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The classical Lorentz model for charged noninteracting point particles in a per- 
pendicular magnetic field is reconsidered in 2D. We show that the standard 
Boltzmann equation is not valid for this model, even in the Grad limit. We con- 
struct a generalized Boltzmann equation which is, and solve the corresponding 
initial value problem exactly. By an independent calculation, we lind the same 
solution by directly constructing the Green function from the dynamics of the 
model in the Grad limit. From this solution an expression lbr the diffusion 
tensor, valid for arbitrary short-range forces, is derived. For hard disks we 
calculate the diffusion tensor explicitly. Away from the Grad limit a percolation 
problem arises. We determine numerically the percolation threshold and the 
corresponding geometric critical exponents. The numerical evidence strongly 
suggests that this continuum percolation model is in the universality class of 2D 
lattice percolation. Although we have explicitly determined a number of limiting 
properties of the model, several intriguing open problems remain. 

KEY WORDS: Kinetic theory; non-Markovian effects; magnetotransport; 
percolation. 

1. I N T R O D U C T I O N  

It  is r e m a r k a b l e  tha t  af ter  all  these  years  the  classical  L o r e n t z  m o d e P  t~ still 

has  surpr ises  in store.  In this  s imple  ca r i c a tu r e  o f  real i ty ,  a d i lu te  gas o f  

c lass ical  p o i n t  pa r t i c les  m o v e s  in a r a n d o m  a r r ay  o f  s t a t i o n a r y  sca t te re rs  

(see ref. 2 - f o r  a s imple  i n t r o d u c t i o n ) .  T h e  m o v i n g  par t ic les  do  not ,  by 

decree ,  in t e rac t  w i th  each  o ther ,  so tha t  the  p r o b l e m  is r educed  to tha t  o f  
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1206 Bobylev et  al.  

a single moving particle interacting with the scatterers through short-range 
forces. The linear Lorentz-Boltzmann equation for the one-particle dis- 
tribution is generally assumed to describe the time evolution of the gas, 
at least in the Grad limit: t31 n - ,  or, a ~ O ,  na n - j  =const.  Here n is the 
number density of the scatterers with radius a, and D is the dimensionality 
of space. The last condition ensures that the mean free path is kept 
constant in the limit, while the dimensionless density tends to zero, 
p = na n -* 0. In fact, under seemingly mild conditions, the Boltzmann equa- 
tion (BE) has been proven to be exact in the Grad limit (see ref. 4 for a 
review of rigorous results). 

However, in a recent letter c5~ we discussed the Lorentz gas of charged 
particles, screened "electrons" of charge - e ,  in two spatial  dimensions and 
under the influence of a perpendicular magnetic field (see Fig. 1). For  this 
case, conventional wisdom is no longer sufficient. Nevertheless, it is 
possible to construct a generalized Boltzmann equation (GBE) which is 
exact in the Grad limit. This equation has an interesting non-Markovian 
structure directly related to the physical mechanism responsible for the 
breakdown of the standard BE. In spite of the complicated non-Markovian 
structure of the GBE, the corresponding initial value problem can be 
solved essentially explicitly. However, this is not the end of the story. The 
peculiarities of the 2D Lorentz model of classical magnetotransport are not 
confined to the Grad limit. Backing off from this limit, we identify a per- 
colation problem and study numerically its critical properties close to 
threshold. The numerical evidence strongly suggests that this continuum 

Fig. 1. Typical paths of the moving "'electron" Icharged particle) in a 2D Lorentz model a 
perpendicular magnetic field. 
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percolation model, as far as its equilibrium properties are concerned, is in 
the same universality class as percolation on a 2D lattice. 

In condensed form, we have already presented ~5~ most of the results to 
be discussed here. It is the purpose of this paper to provide a fuller view 
of the problem. 

2. T H E  B O L T Z M A N N  E Q U A T I O N  

It is useful first to consider the kinetic description provided by the 
standard Boltzmann equation. For  simplicity we restrict ourselves to the 
spatially homogeneous case, with a one-particle distribution f ( r  
depending on time t and on the direction r =/__(v, 2) of the velocity only. 
(The speed v = Ivl is a constant of the motion here.) The BE reads 

~t+co f ( r  d~k g(~b)[f(r162162 (1) 
- - I t  

The second term on the left describes the action of the magnetic field 9~, 
with 09 = e~/m the cyclotron frequency and m the mass. In the Boltzmann 
operator B, the collision frequency v=nvX is proportional to the total 
cross section ~r = ~ dff a(ff), with the dimensionless differential cross section 
defined as g ( f f )=a (~ ) /X .  In classical scattering theory, the total cross 
section is X = 2a for any 2D interaction potential, nonzero for r ~< a, and 
zero otherwise. We restrict ourselves to this class. 

The fundamental assumption on which the standard BE is based is the 
Stosszahlansatz: The moving particle meets every scatterer for the first 
time; no correlations exist between collisions. It is also taken for granted 
that there is a constant frequency v of such collisions. The feature that 
makes classical magnetotransport in 2D exceptional is that, without 
scattering, charged particles move in closed orbits, in circles with the 
cyclotron radius R = v/w. Since the mean free path stays finite in the Grad 
limit, this implies that there is a finite probability Po, even in the Grad 
limit, t h a t ' a n  electron will complete an entire cyclotron orbit without 
scattering. After one revolution without scattering, probability arguments 
are no longer relevant; it has become certain that the electron remains 
a "circling" electron forever, it will never collide. (An in-plane electric 
field will destroy this argument!) The existence of circling electrons in the 
classical 2D Lorentz gas with a perpendicular magnetic field already 
demonstrates that the standard Boltzmann equation cannot be correct in 
this case. Note that both the dimensionality and the magnetic field are 
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essential here. With a vanishing magnetic field, the cyclotron radius diverges, 
and in three spatial dimensions collisionless electrons move in spirals, i.e., 
along trajectories that are not closed. 

The physical mechanism that produces the circling electrons is also 
responsible for a more subtle effect: Recollisions with the same scatterer 
become possible, 3 even in the Grad limit. After a first encounter with a 
scatterer, the probability is essentially the same Po as above that the elec- 
tron will be collision-free until it, by the cyclotron orbit, returns to the 
scatterer with which it already collided. Recollisions flagrantly violate the 
Stosszahlansatz, and introduce non-Markovian effects into the kinetic 
theory. 

Before we face the task of generalizing the BE, it is necessary to con- 
sider the dynamics of collisions and, in particular, of recollision events. 

3. THE D Y N A M I C S  OF COLLISIONS 

3.1. Single Scattering Events 

Consider first a single scattering event, and let the scatterer be a hard 
disk. Between collisions the electrons move in circular orbits with the 
radius R = rico. Since, with hard disks, the scattering process is completed 
in a single point, it is unaffected by the magnetic field. Inspection of Fig. 2 
shows that the differential cross section is given by 

a(Ip)= dd-~ = d - ~ ( a s i n - ~ )  = 2 s i n  ~- (2) 

or, in dimensionless version, g ( ~ ) =  �88 sin I qJ/21, since S = 2a. Note that 2D 
hard disks emphasize backscattering, in contrast to the isotropic scattering 
from 3D hard spheres. 

Clearly the situation is more complicated with soft scatterers, even if 
the forces vanish beyond the radius a. In this more general case, the motion 
during the scattering process is influenced by the magnetic field. As a result, 
the differential cross section depends parametrically on the dimensionless 
ratio a/R. In the Grad limit, however, a/R --. O, and the field dependence of 
the cross section disappears for any short range scatterer, 

3 Recollisions with large scatterers in a magnetic field have been considered previously on a 
phenomenological level by several authors. See, in particular, Polyakov. q6~ 
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Fig. 2. 

. ....,...'"'"'""'~ 
Scattering off a hard disk of radius a in a magnetic field. The impact parameter is b 

and the scattering angle is ~, with b=a sin a and a=(n-r  

3.2 .  R e p e a t e d  E n c o u n t e r s  

We return to the hard-disk case and consider the purely dynamical 
problem of an electron and a single scatterer. The electron motion between 
collisions is all the time along circular orbits, and collisions cause the elec- 
tron to switch from one cyclotron orbit to the next. That  is, as a result of 
the electron colliding, the center of the cyclotron orbit jumps to another 
position. Figure 3 shows three subsequent collisions with the scatterer. Let 
the initial cyclotron orbit be no. 1. In the first encounter with the hard disk 
the electron is scattered over an angle ~, and switches to cyclotron orbit 
no. 2. F rom the symmetry of the event it is clear that cyclotron orbit no. 2 
has its center the same.dis tance z~ from the center of the scatterer as that 
of orbit no 1. As a result, orbit no. 2 intersects the scatterer in precisely the 
same way as orbit no. 1, only shifted an angle 2fl along the circumference 
of the disk. Simple tr igonometry shows that fl is given by 

A 2 _ R 2 q - a  2 
c o s f l -  (3) 

2aA 

for zl on the interval ( R -  a, R + a). That  is, in repeated encounters with 
the hard disk, the scattering angle ~b remains the same, and so does the 
shift 2ft. If  fl happens to be a rational fraction of 2n, the result is a periodic 
trajectory of finite length. If, on the other hand, A is chosen according to 
a continuous probabili ty distribution, such closed orbits are of measure 
zero, and we can ignore them. With probabili ty unity the orbits will, in the 
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,<  A ) .  

2 

Fig. 3. Successive collisions with a hard-disk scatterer of radius a. Subsequent cyclotron 
orbits (all with radius R) are numbered 1, 2, and 3. The initial collision makes the electron 
switch form cyclotron orbit I to cyclotron orbit 2, the second from orbit 2 to orbit 3. etc. The 
distance between the center of  a cyclotron orbit and the center of the hard-disk scatterer 
in zl. The angle separating two subsequent collision points on the periphery of the disk is 2/3. 

course of time, densely fill a ring-shaped area around the scatterer, with 
outer radius A +R.  With the hard disk replaced by a soft isotropic 
scatterer, these qualitative conclusions remain unaffected, even though the 
details of the scattering process become more complicated. 

Note that in the Grad limit, where a / R  ~ O, two important simplifica- 
tions arise: (i) As pointed out above, the differential cross section becomes 
independent of the magnetic field. (ii) On the length scale set by the size 
of the scatterer, the cyclotron orbits degenerate into straight lines. This 
implies that the accumulated scattering angle after s successive encounters 
with the scatterer equals s~,, where ~b is the scattering angle of the first 
collision. 

4. THE GENERALIZED B O L T Z M A N N  E Q U A T I O N  

With the dynamics of recollisions with a single scatterer under control, 
we now return to the Lorentz model in which the number of scatterers is 
large. One more detail must be cleared up before we can write down the 
kinetic theory for the model. We need an explicit expression for P0, the 
probability that an electron started in a random initial state (but with 
given v!) completes a cyclotron orbit without suffering collisions. We have 
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not yet passed to the Grad limit, but we insist that the centers of the 
scatterers are randomly distributed on the plane with uniform density n 
(i.e., no correlations between the positions of the scatterers, no penalty for 
overlaps!). The scatterers, soft or hard, have a radius a. For  a point elec- 
tron to remain unperturbed during an entire revolution in a cyclotron orbit 
of radius R, the area between the circles with radii R - a  and R + a must 
be free of scattering centers. This area is A o = n [ ( R + a ) 2 - ( R - a )  2] = 
2rcR. 2a. The probability that it is free of scattering centers is 

Po = e x p ( - A o n )  = exp( - 2 h R .  2na) =- e x p ( - 2 n R / A )  

The last equality defines our mean free path, A = I/(2na). As the Grad limit 
is approached, A remains constant. Note that this definition of the mean 
free path coincides with A = 1/(n~r). Introducing the collision frequency, 
v = nvX = 2nva, we can write Po = e x p ( -  vT), where T--2~z/co is the period 
in a cyclotron orbit. 

The area A that has to be free of scattering centers for a recollision to 
take place is not quite equal to A o, and Fig. 3 shows that, away from the 
Grad limit, the precise value of this area depends on the details of the 
situation: the distance A, all previous encounters with the scatterers, etc. 
However, no detailed calculations are necessary to arrive at the conclusion 
that the d~ference between A o and any particular A of relevance to a 
recollision event is of r This means that, in the Grad limit, An ~ Aon = 
2zcR/A. As a consequence, in this limit, P o = e x p ( - 2 ~ R / A ) = e x p ( - v T )  
represents both the probability of completing a first cyclotron orbit without 
collisions and the probability of returning via such an orbit to a scatterer 
for an additional encounter. (Here we disregard the possibility of periodic 
trajectories, of measure zero, as discussed in Section 3.2.) 

Since the probability is unity that the electron sweeps out new 
territory every time it embarks on a cyclotron orbit between successive 
collisions with a given scatterer, the chance of survival continues to decay 
exponentially. In the Grad limit, therefore, the probability is unity that the 
initial state separates the electrons into two, and only two, distinct classes: 
With probability P0 the electron is "circling," it never collides with any 
scatterer. IX contrast the probability is 1 -  P0 that it is "wandering" and, 
in the course of time, will collide with infinitely many different scatterers. 
Note that this simple classification only applies in the Grad limit. For finite 
values of a and n, the options are not only zero and infinity, but the elec- 
tron can get trapped in clusters of any finite number of scatterers. We shall 
return to this situation in Section 7. 

Let us summarize the simplifying features introduced by passage to the 
Grad limit: 

822/87/5-6-16 
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�9 Modulo initial states of measure zero, an electron either remains 
collisionless or it collides, in the course of time, with infinitely many 
different scatterers. 

�9 The electron can only recollide with a given scatterer if no other 
scatterer has been hit in the meantime. (This is the simplifying essence of 
the Grad limit in the standard Boltzmann case, and it remains true here: 
The probability to return to a scatterer previously encountered, by a ran- 
dom collision sequence, tends to zero.) 

�9 The total scattering angle after s successive collisions with the same 
scatterer is sO where 0 is the scattering angle of the first encounter with 
that scatterer. 

Finally, it is important to realize that the initial collision in a recolli- 
sion series is of standard probabilistic Boltzmann type, whereas the subse- 
quent ones, weighted by powers of Po, can be described by dynamics alone. 
This set of properties of the dynamics in the Grad limit of the Lorentz 
model is sufficient to enable us to directly write down the generalized 
Boltzmann equation: 

--fG(~b--SO, t - - s T ) ]  (4) 

Here [t/T] is the number of cyclotron periods completed at time t. The 
superscript G on fG(~b, t) refers to the following subtlety: During the initial 
period one has It~T] =0 ,  and the right-hand side (RHS) of the GBE 
reduces to that of the standard BE. The distinction between circling and 
wandering electrons has not yet been fully made, and the one-particle 
distribution is that for all electrons: f G  = f = f c  + fw .  For  t t> T, however, 
the GBE applies exclusively to the wandering electrons: fG  = fw .  The time 
evolution of the circling electrons, once they are identified, is trivial. A con- 
sequence of this is that the normalization o f f  G jumps at t = T, from 1 to 
1 - Po. 

On the basis of the arguments presented, we assert that the generalized 
Boltzmann equation (4) is exact in the Grad limit. This assertion is 
strengthened by the fact, demonstrated in the next section, that the initial 
value problem can be solved in two independent ways: (i) via kinetic 
theory, i.e., on the basis of the GBE, and (ii) directly from the dynamics 
of the model, in the Grad limit. The results of the two different procedures 
are in perfect agreement. We are confident that the GBE is indeed exact. 
Nevertheless, the GBE raises two intriguing problems: How to derive 
(preferably with leading correction terms) the GBE from the hierarchy, 14~ 
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the royal road to every kinetic equation? And, how to construct a mathe- 
matically rigorous derivation of the GBE? 

5. SOLUTION OF THE INITIAL VALUE PROBLEM 

In order to solve the initial value problem posed by the GBE, we first 
introduce Fourier transforms in angles and Laplace transforms in time, 

F,,,(p) = dt e -P~, , ( t )  = dt e -~" ddD~ e~""hf~d~, ~., t) (5) 

The Fourier transform of the right-hand side of the GBE reads, after a 
change in the order of integrations, 

[ t "r] . n  

v ~, Po J d e  g(~b) ei''"'l'(e i''''l' 1) "'; " - J , , , ( t  - s T )  ( 6 )  
s = 0 n 

With Po = e-"r ,  the Fourier-Laplace transform of the RHS of the GBE 
reads, after a change in the order of summation over s with integrations 
over time and scattering angle, 

f 
n e i m ' k  G 

v d~b g(~b) l_e_~,,+l,~r+i,, , , iF,, ,(p) (7) 

When one performs the Fourier-Laplace transform of the LHS of the 
GBE, note must be taken of the sudden change of meaning o f fC( r  t) at 
t = T. One finds 

[e-P" f  ,,,(t)G r-  [e -r'r -- imogF~(p) pF , , , (p )+  ]o + .,,,,~'JJr+ 

(p  imm) G It,+,,r) = - -  F , , , ( p )  - ( 1 - e  f , , ( O )  ( 8 )  

using the fact that f~i(T) = exp[ - ( v - #n~o) T] f,,,(0) = e -"~'i,,(0). 
The general solution of the initial value problem posed by the GBE is 

therefore, in Fourier-Laplace form, 

( 1 - e  t"+"~r)Ji,,(O) 
- (9) 

Fm(p)  p - h m o + v f f _ , d $  g($)(1 -e i" '*) / (1  - e  - ' '+ ' ' ' r+' ' ' r  

This result is valid for an), interaction of short range. In order to perform 
the integration over ~b, the differential cross section corresponding to this 
interaction must be specified. 
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As announced previously, this is not the only way to solve the initial 
value problem. Since the dynamics underlying the GBE is well defined, and 
quite simple in the Grad limit, it is possible to directly construct the 
Fourier-Laplace transform of the Green function 

s; ; ;o" F,,,(p) = dt e -p '  de ei"'*f(qb, t) - dt e - P ' (  e i'''e(')) (lO) 

with f ( r  0) = 6(r Here ( e x p [ i m r  is interpreted as an average over 
the random function exp[ imr  with r  The properties of the 
random function follow from the dynamics of the model. The calculation is 
fairly complicated and is consequently relegated to the Appendix. The 
result is in perfect accord with (9) when note is taken of the fact that F,,,(p) 
includes the circling electrons, also for t >/T, whereas o F , , (p )  does not. As 
a consequence, 

e - { p + v )  r F,,,(p) o = F , , ( p ) +  - -  (11) 
p - imco 

6. THE D IFFUSION TENSOR 

From the Green function (11), i.e., from (9), the diffusion tensor of the 
Lorentz gas immediately follows. The Einstein-Kubo formula gives, with 
the understanding that r  0, 

D,.,. = - D . , .  = dtfv.,.(t) vx(O)) = �89 2 dt( sin r  

(~2) 

For the asymptotics of the mean square displacement only the symmetric 
part of the tensor plays a role, and the antisymmetric off-diagonal elements 
are consequently irrelevant in that context. With an externally imposed 
gradient, however, the off-diagonal elements acquire physical significance. 
In fact, even the circling electrons contribute to the off-diagonal elements. 
It is convenient to introduce the complex diffusion constant ~ = Dj § iD,_, 
with D~ = D,..,. and D 2 = D,,,.. Then the Kubo formula acquires the compact 
form 

@ =  �89 2 ( ei~'~) r �89 (13) 
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From (1 1) and (9) the diffusion tensor follows as 4 

1 , I e - " r  1 - e  - ' 'r  ] 
~ = ~ v -  ira+ _, .r+i~)_ic ~ (14) - -  v ]'~_,~ d $  g ( ~ ) ( 1  - -  e"/')/( 1 - - e  

This result is valid for any interaction of short range. 
We now specialize to hard disks by using (2), or its dimensionless 

Fourier transform, g,,, = - ( 4 m  2 -  1)- i .  Proceeding via infinite series, one 
can perform the ~b-integration in (14) for this case. The result is 

~=21  v2 L [ x2-im + r-~ X2)I 1 -- imro(x) J ; x =  e -''r/2 = e . . . .  / " e =  ....... /,,i,.,~1 

(15) 1x2 1x, l+x )] 
- 2x-------T-\ 2x l n l - - ~ - I  

The diffusion time scale to (x )  depends only weakly on the magnetic field. 5 
As ~--* 0, i.e., x--* 0, (15) yields tO1=  (4/3) v, in agreement with the result 
from the standard Boltzmann equation. In the other extreme, N'--* oo, i.e., 
x--* 1, one finds r D~= v. (One can understand this physically by noting 
that, in this limit, the magnetic field acts as an effective randomizer of 
velocity directions.) There is no interesting structure in ro  as a function of 

between these extremes. As a result, it is the factor ( 1 - x 2) = ( 1 - e -"r)  = 
(1 - P o )  that is the most important one. This factor reflects the simple fact 
that only the wandering electrons (weight 1 - Po) contribute to the diffusion 
process proper. The circling electrons (weight P0) are trapped in their 
cyclotron orbits. The qualitative aspects of these results are independent of 
the details of the interaction. 

7.  P E R C O L A T I O N  

We now move away from the Grad limit, keeping both the dimen- 
sionless density and the radius of the hard disk relative to the cyclotron 
radius small, i.e., p = h a  2 =  (a/l)2~ 1 and a / R ~  1. Combination of these 
small quantities gives the new parameter R / l =  R(2Aa) -1 /2= r, of arbitrary 
magnitude. We note that in the Grad limit, r -~ 09. In this limit, the diffusion 
tensor is given by the GBE, i.e., by ( 11 ). On the other hand, for r sufficiently 
small, no diffusion in the usual sense is possible, since the electrons will, with 
probability unity, be trapped around a finite cluster of scatterers. As a conse- 
quence, there must be a percolation threshold rp below which the diagonal 

4 The contribution to D, from the circling electrons was overlooked in ref. 5. 
5 The small-x expansion of this time is r~l(x) = (4/3) v[ 1 - x2/5 - x4/35 - -  x 6 / 1 0 5  . . . .  ] .  

Already the parabolic approximation is reasonable all the way to x = 1. 
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part of the diffusion tensor (defined by taking the macroscopic limit beJbre 
the limit t ~ ov in 9 )  vanishes. 

In order to clarify the geometry of this percolation problem, we focus on 
a scatterer at position r~. The distance between this scatterer and a scatterer 
at r~ is dil = Jr ; - - r  I I. If  the cyclotron radius R is less than m i n ~  I d~l, an 
electron colliding with this scatterer will be trapped around it, eventually 
sweeping out the area of a circle of radius 2R centered at the scatterer. [ We 
have assumed that a ,~ R, so that corrections to R of ~O(a) can be neglected]. 
Now imagine decreasing the magnetic field, i.e., increasing R until 
2R = min;# ~ d;~. The electron will then hit a second scatterer, which we label 
"2" (so that d_,l = m i n ~  i d~l ). If  d_, I - -min /e  j djl, the electron will continue 
to rescatter only with 1 and 2. These two "active" scatterers define a cluster 
of size two. However, ifd_,~ > minjr dj_,, other scatterers than these two will 
be hit. When the number  of accessible scatterers diverges with the size of the 
system, there is percolation. The diagonal part  of the diffusion tensor no 
longer vanishes, but becomes finite. The critical cyclotron radius at which this 
infinite cluster emerges is, by definition, Rp = rrl. 

Lorenz et al. ~7~ have studied this percolation problem in a different 
context. By placing N circles at random inside a unit square and increasing 
their radii until a path of touching circles appears from one edge of the 
square to the opposite one, they found ~' rp = 0.5993 _+ 0.0007. Furthermore, 
they determined the correlation length exponent v--which in our context is 
a localization length exponent - - to  be 1.37 +_ 0.07, and the order parameter  
exponent to be fl/v = 0.106 _+ 0.003. The exact results for lattice percolation 
in two dimensions are ~'~ v =4 /3  and fl/v = 5/48 ~ 0.10417. 

We have studied this percolation problem using an algorithm different 
from the one sketched above. It is based on the following observation: 
In Fig. 4 we show two paths .~ leading from one edge of the sample to the 
other. Each path has a critical cyclotron radius R,.[.~] associated with it 
defined by 

2R,.[:~] = max d~/ (16) 

If R >~ R,[ .~] ,  the electrons may cross the sample by a succession of colli- 
sions with the scatterers belonging to ~'. If  R < R , . [ ~ ] ,  this sequence of 
scatterings is not available. We note, however, that the electrons may still 
cross the sample through different sequences of scatterings involving scat- 
terers belonging to .~. Twice the critical radius, which determines whether 
electrons can move from one edge of the sample to the opposite one, must 

~' An earlier result is that of Shante an KirkpatrickJ '~ who determined the critical volume frac- 
tion to be c,. = 0.68. corresponding to rt, = 0.602. 
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Fig. 4. Two paths .# leading from one edge of the sample to the other. For any of those 
paths, there is a critical cyclotron radius 2R,[ . r  that makes it possible for the electrons to 
traverse the sample by successively colliding with the scatterers belonging to that path. 

be equal to the length di' / of the critical "bond," that which minimizes 
2 R , [ ~ ]  over all possible paths ~ connecting these two edges, ~t~ 

2R, = d~i = min 2 R , [ ~ ]  = min ( max de~) (17) 

In order to determine R,. for a given sample, we use the following "relaxa- 
tion" algorithm/~ ~ Assign to all scatterers a number 6i, which initially is 
set equal to the distance from that scatterer to the lower edge of the system. 
Define a neighborhood n(i) of each scatterer by a set distance A chosen so 
that, on the one hand, A > 2R,., and on the other, A is kept small in order 
to minimize computing time. Go through the list of scatterers and check 
their neighborhoods n(i) for other scatterers with J i < J j .  Upgrade the 
value of fii to mini~,,,~[6~, max(6i, dgi) ]. Iterate until convergence. Next 
consider the horizontal strip S extending A down from the upper edge of 
the system. List the scatterers in this strip, their J~, and their distances u; 
to the upper edge. For the given sample, a critical percolation path .~,, 
connecting the upper and lower edges of the system is recognized as one 
which minimizes max(J~, u;). There are several such paths, all with the 
property that they pass through the critical "bond," which determines the 
critical radius for the sample at hand, 

2R, = d}i = min max(Ji, ui) (18) 
i E S  

The computing time required by this algorithm grows with the system size 
3 ,/2 as N , where N is the total number of scatterers. 
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For  a determination of the order parameter exponent, we also need 
the size of the percolation cluster. This is computed as follows: Start with 
the list of scatterers belonging to one of the critical paths .~i. From every 
scatterer on this path search for scatterers in a neighborhood defined by 
the distance 2R,.. Repeat the procedure from every new scatterer found this 
way. Iterate until all scatterers that can be reached from ~ i  by steps of 
lengths not greater than 2R,. have been added to the list. Clearly, the end 
result is independent of which critical path one starts from. The number of 
scatterers on the list equals, by definition, the size N,. of the critical percola- 
tion cluster for the sample at hand. This determination of the critical 
cluster size does not significantly add to the computing time. 

Finally, numbers must be averaged over an ensemble of similar sam- 
ples. Our numerical results are based on samples containing from N--312  
to N =  160, 000 scatterers. The number of samples, Nsamp for each N has 
been chosen so that N x  N ...... p=  2 x 10 6. In Fig. 5 we show rc=R,./l as a 
function of N-~/2,.= N-3/8. The reason for scaling the abscissa this way is 
the following: We expect a sample containing N scatterers at its effective 
percolation threshold to behave like a system with correlation length equal 
to its linear size 1/l= v/-N, in units of I. That is, Irp- r,  I - " ~  x /~ .  Solving 
this equation with respect to r, ,  one has 

A 
r,.=r?+ Nm" (19) 

where A is some constant. However, we see from Fig. 5 that the constant 
A is very small, and as a consequence, we can only extract the percolation 

Fig. 5. 

0 . 6 0 1 0  

0 . 6 0 0 5  

0 . 6 0 0 0  
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t 

0 . 5 9 8 0  . . . . . . . . . . .  i , , , i , , , , . , , 
0 . 0 0  0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8  O.  1 0  0 . 1 2  

N-tl2~ 

Effective percolation threshold as a function of N-~/'-". Extrapolation to N---, oo gives 
the percolation threshold. We estimate it to be r r = 0.5998 _+ 0.0005. 
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threshold rp f rom this figure. H a d  A been large, only the correct  choice for 
v would have p roduced  a straight  line. We ext rapola te  r,. for N--* oo and 
est imate rp = lim N_ ~ r,. = 0.5998 _ 0.0005. 

Fo r  a de te rmina t ion  of the corre la t ion length exponent  v, we record the 
var iance of  the effective percola t ion threshold,  6re = x / <  r~. > - < r,.) 2 ( < . . .  > 
denotes  configurat ional  average).  F r o m  finite-size scaling analysis we expect 
that  

6r , .~  N -t/~-'' (20) 

This quant i ty  is shown in a log - log  plot  in Fig. 6. Careful inspection of  
this figure shows tha t  the da ta  points  fall on a slightly bent  curve, thus 
indicating impor t an t  correct ions to scaling. In Fig. 7 we show the effective 
exponent  as a function of  the smallest  N included in the fit. For  example,  
the first da ta  point  in this p lot  gives the exponent  as determined f rom a 
least squares  fit based on all ten da ta  points,  while the last da ta  point  is 
based on a least squares  fit over  the three largest values of  N: N =  40,000, 
N =  80,000, and N =  160,000. It  is clear f rom this figure that  the effective 
exponent  is decreasing, and we est imate that  1 /2v=0.375 +0.005.  This 
leads to v = 1.33 +0.02.  Note  that  the value v =  1.37-t-0.07 repor ted  by 
Lorenz  et  al. 17~ and that  found in our  previous publ icat ion ~5~ v = 1.37 _ 0.02 
are mutua l ly  consistent.  However ,  the value v = 4 / 3 ,  exact for lattice 
percolat ion,  falls outside the lat ter  estimate. On  the basis of  our  present  
extensive calculations, we conclude that  the discrepancy is due to finite-size 
corrections.  The  present  da ta  are fully consistent with v = 4/3 being the 
exact value also for the Lorentz  model.  

10" 

Fig. 6. 

~.~ 10 .2 

10"a10 2 �9 . . . . . .  ~ " . . . . . .  ~ ,  " . . . . . .  l"~S 

N 

10  6 

Variance of r,. as a function of N. The straight line is A N  -3/8. It acts as a guide to 
the eye, and indicates that the data points Fall on a slightly bent curve. 
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Lower  C u t o f f  

Fig. 7. Effective exponent determined by least-squares fits of the data of Fig. 6 with N larger 
than some cutoff wihie recorded along the abscissa. We estimate that l/2v = 0.375 + 0.005. 

Finite-size scaling predicts that the fraction of the scatterers that 
belong to the critical percolation cluster scales like ( N , ) / N , , .  N -/~ "-'. Our 
results are shown in Fig. 8. A leastsquares fit of the data gives f l /v= 
0.102 ___ 0.005, to be compared with the exact value f l /v= 5/48 ,.~ 0.104. 

Thus we conclude that all our numerical data are consistent with our 
model belonging to the same geometric universality class as lattice percolation. 

Fig. 8. 

z_. 

v 

0"110z 10 ~ tO = 10 s 10 ~ 

N 

Relative size of percohlting cluster as a function of N. The straight line is a least- 
squares fit based on all the data points. It has a slope of -0.051. 
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8. DISCUSSION 

8.1. Kinetic Theory 

To our knowledge the GBE (4) is the first explicit example of an exact 
non-Markovian kinetic equation valid for a physical model with well- 
defined dynamics. Equally important: The initial value problem has been 
solved exactly in the sense of (9). It is gratifying that the same solution can 
be found by an independent route, in which one averages over all "paths" 
fi'om ~b(0) to ~b(t}. However, the relative ease by which both methods lead 
to the solutions is directly related to the simplifications inherent in the Grad 
limit. We emphasize that a rigorous proof, in the mathematical sense, of the 
GBE has not been constructed here. The techniques used to establish the 
Green function directly from the dynamics might be useful in constructing 
such a proof. 

From a physical point of view it seems more important to rederive the 
GBE from the hierarchy and in the process keep track of the most impor- 
tant correction terms. That this could lead to new insights is emphasized by 
the fact, explained below, that the Grad limit is in a certain sense singular. 
We plan to return to a derivation of the GBE from the hierarchy in future 
work. 

The Einstein relation (also its zero-temperature version of relevance in 
this case) proves, quite generally, that the diffusion and conductivity ten- 
sors are proportional to one another. However, introduction of a small but 
finite electric field ~ brings a qualitatively new feature into the problem. 
In crossed magnetic and electric fields, the center of the cyclotron orbit 
acquires a drift velocity perpendicular to both and with magnitude va= 
,~/.~. As a consequence, the orbits are no longer closed and the mechanism 
basic to our GBE no longer applies, at least in a strict sense. A rough 
estimate gives that an electron can recollide with the same scatterer 
provided that va < a. This yields a characteristic value of the electric field, 
g,. = ~ a / T =  e~3"-a/(2nm), beyond which recollisions are no longer relevant. 
Clearly, g,. ~ 0 in the Grad limit, i.e., the diffusion tensor as a function of 
the electric field becomes singular at ~ = 0. As the electric field is switched 
on, ~ jumpg from the result (15) given by GBE to (presumably) the diffu- 
sion tensor which follows from the standard BE. The strongly nonlinear 
behavior of the conductivity in the small-field region up to g,. serves as a 
dramatic illustration of the pitfalls inherent in linear response theory, as 
pointed out by van Kampen/t- ' l  Furthermore, the above arguments high- 
light the singular nature of the Grad limit in this model, and demonstrate 
the importance of studying the leading correction terms away from the 
limit, with a small electric field included (see ref. 20). At this point we note 
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that if one is sufficiently close to the Grad limit for our result on the diffu- 
sion tensor to apply, and the electric field is sufficiently weak that it is 
meaningful to use the Einstein relation, the magnetoresistence (the dif- 
ference between the diagonal resistivity and its value at zero magnetic field) 
is negative, and proportional to x 2 = exp( - 2rwmv/(Ae~)). 

In particular, the open problems indicated above must be clarified 
before a realistic attempt can be made to relate this model to real physical 
systems. As is well known, quantum magnetotransport in the 2D electron 
gas has been one of the most active areas of research during the last 15 
years (for representative reviews see refs. 13). For a classical description to 
be realistic, the scatterers must be reasonably large on the scale of the 
deBroglie wavelength. This points to random arrays of "quantum antidots" 
as potential candidates. However, the dimensionless density of the scat- 
terers must be small for the GBE to be a good approximation. This raises 
the problem of ubiquitous disorder potentials, which will act as random 
electric fields in the plane of the electron gas. In short: The connections, 
if any, of our model to real physical systems, are yet to be made. 

This troublesome perspective shall not deter us from studying this 
fascinating model for its own sake. We close the discussion on the kinetic 
theory with three remarks: 

�9 The GBE collision operator is non-Markovian in time, but it is local 
in space. Generalization of the equation to the spatially inhomogeneous case 
is therefore immediate. 

�9 Ernst and Weijland, ~4~ 25 years ago, showed that, without a 
magnetic field, but beyond the Grad limit, the random recollisions 
described by the ring diagrams are reponsible for algebraic tails in the 
velocity autocorrelation function. The recollisions in our case are of a 
fundamentally different nature, and do not lead to algebraic tails. 

�9 Finally, note that the special role of the magnetic field here is to 
produce closed orbits. Any other mechanism that produces closed orbits 
would lead to analogous results. As an artificial example, let the 2D 
Lorentz gas, without a magnetic field, live on the surface of a 3D sphere 
with a finite radius R: The GBE again applies. 

8.2. Percolation 

In this paper only the geometric aspects of the percolation problem 
arising from the Lorentz model have been studied, and the corresponding 
universality class identified, with reasonable confidence, as that of lattice 
percolation. Here we add some comments on the dynamics close to the 
percolation threshold. 
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When the cyclotron radius approaches the critical value R,. ,,~ 0.59981 
from above, we expect diffusion to become anomalously slow. That  is, the 
root-mean-square distance traveled by an electron is expected to grow with 
time t as t ~/'1,,, where d,,. is known as the random walk dimension. 1~6~ In our 
model there are two possible sources for this slowing down. One is shared 
with the lattice percolation problem. Extensive numerical studies of the 
conductance exponent in lattice percolation 1~7~ has pinned down the value 
of d,,. to d,. = 2.87 for that case. The slowing down of lattice percolation can 
be understood from the topology of the infinite cluster. This cluster is a 
structure with fractal dimension 2 -~8 /v=91 /48  ~ 1.896, in the shape of a 
"necklace" of "blobs" (subclusters) joined together by singly connected 
bonds (i.e., bonds which divide the infinite cluster into two parts if cut). 
These singly connected bonds themselves form a fractal set of dimension 
1 / v =  3/4. ~181 Bonds in the blobs form two classes: Those belonging to the 
"backbone" and those belonging to the "dangling ends." The backbone of 
the infinite cluster is the set of bonds that would carry a current if the 
infinite cluster were a network of conductors (so that the singly connected 
bonds also belong to this class). The fractal dimension of the backbone is 
approximately 1.62. ~ ~91 Since this fractal dimension is smaller than that of 
the infinite cluster itself, it is clear that the dangling ends dominate. Ran- 
dom walkers will get into these dangling ends and spend most of their time 
looking for the way out of them again. Only when the random walkers 
move along the backbone do they have a chance of advancing. Further- 
more, it is necessary that they find all of the singly connected bonds, a 
small subset of those belonging to the backbone. These difficulties conspire 
to change the random walk dimension from 2 to 2.87. 

The second possible source for anomalous slowing down of diffusion 
near the percolation threshold does not exist in the context of lattice per- 
colation, but is specific to Lorentz type models. It is associated with the 
equivalent of the singly connected bonds: At the percolation threshold, all 
percolating scattering paths 9~i pass through the critical d~) defined in Eq. 
(17). However, there are other d/i through which all percolating paths must 
pass as well. These are the equivalent of the singly connected bonds in 
lattice percolation. Let us now focus on the two scatterers defining the criti- 
cal d~.. When the electron scatters on one of them, the next collision will 
either be with the same scatterer, with the second critical scatterer, or with 
a third scatterer bringing the electron back into the cluster from which it 
came. Whenever the electron moves back into the cluster from which it 
came, it will typically need to reexplore it in full in order to once again find 
the critical scatterer. This scenario will appear at all the equivalents of the 
singly connected bonds. If the number of necessary reexplorations before 
the "singly connected" d u is crossed has a well-defined average value, the 
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random walk dimension will be that of lattice percolation. However, there 
is another possibility: The distribution of necessary reexplorations could 
fall off by a power law sufficiently slow for such an average not to exist. 
Should this be the case, the random walk dimension will be larger than 
that of lattice percolation. We are at present investigating this possibility. 

We close by pointing to the following curiosity: For  sufficiently large 
dimensionless densities, and with overlapping scatterers, the existence of a 
percolation threshold based on an entirely different mechanism from the 
one studied here was pointed out many years agoJ ~5._,~ In the high-density 
regime the moving particle can simply be trapped in a cage formed by 
overlapping scatterers. It is therefore a curious fact that with overlapping 
scatterers and in a magnetic field the diffusive regime as a function of the 
dimensionless density is bounded by a percolation threshold both from 
below and from above. Furthermore, with overlapping hard disks the posi- 
tion of the high-density percolation threshold is determined by precisely the 
same calculation as that reported above. The only difference is that R must 
now be reinterpreted as the radius a of the overlapping hard disks. 

APPENDIX.  DIRECT EVALUATION OF THE GREEN FUNCTION 

In this Appendix we shall evaluate directly, without reference to the 
generalized Boltzmann equation, the Fourier-Laplace transform of the 
Green function (10). The random variables governing ~b(t), and their dis- 
tribution, are found by direct inspection of the dynamics of the Lorentz gas 
in the Grad limit. 

A1. The Random Variables 

In the Grad limit, collision sequences in the Lorentz model are of the type 

122234456788889... (A1) 

In the example shown in (A1), after the collision with scatterer no. I, the 
moving particle suffers three consecutive collisions with scatterer no. 2 (as 
a result of the magnetic field) before it moves on to scatterer no. 3, etc. 
After the three consecutive collisions with scatterer no. 2, the particle will 
(with certainty in the Grad limit) never again collide with this particular 
scatterer. The time of the initial collision with scatterer no. i is defined as 
ti, and in every collision with this scatterer the angle ~,; is added to ~b(t). 
Introducing the time intervals ri--  t~ ~ ( i=  l, 2, 3,...; to - 0), we identify the 
following independent random variables, 

�9 ~,;, all distributed on the interval - n  <@ ~<n with a probability 
density given by the dimensionless cross section g(@). 
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~  ( i=2 ,3 , . . . ) ,  with probabil i ty density p(r)=vexp(-vz) on 
0 < ~ r < c o .  

~ z t, with a probabil i ty density p(r,)=vexp(-vr,) on the interval 
0 <~ r t < T, integrated to a total weight 1 - e  -''r, with the remaining weight 
associated with the probabil i ty Po = e - " r  that  r ~ = co, i.e., that  no collision 
takes place. 

A2. The Random Function 

The r andom variables defined above completely specify the function 
~( t l r ,  .... ; i f ,  .... ). For  convenience from here on we rescale the time variable 
so that v = l .  

In terms of  the reduced angle ~(t)=~(t)-cot, and with [ x ]  the 
integer part  of  x, one has 

i I 

~(tT)=~(t~)+(l+[ri/T])~bi_,= ~ (1 + [ r i + , / T ] ) ~ b  J (A2) 
. i =  I 

Thus, on the interval ti < t < t~+ ~ ( 1 ~< i < ~ ) the function ~(t I r t ,--.; ~J i .... ) 
is specified by the r andom variables as 

i - - I  

~b(ti<t<t~+,)= ~ ( l + [ r ~ + , / T ] ) q J i + ( l + [ ( t - t ~ ) / T ] ) ~ b ~ + c o t  (A3) 
. i =  I 

with the unders tanding that  the sum vanishes for i < 2. The initial interval 
0 ~< t < t t is special, 

~(0 ~< t < tt) = cot (A4) 

However,  with the definitions ~k ,=0  and t~j=0, Eq. (A3) also extends to 
the case i = 0. 

A3. S u m m a t i o n  over  Paths  in Angle  S p a c e  

Insertion of  (A3) into (10) gives 

F,,,(p) = dte r'ei""/'~'~ 
k 0 t,t / rp. r 

= exp { --(p--imw) ri+im{1 + [z//T] •i-i} 
k 0 / I 

fl rk + I I • ~ dr  exp{ -(p--imco) r + i m ( 1  + [ r / T ] )  ~b~_} ,l,.~ (A5) 
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where the notation < . . .  >~.~ emphasizes that one should average over 
both the ~,'s and the r's. 

Since all the random variables are mutually independent, we can 
separately average the final r-integral in (AS) over Zk+~, with the restric- 
tion that k/> 1: 

Ak = <~*+' d'r exp{ �9 �9 . } > = f o : - d r e x p { . . . } I ~ d r k + , e  -~*+,  
rk4 I 

= d r e x p { - ( p + l - i m c o )  r + i m ( l + [ r / T ] ) O ~ . }  

1 - e -1 P § t ) T ei,,,,p~ 

p + 1 - -  i m c o  1 - -  e - ( p + i ) T+ i,,,,~k 
(A6) 

The case k = 0 requires special treatment, since the probability distribution 
over r t is special (note that ~o = 0), 

A o = < f ( i t d r e - ( r - i ' " ' " " > ,  ' 

fo ;o 
r I 

= d T  I e - q  dTe-(P-im.,)r_l_e--T 
) 

d r  e - ( p - i , , , . , ) .  

e - t p + I ) T  1 - - e  - ( p + t j T  

- -  + (A7) 
p - imaJ p + 1 - ima) 

Now, comparison between (A5) and the second line of (A6) shows 
that F , , ( p )  can be written 

F , , , ( p )  = Ao +.4~) At (A8) 
k t . i =  ] 

with 

.~o= d r  z e _ ~ , e _ ( p _ i , , , , . t ,  ' 1 - e  - ( p + l t r  
- p + 1 - imo) (A9) 

Since the ~i are independent random variables and < A t ),~, = (A 2 > *2 . . . . .  

(A >, Eq. (AS) simplifies to 

F , , , ( p ) = A o - - - 4 o + A o  ~ < A > * = A o - - 4 o - ~  
k = 0  

, )  

I - - ( A )  
(A10) 
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Finally insert (A7), (A9), and (A6) into (A10), use the fact that g(O) 
integrates to unity, and return to unscaled variables to get 

e--(p+v) T 
F,,,(p) - - -  

p -- imw 

1 - - e  - ( p + v )  T 

+ p - i m o ~ +  v j~ . d ~  g ( ~ ) ( l -  e~'"~)/(1-e -r 
(All)  

The first term in Eq. (Al l )  (=Ao-- ,4o)  is recognized as the contribution 
to F,,,(p) from integrating the circling electrons from t = T to t = r This 
implies that the second term in Eq. (All) ,  by definition, is identified as 

G F,,,(p). Comparison with (9) shows that "summation over paths in angle 
space" gives precisely the same result as the one obtained from the 
generalized Boltzmann equation. 
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