
Journal of Statistical Physics, Vol. 83, Nos. 1/2, 1996 

Asymptotic Dynamics of the Dual Billiard 
Transformation 
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Given a strictly convex plane curve, the dual billiard transformation is the trans- 
formation of its exterior defined as follows: given a point x outside the curve, 
draw a support line to it from the point and reflect x at the support point. We 
show that the dual billiard transformation far from the curve is well 
approximated by the time 1 transformation of a Hamiltonian flow associated 
with the curve. 

KEY WORDS: Dual billiards; Hamiltonian flow; KAM theory; invariant 
c u r v e s .  

1. I N T R O D U C T I O N  

The dual  b i l l ia rd  m a p  T is a t r ans fo rma t ion  of  the exter ior  of  a strictly 
convex closed p lane  curve ~. Given  a po in t  x outs ide  of  y, there  are two 
suppor t ing  lines to y t h rough  x; choose  one of them (say, the right one 
from x's  v iewpoint )  and  define T ( x )  to be the reflection of  x at  the po in t  
of  suppor t ;  see Fig. 1. The curve y is called the dual  bi l l iard curve. 

The  dual  b i l l iard  m a p  is an outer  coun te rpa r t  of  the usual  b i l l iard  bal l  
m a p  (whence ano the r  term,  ou te r  bi l l iard,  also used by some authors) .  See 
refs. 2-8,  10-13 for var ious  aspects  of  the dual  b i l l iard  p rob lem,  such as 
existence and nonexis tence of  invar ian t  curves, po lygona l  dua l  bi l l iards,  
mul t id imens iona l  dual  bi l l iards,  etc. 

The present  pape r  concerns  the fol lowing p h e n o m e n o n  observed  in the 
numer ica l  s tudy of  dual  bil l iards.  Given  a dual  b i l l iard  curve y, one wants  
to s tudy  the dynamics  of  the dua l  b i l l iard  t r ans fo rma t ion  very far from the 
curve. To this end one rescales the plane by choos ing  an origin O inside y 
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Figure 1 

and applying a dilation centered at O with a small coefficient e. Then one 
picks a point x at distance of order 1 from the origin (i.e., comparable with 
the size of the computer screen), and iterates the square of the dual billiard 
transformation starting at x. The experimental fact is that for the number 
of iterations of order 1/e the orbit of x traces a closed, centrally symmetric 
convex curve, and these curves for different starting points are obtained 
from one another by dilations centered at O. Moreover, the motion of 
iterates of x appears continuous (assuming each iteration takes the same 
small amount of time), and this continuous motion satisfies the law of 
areas: the area swept by the position vector of a point grows linearly in 
time. 

Moser 17~ introduced dual billiards as a crude model for planetary 
motion. The above-described law of areas plays the role of Kepler's law for 
dual billiards. It means that dual billiard dynamics is, in the first 
approximation, a motion subject to a central force whose potential depends 
on the dual billiard curve. 

To explain these phenomena we associate to a dual billiard curve a 
homogeneous Hamilton function in the plane and show that its 
Hamiltonian flow approximates, in a certain sense, the dual billiard 
dynamics (the centrally symmetric curves traced in computer experiments 
by orbits of the dual billiard transformation are level curves of this 
Hamiltonian). We emphasize that this picture is only an approximation of 
a more complicated dynamics of dual billiards, valid for small values of e 
and for the number of iterations of order I/e. 

An analysis of dual billiard dynamic "at infinity" for smooth enough 
dual billiard curves was undertaken in ref. 3. The result, similar to 
Lazutkin's for usual billiards near the boundary, is that the dual billiard 
transformation is a small perturbation of an integrable Hamiltonian 
system, and the KAM theory yields an abundance of invariant curves suf- 
ficiently far from the table. The homogeneous Hamiltonian constructed in 
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the present paper provides a normal form for an application of the KAM 
methods. 

The content of the paper is as follows. In Section 1 we construct the 
Hamiltonian and study its properties; in Section 2 we show how the 
Hamiltonian flow approximates the dual billiard dynamics. The results of 
this paper were announced in refs. 12 and 13. 

1. H A M I L T O N I A N  F L O W  

As a motivation for what follows, consider the square of the dual 
billiard transformation; see Fig. 2. The vector T2(x)- x = 2 ( b -  a), where a 
and b are the tangency points. Observe that if the point x is very far from 
y the lines (x, T(x)) and (T(x), TE(x)) are almost parallel. 

Fix a polar coordinate system (a, r) in the plane whose origin O lies 
inside the dual billiard curve ),. Given an angle 0~, consider the two parallel 
oriented supporting lines to y in the direction a; order them so that y lies 
to the left of the first one. Let v(~) be the vector joining the points of 
support of these lines (see Fig. 3); this vector may be thought of as the 
limit case of the vector b -  a in Fig. 2 as x -o  oo. Consider the homo- 
geneous vector field in the punctured plane whose value at point (a, r) is 
v(~). Abusing notation, we call it v. 

Given an angle ~, consider the oriented supporting line l to y in the 
direction c( that lies to the right from 7. Let p(a) be the supporting function 
of 7, that is, the distance from the origin to l; see Fig. 4. 

b a 

T2(z) �9 

x 

Figure 2 
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Figure 3 

Let q(oO=p(oO+p(oc+n) be the width of y in the direction 
perpendicular to ~. If 7 is smooth and strictly convex, which we assume, the 
function q(~) is also smooth [at  the other extreme, if 7 happens to contain 
a straight segment, then the derivative q(oO' has a jump discontinuity at the 
point corresponding to the direction of this segment]. 

T h e o r e m .  The vector field v is Hamiltonian with the Hamilton 
function H=rq(~). Its trajectories are closed, centrally symmetric curves, 
and its flow satisfies the law of areas. 

v'(~) 

Figure 4 
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Proof. The Cartesian coordinates of the tangency point of the line 1 
in Fig. 4 are given by 

x(a) = p(00 sin a + p '(a)  cos 0t 

y(a) = - p ( a )  cos a + p'(0c) sin 

(see, e.g., ref. 9, which is also a good reference for the simple facts from 
convex geometry we use in the paper). Hence the vector t,(a) is 

(x(a + ~) -- x(~), y(a + re) -- y(00) 

= (q(a) sin ~ + q'(a) cos ~, --q(~) cos ~ + q'(~) sin ~) 

The Hamiltonian vector field s g r a d H  of a Hamilton function H is 
(H,., --H_,.). Using the chain rule, one finds for H =  rq(oO 

H.,. = q( oO sin a + q' ( ~ ) cos a, H ,. = q( oO cos oc - q' ( oO sin oc 

Thus v = sgrad H. 
The trajectories of sgrad H are level curves of H which are centrally 

symmetric and homothetic to each other because H is a homogeneous 
function. 

The law of areas holds for any homogeneous Hamiltonian (not 
necessarily of degree 1 ). Indeed, let z(t) = (x(t),  y ( t ) )  be the trajectory of a 
point as a function of time, and let A( t )  be the sectorial area. Then 
A'( t )  =0.5[z ' ( t ) ,  z(t)]  where [ ,  ] is the skew-product of two vectors, i.e., 
the determinant of the matrix whose columns are the vectors. Since 
z'(t) =(H, , ,  -H., .)  one has A' ( t )=O.5 (xH, .+yH, . ) .  The Euler formula for 
a homogeneous function of degree k reads x H , . + y t t , , = k H .  Thus 
A'( t )  =0.5kH. Since H is invariant under s g r a d H  this is constant along a 
trajectory. Q.E.D. 

Level curves of the Hamiltonian rq(~) can be described geometrically 
using the notion of polar duality. Polar duality is the correspondence 
between points of the punctured plane and lines not through the origin: a 
line l corresponds to the point X such that O X  is perpendicular to l and 
the distance f~om 0 to I equals 1/llOXll. Given a convex plane curve y that 
contains the origin in its interior, one defines the dual curve y* as follows: 
tangent lines to y form a one-parameter family of lines, and y* consists of 
points polar dual to these lines. Ifp(ct) is the supporting function of y, then 
y* has the equation in polar coordinates r =  l/p(00. 

Note that y * * =  y. Also note that polar duality interchanges two types 
of singularities of curves: to a corner of y a line segment of y* corresponds, 
and vice versa. 
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Dual billiard curve ~ ~ 

& @ a s s o c i a t e d  Harniltonian 

Level curve of the ~ 
Hamiltonian associated 
with the above curve 

Figure 5 

Thus trajectories of the Hamiltonian vector field under consideration 
are obtained from the dual billiard curve by central symmetrization, i.e., 
replacing the supporting function p(00 by q ( e ) = p ( e ) + p ( e + n ) ,  polar 
dualization, and homothety. In particular, if the dual billiard curve ? is 
centrally symmetric, then the second iteration of this construction yields 
the curves homothetic to y. 

Example. If y is a triangle or a square, then the corresponding 
centrally symmetric curve is a hexagon or a square. A somewhat more 
sophisticated example is that of a semicircle. In this case the Hamiltonian 
is lYl + ( x ' - +  y2)~/,_ and its level curves consist of two symmetric arcs of 
parabolas with the common focus at the origin; the parabolas intersect at 
right angles; see Fig. 5, in which we also show the curves obtained by two 
iterations of the construction. 

R e m a r k .  Centrally symmetric polygons approximating trajectories 
of the dual billiard map for a polygonal dual billiard curve were studied in 
refs. 6, 10, and 5 with regard to the stability property of the dual billiard 
transformation. 

2. HAMILTONIAN FLOW APPROXIMATING DUAL BILLIARD 
DYNAMICS 

We will estimate the deviation of the T-'-orbit of a point from its 
trajectory under the Hamiltonian vector field v with the Hamilton function 
rq(a). Denote the time 2 map of the flow of v b y f a n d  set g =  T-'. 

T h e o r e m .  Given 09>0, there exists a constant C(y, o9) such that 
dist(f"(x), g"(x))< C(y, co) for every point x and all n <~ co Ilxll. 
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In less technical terms, the theorem states that the deviation of T2"(x) 
from the time 2n image of x in the Hamiltonian flow is uniformly bounded 
for the number of iterations of order IlxH. The number of iterations it 
takes the T-'-orbit of x to make a complete turn about ~ is of this order. 
Rescaling by the factor e = 1/llxDI, one makes the deviation negligible. Thus, 
on time scale [0, 1/el, the rescaled dual billiard dynamics is well 
approximated by the Hamiltonian one, which explains the features of the 
dual billiard dynamics described in the Introduction. 

R e m a r k .  Berry (~ obtained similar estimates for the dual billiard 
dynamics far from the dual billiard curve. 

----.____.. 

- , , - i  O 

g(:) 
2u 

Figure 6 
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The proof of the theorem consists in somewhat notorious estimates, 
and we will outline its main steps. The idea is, however, quite simple: the 
deviation of g(x) from f (x)  is of order 1/[IxlJ for all x, therefore the 
deviation o fg ' (x )  from f" (x )  is of order 1 for n of order IIx]l. 

Outline of Proof. W e  use the " b i g  0 "  notation; various constants 
denoted by C, C~, etc., depend on (o and y. 

Step 1. The first estimate needed is 

Ci dist(f(x), g(x) ) <<. (1) 
H(x) + H(g(x) ) 

for all x. 
To obtain this inequality, introduce the vector u=O.5(g(x)-x), so 

that g(x)=x+2u; see Fig. 6. The angle (x, T(x), T'-(x)) is O((H(x)+ 
H(g(x)))-I), hence 

1 
[lu-v(~x)ll =O (H(x) + H(g(x)) (2) 

Compare the orbits of x under the flows q~' and ~b~ of the fields v and 
the constant field Vo whose value at all points is v(~), respectively. The 
deviation Jltk'(x) - q~(x)Jl is O((H(x) + H(g(x))) - ') for t ~< 2. Hence 

dist(f(x), x + 2v(ct) )= O ( H(x) +lH(g(x)) (3) 

The estimates (2) and (3) imply (I). 
Step 2. Next, one estimates the deviation of H(g"(x)) from 

H(f"(x))=H(x) (the equality holds because H is f - i n v a r i a n t ) .  Setting 
h,, = H(g"(x)), one obtains for all i the inequality 

C-) 
- -  - (4}  1/7.+, h,,I <~h,,+l~,,+, 

This follows from (1) and the inequality [a(y-+z)--n(y)l~C31lz[I 
uniformly in y, which is due to the fact that the norm H(y) is equivalent 
to the norm [lyll. 

The summation of the inequalities (4) for i = 0 ..... k yields 

Ih~ -hol ~ Czk (5) 



Dual Billiard Transformation 35 

O 

F i g u r e  7 

for all k; hence for k ~<coLlxll one has 

]hk -ho] <~ C2k/H(x) ~ C4 (6) 

This implies that the orbit x, g(x) ..... g"(x) lies in the strip between the level 
curves H - l ( H ( x ) -  C4) and H-I(H(x)+ C4); see Fig. 7. 

Step 3. Finally one estimates the area of the sector bounded by the 
broken line connecting consecutive images of x under the map g. Let A(x) 
be the area of the triangle (O, x,g(x)). Then IA(x)-H(x)l  ~ C5 and, in 
view of (6), 

n -  1 n -- 1 

JA(gk(x))--nH(x)l < . ~ IA(gk(x))-H(gk(x))[ 
k ~ O  k ~ O  

n - -  l 

+ Y. I/7,- hol < c~g(x) 
k = O  

(7) 

for n ~<~o Ilxl[. 
The area bounded by the level curves H-I(H(x)--C4) and 

n X H-~(H(x) + C4), and the rays (O, x) and (O, f  (.)),  is bounded above by 
CvH(x). This inequality along with (7) implies that the area of the sector 
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bounded by the curve H-I (H(x ) )  and the rays (O, g"(x)) and (O,f"(x))  
(shaded in Fig. 7) is bounded above by CsH(x). Hence the angle of this 
sector is O( H( x ) -1), and finally, dist( g', ( x ) ), f"(  x ) ) <~ C. Q.E.D. 

We would like to emphasize one consequence of the proof, namely of 
the inequality (5): H2(g"(x))~ H2(x)+ Cn for all n. Since the norm H(x) 
is equivalent to JlxfJ, and IIx[I is bounded away from zero, one obtains the 
following result. 

Coro l l a ry .  There exist constants Cx and C2 depending on the dual 
billiard curve 7 such that 

IlT"(x)l[ <~(Cl + C2n) m Ilxll 

for every point x and all n. 

If the dual billiard curve is sufficiently smooth (C 6+') then the dual 
billiard map has invariant curves arbitrarily far from the curve, and there- 
fore all orbits are bounded. ~7" s, =, 3. l 1-13) This is a much stronger result than 
the above corollary. However, if the curve is less smooth, it is not known 
whether orbits may spiral off to infinity. If such a diffusion is possible, the 
corollary gives an upper bound for its rate. Whether this "escape to 
infinity" may actually happen remains unknown at the present writing. 
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