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In a previous study a permanent isolated vortex like the Great Red Spot of 
Jupiter was obtained as a statistical equilibrium for the classical quasi- 
geostrophic model of atmospheric motion on rapidly rotating planets. We 
provide here a theoretical basis for this work and relate it to a previous model 
of the spot (Rossby soliton). 
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1. I N T R O D U C T I O N  

The Grea t  Red Spot  of Jupi ter  is a huge a tmospher ic  vortex which has per- 
sisted for at least three centuries in the shear between two zonal  jets. The 
persistence of this s tructure in a highly turbulent  environment  seems 
mysterious.  

We shall use the classical quas igeost rophic  model  (given here in Sec- 
t ion 2) to describe the a tmospher ic  dynamics  on rapidly rota t ing planets. 
This model  results from great  simplifications and is ra ther  crude, but  we 
believe that  it retains the main  mechanisms leading to the remarkable  
features of  the a tmospher ic  dynamics  of  the outer  planets. We refer to 
Ingerso119~ for a clear and lucid survey on this point.  

One can readily see that  the spot  cannot  be explained by a classical 
l inearizat ion of  the quasigeost rophic  equat ions  ( leading to Rossby waves). 
Indeed, there is no Rossby wave reproducing  the main features of  the spot,  
and, since these waves are dispersive, an isolated structure formed of such 
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waves must desintegrate. Thus it was viewed as a nonlinear phenomenon 
and a description in terms of solitary wave was proposedJ 14"22"2s~ 

In a recent paper Sommeria et  al. c3~ gave an explanation of the 
phenomenon on a statistical mechanical level, as the most probable state 
in an atmosphere with strong turbulent mixing, using a natural extension 
of a statistical equilibrium theory for 2D Euler equations/2s" 26~ Actually we 
believe that the generation of small-scale vorticity structures (by 
hydrodynamic instabilities) and then the convergence toward a statistical 
equilibrium is the key mechanism leading to structures like the Great Red 
Spot. 

Our aim is here to give some clarification on the theoretical grounds 
needed in this approach. We show that the quasigeostrophic equations 
satisfy the conditions required to apply the theory of ref. 16. An alternative 
approach based on the classical point-vortices approximation is also 
studied. 

Following ref. 30, we describe a structure like the spot as an equi- 
librium state for the quasigeostrophic model. We show that such an equi- 
librium state is a solitary wave; so our approach is consistent with previous 
ones. Let us notice here that the description of the spot as a solitary wave 
is in fact very vague since, as we shall see, there are many such nonlinear 
waves. Our approach predicts more precisely what sort of solitary wave it 
might be. 

A closely related work, devoted to a detailed discussion of the physical 
assumptions and the comparison of the results from numerical computa- 
tions with the observational data from space probes, will be published 
s o o n .  t31) 

2. THE QUASlGEOSTROPHIC (QG) MODEL 
FOR THE GREAT RED SPOT 

Although Jupiter is probably fluid up to great depth, it is an acknowl- 
edged fact that the observed vortices are confined in a shallow gaseous 
layer, due to a stable density stratification. On the other hand, zonal jets 
probably exist at a greater depth. To describe this system we shall use the 
model given in refs. 9 and 10: a shallow layer of fluid of constant density 
p~ and mean depth D is floating on a much thicker layer of constant den- 
sity P2 > P l .  We shall suppose that the atmospheric flow in the superficial 
layer is approximately two-dimensional and incompressible. We suppose 
also that the relative motion is slow compared to the rotation period of the 
planet 27r/to, so that the classical quasigeostrophic approximation holds. 
We use also the beta-plane approximation: the motion takes place in a 
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zonal band about a reference latitude 0o; we assimilate this region to a 
cylinder by means of the coordinates x = longitude, y = ( 0 -  Oo)/COS 0o. 

Applying Kelvin's theorem then yields the material conservation of the 
potential vorticity (PV) q: 

dq 
~ - =  q , + u - V q = 0  (I) 

where u is the relative velocity field of the superficial motion, and q is given 
by 

- A ~ ,  + floY + c2(• - ~kd) = q (II) 

where ~, is the stream function of u and ~bd the stream function of the deep 
flow (supposed given), 

flo = cos2 00/1 sin 001, c 2 = LE/~R 2 

with L = R cos 00 (R is the radius of the planet) and ~ is the Rossby defor- 
mation radius: 

~2  P2 - Pl gD 

p2 fo ~ 

f0 = 2o9 sin 0o is the Coriolis parameter and g is the acceleration due to 
gravity. 

R e m a r k s .  1. Equations (I) and (II) are dimensionless; time has 
been scaled by the Coriolis parameter (i.e., new time t =  Ifol t'). 

2. The unknown functions q(x), ~(x), x = (x, y), are supposed to be 
2re-periodic in x, and the equations holds on • x ] - m ,  m[. In the sequel 
we shall denote ~ = (R/2n77) x ] - m ,  m[,  the cylinder, and /2 = ]0, 2n[ x 
] - - m , m [ .  

3. In order that (I) and (II) define a dynamical system, r has to be 
recovered from q; thus we must make precise the boundary conditions 
satisfied by ~b. 

It comes from the geostrophic equilibrium c~o.23~ that ~k= 
- ( g / L 2 f o  Ifol)r/, with r/ being the small deformation of the shallow layer 
surface. Thus the mass conservation implies that ~a ~k dx = 0. Now, since 
the flow is confined in the zonal band, we shall assume that u is tangent 
to the boundaries y =  +m,  so that ~b is c o n s t a n t = G +  (resp. ~k_) on 
y =  + m  (resp. - m ) .  

But 2n(~ §  ~b_) is equal to the first component of the impulsion 
vector (which is conserved, due to the invariance of the domain by the 
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translations along the x axis). We shall suppose in what follows that the 
impulsion is zero in the rotating frame of reference, so that ~, + = @_, and 
this boundary value can be calculated from the condition jo ~, dx = 0. 

4. We shall suppose also in our model that the deep flow is steady 
and x-wise directed. Then the conjugate influence of beta effect (variation 
of the Coriolis parameter with the latitude) and deep flow can be resumed 
by introducing the topography function 

h(y)=c2~d(y)--floy 

Finally, replacing ~b by ~b- r +, one gets the dynamical system: 

{{  q,+curl~k.Vq=O (QGI ,  } 

(QG) -A~k + c2(~ - ~) = h(y) + q (QG2) 
= 0  for y=_+m,  2n-periodicinx 

where we denote ~ = (1/I/21) ja  q/dx. 

3. M A I N  PROPERTIES OF THE S Y S T E M  (QG)  

Notice first that (QG), which appears as a transport equation (QGI) 
coupled with the elliptic problem (QG2), is very similar to the Euler 
system which governs the motion of a 2D incompressible perfect fluid (in 
the velocity-vorticity formulation). Indeed, the Euler system is obtained for 
c2= 0 and h = 0, in which case q is equal to the usual vorticity. 

Like the Euler system, (QG) can be put in a Hamiltonian form (at 
least formally)J -'~ Indeed, we can write (QGI) 

q,=J(q)[VH(q)] 

where H(q)= �89 jo @(q +h)dx [@ is associated to q by (QG2)] is the total 
energy of the system. 

For a variation 6q (and corresponding variation 6~, for ~b), the first 
variation 6H of H is 

6H=�89 6~'(q+h)dx+�89 

Integrating by parts the first term, we get 

~6q dx 

6H = fo ~6q dx 
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Thus VH(q) is identified with the stream function ~b. Here J(q) is the skew- 
symetric operator defined by 

J(q)[ cp] = - c u r l  cp. Vq 

The associated Poisson brackets are the same as for Euler equations; t2~ the 
only change is in the Hamiltonian H. 

3.1. Constants of the Motion 

As for Euler equations, we have the family of Casimir invariants 
associated to the degenerate symplectic structure. These are the functionals 

t" 
Cf(q) = J f (q(x))  dx 

for any continuous function f on IR. Let us define the distribution measure 
of q, nq, by (Trq , f )  = Cf(q). Then TCq is conserved by the flow. 

Furthermore, the Hamiltonian H is conserved, and due to the par- 
ticular geometry of the domain (cylinder), we have the supplementary 
invariant: 

M = f yq dx Ja 

Indeed, we have 

dM= ;ayq' dX -- fa y div(qu) dx 

= --f~ q~,,. dx (integrate by parts) 

= --fo (--LJ~ -I-C2(1~- ~ ) -  h)~kx dx = ;a .4~b ~bxdx 

fo = -- V~k. V~b x dx = - ~  ((V~k)2)~ dx = 0 

3.2. Existence-Uniqueness Result for the Cauchy Problem 

It can be shown that Yudovitch's arguments for Euler equations work 
as well for (QG) and give the existence of a unique weak solution for any 
initial datum qo in the phase space L~ t~5~ We shall denote 
�9 ,: L~'(f2) ~ L~'(I2) the corresponding flow. 
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3.3. The Singular QG Model (SQG) 

Onsager's statistical view of hydrodynamics was based on an analogy 
with the N-point vortices model/21) For the QG model also we can 
approximate the potential vorticity by a finite linear combination of Dirac 
masses and derive (at least formally) a finite-dimensional Hamiltonian 
system giving the dynamics of the cloud of vortices. 

Taking f for the right-hand side in (QG2), we denote by ~kf the 
corresponding solution; we have 

~bf(x) = Ia G(x, x') f (x ' )  dx'  

where G(x, x') is the Green function of the elliptic problem (QG2). 
As for the Laplacian, we have 

G(x, x') = _ 1  Log Ix - x'l + F(x, x') 

where F(x, x') is a symetric smooth function on 12 x f2. 
For f =  h + Z~v= i qj3xj, we get 

~bf(x) = ~'h(X) + ~ qjG(x, xj) 
J 

Now, it follows from classical regularity results for Dirichlet's problem 
that ~'h is C ~ on the cylinder ~. Indeed, since h is in L ~', ~b h is in the classi- 
cal Sobolev space H d ~ H  2. By Sobolev's embedding theorem, ~'h is 
continuous up to the boundary, and - - A ~ b h = h - - c 2 ( $ h - - ~ D  is in L ~. 
Thus uh = curl ~b h satisfies a quasi-Lipschitz estimate: 

luh(x) - uh(x')l ~< c Ix-- x'l (1 + ILog Ix - x'll) 

Then, removing the singular part with zero mean in the velocity field 

u = uh + ~ qj curl G(x, xj) 
J 

we can assign a well-defined velocity to each point vortex xi. Hence we get 
(in a formal way) the finite-dimensional Hamiltonian system for the 
vortices. We have 

[" d x  i 1 0 ~  '~ 

r dyi 1 8 ~  (sqG) | u  ..... x,,) 

\ i = l , . . . , N  
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where x, = (x,, y,), Jct"(x i ..... XN) = �89 Y'., ~y qkqjG(x,, Xj) + �89 Ek q ~ ( X k )  + 
• ,  qutkh(X,) and # ( x )  =F(x ,  x). 

We can prove that for any initial data of N distinct point vortices 
xl(0) ..... XN(0) in f2, the system SQG has a unique C I solution during a 
finite time (depending on the initial data). This is due to the fact that # ( x )  
is a smooth function and uh is quasi-Lipschitz/34) Notice that, in general, 
nothing prevents the blowup of the system at a finite time (collision of 
vortices may occur). 

Since (SQG) is Hamiltonian, the associated flow conserves the 
Liouville measure dxj ...  dXN on the phase space O N. 

4. STATISTICAL EQUILIBRIUM STATES FOR THE QG MODEL 

We define now equilibrium states for Q G  equations. We give two dif- 
ferent approaches. The first one is based on the general Young measure 
framework given in ref. 16, while the second, which works only in the par- 
ticular case of a potential vorticity taking a finite number of distinct values, 
uses an approximation of Q G  by a cloud of point-vortices (SQG). 

4.1. The Young Measure Approach 

To apply this method, we only have to check that (QG) belongs to the 
class defined in ref. 16. That is, the corresponding flow ~ ,  on the phase 
space L~ satisfies the hypotheses HI ,  H2, H3 of ref. 16 (since we shall 
not use them explicitly here, we do not recall these rather technical con- 
tinuity assumptions on the flow). We refer to ref. 15 for a proof of this 
point; and we refer to Appendix A for a definition of Young measures. 

Following ref. 16, we get the equilibrium set as follows. 
Let us consider an initial datum qo in L~~ denote r=Iqo[o~, 

no=(1/lI-2l)nqo, n=dx| ,.g the space of Young measures on 
O x  [ - r , r ] .  

To any Young measure v in o# (which one can visualize as a potential 
vorticity function oscillating in the neighborhood of every point), we 
associate the mean potential vorticity 

~(x)= y z dvx(Z) 

We shall say that v is a mixture of qo if it satisfies 

fo Vx dx = 7Zqo 
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Now let us introduce the closed subset of . / / :  

$' = { v ~ ~ '  [ v mixture ofqo, H(9) = H(qo), M(~) = M(qo)} 

According to ref. 16, we define the set ~*  as the set of macrostates 
(Young measures) v* which are solutions of the variational problem 

(VP) I,~(v*) = min I,,(v) 
veal" 

where l,,(v) is the Kullback information functional, that is 

I,,(v) = ;a • t dv �9 - - r , , ]  Log ~ dv 

I . ( v )  = + 

if v is absolutely continuous 
with respect to n 

otherwise 

Notice here that ~ '  being compact and I t a lower semicontinuous 
functional, (VP) always has a nonempty set of solutions ~*. 

Then the equilibrium set, corresponding to the initial datum qo, is 

We recall that ~ , ~ *  = $'*. 

4.2. The Point-Vortices Approach 

In what follows Cc denotes the space of continuous, compactly 
supported, real functions on the cylinder r (R/2~zZ)x l - m ,  m[,  M b the 
space of all bounded Radon measures on cg, and M~ the subset of proba- 
bility measures. On Mh we shall use the narrow (resp. vague) topology, 
which is the weak topology associated to the continuous and bounded 
(resp. compactly supported) functions on ft. 

We carry out this second method in the case where the initial potential 
vorticity q0(x) takes only a finite number of distinct values q~ ..... q,. 

We have 

where 

1 
/[o : [--~ 7[qo : ~ Pi~q, 

i=l 

1r 

1r ' 
P,=  .(2,= { x c Q  I qo(x)=q,}  
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Then we approximate the system (QG)  by a singular model composed 
of  a cloud of  N vortices of  n different types in the following way: 

i k= l , . . . ,N i "  �9 The vortices of type i are located at the points x~., 

�9 The number  N~ is proport ional  to the area of  s N i = [ N P ~ ]  
(integer part). 

�9 All vortices of type i have the same strength Yi = IfLl q~/Ni. 

Notice that the number  of point vortices per unit area is independent 
of  the type. Of  course, one may consider other choices, for example, when 
all the vortices have the same strength; and that will certainly yield dif- 
ferent equilibrium states. Our  choice is justified by the fact that it will allow 
us to take into account all the constants of  the motion of  the continuous 
system (the energy and the area of  each vorticity patch). 

We are interested in the distribution of  each type of  vortex on the 
physical space cal. Thus, we consider the empirical distributions 

1 
p ~v = ~// ~. J,,~, i = 1  ..... n 

k 

The space cdN will be endowed with the Liouville probability measure 
df~ l | . . .  @ d i  N, where d ~ =  (1/1121N') dx~ ...  d x ~ .  Then we denote by PN 
the probability distribution of  the random variable PN = ( ~ "" PN,"', PNJ on the 
space M'I'. 

Now we prove the following. 

P r o p o s i t i o n  4.1. For  N - - * ~ ,  the sequence PN has a large- 
deviation property (see Appendix B) with constants N and rate function 

dx 
L(v I . . .  v") = ~ Pila~(vi), d i  

~=1 IOI 

Proof. Take E =  M~ endowed with the weak topology associated to 
the duality ( ( v ~ . . .  v'), (~p i . . .  ~p,,)) = Z ( vi, r where ~p = (~p ~ -.. ~p") e 
C". Thus the dual of E is E' = C", and we compute the Laplace transform: 

fiN(NCP) = ,VI I~NeXp(N(p~ ,q~ , ) )  d i i  
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Hence 

. -~- Log exp ~//cPi(x) dE 

When N---, oo, this converges toward 

F ( c p , . . . ~ o , , ) = ~ P g L o g { ~ , , e x p [ ~ g ( x ) ] d i }  

= y  h,(~0,) 
i 

F is an everywhere finite convex functional on E'.  It is continuous for the 
norm topology; therefore it is also lower semicontinuous for the weak 
topology a(E',  E), and condition 1 of Baldi's theorem is fulfilled (see 
Appendix B). The compaci ty  condition 2 is also obviously satisfied since 
the closure of  M~ is compact  for the vague topology. 

Now we compute  the Young-Fenchel  t ransform L = F*  of F, 

,,,,,= supo  

= y .  h*(v ' )  
i 

But 

h*(v)=Pila ,~(v)  for v e M I  

= +oo  for v C M  t 

This easily follows from ref. 33. 
Thus 

L(v I .. .  v") = ~ Pild,z(V i) 
i 

where Ia~ , is extended by + oo out of  M 1. 
Then we deduce from ref. 16, Lemma 3.2, that Condit ion 3 is satisfied 

since L is strictly convex on dom L and 

(PJ q~t ..... P,  cP,,)~OL(exp(cpl)di ..... exp(cp,,) d~) for cpie Cc 

Thus Baldi's theorem applies and the proposi t ion is proved. �9 

We are now going to carry out the thermodynamic  limit of  the 
r andom variables PN when they are submitted to some constraints. These 
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constraints will be given by the constants of the motion of the continuous 
system (QG). At first sight, this may seem surprising, since these con- 
straints do not correspond to the constants of the motion of the discrete 
system (SQG). But we must keep in mind that we are actually interested 
in the equilibrium states of the continuous system; thus we find it 
physically relevant to constrain Pu by the actual conserved quantities of the 
continuous system. 

4.3. The Incompressibility Constraint 

The discrete system (SQG) naturally expresses that the total vorticity 
of each type i is conserved, but not the fact that the area occupied by each 
type is conserved. 

Let us suppose that (for large N) each p~r is approximated (for the 
vague topology) by a density p~(x)di .  Then we have for the singular 
potential vorticity 

au= ~ yi ~ 6~ ~q(x) dx 
i k 

where 
q(x) = ~ q,P,p'(x) 

i 

Let us denote p ; ( x ) =  Pip~(x). In the continuous case, p a x )  is the local 
portion of area occupied by the level q~ and we must have Y~p~(x)= 1 for 
all x. In the discrete case, this relation means that the total number of par- 
ticles in any region is proportional to the area. Of course this condition 
(which we call the incompressibility constraint) is not conserved by (SQG). 

Finally we shall impose that Pu approximately satisfies the incom- 
pressibility constraint: 

( INC) ~ Pi Vi= dfr 
i 

Let us denote by go the closed subset of M' t' defined by (INC). For 
(v~...v ") in go, each v ~ is absolutely continuous with respect to 
di :  vi=p~(x)di, and we have 

1 Eeipi(x)=l, hence 0 ~<pi(x) ~< - 
i ei 

4.4. The Energy Constraint 

To each (v I ... v')in M7 we associate the potential vorticity 

Q = I~1 ~ q,P~v' 
i 
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The energy of Q is not defined in general; but for (v I . . .  v") in go we have 
Q = q (x )dx  with q(x) in L~(~), whence the energy H ( Q ) =  H(q) is finite. 
Furthermore, H is continuous on #0 for the vague topology. 

We can define also M(Q)=~,eY dQ(x), and finally for a given qo(x), 
we denote 

g = {(v~ . . .  v " ) ~  go I H(Q) = H(qo), M(Q) = M(q0)} 

Thus we are led to carry out the thermodynamic limit for the random 
variables PN with the microcanonical constraint p u e g .  As it is shown 
in the Concentration Theorem 2.2 of ref. 16, this amounts to solving the 
variational problem 

minimize L ( v ' . . . v " )  on # 

and this obviously amounts to minimizing the functional 

under the constraints 

Ia~pi(x) Logpi (x)  dx 
i 

~ p , ( x ) =  1 ( , )  
i 

ap~(x) dx = loci, vi (**) 

H (~. q,p,) = H( qo) (***) 

M (~. qiP,) = M(qo) (****) 

This is a particular case of (VP) for qo taking only n distinct values. 

5. R E S O L U T I O N  OF ( V P )  THE E Q U A T I O N  OF GIBBS STATES 

To proceed further in the determination of the equilibrium set, we 
have to solve (VP). First, we write down the equation of Gibbs states, 
which is the equation satisfied by the critical points of the functional I~ on 
the set #. 

Let us assume that v* is a solution of (VP) such that l,,(v*) < + oo. 
Then v * =  p* (x , - )  rt, where p * e  L~(r0. Furthermore, we shall assume that 
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0 < c ~< p*~< C, n-almost everywhere. Now, applying the Lagrange multi- 
pliers rule and performing the same computations as in ref. 25 give 

exp[ - ct(:) - flz~*(x) - yzy] 
p*(x, z ) -  

z(~,*(x), y) 

where @* is the stream function associated to the potential vorticity tY*; fl, ? 
are the Lagrange multipliers of the constraints H, M; ~(z) is a continuous 
function associated to the set of constraints IQ vx dx =nq0; and Z(~ , ,y )=  
J exp[ - a ( z )  - flz~ - yzy] dno(Z). 

Thus the stream function ~* must satisfy the following equation of 
Gibbs states: 

(GSE) 

~, = 0 for ) : -  + m, 2n-periodic in x 

We have the following existence-uniqueness result for (GSE); where Ho ~ 
denotes the Sobolev space of the square-integrable functions on the cylin- 
der ~r whose first derivatives are also square-integrable and with zero 
boundary values at y = _m.  The space Ho ~ is endowed with the Hilbert 
norm ( la  (Vf) 2 dx)  1/2- The dual space of H i identifies in a standard way 
with the Sobolev space H-~ of distributions on the cylinder. 

P r o p o s i t i o n  5.1. Equation (GSE) always has a solution in the 
space Ho ~. The solution is unique if - f l m a x { - 2  I zEsupp no} <2~, where 
21 is the first eigenvalue of the operator -zJ  on the cylinder (associated to 
the Dirichlet boundary value condition). 

Proof. Let us consider the operator A$ = - d $  + c2(~k- ~) from H i 
into H-1,  One easily checks that A is self-adjoint and coercive: 

 2(fO )2 (V~b)2 dx +c2 f ~k2 d x - - ~ [  O dx (Ar162 ~ 

(V$) 2 dx by Cauchy-Schwarz inequality 

Then it follows by the Lax-Milgram lemma that A -1 is a continuous 
operator from H - '  into H i,  and thus a compact one from L2(Cg) into H i. 

Now the existence of a solution for the nonlinear equation (GSE) 
follows by a classical argument, using Schauder's fixed-point theorem, since 
(I/Z)(OZ/a$)(q;, y) is a continuous and bounded function. 
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Let us prove uniqueness. Notice first that any solution of (GSE) is a 
critical point of the functional 

c 2 c 2 d x )  2 

+~fc~ L~ dx 

defined for ~, 6 H0k 
We show now that under the hypothesis of the proposition, the 

functional J is strictly convex on the space Ho ~. We calculate the second 
variation of J :  

c 2 

2 02 

2 If21 

Let us denote 

((3) = f exp[ -a(z)  + z~] dTro(Z) 

We have 

d 2 ((,, _((,)2 
d~ 2 Log ((~) = (2 

and Cauchy-Schwarz inequality gives 

I f " e x p  ( - ~  2 z~) exp (-~ 

~< f exp[ -o~(z) + z~] dno(Z) f z 2 exp[ -o~(z) + z~] dTro(z) 

from which (d2/d~ 2) Log ((~) >/0. 
We also have 

d 2 '~_ 
d~ 2Log((~)~ ~max{z 21zesuppno} 
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We deduce that for fl >t 0 

&2j >1 �89 fa (VS~k)2 dx 

and for fl < O, using the classical inequality 

we get 

~2r  ~ �89 "31- fl max{ z21 z ~ supp fro} ) fQ (8~) 2 dx 

659 

Proof. 

where 

Proposi t ion  5.2. Suppose given a continuous function ~(z) and 
real numbers y, fl (satisfying the condition of Proposition 5.1 ). Let ~,~'P'Y 
be the unique solution of (GSE), and p~'P'Y the corresponding density 
function: 

1 
p~" P" "(x, z) = ~ exp[ - oc(z) - flz~ ~' P' ~'(x) - 7zy], 

Then v ~'" p" ~' is the unique solution of the variational problem 

I~(v~'P'r)= min I,(v) 
v E dr~,fl, Y 

g ~ " a ' r = { v ~ J r  f a v x d x = I a v ~ ' a ' r d x ,  

H(~) = H(~ '  a. '3 and M(~) = M(~" a. ,,)} 

See ref. 25, Proposition 7. �9 

v~,,a.r = p~,.#.r~z 

We see that the hypothesis on fl implies the strict convexity of J and thus 
the uniqueness of the solution. �9 

The link between (GSE) and the variational problem (VP) is given by 
the following. 
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6. EQUILIBRIUM STATES AND SOLITARY WAVES 

In what follows, we shall suppose that q0 is a patch of potential vor- 
ticity of level a surrounded by zero. This leads to some simplifications in 
the formulas. The discussion of the general case would be similar. 

In this particular case, to get the equilibrium set corresponding to q0, 
one has to minimize the functional (S is the entropy) 

t "  

-S (p )  -- JQp Logp  + ( 1 - p )  Log(l  - p )  dx 

[p(x)  is the probability of finding the level a at x]  with the constraints 

F(ap) = fa ap(x) dx = F( qo) (*) 

H(ap) = H(qo) (**) 

M(ap) = M(qo) (***) 

The corresponding (GSE) is now 

(GSE1) - A J / + c 2 ( O - ~ ) = h ( Y ) + a  1 + e x p ( - e - f l a O - ? a y )  

~b = 0 for y = _ m, 2n-periodic in x 

where oc is the Lagrange multiplier of the constraint F. 
Notice first that we can always find solutions of (GSE1) which are 

only y-dependent (consider ~b(y) and solve the corresponding boundary 
value problem on [ - m ,  m ] ). For such solutions we have V~, ^ Vq = 0, so 
that they are stationary solutions of QG equations. 

But we know that for fl lower than a critical value the solution of 
(GSE1) is no longer unique: a bifurcation occurs with a breaking of the x 
invariance. (3~ These x-dependent solutions no longer satisfy the condi- 
tion W~O ^ Vq=0 :  they are not stationary solutions of Q G  equations. 
Nevertheless, since any such solution satisfies an equation of the form 

{~b -.4~b + c2(~,-~) =h(y) + f(~b-coy) x}  
= 0  for y =  _+m,  2zt-periodicin 

where c o = -y/fl, we deduce that ~k(x- cot, y) is a solitary wave traveling 
at speed c o along the x axis (see Appendix C). Thus the equilibrium set is 
composed of solitary waves. 

Let us focus now on what occurs just after the breaking of the x 
invariance (first bifurcation(3~ Then the equilibrium set is obtained by 
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translating along the x axis the potential vorticity q* associated to any 
x-dependent bifurcated solution ~,* of (GSE). 

Now we can suggest the following scenario. For t large enough, for 
example, at time T, the solution q(T, x, y) of (QG) becomes close (for the 
w e a k  L 2 topology) to an element q*(x +Xo, y) of the equilibrium set; then 
for t ~ T ,  q(t ,x ,y)  will travel some time close to the solitary wave 
q*(x + ( y / f l ) ( t - T ) + x  o, y). If  we do again the same reasoning later, we 
shall get the same solitary wave with only a possible change in the 
phase x o. 

We remark that the speed of the wave -y / f l  can be determined from 
the constants of the motion associated to q0. Indeed, let us denote 

S*(F ,H,M)= max S(p) 
F ( a p )  = F,  
H ( a p )  = H ,  
M ( a p )  = M 

Since 6S = o~ 6F + fl 6H + y 6M, we have 

OS* OS* OS* 
OF' fl= OH' Y= OM 

7. C O M M E N T S  

We refer to refs. 30 and 31 for a detailed discussion, at a physical level, 
of the consequences of this statistical model. Let us only make here some 
short comments. 

This statistical model is based on the assumption that the organization 
of the atmospheric flow is purely inertial. That is, the energy exchanges are 
assumed to be too slow to control the organization of the system at the 
advective time scale. Strong vorticity could be produced by the action 
of Coriolis force on rising thermal plumes, which would explain the 
predominance of anticyclonic spots on the giant planets. 

(GSEI)  corresponds to the very particular case of an initial datum 
which is a patch of uniform potential vorticity. The discussion of the 
general case is similar. Of  course the structure of the corresponding equi- 
librium state (solitary wave) depends on the choice of the initial datum 
(in fact it only depends on the values of the constants of the motion). This 
is a complex issue which will be investigated by means of numerical 
computing in rei'. 31. 

It was shown in ref. 30 that for accurate values of the parameters an 
equation like (GSE1) can have a solitary wave solution with a unique vor- 
tex. Moreover, the effect of the topography function ~Od(y) was displayed. 

822/77/3-4-10 
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It was shown that a reasonable choice of this topography give a vorticity 
field which is very close to the one deduced from the observational data 
from space probes. 

It is well known that the spot is almost steady in the rotating frame 
of  reference (in fact, it has only a slow drift of about  lm/sec with respect 
to the magnetic field of  the planet). We can explain this fact: if we suppose 
that h has the symmetry h ( - y )  = h(y),  then we can show that if M ( q 0 ) = 0 ,  
then necessarily y = 0. (30  ̀31) 

APPENDIX A. YOUNG MEASURES 

Let X, Y denote two locally compact  separable and metrizable 
topological spaces. Let us suppose that a positive Borel measure dx (of 
finite total mass) is given on X. Let us recall that Young measures (35~ are 
a natural way to generalize the notion of  measurable mapping from X to 
Y: at any point x ~ X, we no longer have a well-determined value, but only 
some probability distribution on Y. In other words, a Young measure v 
is a measurable mapping x--* v,. from X to the set M~(Y) of the Borel 
probability measures on Y endowed with the narrow topology. Clearly, v 
defines a positive Borel measure on X x  Y (which we will also denote by v) 
by 

( v , f ) = f  ( vx , f ( x , . ) )dx  
X 

for every real function f(x, y), continuous and compactly supported on 
X• Y ( fe  Cc(Xx Y)). Moreover,  for f ( x ) e  C<.(X), we have 

( v , f )  -- ;xf(x) dx 

that is, the projection of  v on X is dx. 
It is well known (ll~ that this property gives an equivalent definition of  

Young measures. That  is, for any positive Borel measure v on X x  Y whose 
projection on X is dx, there is a measurable mapping x --* vx such that the 
above formula holds. The mapping x ~ vx is unique up to the dx-almost 
everywhere equality. 

To any measurable mapping f :  X--,  Y we associate the Young measure 
~s: x ~ ~$Sl.~, Dirac mass at f(x). 

We shall denote by Jg  the convex set of  Young measures on X x Y, 
and we recall some useful properties: o# is closed in the space Mb(X• Y) 
of all bounded Radon measures on X x  Y (with the narrow topology),  the 
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narrow topology is equal on ~ '  to the vague topology (weak topology 
associated to the cont inuous compact ly  supported functions ), and it is 
metrizable. Fur thermore ,  if Y is compact ,  then d~' is compact .  

APPENDIX B. LARGE DEVIATIONS AND BALDI'S THEOREM 

Baldi's theorem gives general conditions under which a family of  
probabil i ty measures on a locally convex topological vector space has the 
large-deviation property.  

A1. The Large-Deviation Property 

Let E be a locally convex Hausdorff  topological vector space. We 
consider a family/~h, h > 0, of  Borel probabil i ty measures on E. 

We will say (see, for example,  Varadhan t33~ or Ellis t6~) that the family 
/~h has the large-deviation proper ty  with constants  ;t(h) and rate function 
L iff: 

(i) 2(h) > 0 and l imb_ + o~ 2(h) = + oo. 

(ii) L : E - * [ 0 ,  + o o ]  is a lower semicontinuous functional on E 
(not identical to +oo) .  Moreover ,  L is inf-compact,  that  is: the set 
{vlL(v) <~b} is compact  for all real numbers  b. 

(iii) For  every Borel subset A of  E, we have 

and 

- A(/{) ~< lim,, - ~ f  2(-~ Log ph(A) 

1 
lim sup Log/Zh(A) ~< -- A(,4) 

h ~  ~ 

where A(A) = inf, EA L(v). 
The functional L is also usually called the information functional, and 

- L  the ent ropy functional. 
Let E '  be the topological dual of  E, endowed with the weak-star  

topology a(E', E). For  a Borel probabil i ty measure p on E, we define its 
Laplace transform: 

ft(q~)=IEexp(<cp, v>)dp(v) for r  

As is well known, /~  is a convex, lower semicontinuous,  and proper  func- 
tional on E'. The same is true for the functional Log/~(~p). 
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A2. Baldi 's Theorem 

Let Ph be a family of  Borel probabil i ty measures on E, satisfying the 
following assumptions:  

1. There is a function 2(h) as in (i) such that 

Log/~h(2(h) ~0)= F(q~) lim 
h 4  co z~nl 

where F is a convex, lower semicontinuous,  and proper  functional on E '  
which is finite on a neighborhood of the origin. 

2. Compac i ty  assumption:  For  every R >  0, there is a compact  set 
KR c E such that  

1 
lim sup Log / lh (K ~) ~< -- R 
h ~  + o r  

Let us denote by L the Young-Fenchel  t ransform of F, that  is, 

L(v)  = sup ((q~, v)  - F ( c p ) )  for v � 9  
t p e E '  

L is a convex, lower semicontinuous,  and proper  functional on E. We shall 
suppose that L satisfies the following condition. 

3. For  every v such that  L(v )  < + ~ ,  for every open set O containing 
v and every e > O, there is v~ �9 0 such that L(v~) <<. L(v )  + e and L is strictly 
convex at v~, that  is, 3~0 e OL(v,)  such that  

L ( v ' ) > L ( V l ) + ( ~ p , v ' - v l )  for all v'v~v I 

Then Baldi's theorem asserts that  under the hypotheses 1-3 the family ph 
has the large-deviation proper ty  with constant  2(h) and rate function L. 

A3. C o m m e n t s  

1. L is strictly convex at v if, for example,  OL(v) is nonempty  and 

L( tv  + ( 1 - t) v') < tL(v)  + ( 1 - t) L (v ' )  

for a l l 0 < t < l ,  v ' � 9  v ' ~ v .  

2. Hypothesis  3 is in fact weaker  than the strict-convexity assumption 
made by Baldi, so that  the above statement is slightly different from Baldi's 
original one~2~; for a proof, see MichelJ ~5~ 
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APPENDIX C. SOLITARY WAVE SOLUTIONS OF (QG) 

We seek traveling solutions of (QG) of the form 

~(t, x, y) = ~F(x - Cot , y) 

q(t, x, y) = Q(x - Cot, y) 

Then the functions ~u((, y), Q((, y) must satisfy 

{ - ~  + c2( ~u- ~ ) = h ( y )  + Q} 
V ( ~ - c 0 y )  ^ V Q = 0  

We see at once that we can get many solitary waves: take any function f,  
Q = f (  ~u-c0 y), and solve the nonlinear elliptic equation 

{ -z lTt+cZ(~  u -  ~ ) = h ( y ) + f ( T t - c o y )  ] 
~u = 0 for y = +_ m, 2~z-periodic in xJ  

For any continuous bounded function f this equation always has solutions 
(apply Schauder's fixed-point theorem). Notice that we can always find 
solutions which are only y-dependent [seek solutions of the form ~,(y) and 
apply the same argument ]; of course such solutions are stationary. But we 
know that an equation as above can also have bifurcated solutions c3~ 
which are x-dependent: these are the genuine solitary waves. 
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