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The lattice Boltzmann method, an alternative approach to solving a fluid flow 
system, is used to analyze the dynamics of particles suspended in fluid. The 
interaction rule between the fluid and the suspended particles is developed for 
real suspensions where the particle boundaries are treated as no-slip imper- 
meable surfaces. This method correctly and accurately determines the dynamics 
of single particles and multi-particles suspended in the fluid. With this method, 
computational time scales linearly with the number of suspensions, N, a signifi- 
cant advantage over other computational techniques which solve the continuum 
mechanics equations, where the computational time scales as  N 3. Also, this 
method solves the full momentum equations, including the inertia terms, and 
therefore is not limited to low particle Reynolds number. 

KEY WORDS: Lattice Boltzmann method; suspensions; boundary condi- 
tions. 

1. INTRODUCTION 

Unders tanding  the macroscopic t ransport  behavior of particles or fibers 
suspended in a fluid medium is impor tant  to many  industries that deal with 
slurries, colloids, polymers, ceramics, etc. In the paper and photographic 
film industries the flows of suspensions occur in impor tant  manufactur ing 
processes, including paper formation, coating, and print ing applications. 
Effective experimental methods, such as magnetic resonance imaging, are 
being developed for investigation of the macroscopic behavior of suspen- 
sions. There is a great need for a theoretical approach to analyze accurately 
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and predict the microstructural dynamics of flow in many manufacturing 
processes. The flow of suspensions under the blade in coating paper and 
film is a prime candidate. The small-scale structure of the coating layer on 
the surface of the paper and photographic films is of critical importance for 
the industry. Controlling and improving the surface quality and physical 
properties depend on understanding the microstructure of the pigment 
particle formation, binder migration, and interactions with the porous sub- 
strate. In a typical blade coating system, the particle Reynolds number 
varies from 0.1 to 5. Therefore, inertia effects need to be included in the 
analysis. 

One of the methods that has been successful for analysis of suspen- 
sions is Stokesian dynamics. "-3) This method solves the Stokes equations 
for the fluid phase and the N-body Langevin equation to obtain the motion 
of N particles. With this method, however, the computational time scales 
as N 2 if the mobility matrix is directly constructed and N 3 if the hydro- 
dynamic interactions are included. Also, the method is limited to suspen- 
sions with simple geometries such as spheres or spheroids in simple shear 
layers. Considering that in some applications, the particles are irregularly 
shaped and the particle Reynolds number is not small, other methods need 
to be developed for analysis of various particulate transport processes. 

We are developing a method for microdynamical analysis of particles 
suspended in liquid. This method is based on the solution of the lattice 
Boltzmann equation ~5) for the fluid phase, which reduces to the Navier- 
Stokes equations with appropriate equilibrium distribution function. The 
equations describing the interaction of the fluid with the suspended par- 
ticles are derived based on the conservation of mass and momentum. The 
suspended particles move based on Newton's equation of motion. 

In this study, we present the boundary collision rules, and we examine 
the accuracy of this method with known solutions of flow over circular par- 
ticles using the finite-element solution of the Navier-Stokes equations. 
Single-particle sedimentations are also simulated and compared with the 
results of Feng e t  al. ~4) We also compare the effective viscosity of suspen- 
sions with other simulation results 12' 3.6) for multiparticle flow systems. In 
all cases, the results agree very well with the known results. We have also 
examined the computational speed as a function of the number of solid 
particles N. The computational time increases linearly with N, making it 
possible to obtain macroscopic behavior by considering a large number of 
suspended particles. 

The reason for the remarkable computational speed is the local nature 
of time evolution operation with the lattice Boltzmann method/5) At each 
time step, the distribution function is updated in two steps. One is the colli- 
sion operation, which is completely local at each lattice and independent of 
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the surrounding lattices. The other step involves the streaming where mass 
and momentum are transported to neighboring lattice nodes. This step also 
involves local communication between immediate lattice neighbors. The 
time evolution of the solution is explicit and therefore involves no matrix 
solution or inversions. 

Ladd et aL c6) first applied the lattice gas automaton (7,s) to the two- 
dimensional flow of suspensions. Recently, Ladd (9' lo) combined the lattice 
Boltzmann method for the fluid phase with the Newtonian dynamics of the 
colloidal suspension system for analysis of short-time motion of colloidal 
particles. Ladd's method, (~~ however, allows a small amount of mass 
transfer across the surface of the solid particles. In other words, the lattice 
nodes inside and outside the particles are treated in an identical manner so 
that the fluid occupies the whole computational domain, inside and outside 
the suspended particles. 

We have developed a new boundary rule for the interaction between 
the surface of impermeable particles and fluid. The new rule treats the 
suspensions as solid particles and prevents mass exchange across the 
suspension boundary, while taking account of the momentum exchange 
between the fluid and the solid particle. The particles have solid boundaries 
and their motion relative to the fluid phase is governed by Newton's law 
of motion. Following an outline of the problem formulation and the new 
particle/fluid interaction rule, we present the numerical results and we 
examine the accuracy of this method. 

In this analysis, we use the Bhatnagar-Gross-Krook t~) single-relaxa- 
tion-time approximation to replace the linear operator of Higuera et al. ~2~ 

in the lattice Boltzmann equation, proposed by McNamara and Zanetti. tS~ 
Consider a square lattice where on each lattice node, there are pseudo fluid 
particles that can fall into three categories: fluid particles at rest, fluid par- 
ticles moving along the off-diagonal directions, and fluid particles moving 
along the diagonal directions. The velocity vectors are denoted as eo~ for 
the fluid particles at rest and el; and e2; for the moving fluid particles, 
respectively. The velocity vectors are defined as 

eo~ = (0, O) ( 1 ) 

i - 1  . i--1 ) 
eli = e o s  - - ~  re, sm T n , i = 1,..., 4 (2) 

e2/= i - - I  n rc + ~ ) ) ,  x/~ (cos ( _ ~ _  n + ~) ,  sin ( i  2 1 n i = 1  ..... 4 (3) 
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At each time step, the moving fluid particles will arrive only at their nearest 
neighbor nodes. The lattice Boltzmann equation applied to the fluid 
particles is given by 

fr + % ,  t + I ) - f~ i (x ,  t) = _-1 [f~i(x, t) - r~~ . ,~i,  , t)]  
Z" 

(4) 

where f~i(x, t) ( a = 0 ,  i =  1; a = l ,  2; i = 1  ..... 4) is the single-particle dis- 
tribution function, f~~ t) is the equilibrium distribution at (x, t), and r 
is the single relaxation time. In our simulations, f~o)~., t) is taken as J G i  ~A, 

flo~(~ t) = A~ + B~(e~i- u) + C~(e~i- u)-' + D~u 2 (5) 

with 

Ao = p ,  Bo=O , Co=O, Do=O 

A1 P BI P P P = 1--2' --~,  C~=~,  D , =  --~- (6) 

P p P A, =P--- B, = C2=g ,  D , = -  
" 24 . . . .  8 

where p is the mass density at the node. For this model, the speed of sound 
is c,. = v / ~ ,  and the kinematic viscosity is v = ( 2 r -  1 )/6. With this equi- 
librium distribution, the Navier-Stokes equations can be derived using the 
Chapman-Enskog expansion. 

2. B O U N D A R Y  RULE A N D  D Y N A M I C S  FOR SOLID PARTICLES 

The physical boundary condition at the solid-fluid interface is the 
no-slip condition, that is, the fluid adjacent to the solid surface moves with 
the solid surface and the velocity normal to the solid surface is zero. There 
are several methods to implement the no-slip boundary conditions tLt) in 
lattice Boltzmann simulations. Here we use a modified bounce-back 
method with appropriate momentum exchange between the solid and the 
fluid. 

The solid boundary is located at a distance equal to one-half the 
lattice space away from the lattice point. In this case, the fluid particles 
collide with the solid boundary in the middle of the convection process and 
bounce back along the same link, as shown in Fig. 1. This bounce-back 
process involves zero mass transfer. It works only if the boundary is 
stationary. Ladd (~~ proposed the following rule for moving boundary 
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X 

bounce-back 

Fig. 1. Location of boundary nodes, denoted by solid squares, for a fiat solid surface. The 
incident links are indicated by solid arrows, the bounce-back links by hollow arrows. 

problems. This rule applies only to the bounce-back links (see Fig. 1) that 
are opposite to the incident links and is given by 

ftri,(X, t + 1) = f , ; (x ,  t+ ) + 2B,(e~i,. ub) (7) 

where x is the position of the node adjacent to the wall which is moving 
with velocity ub, i '  denotes the bounce-back link, and i points in the 
opposite direction to i' and intersects the solid surface. The last term in the 
above equation, 2B~(e~;, .ub), is an additional term to the bounce-back 
rule, which correctly accounts for the momentum transfer between the fluid 
and the moving solid boundary. However, it also introduces an extra 
amount of mass into the boundary node x. The total amount of the "extra 
mass" at the node is just the summation of these terms over all the bounce- 
back links, defined as 

(~p(x) = 2 ~ ~ B#(e#i,, ub) (8) 
r i '  

where i' denotes the bounce-back link. In most cases, @(x) is nonzero for 
a moving solid surface. Consequently, with Ladd's rule, the mass at the 
boundary node is not conserved and there has to exist fluid inside the 
suspended particles to allow mass to transfer across the solid boundary. 
Here, we propose a method to conserve mass at the solid boundary such 
that the solid boundary is treated as an impermeable surface. The new rule 
for links that ~re along the bounce-back directions is 

f. . ,(x, t + 1) = f.~(x, t+) + 2B,.(e,.v. ub) + t,.6p(x) (9) 

where @(x) is the total "extra mass" at the node and e, is a constant 
depending on the lattice form. For the two-speed square lattice without the 
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rest fluid particle, we have e ~ = ( - 1 / 2 )  ~. For the links other than the 
bounce-back ones, the rule is 

f , j  (x, t + 1 ) = f~j(x - e~j, t + ) + e~fip(x) (10) 

The last terms of the above equations are isotropic. By addition of these 
terms, not only is momentum transfer correctly accounted for, but also 
mass is conserved along the boundary and no fluid mass is transferred into 
the solid particle, since 

2 ZZB (e ,, 
i' ~r i 

An alternate way to prevent mass flux across the solid surface at the 
boundary nodes is to include the rest fluid particles. With e~ = e 2 = 0 ,  the 
"extra mass" ~p(x) is balanced by the rest particle, i.e., 

fo~(X, t + 1 ) = fol(X, t + ) - tip(x) (12) 

where tip(x) is the total "extra mass" at the node. 
The fluid particles collide with each other at each time step, while the 

interaction between the fluid and the suspended particles takes place in the 
middle of the convection time step. The solid boundary is impermeable and 
therefore no fluid can penetrate into it. Due to the impermeable feature of 
the solid particles, our simulation involves two basic steps for the inter- 
actions between suspended particles and fluid. The first step is the impact 
of fluid particles on the wall of the moving solid particle. The second step 
is the displacement of the fluid particles due to the motion of the solid 
particle. In contrast, Ladd's method t~~ does not include the second step. 

The velocity vector ub depends on the translational and angular 
velocities of the solid particle, as well as the position where the fluid 
particles collide with the solid particle, and the direction of the collision, 
that is, 

Ub = U d- ~'~ x ( x  3r- I ea i  - -  X )  (13) 

where U is the translational velocity of the suspension, ~ is the angular 
velocity with respect to the center of mass, and X is the position vector of 
the center. In the second step, as the solid particle moves through the 
domain, mass is displaced, accordingly. 

For a given link (tri) at a node, the force on the solid particle is given 
by 

F (2(f~i + B~ub- e~i) e~, incident links (14) 
~ = ~0, otherwise 
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whereas the torque T~i with respect to the center of mass X is given by 

T ai = (x  + �89 e~i -- X) X F,i  (15) 

Knowing the net force and the torque, we have that the motion of the 
solid particle is governed by the Newtonian equations, given by 

U(t+�89189 ~, ~ ~ F.g(x, t+�89 (16) 
B N  a i 

for translation, where BN stands for the boundary nodes, and 

~(t + �89189 ~" Y' ~T,, ; (x,  t+�89 (17) 
B N  a i 

for rotation. Here M is the mass of the suspension and I is the moment of 
inertia. Equations (13)-(17) completely prescribe the motion of the sus- 
pended solid particles in the fluid. In the following section, we use several 
examples to show the accuracy and robustness of this method. 

3. R E S U L T S  A N D  D I S C U S S I O N  

The new collision rule between the fluid and the suspended solid 
particles satisfies the conservation of mass and momentum at all solid 
boundaries. Furthermore, the suspended particles are treated as real solid 
particles with impermeable boundaries. To demonstrate the accuracy of 
this method, we apply this method to simulate several 2D problems. 

In order to examine the accuracy of the boundary rule, we apply this 
method to two different forms of the same hydrodynamic problem. Con- 
sider the flow over a cylinder placed at the middle of a straight channel, 
as shown in Fig. 2. If the cylinder is fixed and the channel walls move in 
the x direction with constant velocity u,., then the problem has no mov- 
ing boundaries and conventional methods can be applied. An alternative 
form of this problem is to fix the coordinate system with the channel 
walls and to allow the cylinder to move freely inside the channel as a sus- 
pended solid particle would (Fig. 2b). If the body force exerted on the 
freely moving cylinder is equal to the force that the fixed cylinder 
experiences when the channel walls move with velocity u .... then the ter- 
minal velocity of the moving cylinder u,. should be equal to -u,,.. To 
examine the boundary rule for a moving solid particle, we apply the lat- 
tice Boltzmann method and solve the fixed cylinder problem first to com- 
pute the hydrodynamic force per unit area of the cylinder. We then apply 
the same force on the freely moving cylinder and compute the cylinder's 
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(a) (b) 
tl w 

Y 

tl w X 

Fig. 2. Flow over a circular cylinder inside a straight channel; (a) fixed cylinder where the 
channel walls move with velocity u,.; and (b) cylinder free to move under the body force 
Fb = - - fcA,  where A is the surface area of the cylinder. 

terminal velocity using the lattice Boltzmann method with the new 
boundary rule presented above. We also solve the fixed cylinder problem 
directly from the Navier-Stokes equations, using finite-element discretiza- 
tion with Galerkin projection ~4~ examine the accuracy of the lattice 
Boltzmann method in general. 

The drag on the surface is computed for cylinders with radius 5.4, 10.4, 
and 30.4 lattice dimensions. The width of the channel is 128 and in all cases 
periodic boundary conditions are imposed on the two sides of the channel 
as shown by the dashed lines in Fig. 2. For each case, the time relaxation 
parameter r is adjusted to keep the Reynolds number, defined as Re = 2u,,,r/v, 
equal to I. The hydrodynamic force per unit area on the cylinder and the 
shear stress per unit area on the wall are listed in Table I along with results 
from finite-element solutions of the Navier-Stokes equations. For each 
case, the first and second rows correspond to the solution of the Navier-S 
tokes equation and the lattice Boltzmann equation, respectively, f,,. and fc 
represent the dimensionless force per unit area of the channel wall and the 
cylinder surface, respectively. The pressure scale p ru~. is used to nondimen- 
sionalize the stress at the wall and the cylinder. The agreement between the 
Navier-Stokes solution and the lattice Boltzmann solution is within the 
numerical deviation of _ 5 %. The error is believed to be mainly due to the 
ill-defined shape and roughness of the circular boundary of the cylinder 
with a square lattice. This effect will diminish as finer lattices are used. To 
examine the new rule for the moving solid particles, we impose a body 
force on the moving cylinder equal to the force computed for the fixed- 
cylinder case and solve for the terminal velocity of the moving cylinder. 
The results for each case are listed in Table I. Again, in all cases the results 
agree very well. This example confirms the correctness and the reliability of 
our lattice Boltzmann boundary rule. 
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Table I. Comparison of the Finite-Element Solution of Navier-Stokes 
Equation for the Fixed-Cylinder Case wi th  the Lattice Boltzmann Solution 

of the Fixed and Moving Cylinders ~ 

Case Cylinder r P d P f  u,,. u c f,,. f~ 

I Fixed N / A  b co - 0.04 0.0 0.137 0.966 
(r =5.4) 1.796 co -0 .04  0.0 0.132 1.022 

Moving 1.796 2.0 0.0 0.040 c 0.133 1.022 

II Fixed N/A b co - 0 . 0 2  0.0 0.316 1.158 
( r =  10.4) 1.748 co -0 .02  0.0 0.313 1.229 

Moving 1.748 2.0 0.0 0.020 c 0.307 1.229 

III Fixed N/A b co -0 .01  0.0 1.543 2.067 
(r = 30.4) 2.324 oo -0 .01 0.0 1.532 2.054 

Moving 2.324 2.0 0.0 0.010 c 1.523 2.054 

"Tile full domain is 128 x 128 lattice nodes and the Reynolds number Re = 1 for all cases. 
b Result from the finite-element solution. 

Result for the moving cylinder where input is the body force per unit area on the cylinder 
in the x direction and output  is the terminal velocity of the cylinder. 

2.5 

Exact solution [15] 

~ - k  -I- Present study 

2 .0  ' ~ 0 Fe~getal. [ 4 ]  

1 . 5  

t~ 1 .o  ~~1 y L = 4 d d .--4 

0 .5  ,q  

,4  

0 . 0  - . . . . . . . .  ' . . . . . . . . .  ~ . . . . . . . . .  ' . . . . . . . . .  ' . . . . . . . . .  
- 1.0 -0.6 -0.2 0.2 0.6 1 .0  

logRe 

Fig. 3. Drag coefficient of a circular particle settling in a 2D channel as compared to the 
numerical result of Feng et al. 14~ and the exact solution of the Stokes equation, c~5~ 
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We use this method to simulate the sedimentation of a circular solid 
particle in a two-dimensional channel. A circular particle of diameter d is 
released from different lateral positions, with zero initial velocity, in a 
channel of width 4d. The coordinate system is shown in Fig. 3. The density 
of the solid particle is two times larger than the fluid density. The inlet of 
the domain where zero velocity is applied uniformly is always 10d away 
from the moving particle, whereas the downstream boundary is 15d from 
the solid particle. The normal derivative of velocity is set to zero at the 
downstream boundary. Feng e t  a/J 4) recently simulated the same problem 
by solving the Navier-Stokes equation for fluid phase and implementing 
Newtonian dynamics for the solid particle. Our simulation results of drag 
coefficients are compared in Fig. 3 with the numerical results from Feng 
et  al. 14~ as well as the exact solution 1~5) of the Stokes approximation. The 
settling trajectories of the circular particle released at two off-centerline 
positions in the channel are presented in Figs. 4 and 5 for Re = 1.03 and 
3.23, respectively, along with the same results from Feng e t  al/4~. Due to 
the presence of inertia, the particle drifts horizontally toward the equi- 
librium centerline position with a counterclockwise rotation. For the case 

0.6 

0.5 

0.4 

0.3 

0.2 

. . . . . . . . . .  Feng et al. [4] 

Present study 

Centerline 

0 , 1  . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i , , , l l , , ,  ~ 

0.0 1.0 2.0 3.0 4.0 5.0 

x/L, 

Fig. 4. Settling trajectories for particles with Reynolds number 1.03 released from different 
initial positions in a narrow channel with width L. The simulation result of Feng eta/. t4) is 
also shown. 
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of Re = 3.23, there is an overshoot  for the lateral migration. All our results 
are in good agreement with the simulation results of Feng e t  a l .  (4~. 

We extend this method to many particles suspended in a Couette 
system, that is, between two parallel plates where the top plate moves with 
a constant  velocity U relative to the lower plate. In our computations,  the 
domain is either the 128 x 128 or 512 x512 lattice and the upper wall 
moves with the speed of  0.08 lattice unit per time step. Identical suspen- 
sions with radius of  5.4 are uniformly suspended in the domain. The results 
for the effective viscosity, relative to the pure fluid viscosity, versus area 
ratio are shown in Fig. 6, which also shows other simulation results tz 3, 6) 
for comparison. In the low- to intermediate-concentration regions, the 
agreements are very good. Our  simulations show that the new boundary  
rule outlined in this paper can be used very effectively for simulation of  
solid particles suspended in fluid. Furthermore,  this method is more practi- 
cal for analysis of  suspensions because of  the linear relation between the 
cpu time top u and the number  of  suspensions N. This relation is given by 
tcpu = 600 + 3.4N (sec) for a 128 x 128 system with 10,000 time steps on an 
IBM RS/6000. 

. . . . . . . . . .  Fang at al. [4] 

Present study 
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Fig. 5. Settling trajectories for particles with Reynolds number 3.23 released from different 
initial positions in a narrow channel with width L. There is an overshoot across the centerline. 
The simulation result of Feng et al. 14) is also shown. 
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Fig. 6. Relative viscosity of 2D suspensions in a Couet te  flow as a function of area ratio. The 
s imula t ions  are carried out  for systems of 128 • 128 and 512 • 512 latt ice nodes. The number  
of part icles ranges from 16 to 64. 

In conclusion, we have developed a new boundary collision rule based 
on the lattice Boltzmann method for the transport of solid particles sus- 
pended in a fluid. Lattice Boltzmann simulations with the new boundary 
rule have been carried out for the 2D channel flow with moving parti- 
cles. Results of the simulations with the new method are in good agreement 
with direct solutions of the Navier-Stokes equations and the exact 
asymptotic results. The boundary rule presented above has been extended 
to three-dimensional flow and the results will be presented in the near 
future.( 161 
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