: [ 1 ] 

fl(a,b)(x) := l(~,b)(X) exp i x  -- a ) ( x  -- b) ' (1) 

where l(,~,b) : R ~ {0, 1} is the characteristic function of the set (a, b); 
the Greek letter f~ alludes to the graph of the mollifier (see Figure 1). 
All derivatives of the mollifier f~(~.b) vanish at the end-points x = a and 
x = b whenever x ; a and x T b, respectively. This remarkable property 
will be exploited vigorously in the present Letter and should therefore 
stick in the reader's mind onwards. If one were to delete the character- 
istic function l(a,b)from (1), the remaining function e x p [ 1 / ( z - a ) ( x - b ) ]  
would have singularities at x = a and x = b and would have unbounded 
support ( - o e ,  +oc). We leave the appropriate choice of units implicit; 
whenever x, a and b have the dimension of, say, length, then the 1 
in the exponential of (1) has to be replaced by 1 [length]Z; etc. No- 
tice that the mollifier is far from bijective, but is symmetric around its 
maximum. This maximum of f~(~,b) lies half-way the interval (a, b) and 
equals e x p [ - 4 / ( b -  a)2]; as the interval gets narrower and tends to 
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F i g u r e  1. Graph of the mollifier ~/2 and the normed mollifier f12. 

(a, a) = Q ,  tile maximum drops to 0; as the interval grows and tends to 
either ( -oo ,  b) or (a, +oo) or ( -oo ,  +oo), the maximum does not grow 
indcfinitely but approaches I. A normalizing factor cxp[4/(b - a) 2] in 
front of the exponential in def. (1) makes the maximum equal to 1 
regardless of the support (a, b) (Figure 1): 

~C=,b)(x) := e x p [ ( b _ ~ ]  f/C=,b)(x). (2) 

Denote the Area under the graph of the mollifier ~(~,b) by A(a, b): 

A(a, b) r ]b := ~(~,b)(Y) dy (3) 
da 

Consider the indefinite integral of the mollifier g/b := Sq(o b), sometimes 
referred to as a Legendre Transformation, where Ab := .A(0, b) : 

£ J6(x) := l[o,oo)(x)A~ q ab(y)dy, (4) 

which we take to be function R -+ [0, 1] for each fixed b > 0. The graph 
of Jb connects the X-axis from the left smoothly to the horizontal line 
of ordinate 1 during the interval (0, b). The partial derivatives of Jb is: 

O,:&(x) = A-d 1 ~/b(x), (5) 
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so that & is indeed smooth on R. On (a subset of) the interval [0, b] 
the function & increases monotonically and therefore is bijective. 

We shall work with an n-dimensional differentiable, topological, 
metrical C~'-manifold .tv[ [8]; we call its finite, connected, open subsets 
regions and its finite, simply-connected, open subsets holes. A hole in a 
n-dimensional manifold is therefore topologically equivalent to an open 
ball B n in n-dimensional Euclidean space (say Rn). The word 'hole' 
echoos Einstein's original Lochbetrachtung, where it referred to a tiny 
matter-free spatial region, where by implication the energy-momentum 
tensor vanished. Earman and Norton's hole has little to do with matter  
distributions, but arguably is just what we defined above [1]. The 
possible tiny size of the hole contributes to the sensational character 
of their Hole Argument. Further, it serves to mention that the hole 
has nothing to do with deleting some subset from the manifold, as the 
topologically inclinded mind might have suspected. 

Suppose we have two local coordinate frames, F and F '  respec- 
tively, of a region G C JM. Then the local coordinate transformation 
7 ' :  I;'[G] -4 F'[G] is a diffeomorphism if[ T is a bijection and both T 
and 7 ..... are smooth; see Boothby [8]. Whenever T acts like the identity 
outside tim image F[H] C R" of a hole H C_ G and acts non-identically 
inside I;'[11], and maps F[II] onto F"[II], we call T a hole diffcomor- 
phism. The local coordinate transformation T :  F[G] --+ F'[G], which 
resull.s in a lucre relabelling of l.he satn(: points ill G, Call bc taken 
to induce a point transh)rmation ~ : G --+ G', where G C 3/t ~md 
G' C 34'; and vice versa. We shall define a global point transforma- 
tion ~bfl : 34 --+ .Ad, which maps not only the manifold onto itself 
but also region G as well as the hole H, such that the coordinates of 
] / := CH(p) E G in frame F '  are identical to the coordinates of p E O 
in frame F: 

(r(p), O(p)) = (r'(p'), O'(p')) = (r'(~bH(p)), O'(~H(p))). (6) 

This leads to the following definition: 

qSlt(P ) : =  l H ( p ) [ f  inv o Tinv o ./7't(I, ) + [1 - 1H(p)] l (p)  , (7)  

where I : 3/l --+ M is tile identity and IH : M ---+ {0,1} is the 
characteristic function of tile hole. With a slight abuse of language 
we call a global point transformation CH (7) induced by the local hole 
diffeomorphism T a global hole diffeoraorphism, for it actively shifts 
points smoothly around in the hole H and leaves points outside the hole 
untouched. Formula (7) is, we claim, the cruxial formula for defining 
any hole diffeomorphism. 

Finally, we mention the Inverse Mapping Theorem, one of the pil- 
lars of Analysis on manifolds. The Inverse Mapping Theorem reads, in 
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a suitable formulation for the present purpose, as follows [8]. Sup- 
pose .M is an n-dimensional C°~-manifold; F : G ~ F[G] C R ~ 
and F' : G ~ F'[G] C R" are coordinate frames and G C A,4 is 
an open set; suppose further that smooth coordinate transformation 
T : f [ a l  --, F ' [C]  has a non-singular Jacobian matr ix  J(T; x) at point 
z E FIG]. Then according to the Inverse Mapping Theorem there 
exists a neighbourhood U(z)  C F[G] such that  T maps U(z)  diffeo- 
morphically onto a neighbourhood of T(x): T[U(~)I C F ' [a ] ;  and the 
Jacobian matr ix  of the inverse T lay at T ( x )  equals the inverted Jaco- 
bian matrix of T at x: 

J(Ti '";  T(x) )  = J i '~(T;  x ) .  (8) 

Thus for every smooth coordinate transformation having a non-singular 
Jacobian matrix at a given point z E IP, n, its inverse exists on some 
neighbourhood of x and that inverse is, remarkably, smooth too. 

Tha t  a vanishing derivative of a bijection destroys the smoothness 
of the inverse, is easily understood if we consider some bijective func- 
tion f : (a,b) --~ IR such that  if(Xo) = 0 in Xo E (a,b), and recall 
that tile derivative is the slope of the tangent. The graph of finv is 
the mirror-image of the graph of f in the line y = x. Then the hor- 
izontal tangent, to f in x = :to becomes a vertical tangent to finv in 
yo = f(Xo), llut a verl.ical tangent means a diverging derivative of 
fi,,,, ill (yo, Zo). Hence for a differ¢:ntiablc inverse fi,~,, the derivative 
of bijection f is not allowed I,o vanish anywhere, that is, f must ei- 
ther increase or decrease monotonically everywhere in (a, b). For map- 
pings 7' from some region I.] C R" I.o T[U] C R ~ the previous under- 
standing generMizes to th¢' requirement that  some but not all partial 
derivatives of each component are allowed to vanish. Tha t  is, suppose 
T(z~,z2,  . . . , x , )  = (y~,y2, . . . ,y,); then for each j E {1,2, . . . ,n}, at least 
for one k E {1,2, . . . ,n}, one must have that  Okyj(x) ¢ O, for all z E U. 
Indeed, if not, then a row of zero's would appear in the Jacobian ma- 
trix, making its determinant  vanish. 

3. M O V E M E N T  IN 3 + l - D I M E N S I O N A L  
S P A C E - T I M E  ( A N D A N T E )  

3.1 Looking  like a glass on ion  

The space-time manifold of the universe is supposed to be a 3-t-I- 
dimensional Robertson-Walker manifold .Maw; see Weinberg [9]. The 
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construction below is however not limited to these particular manifolds. 
Consider global coordinate frame 

F :  AdRw --* [0, oo) x [0, eo) x [0,1) x [0 ,1/2] ,  
p ~-* F(p) = (ct, r, % 0), 

(9) 

where c is the speed of light, t is the time coordinate, and r, % 0 are the 
spatial coordinates, expressed in spherical coordinates; and where we 
have left the argument p E Maw of the coordinate functions implicit. 
We measure angles in windings: 1 winding - 2~r radians = 360 °. 
To prevent the spatial sphericaL coordinate frame from breaking down 
at the poles and the origin, and to deal with the periodic character 
of the angular coordinates in one single sweep, we should, from a rig- 
orous point of view, work with equivalence classes that partition the 
Cartesian product set [0, oo) x ~2. All triples of the type 

(,-, ~, + ,~, o + m/2) e [o, ~ )  x a~ 

with n ,m  arbitrary integers, form an equivalence class and refer to 
one point in a flat 3-dimensional manifold. Obviously the collection 
of all these equivalence classes are in one-to-one correspondence to the 
elements of [0, oo) x [0,1) x [0,1/2); thus the elements of the latter 
can be used to label the equivalence classes in an obvious way. The 
poles and the origin correspond to the following classes: all coordinates 
( r ,%0) ,  with c 2 arbitrary, refer to the North pole of a sphere S2(r); 
similarly all coordinates (r, ~, 1/2) refer to the South pole of S2(r); and 
all coordinates (0, ~, 0) refer to the origin. For the sake of expediency, 
we shall from now on equivocate between (r, % 0) as to denote a label 
of, and as to denote an element of, an equivalence class. 

The components of the Robertson-Walker metric, which fixes the 
geometry of Maw,  expressed in the coordinates (9), are the coefficients 
of the following squared differential line-element [9]: 

[ dr2 ] 
d s  ~ = c 2 d t  ~ - R L ~ ( t )  [ 1  - k,~2 + ~(dO~ + sin~ 0 d~, ~) (1o) 

where k E {-1,0,+1} and where Rutfiv(t) is a time-dependent pa- 
rameter related to the Gauss curvature scalar. In the case k = 1, 
Ro~iv(t) is the radius of the 'closed universe' at time t. We whish to 
emphasize that the 3-dimensionM spatial universe at time t is not like 
a gigantic ball B3(Rura~(t)), but is like a gigantic 3-dimensional sphere 
S3(R~i,(t)), which is the surface of a gigantic spatial 4-dimensional 
ball B'(R,~, ,( t)) .  
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Figu re  2. Space-time hole H (12); one spatial dimension suppressed. 

We limit our attention to a coordinatized region G C Ma w ,  say: 

G := r i ° " [ ( c t , r , ~ , O ) ~ R ~ l t ~ [ O ,  lOOO),re[O, lO00)] , (11) 

where the number 1000 is arbitrarily chosen; by choosing appropriate 
units of time and length, region G' can bc as small or as large, physically 
speaking, as one whishes. We define the space-time hole H C G as 
follows: 

H := Fi'~V[{B3(e(t))lt ~_ (0, r ) } ]  . (12) 

F[H] is a non-denumerable collection of spatial balls of continuously 
varying radii e(t) from e,ni,(t) = 6 t o  emax(•) = /0+6, where p is a small 
positive number and 3 is some ridiculously small positive number. (For 
the reason why 6 > 0, vide infra §3.2.) We choose 6 := googolplex -1 
mm, where [10]: 

googolplex := 10 g°°g°l and googol := 101°° . (13) 

The idea is now to perform a spatial coordinate transformation inside 
ball Ba(e(t)) of radius e(t), at each time t e (0, r) .  The function e(t) 
determines the shape of the space-time hole. We choose the following 
normed mollifier: e :  [0, oo) --* [6, p + 6] (p is fixed: p >> 6 > 0): 

:= pa , ( t )  + (14) 
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With one spatial coordinate suppressed, the hole is then like the solid of 
revolution of the normed mollifier of Figure 1 around the X-axis (time 
axis), with tiny parts sliced off near the end-points along a parallel of 
latitude of radius a; the hole is looking like a glass onion (Figure 2). 
The shape of the 3+l-dimensional hole (12) is then the 4-dimensional 
analogue of Figure 2. 

Concerning the size of the hole, we must of course always choose r 
and p such that: 

Runi~(t) ~ Runi~(l + r) and p << R~i~(t).  (15) 

Thus the shaking of points can happen all during a split second (one 
second splitted into, say, one thousand parts; r := 1 ms), inside a spa- 
tial ball of the maximum size of a pin-head (say, p := 1 mm). Relative 
to the length and time scales typical for GTR, and in particular relative 
to the estimated age and radius of the Robertson-Walker universe we 
seem to inhabit (about l0 2a ms and 10 :s mm, respectively), this is an 
extremely tiny hole indeed. 

3.2 Explication of the hole diffeomorphism 

The following local coordinate transformation shakes points inside the 
space-time hole II (12) all together now. Wc define: 

7:,: (el,, ,', % O) ~ (el', r', ~', 0'), (16) 

where the domains arc as in (9), as follows: 

t'(l) : :  t ,  (17) 
: =  

~0'(t,r,~) := ~, + N f~,(t) f~(t)(r) ,  (19) 

O'(t,O) :-- 0 - ~ , ( t ) [1  - ai/:(0)] 0.  (20) 

The global hole diffeomorphism */J/t : .Admv -4 Admv obtains by taking 
hole (12) and coordinate transformation 7h (16) in clef. (7). We empha- 
size that a non-trivial hole diffeomorphism already obtains whenever 
we take for tile latitude transformation (20) the identity too; and that 
more intricate hole diffeomorphisms obtain whenever we take for the 
time and radial transformations not the identity. We explicate and 
illustrate the coordinate transformation 214 (16) and establish that T4 
(16) is hole diffeomorphism in a separate Section 

Longitudinal transformation. The normalizing factor N > 0 is fixed 
by choosing some Cpo 6 (0, 1) such that: 

N := ~ooexp[4/c2r ' + 4/(p + 6):] ; (21) 
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/ /  

F i g u r e  3. Longitudinal transformation (19) on a sphere S2(r). 

then ~o is the maximum angle of longitudinal rotation. For the result 
of ~o' = 9'(t,7*,~) (19) is that l>ar,dlels of longitude are mapped onto 
parallells of longitude (see I"igurc :l). In a given ball Ba(r) of radius 
r E (0 ,e( t ) )  at a given t ime l E (0, v), the longitudinal rotation is 
maximal  at r = ¢( t ) /2  a~,d vanish(,s smoothly as r J. 0 and as r T e(t) 
(see Figure 4). The  factor ~]~(t) g~arantees that  the entire second term 
in (19) vanishes smoothly outside the hole (t > T); without  this factor, 
7"4 (16) would keep on stirring all points inside a hypercyl inder  around 
the time-axis of radius 5 > 0 across the universe. The  smoothness 
of ¢p(t, r,~p) (19) is manifest; some care must however be exercised in 
addressing the smoothness in t of ~(t ,  r, ~p). For in addressing that  case, 
r and e(t)  exchange their role as variable and parameter  in the mollifier 
f~¢(t)(r), which results in a smooth function of unbounded support.  
Specifically, the resulting functioll is an instance of f~ : R ~ [0,1), 
defined as: 

f . ( x )  :---- l(=,oo)(x) exp x) ' for a > 0 ,  (22) 

and f,~(z) := 0 for a _< 0. The  graph of f l  crawls towards the horizontal 
a sympto te  of ordinate 1 as x ~ oo. The  domain of f .  is in our case 
more restricted: (~, ~ + p] instead of R, due to the identifications a = r 
and x -- e(t). The  smoothness of c(t) is a necessity for the smoothness 
of f~ and consequently for the smoothness of Ta. 
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F i g u r e  4. Horizontal cross-section of the ball Ba(e(t))  of Figure 3 

Now we answer a question we posed above: for what  reason have 
we not chosen (5 -- 0 in def. (14), so that  the glass onion hole starts to 
grow smoothly  from a point and shrinks back to a point again? The  
reason is tha t  in such a scenario the support  (0, e(t))  of the mollifier in 
(16) vanishes for t J. 0 and h)r l T r ,  which necessitates the existence 
and vanishing of the limit 

lira ab(r) (23) 
blO 

which equals 
l(0,o)(r) exp[1/r2] , (24) 

which does vanish for all 7. > 0 I)3' virtue of (0, 0) = Q ,  but  blows up in 
r = 0; the limit r I 0 for (24) leads to a mathematical  infidelity: 0. oo. 
Hence a vanishing support  (~5 = 0) for this mollifier is detr imental  to 
the smoothness of T4 and needs to be prevented at all costs. 

Latitudinal transformation. We should choose a similar transfor- 
mat ion for the parallels of lat i tude (for O, with fixed t, r and ~o), as (19) 
for the parallels of longitude (for 9) ,  not a second t ime, for it invites 
the danger of some parallel of lat i tude (a non-denumerable  set) be- 
ing mapped  on the South pole (a singleton set), which would destroy 
the bijectivity of T4. Transformation 0' = O'(t,O) (20), with domain 
[0, oo) x [0, 1/2}, averts this danger. We start  by taking the difference 
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F igure  5. Graph of the function Jl/2(O) 0 

between the identity I(O) = 0 and the function Jl/~(O)O, which is posi- 
tive in the interval (0, t/2). Sec Figure 5, Whenever we substract this 
positive difference from the identity again, we evidently retrieve the 
function we started with: 

Jl/2(o)o = - [ i ( 0 )  - J1/2(o)o] , ( 2 s )  

which is tile latitudinal transformation (20) for t = r/2. For all other 
values of t E (0, r), the term substracted from the identity in (20) 
obtains a positive factor smaller than 1 (by virtue of the normed mol- 
lifier ~ . ( t ) ) ,  which vanishes smoothly as t T r and as t J. 031) Notice 
that (20) maps the North and South pole on themselves at any time: 
O'(t, 0) = 0 and O'(t, 1/2) = 1/2, respectively, for all t E [0, oo). 

3 . 3  P r o o f  o f  t h e  h o l e  d i f f e o r m o r p h i s m  

To prove that the coordinate transformation T4 (16) is a diffeomor- 
phism, we have to prove that it is smooth, invertible and that its in- 
verse is smooth too. The smoothness of T4 is manifest, since it consists 
of sums, products and compositions of manifestly smooth functions; 
and the space of smooth functions is closed under these operations 
(see Section 2). We address (a) the bijectivity of T4 and then (b) the 
smoothness of its inverse. 
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(a) Bijectivity. We focus on the coordinate transformation formulae 
one by one. 

Latitudinal transformation. The latitudinal transformation O'(t,O) 
(20) only depends on t and 0. Given t' and 0', is then 0 in (ct, r, ~o, O) 
fixed? Since the time transformation t'(t) is the identity, t '  alone fixes t 
trivially. Thus do t and 0' fix 0? They do, because the graph of O'(t, O) 
as a function of 0, for any given t, is like the graph of J~12(O)O (Figure 5), 
but lies closer to the identity, and coincides with the identity at t = 0 
and t _> r. We can work it out rigorously that O'(t, O) is monotonically 
increasing on [0, 1/2], by showing the positivity of its relevant partial 
derivative: 

ooo'(t,ol = [1 - + 

[A1]2 a , , ( 0 ) 0  + Y,,(0)]  > 0 .  (26) 

Ineq. (26) holds manifestly for all 0 e [0, 1/2], for each fixed t E [0, oo). 
Longiludinal transformation. Since the time, the radial and the lat- 

itude transformations are all bijective functions, any given quadruple of 
coordinates (ct', r', 99', 0') immediately yields unambiguously el, r and 
0. Whenever the longitudinal coordinate ~o' is given, the transforma- 
tion formula 99'(l,r,~) (19) constitutes a linear equation in qo. Linear 
equations have a unique solution: 

= 99' - N ( 2 7 )  

So there is a bijective correspondevce between the quadruples (ct, r, 99, O) 
and (ct',r',99',O') by means of T4 (16); hence ,,i,,~ ~/4 exists. 

(b) Smoothness of the inverse. Pencil and paper will convince the 
reader that no closed expressions for the inverse transformation can 
be squeezed out of the latitudinal coordinate transformation formula 
(20); whence it follows that the smoothness of T~"" cannot be verified 
by inspection. The boat of Elementary Real Analysis is going down 
with the dinghies. Help! 

The yellow submarine of Real Analysis on Manifolds comes to the 
rescue, having the Inverse Mapping Theorem as one of its engines. 
(Section 2). An immediate Corollary of interest of the Inverse Mapping 
Theorem (6.7 in Boothby [8]) reads for our case: the smooth coordinate 
transformation T4 (16) is a diffeomorphism iff T4 is bijective and has 
a non-singular Jacobian everywhere in F[G] C IR 4. The smoothness 
and bijectivity of T4 we have just verified; hence all I've got to do is to 
verify that the determinant of the Jacobian matrix never vanishes. It 
won't be long. 

For points outside the hole,/'4 is the identity and therefore trivially 
diffeomorphic; observe that for all these points x E FIG] \FIH] the 
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Jacobian is the unit matrix, whose determinant equals 1. We next 
consider the points z E F[H], inside the hole; they have coordinates 
(ct, r, ~o, O) where r is restricted to [0, s(t)) for each fixed t e [0, r). The 
Jacobian of T4 (16) at (ct,r,~o,O) is the following 4 x 4 matrix: 

i 0 0 0 ) 
0 1 0 0 

o,~'(t, T, ~,) O~'(t,  r, ~,) t 0 
O~O'(t,O) o o OoO'(t, o) 

(28) 

By making two successive Laplacian expansions in minors and co- 
factors, we readily obtain: 

det J(T4; (t,r,~p,O)) = OoO'(t,O) . (29) 

The positivity of (29) we have already verified in (a) addressing the 
bijectivity of T.~ - -  vide ineq. (26). Having thus established the non- 
singularity of the Jacobian matrix (28) everywhere, the mentioned 
Corollary of the Inverse Mapping Theorem allows us to infer from the 
smoothness and bijectivity of T4 (16) that T4 is a diffeomorphism. 

We have reached the goal set in the Intro. Hello goodbye. 
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N O T E  

i. P.E. Vermaas (private communication; Utrecht TS, June 1995) sug- 
gested to look upon transformation (20) as the convex sum of 
the identity I(O) and dl/2(O)I(O), such that one convex coefficient 
smoothly grows and vanishes in time at the expense of the other. 
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