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Entropy Dissipation and Moment 
Production for the Boltzmann Equation 

BerntWennberg ~ 
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Let H(fl  M)= JJlog(J/M)dr be the relative entropy o f f  and the Maxwellian 
with the same mass, momentum, and energy, and denote the corresponding 
entropy dissipation term in the Boltzmann equation by D(f)= 

Q(./;J') log./~h~. An example is presented which shows that ID(fl/H(flM)I 
can be arbitrarily small. This example is a sequence of isotropic functions, and 
the estimates are very explicitly given by a simple formula for D which holds for 
such functions. The paper also gives a simplified proof of the so-called Povzner 
inequality, which is a geometric inequality for the magnitudes of the velocities 
before and after an elastic collision. That inequality is then used to prove that 
~J(v) Irl'dt<C(t), where f is the solution of the spatially homogeneous 
Boltzmann equation. Here C(t) is an explicitly given function depending s and 
the mass, energy, and entropy of the initial data. 

KEY WORDS:  Boltzmann equation; entropy production; Povzner 
inequality; moments. 

1. I N T R O D U C T I O N  

This paper concerns the spatially homogeneous Boltzmann equation 

O,f(v, t) = Q(f, f ) (v ,  t) (1.1) 

where Q(f, f )  is the so-called collision operator,  

Q ( f  f ) t v )  = .~[-, -f~:L ( f ' f "  - f f l  ) B((.o. (v - v, ) Iv - v, [ - ' ,  Iv - v, l) do) du I 
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1054 Wennberg 

Here f=f(v), f, = f ( v , ) ,  f'=f(v'), and f ' l  =f(v'l), and v' and v'l are the 
velocities after the collision of two particles which had the velocities v and 
v t, respectively, before they collided. The collisions are assumed to con- 
serve mass, v + v~ = v' + v'~, and energy, v 2 + v~ = v '2 + v't 2. Hence v' and v'~ 
are situated opposite to each other on the sphere with radius Iv -v~[  and 
center in (v + vt)/2, and one way of writing the relations connecting the 
four involved velocities is 

V,=V-i-Vt } _ ~ W  
2 

v+v, Iv-v,[ VII - -  CO 2 2 

Here co is the unit vector in the direction from (v+vt)/2 to v' (cf. Fig. 1). 
This particular parametrization of the gain term can be found in, e.g., ref. 4. 
The collision operator  is thus an average over all possible collisions that 
can take place, and B is a weight factor giving the effect of a particular 
collision. We consider here only the case where the particles interact by 
inverse-power-law potentials, in which case B factorizes into a function of 
the form B=h(O)Iv--vL[/( When the particles are hard spheres, B =  
I v - v t l ,  and this is generalized to the so-called variable-hard-spheres 
model, where B = I v - v l 1/5 and fl/> 0. 

The theory of the Boltzmann equation is treated, e.g., in ref. 7. The 
equation is known to be well posed under very general conditions on the 
initial data. As a consequence of the conservation of mass, momentum,  and 
energy in a single collision, the total mass, momentum,  and energy of the 
gas are constant in time. In terms of the solutions f this is manifested in 
that the first moments  

f~3f(v,t)dv, ff~f(v,t) vdv, f~3f(v,t)[v[Zdv (1.2) 

are conserved. The stationary solutions are the Maxwellians, i.e., functions 
of the form a e x p ( -  Iv-vol2/b), and there is a unique Maxwellian corre- 
sponding to the conserved quantities (1.2); it is known that  the solutions 
f converge strongly to this Maxwellian. This is related to the fact that the 
entropy 

f~ f(v) log(f(v))  dv (1.3) 

is monotonously decreasing. 
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It is convenient to rescale the problem so that the mass is one, the 
momentum vanishes, and the energy is equal to three. The unique 
Maxwellian associated with these moments is M(v) = (2n)-3/2 
e x p ( -  Ivl2/2). The relative entropy with respect to M is defined as 

H( f  I M) = f J'( v ) "log ~f(v) .c/v 

and the entropy dissipation term is 

d 
D(f) =- ~t H{fl  M)= f Q(.f, f)(v) log f(v) dv (1.4) 

The entropy dissipation term is negative, and vanishes if and only i f f  
is a Maxwellian, and the relative entropy vanishes if and only if f =  M. It 
was suggested in ref. 6 that an inequality of the type ID(J')[ >/C In(f ,  M)I 
could hold, with C depending only on the collision kernel B and on the 
Maxwellian M. An estimate of that type would imply that the solutions of 
the Boltzmann equation converge exponentially to equilibrium at a rate 
depending only on the mass and energy of the initial data. The inequality 
would also be useful in the study of various limit problems for the full 
Boltzmann equation. 

An example showing that the inequality suggested above cannot hold 
was provided by Bobylev ~3~ (see also ref. 5) for the case of Maxwellian 
molecules (f l=0) .  He constructed initial data for (1.1) such that the solu- 
tions tend to equilibrium exponentially, but at an arbitrarily slow rate. 
Here we study the relative entropy and the entropy dissipation directly and 
give an example showing that also in the case of hard potentials (fl > 0) the 
inequality cannot be as general as conjectured. Such examples can be 
provided by abstract arguments (this will be discussed in Section 3), but it 
is also possible to make rather precise estimates for isotropic functions (i.e., 
depending only on Ivl). A simple formula for the entropy dissipation for 
isotropic functions is derived in Section 2, and in Section 3 this formula is 
used to obtain the desired estimates. 

The geometric arguments used in Section 2 are also used in Section 4 
to give a simple proof of a slightly generalized form of the Povzner 
inequality (see ref. 9 and the references therein). The Povzner inequality 
gives estimates on the rate of change of radial moments (i.e., of 
~f(v) Ivl"dv) of solutions of the Boltzmann equation. In particular, they 
can be used to prove that, at least for hard potentials, all moments that are 
initially bounded remain bounded globally in time. Such results, which can 
be found in, e.g., refs. 1 and 9, are important in the analysis of solutions of 
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the Boltzmann equation, since uniform bounds on moments with s > 2 can 
be used for proving that the energy of the solutions is conserved. The fact 
that there is still no proof of energy conservation for solutions of the space- 
dependent equation depends on the lack of estimates on the evolution of 
higher moments in that case. 

An important improvement of Elmroth's result was obtained by 
Desvillettes, ~s~ who proved that if the initial data possess moments of order 
strictly larger than 2, then I f(v, t) [ v[ ~ dv is bounded for all t > 0 and s >/0. 
This result holds for fl > 0; in the Maxwellian case, the statement is false 
(a proof that this is the case can be found in ref. 10, which also contains 
a simplification of the proof from ref. 8 and analogous L p estimates). The 
last result of the present paper, Theorem 4.2, states that (still for fl > 0) it 
suffices to demand that the quantities (1.2), (1.3) are bounded initially. 
The proof of Theorem 4.2 is a direct calculation, which also gives good 
estimates on the constants involved. 

2. THE ENTROPY DISSIPATION FOR ISOTROPIC 
DISTRIBUTIONS 

The entropy dissipation can be written 

1 f ' f ' l  Iv v l l /J&odvdvl  4 I I I  (f 'f '~ - f f '  ) log ~ h(0) - 
(2.1) 

To derive this expression from (1.4), one can, at least formally, use the 
change of variables dv dvt ~ dr' dv'~. Since the gas is assumed to be 
isotropic, f ,  f~, f ' ,  and f'~ depend only on the magnitudes of the vectors 
v, v~, v', and v't, which will be denoted i', r , ,  r', and r',, respectively. The 
notation is described in Fig. 1. To find expressions for r' and r'~ it is useful 
to introduce polar coordinates in (r, rt ) by defining 

r = p cos y, rt = p sin y 

Moreover, let p = (v + v~)/2. Then, by the cosine theorem 

[ v - v , ] = x / r  2 + r ~ - 2 r r ,  c o s 0 , =  p x / 1 - s i n 2 y c o s 0 ,  

and 

1 ~ , =2X/1  + sin 2y [p[ -- ~ x/r-  + r I + 2rr, cos 0, cos 0, 
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Fig. 1. Geometry of a binary collision. 

Then a second application of the cosine theorem and some simplification 
gives 

r' = ~ 2  [ 1 + cos 02 ( 1 - sin 2 2y cos 2 Or) 1''2 ] t/2 

r'l = ~ 2  [ 1 -- cos 02 ( 1 -- sin 2 2), cos 20i)  1/2 ] i,,2 

(2.2) 

In the change of variables in (2.1) we can now fix a polar axis in the direc- 
tion of v, and the rotational symmetry in the problem then gives dr--* 
4rtr 2 dr, dvl ~ 2re sin 01 dOi r~ drl, and &o ~ sin 02 dO2 dr The result is 

- - T g  r 2 dr r;  dr~ 21r sin 0~ dO~ 

x sinO2dO~_ h(O) d~2a , l - s in29 ,  cosO~)/~/2 g~(r,r~,l ,r'~) 
) 

(2.3) 

where ~u denotes the expression involving f In general 0 is a complicated 
(but explicit) expression of the remaining variables, but in the case of 
(variable) hard spheres, where h(O)= 1, the ~b integral can be computed; 

822. '86/5-6-11 
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the result is 2g. For  the sake of simplicity, only that  case will considered 
henceforth. The  final expression is also simplified by the fact that  7 s is sym- 
metric with respect to the first two variables as well as with respect to inter- 
change of the p r imed  and unpr imed  variables.  

Changing  to polar  coordinates  in the (r, r~) integral and then writing 

t = c o s  0~, u = c o s  02 

gives [ r '  and r'l are given by (2.2)] 

n,2 

~ ' - f o  pS+#dpl )  sin,_2~,dy 27-;# 

I I 2~z 

• f dt f du I h(O) d~(1-lsin2~,)#/2 ~(pcos),,psin),,r',r'l) 
-I -I ) 

A new change of  variables,  

cos 2 7 ~ s, t ~/1 - s  2 ---, t, u ~/1 - t 2 ~ u 

together  with the symmetr ies  of  ~u gives 

�9 I - s 2 Ic -/~ '-" ( 1 - - t ) # ' 2 + ( l + t )  #2 
dt ~ du x/1 _ t 2 

/,+s /,+. l ,g 
x TU ( P "~ 2 ' P "4 2 P " v l - ~ '  P x] 2 J (2.4) 

After a change of the order  of  integrat ion in t and u, the inner par t  of  the 
integral becomes  

f f  f,/~ .': ( 1 - t) #'2 + ( 1 + t) #'2 
!~o x/1 - t 2 

dt hU(r, rj, r', r'l) du 

fJ f,/~ " - ' ( 1 - t ) # 2 + ( l + t )  #'2  
+ , ~ 7 1  ~ t2  dt ~(r, r~, r', r'~) du 

The t integrals can be evaluated,  but  the result can be expressed in terms 
of  e lementary  functions only if fl = 0 or  fl = 1. Fo r  fl = 1, the result is 

23/2 x/1 - s and 23/2 x/1 - u 
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in the first and second terms, respectively. For  all fl �9 [0, 1 ], the asymptotic 
behavior near s = 1 (or u = 1 ) is similar; and therefore this expression will 
be used also when the fl dependence is kept in the power of p. We thus 
arrive at 

I, " x/1 T(r, r , ,  i , r'l) d u d s  1 - s ~ ( r ,  r l , 1  , r ' l ) d u +  - u  "' 

Finally we note that because ~u is symmetric with respect to the primed 
and unprimed variables, the two terms are equal, and hence 

D ( f )  - ~ 2  s'/2-/~ pS+/~ x / 1  s T ( r ,  r I, r' = - , r ' l ) d u d s d  p (2.5) 
) I } 

where the arguments of ~P are as in (2.4). 

3. A R B I T R A R I L Y  S M A L L  E N T R O P Y  D I S S I P A T I O N  

In this section, the formula from Section 2 is used to construct a 
sequence of functions such that the ratio of the relative entropy and the 
entropy dissipation decreases to zero. The calculations are easy because we 
only consider isotropic distributions, but it is important to understand that 
the mechanism behind this result is independent of whether the distribu- 
tions are isotropic or not. Instead the idea is the following. 

Since the entropy dissipation vanishes for any  Maxwellian, but the 
entropy relative to a given Maxwellian is zero only for exactly the same 
Maxwellian, it is natural to attempt a counterexample in the form of a 
sequence of functions f ,  with given first moments (so that the Maxwellian 
M ,  with which to compute the relative entropy is fixed) which converges 
pointwise to a Maxwellian Mh with different moments. In fact, the example 
by Bobylev ~3~ is of that form. Since the integrand of the relative entropy is 
positive, it follows immediately that lim ...... H( f , , [M, )  >~ H ( M j , [ M , , )  > O. 
This integral involves a factor Iv[ 2 which comes from log M,, ,  and therefore 
this means'exactly that ~ f,,(v)[v[" dv is uniformly convergent for all s < 2, 
but not for s = 2. Now, the integrands in the entropy dissipation term con- 
verge pointwise to 0 as n---, Go, and therefore one only needs to establish 
that the integrals converge uniformly. In practice that means imposing 
bounds from below on the sequenceJl,. Note, for example, that i fJ i , (v)=0 
for all v in some open set, then the entropy dissipation rate is infinite, 
regardless of the values of Jl, for other v. 
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For an example, let Mr(r  ) = (2~T)-3/2 exp(-r '- /2T),  and define 

f,:(v)=m~(Ivl)+e(l+lvl) ~s+':'-m~(Ivl)+g,,(Ivl) (3.1) 

Then, as e--*0, ~asJi:(v)dv-~ 1 and ~a, ji:(v) [vl2clv~3+ 1. The 
Maxwellian with the corresponding mass and energy is M4,3(v ). Then 
]D(f,:)/H(f:l M.3)I ~ 0 when e --* 0, because 

and 

g{f :  [ M4/3) ---* f~, M,(Ivl) log(M,( Ivl )/M4/s(Ivl) dv > 0 

ID(f:)l --* 0 

The first expression follows from the fact that the family f :  is uniformly 
bounded from below by M~, uniformly bounded from above by, e.g., Cgo, 
and pointwise convergent. Since the integrand of D(f,:) is pointwise con- 
verging to zero, all that is needed to prove the second one is to establish 
some uniform integrability. To do that, insert (3.1) into 

~(r, r I , r', r'l) = (f'f 'L -/f~ )[Iog(f ' f ' l  ) -  log(ff~ )] 

Since M(r) M(r~) = M(r') M(r', ), only terms of order e remain after expand- 
ing the expression for W. All these terms can be handled in a similar way, 
and here we only study one of them: 

] g,:(r)g,:(r, ) log[ f:(r')f,:(r', )]1 

~< g,:(r) g,:('h ) Ilog[ g,:(r) g,:(r, )]l 

~<e(1 + r )  ~5+,:)(1 + r l )  -~s +':~ log[e-~(l + r ' )  -15 +':) (1 +r ' l)  -15+':~] 

<-..Clelogel(l +p) s+'~(l +x /1 -up) -5  

The term has been simplified here by taking into account that M(r)~< 
c(1 + r )  -s, and also that outside the log term an upper bound is desired 
and that a lower bound is needed for the argument of the logarithm. Then 
the log term is estimated by a 6 power. Next this expression is inserted into 
(2.5) and integrated over pS+/r alp. The remaining integrand is of the form 

C(  1 - u )  - i I  + / ~ + , ~  2 

and carrying out the last integration, one sees that this part of the entropy 
dissipation is O(e log ~). In the same way it follows that all terms converge 
to zero as e decreases. 



Entropy and Moments 1061 

This construction fails if the sequence Ji: has some higher order 
moment uniformly bounded. The result in Section 4 shows that coun- 
terexamples of the type given here are not very relevant for solutions to the 
space-independent Boltzmann equation, at least not for hard potentials. 
Thus it would be interesting to know whether the inequality proposed by 
Cercignani holds for a smaller class of functions. This question has been 
partially answered by Carlen and Carvalho (e.g., ref. 5), who proved that 
for a l l f w i t h  ~f(v)[vl"dv < C <  co, s >  2, there is a strictly increasing func- 
tion ~b such that 

- D ( f )  >~d?(H(fl M)) 

Though this has not been proven, it is conceivable that ~b grows linearly 
near the origin. 

4. ABOUT POVZNER'S INEQUALITY AND 
M O M E N T  GENERATION 

The expressions for Ivl, Iv,I, Iv'l, and Iv',l given in Section 2 can be 
used to obtain a simple proof of Povzner's inequality, which is an essential 
inequality for studying the behavior of the moments of solutions of the 
Boltzmann equation. An improvement of that inequality was proven and 
used by Elmroth tg~ to establish that all moments that exist initially remain 
bounded, and by similar methods Desvillettes ~s~ proved that if any moment 
of order higher than two exists initially, then all moments exist for any 
positive time. 

This result holds only for molecules harder than Maxwellian, but the 
short proof below shows that one does not need to assume more than 
bounded enery and entropy for the result to be valid. That in turn implies 
that the example given in Section 3 is not relevant for any solution of the 
spatially homogeneous Boltzmann equation, except possibly for a fixed 
initial time interval. 

Here is first a sharpened version of the Povzner inequality and the 
simple proof. 

Theorem 4.1. Let ~b(x) = ~i~ ~b(~) d~, where ~b is a strictly increasing 
and positive function. Then 

~(Iv' l- ' )  + ~( Iv ' , l -~) -  ~(Ivl- ')  - ~( Iv ,  I-') ~ Ivl-" ~(Ivl-" + Iv,I -" ) (4.1) 

For O(x)= Ixl "'2, this becomes 

kv'}"+lv',i~-Ivl"-lv,l"<C, lvI ' - I  Iv,I (4.2) 
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and, moreover, if I (v'-v' , ) (v-v, ) l  ~<(1-6e)  Iv-  v,I -~, then 

Iv'l-"+ I r  Iu l " - '  Iv , I -K, . . , . ( Io l "+  Iv,I ~) (4.3) 

where C.,. = s2  ''/2- 2 and K,..,: = s e / 4 -  O(e z) - (9(e~::). 

Remark, The proof below directly shows that the first two terms of 
(4.1) can be uniformly estimated by the remaining terms. The importance 
of the inequality comes from the fact that this sum then can be estimated 
by a product as in the theorem, and there is a considerable freedom in 
trading between growth in Iv[ and in [vii. Elrnroth's version of the Povzner 
inequality consists of the two second inequalities. 

Proof. In the expressions for Ivl, Iv,I, Iv'l, and Iv',l, write cos(27)= t, 
cos-" 0~ =a-', and cos 02=b. Then 

q,(Ivl 2) + qJ(1 v, 12) = g ( t )  = 4,@2( 1 + t ) /2)  + qJ(p-'( 1 - t ) /2)  

~'(Iv'l- ')  + ~( Iv', ] 2 ) =g(b x / l  - (1 - t 2) a 2) 

Both functions are even and increasing with t, and since ]b[ ~< 1 and ]al ~< 1, 
we have 

~<g(1)--g(t) = ~ /  g'(r) dr 

-) 

~< ( 1 -- t) ~blp a) (4.4) 

and expressed in terms of  tvt and [v~ [, this is exactly the estimate (4.1). In 
the special case of ~ ( x ) = x  '~ 2, this gives 

1r - tv'~ I " - I v l  ~ -  Iv,l" 

'(5) ~<2 ~'2- 1 ~. ( l - - t )  
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which is the second inequali ty in T h e o r e m  4.1. Next  we note  that  if t < 1 - e 
and e < 1/2, then 

(1 - t) = (1 - t) g(t)/g(t) > tg(t)/g(1 - e) 

and so 

lv'l ' + lv ' , l ' -  I v l ' -  Iv,l ' 

~<2"/-'~ 2 ( 1 - t )  g ( 1 - e ) J  

s I ' -  s ") ~2"/Z~lvl .Iv, ' - ~ ( l v l " + l v , I  (4.5) 

On the other  hand,  if Ibl < 1 - e ,  then 

g ( l b l ) _ g ( t )  <g( 1 - ~ )  
g(1) 

g( 1 - e) - g( 1 ) 
- -  [ g ( l ) - g ( t ) ]  g(t) 

g(1) 

and 

[ g( 1 - e) - g( 1 )]/g( 1 ) = ( 1 - -  6/2) ~'2 + ( C / 2 )  s 2 _ I = --se/4 + (9(e 2) + (_9(e '/-" ) 

and this implies that  (4.5) holds also in this case, apar t  f rom constant  fac- 
tors of  order  one. Finally, it is easy to see that  if ]cos 0l ~<(1 - 6 e ) ,  i.e., the 
condi t ion required for (4.3) (see Fig. 1 ), then either t < 1 - e  or  ]hi < 1 - e .  

As an appl icat ion of  the Povzner  inequality, we analyze the evolut ion 
of  m o m e n t s  of  solutions to the Bol tzmann  equat ion,  as announced  in the 
introduction.  

T h e o r e m  4.2. Let f~(v) be given, with mass  1, energy E~,, and 
en t ropy  Ho,  and consider  the solut ion f (v ,  t) of  (1.1) with fl > 0 and with 
initial da ta  fo.  Then for any t > O, 

f~3J'(v, t ) [ v [ "dv~  B[1 - e x p ( - - A t ) ] /  

where the cons tants  A and B depend on s, fl, Eo, and  Ho.  

Proof. We recall first that  mass  is conserved (and is assumed to be 
one) and that  the energy and en t ropy  o f f ( v ,  t) are bounded  by Eo and Ho,  
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the corresponding estimates of the initial data. In particular this implies 
that 

f j'(vl, t) + (4.6) [v-v,l" dv>~c(1 Ivl') 

where c depends only on too, Eo, and H o (cf., e.g., ref. 2). The equation for 
moments of order s is 

d r  (v, 
- ~ J ~  t) lvl'dv 

= ~ Q( f  f)(v)  [vl" dv 

1 
=~ fff f(v, tI f(v,, t) 

x (Iv'l ~ + Iv', I ' -  Iv t ' -  Iv,l") I v -  v,I/'h(O) do) dr, dv 

This expression can be obtained by using the same change of variables as 
when deriving (2.1). Write h(O)=h~(O)+h,(O), where h~(0)=0 when 
cos 0 ~< 2e. The Povzner inequality then gives 

d f f(v, t) Iv," dv 

~C.,. f l f ( v ) f ( v l )  Iv,l' ~ l v [ ' l v - v , l ' d v d v ,  

-K,.,:~;f(v)f(v,l(Iv,["+ [ v i i " ) I v - v , l ' d v d v ,  (4.7) 

where C,- and K ...... are the constants from Theorem 4.1 multiplied by 
~s'-t7 do) and Is: ht do), respectively. For the negative term, first using (4.6) 
and the conservation of mass and then using H61der's inequality gives 

II f(v)f(v,  ) lvl,-iv - v, dr, I' dv 
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Because 

Iv, I" - '  Ivl .  Iv - v, I/' < Iv, I" - '  Ivl(1 + Ivl + Iv, I) < (1 + Iv, I")( 1 + Ivl ~) 

the positive term in (4.7) is bounded by 

C~(l + Eo) ( I  f(v) lv,~ dv + 1) 

Writing Y(t)=~f(t ,  v)[v[~dv, we find 

dY 
--~ <~ C,.(1 +Eo)(  Y+ 1) - 2cK,.,: Y~ +/~'" 

The result now follows by comparing this with the Bernoulli differential 
equation 

d ~  
__=2A~" B~,I+/r 
dt 

which has the solution 

E 
] - s,'/t 

?(t) ?(0)-/" . . . . . . .  ,~,, B -2.,u,',.,) = e . . . .  + ~-~ ( 1 - e  

If Y(0)~< 1, there is really nothing to prove. Otherwise take A = C,.( 1 +E0)  
and B = 2cK,. ,:. 

Remark .  The same general result holds for any kernel B(cos 0, 
I v - v i i )  which is unbounded in Iv-v~],  as well as for noncutoff interac- 
tions, but the singularity of C(t) as t ~ 0 is stronger for a more slowly 
increasing B. 
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