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Surface-Induced Finite-Size Effects for
First-Order Phase Transitions

C. Borgs' and R. Kotecky?

Received July 18, 1994

We consider classical lattice models describing first-order phase transitions, and
study the finite-size scaling of the magnetization and susceptibility. In order to
model the effects of an actual surface in systems such as small magnetic clusters,
we consider models with free boundary conditions. For a field-driven transition
with two coexisting phases at the infinite-volume transition point h=h,, we
prove that the low-temperature, finite-volume magnetization mg.(L, h) per site
in a cubic volume of size L7 behaves like

Mol L, b) = 2 ;"’“+m+ ;"" tanh [’"* ;m“ L"(h—h,(L))] +0<%>

where h,(L) is the position of the maximum of the (finite-volume) susceptibility
and m, are the infinite-volume magnetizations at h=h,+0 and h=h,—0,
respectively. We show that 4,(L) is shifted by an amount proportional to 1/L
with respect to the infinite-volume transition point 4, provided the surface free
energies of the two phases at the transition point are different. This should be
compared with the shift for periodic boundary conditions, which for an asym-
metric transition with two coexisting phases is proportional only to 1/L%.
One can consider also other definitions of finite-volume transition points, for
example, the position Ay(L) of the maximum of the so-called Binder cumulant
Upee(L, ). While (L) is again shifted by an amount proportional to 1/L with
respect to the infinite-volume transition point 4,, its shift with respect to 4, (L)
is of the much smaller order 1/L%, We give explicit formulas for the propor-
tionality factors, and show that, in the leading 1/L>’ term, the relative shift is
the same as that for periodic boundary conditions.
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1. INTRODUCTION

In the last 20 years, the study of finite-size (FS) effects near first- and second-
order phase transitions has gained increasing interest. While the study of
FS effects for second-order phase transitions goes back to the work of
Fisher and coworkers in the early 1970s,"'% '® 15 finite-size effects for first-
order phase transitions were first considered by Imry?" and then by Fisher
and Berker,"'”’ Blote and Nightingale,"”" Binder and coworkers, - 3
Privman and Fisher,®® and others.

Recently, these studies have been systematized in a rigorous frame-
work by Borgs and Kotecky® (see also refs. 7 and 8) and by Borgs and
Imbrie.** %2 Their results cover both finite-size effects in cubic volumes
and long cylinders, and both field- and temperature-driven transitions, but
were always limited to periodic boundary conditions. While the periodic
boundary conditions are natural for the description of computer experi-
ments that are used to study the bulk properties of a system (note that
periodic boundary conditions are used in these computer experiments
because they minimize the unwanted finite-size effects), they do not allow
for the description of FS effects in actual physical systems, e.g., small
magnetic clusters, where surface effects are of major importance.

In this paper we start a rigorous study of such surface effects. We
consider spin systems in a finite box 4= {1,.., L}“ imposing free or so-
called “weak” boundary conditions (see Section 2) instead of the periodic
boundary conditions used in our previous work.

In order to explain our main ideas, let us first review the FSS for a
system in a periodic box."*® For a system describing the coexistence of
two phases, say an Ising magnet at low temperatures, the partition function
with periodic boundary conditions can be approximated by

ZolL,N=Z (L,h)+Z _(L, h) (1.1)

where Z, contain small perturbations of the ground-state configurations
o,=+1 and o,= —1, respectively. The error terms coming from the
tunneling configurations can be bounded by O(L% ~%/%0) e~/ where f(h)
is the free energy of the system and L, is a constant of the order of the
infinite-volume correlation length.

In the asymptotic (large-volume) behavior of log Z, there should
appear, in principle, volume, surface,..., and corner terms. A periodic box,
however, has neither surface,.., nor edges or corners, and one obtains

Zper(Ls h)~ e’f+"'>L” + e—f_(h)Ld

=2cosh (M# Ld> e~ L U+ (n) L2 (12)
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where f (h) and f_(h) are the (metastable) free energies of the plus and
minus phases, respectively. Taylor expanding f, (#) around the transition
point 4,, and introducing the spontaneous magnetizations m, of the plus
and minus phases at h,, one obtains the FSS of the magnetization

Mpe(L, h) =L ~4dlog Z oer(L, h)/dh
in the form

m,—m

my+m_

Mor( Ly h) + = tanh[m+;m' (h—h,)L"’] (1.3)

It describes the rounding of the infinite-volume transition in a region of
width

Ah~ L (1.4)

with a shift 4,(L)— A, that vanishes in the approximation (1.3). A more
accurate calculation shows that, in fact, for a system describing the
coexistence of two low-temperature phases at the infinite-volume transition
point 4, and with infinite-volume susceptibilities y , , one has

hy(L)—hy= 2% ZX2) p 20y o -2a) (15)
(m+ _m—)

if (L) is defined as the position of the maximum of the susceptibility in
the volume L<.

Turning to free boundary conditions, we again expand log Z (L, h)
into volume-surface-...-corner terms. This time, however, the volume A has
a boundary, and the expansion yields

—log Z (L, h)=f(h)Lé+ £4=V(h)2dL4~ ' + O(L?~?)  (16)
where f¢(h) = f . (h) are the (metastable) bulk free energies, while /¢~ "(h)

are the (metastable) surface free energies of the plus and minus phases,
respectively. As a consequence, (1.2) gets replaced by

_f+(h) + f_(h) Ld_f(:_i—l)(h) + £ 1)

Zeol L, h) =
free( s ) B.Xp< 2 2

2dL"")

x 2 cosh (f+(h)_f‘(h) Ld_‘_f(f_”(h)—f(_d“”(h)
2 2

2dLY~ 1>

(1.7)
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At this point, one major difference with respect to (1.2) appears: while the
free energies f, and f_ are equal at the transition point #,, the surface free
energies are typically different at 4, [ obviously, there are systems for which
T, :=fY"(h,) and 7_:=f“"V(h,) are equal, such as in the symmetric
Ising model where 7, =7_ by symmetry, but for asymmetric first-order
transitions, this is typically not the case]. The leading terms in the expan-
sion around A, then lead to the formula

m,.+m_ m,—m_ m
Mol L, h) = % + tanh{ +

My =M oy d
LIS = [k h,(L)JL}(l.S)

Here

m+ —m_ L P

which, for t_ # 17, , is now proportional to 1/L, while the width 4 of the
transition is still proportional to L~

In fact, a formula of the form (1.8) has already been given in ref. 23,
with heuristic arguments very similar to those presented above. Here, our
goal is twofold: first, we want to make the arguments leading to (1.8)
rigorous, deriving at the same time precise error bounds on the subleading
terms [in fact, our method allows one to calculate in a systematic way the
corrections to (1.8) in terms of an infinite asymptotic series in powers
of 1/L]. Second, we want to generalize these results to a wider class of
situations, including, in particular, the finite-size scaling of expectation
values of arbitrary local observables.

It will turn out that the more precise analysis of the subleading terms
reveals an interesting fact: if one considers other standard definitions of
the finite-volume transition points, e.g., the position /(L) of the maximum
of the so-called Binder cumulant Ug.(L, #), one finds that all of them
are shifted, with respect to the infinite-volume transition point 4,, by an
amount proportional to 1/L. Their mutual shifis, however, are of the much
smaller order 1/L*, with proportionality factors that are the same as those
for the corresponding shifts with periodic boundary conditions; see
Section 2 for the precise statements.

The finite-size scaling of local observables, on the other hand, will lead
to the construction of certain “metastable” states <->"i and their finite-
volume analogs ¢ ->%" such that

hz(L)=h,+—T—+;T—_—2—d+0<l> (19)

£
<A>ée£;A+(L);A—(L)+A+(L);A_(L)

x tanh {T—;l [h—h,((LnLd} (110)
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Fig. 1. Finite-size scaling of three different observables.

Here A . (L)=<{A4) ’;t " differ from the corresponding infinite-volume expec-
tation values 4, =<{A>" by an amount which is exponentially small in
the distance dist{supp 4, 04); see Theorem 3.2 in Section 3.4 for the precise
statement in the more general context of N-phase coexistence. Note that
the argument of the hyperbolic tangent in (1.10) is the same as in (1.9), and
is independent of the particular choice for 4. Thus the finite-size scaling of
all local observables is synchronized in the sense that, after subtracting the
“offset” [A,(L)—A_(L)]/2, the functions {A)f." asymptotically only
differ by a constant factor; see Fig. 1.

The organization of the paper is as follows: in the next section we
present, in Theorem A, our main results for the finite-size scaling of the
magnetization and susceptibility in the context of a field-driven transition
with two coexisting phases. Section 3 is devoted to the contour repre-
sentation of the models considered in Section 2, together with our main
assumptions and results for a more abstract class of models describing the
coexistence of N phases. We state two main theorems concerning the finite-
size scaling: Theorem 3.1 on partition functions and other thermodynamic
quantities, and Theorem 3.2 on the finite-size scaling of local observables.
In Section 4 we construct suitable metastable free energies and prove
Theorem 3.1, deferring the technical details to the appendices. In Section 5
we construct metastable states and prove the corresponding theorem,
Theorem 3.2. In Section 6 we prove the results stated in Section 2, using
the abstract results formulated in Section 3.

2. FIELD-DRIVEN TRANSITIONS

2.1. Definition of the Model

In order to explain our main ideas, we counsider an asymmetric version
of the Ising model. Working on a finite lattice 4= {l,.., L}, d>2,

822/79/1-2-4
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we consider configurations o¢,:i—o,e€{—1,1} and the reduced
Hamiltonian

H(aA)=—4{ Y loi—ol*=h Y o+ Y k4] 0 (2.1)
{ij>cA ieA AcAa ieA

where J is the reduced coupling (containing a factor f=1/kgT), the first
sum goes over nearest neighbor pairs {ij>, while the third one is a finite-
range (ie., kx, =0 for diam A < R, where R < c0) perturbation with trans-
lation-invariant coupling constants x,eR. While the first two terms in
(2.1) describe the standard Ising model, the third term is a perturbation
that may break the +/— symmetry of the Ising model. We will assume
that it is small in the sense that

K
pel= ¥ Faley

where by >0 is a constant to be specified in Theorem A below.
The partition function with free boundary conditions is

Zieel L By =3 e~ oD (2.2)

L]

The derivatives of its logarithm define the corresponding magnetization
d
mfree(L, h) =L—¢,Elog Zfree(La h) (23)
and the susceptibility

d
Xfree(La h) =%mfree(L’ h) (24)

The Binder cumulant U, (L, h) is given as

MY UM (M) - (M (MY
3M?H? 3UM —(M))*H?

where (- denotes expectations with respect to the Gibbs measure corre-

sponding to (2.1), {-), denotes the corresponding truncated expectation

values, and M =3, _,0;. Note that Ug.(L, h)<2/3 by the inequality
{F*y > (F)? [applied to F=(M— {M>)?].

Ul'rce(La h) =

(2.5)

2.2. Heuristic Background, Main ldeas

For low temperatures (ie., large J), the leading contributions to the
partition function come from the constant ground-state configurations
oc,= —1 and g ,= + 1. In this approximation,

Zl‘ree(L’ h) ~ e—E+(L, h) + e—E_(L,h) (26)
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where
E (L h)= Z e (i) 2.7)

ieA
with the position-dependent “ground-state energies”

!
e i)=Y K 4———ho, a=+1 (2.8)

AcAied |A| B

In the same approximation, the magnetization mg, (L, #) and susceptibility
Xfree(L9 h) are giVen by

(2.9)

mee(L, h) = tanh (E—(L’ h—E.(L, h)>

2
and

(2.10)

Yieol L, B) = L cosh 2 <E-(L’ h—E,(L h))

2

Observing that e,(7) differs from the bulk value e, if i is in the vicinity
of 84, we expand E (L, k) into a bulk term e, L? plus boundary terms,

E (L hy=e (h) L4+ e\~ (h)2dL4~" + O(L4~2) (2.11)

While, still within the approximation by ground states, the bulk transition
point A, is the value of A at which e (4)=e_(h), the finite-volume tran-
sition point Ay(L) corresponds to the equality of E (L, h) and E_(L, h).
By (2.11), this leads to a shift

ho(L) — ho=O(1/L) (2.12)

Notice that for periodic boundary conditions we get hy(L)=h, for zero
temperature and, for nonvanishing temperatures, a shift 44(L) — A, propor-
tional to 1/L% for periodic b.c.¢?

In order to make the above considerations rigorous, one has to take
into account the excitations around the two ground states o ,= + 1. This
1s done in Sections 3 and 4 and leads to a representation

Ziee L, h) = (e FHEM = F-LM)[1 4 O(L%e~*10)] (2.13)

where L, is a constant of the order of the infinite-volume correlation length
and F, (L, h) have an asymptotic expansion similar to (2.11), namely

F (L hy=f,(h)L¢+ f¢=D(h)2dL4~" + O(L4~?) (2.14)

where f, (h) are metastable free energies and /¢~ '(h) are (metastable)
surface free energies. Once these results (see Theorem 3.1 in Section 3
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for the precise statements) are proven, we obtain the desired finite-size
scaling results by a rigorous version of the method presented in the
introduction.

2.3. Statements of Results

In order to state our results in the form of a theorem, we introduce,
for h#h,, the free energy

flhy=fDh)= — Jim L~9log Zgeo( L, h) (2.15a)
the surface free energy
S = — lim o Tlog Zawd(L D+ LY(R)]  (2150)
..., the corner free energy

SO = — Tim 53 [108 Zyae L, 1)+ LYUR) + --- +297dLf V(b))
(2.15¢)

as well as single-phase magnetizations m, and surface free energies 7, at
the transition point #,,

d
my =~ f(h) (216)

h+0

Ty =Dk, +0) (2.17)

We also recall that [|x| was defined as

A

llll A:OZEA |

Theorem A. Finite-Size Scaling of m and x. Consider a

perturbed Ising model with a perturbation of the form (2.1), with trans-

lation-invariant coupling constants x , with range R < co. Then there are

constants Jo<oo and by>0 such that, for |k||<byJ and J>J,, the
following statements are true. Let

AF(L)=f“=D(h,+0)2dL~ 1+ ... + fO(h, +0)27
— fE=D(h,—0)2dL4~ — .. — fO(h,—0)2¢  (2.18)
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and define A,(L) and hy(L) as the points where the susceptibility yg..(L, h)
and the Binder cumulant Up,.(L, ) are maximal. Then3

ML, hy =" e 2 gy {'"* - [h—hx(L)]L"}
(1+ ||x||)>
+0< i (2.19)
and

—_ 2 _
Kieel Ly h) = <%) cosh~? {””2—’"— [h—hy(L)] Ld} L
+O((1+ kL) (2.20)

provided |h—h(L)| <O((1+ [lx|)L~").
In addition, for 4F(L) #0, the shift 4 (L) obeys the bound

hl(L)=h,+ﬂi[1+o<l>] (2.21a)

m,—m_L¢ L

In the leading order, the shift of the point A (L) with respect to A, is the
same,

_ AF(L) 1 1
ho(L)=h, +— _L"{H_O(L)] (2.21b)

Remarks. (1) If r,#7_, Eq. (2.21a) [and similarly for (2.21b)]
can be simplified to

T,—7_ 2d 1
h(ly=h 4+ —+—= —
A et T T [”O(L)]
yielding a shift ~1/L which is much larger than the width of the rounding,
which, according to (2.19) and (2.20), is of the order 1/L<
(ii) If it is interesting to consider the mutual shift & (L) —h(L).
While both #,(L)—h, and hy(L)—h, are of the order 1/L, their mutual
shift is actually much smaller, namely

.

1 ]
h(L)— hU(L)_z(X*—X‘)aL,ﬁ O<W> (2.22)

3 Here and in the following, O(L%) stands for an error term which can be bounded by KL%,
with a constant X that does not depend on 4, J, and «, as long as J>J; and [« <bgJ.
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It is interesting to notice that, in the leading order 1/L%“, this mutual
shift is exactly the same as the corresponding shift for periodic boundary
conditions.

(iii) We stress that the condition |A—h (L) <O((1+ |x|)L™") is
not a very serious restriction in our context, because the width of the tran-
sition in the volume L7 is only proportional to L~ In fact, in Section 6
we will close the gap left in Theorem A by showing that for

b= hL)| > =2 (14 el L
one has
Imgee(L, h) —m(h)| < O(1/L) (2.23)
and
[Xswee( L, h) — x(h)| < O(1/L) (2.24)

where m(h) and y(h) are the infinite-volume magnetization and suscep-
tibility, respectively, of the model (2.1).

(iv) Notice that, for periodic boundary conditions, it is possible to
define finite-size transition points A,(L) with exponentially small shift, for
example, the point where m (L, h)=m, (2L, h). Here, all these defini-
tions lead to a shift ~1/L yielding no qualitative improvement with respect
to the point A, (L) or h{L).

(v) In principle, the coefficients m,, 7, ..., can be calculated up
to arbitrary precision using standard series expansions, provided the
microscopic Hamiltonian is known. On the other hand, the scaling
{2.19)-(2.21) would allow one, in principle, to obtain the coefficients m _,
m_, and the difference r, — 7 _ from experimental measurements.

(vi) The general context considered in Section 3 allows one to
analyze the finite-size scaling with more general boundary conditions than
the free boundary conditions considered here, including, in particular,
small applied boundary fields favoring one of the two phases near the
boundary. In order to apply the techniques developed in this paper, it is
necessary, however, to exclude boundary conditions which strongly favor
one of the two phases. Such a condition is needed to ensure that the main
contributions to the partition functions do in fact come from small pertur-
bations of the two ground states ¢,= + 1. For large boundary fields, the
boundary may strongly favor one of the two phases. The leading contribu-
tions to the partition function then would include configurations which are
in one phase near the boundary, and in the other one for the bulk. In such
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situations, wetting and roughening effects of the contour separating the
boundary phase from the bulk phase would be important physical effects.
We are not attempting to study these effects in the present paper.

3. GENERAL SETTING AND MAIN THEOREM

3.1. Contour Representation of the Ising Model

In this section we review the contour representation for the model
(2.1). To make this subsection as simple as possible, and to have a concrete
example at hand, we use for illustration the simplest symmetry-breaking
term, namely a perturbation of the form

KoY 60,0 (2.1

Cikye A

where the sum goes over all triangles {ijk> made out of two nearest
neighbor bonds i) and {jk)>. See refs. 24 and 25 for the contour
representation for the more general model (2.1). It will be convenient to
introduce, in addition to the finite lattice A={l,.,L}% the subset
V=[3%, L+4]“ of R which is obtained from A as the union of all closed
unit cubes ¢; with centers i€ A. For a given configuration g, {—1, 1},
we then introduce the set 0 as the boundary between the region V, <V
where o,= + 1 and the region V_ < V where ¢,= — 1, and the contours
Y,,... Y, corresponding to ¢ , as the connected components of 0.

To be more precise, we define an elementary cube as a closed unit cube
with a center in A (we sometimes use the symbol ¢, to denote an elemen-
tary cube with center ie 4), and introduce I7i as the union of all closed
elementary cubes c¢; for which o,= 4-1, respectively. The set 0 is then
defined as ¥V, n¥_, and the “ground-state regions” V', are defined as
V. \0. With these definitions, the partition function with Hamiltonian
(2.1') can be rewritten in the form

Zfrcc(L, h) =Z z’ e‘”‘”/')

3 oa

where the second sum is over all configurations consistent with 0.

In order to specify the configuration o ,, one has to decide which
component of ¥\@ corresponds to ¢;= + 1 and which one to g;,= — 1. To
this end, we introduce contours with labels. Given a configuration o 4, the
contours corresponding to o, are defined as pairs Y= (supp ¥, af-)),
where supp Y is a connected component of 9, while « is an assignment of
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a label a(c)e { —1, +1} to each elementary cube that touches supp Y.* It
is chosen in such a way that a(c;) =0;. Note that the labels of contours
corresponding to a configuration ¢, are matching in the sense that the
labels a{c) are constants on every component of V'\d.

In fact, a set of contours {Y,.., ¥,} corresponds to a configuration
a4 if and only if:

(i) supp Y,nsupp Y;= for i# j and
(ii) the labels of Y,,.., Y, are matching.

We call a set of contours obeying (i) a set of nonoverlapping contours
and a set of contours obeying (i) and (ii) a set of nonoverlapping contours
with matching labels, or sometimes just a set of matching contours.

In order to rewrite Z..(L, h) in terms of contours, we assign a weight
p(Y) to each contour. This is done in such a way that

c—H(ﬂA)=e~E+(V+)e—E_(V_) l’l ,0( Yk) (3.1)
k=1
Here H(o,) is the Hamiltonian (2.1'), Y,,.., ¥, are the contours corre-
sponding to o, and
E (V)= Y eid) (3.2)
ieAnVy

For the standard Ising model, p(¥)=e~7'", where |¥| is the number
of elementary (d-—1)-dimensional faces in supp Y. The third term in
(2.1), however, introduces corrections yielding a weight of the form
pY)=e~7IM+OEIYD Ag a consequence,

|p(Y)| e 7!V with 1=J—0(x) (3.3)

Similar bounds hold for the derivatives |d*p( Y)/dh*).
With the help of (3.1), we rewrite the partition function Z (L, /) as

n
Zoel Lh)= ), e7 5" BN TT p(Y) (3.4)
(yl ----- Yu} k=1

where the sum goes over all sets of matching contours in V.

“In the language of ref. 19, supp Y is called a (geometric) contour, while Y is called a labeled
contour.
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3.2. Assumptions for the General Model

In Section 3.3 below, we will state our main theorem, Theorem 3.1,
from which we infer Theorem A of the preceding section. The setting of
Theorem 3.1 is actually more general than what is needed for Theorem A
and will include more general models. On one hand, we introduce contours
in such a way that the notion of contours covers the Ising contours intro-
duced above as well as thick Pirogov-Sinai contours®*2®) constructed
as unions of elementary cubes.’> On the other hand, we also consider the
situation of general N-phase coexistence.

As before, we consider the finite lattice 4 = Z% d>2, and the corre-
sponding volume ¥ < R?. We introduce the set 4 of elementary cells as the
set of all elementary cubes in V, all closed (d— 1)-dimensional faces of
these cubes,..., and all closed edges of these cubes. As usual, we define the
boundary 0W of a set W< V as the set of all points x which have distance
zero from both W and W* and W as WuoW.

A contour in V is then a pair Y=(supp Y, «(-)) where supp Y is a
connected union of elementary cells and «(-) is an assignment of a label
a(c) from a finite set {1,., N} to each elementary cube ¢ in V\supp ¥
which touches Y [by touching we mean that cnsupp Y# ¢, while
(c\@c) nsupp Y= @ ]. As before, we require that o is constant on each
component C of V\supp Y, and say that a set {Y,,.., Y,} of contours
is a set of matching contours (or, more explicitly, a set of nonoverlapping
contours with matching labels) iff:

(i) supp Y;nsupp Y;# & for i# j and

(ii) the labels of Y,,.., Y, are matching in the sense that they are
constant on components of ¥\(supp Y, u --- usupp Y,,).

In this way, each component C of V\(supp ¥, u --- Usupp Y,) has
constant boundary conditions on dC\@V. The partition function of a

statistical model with “weak” boundary conditions is then rewritten in
terms of contours as

n N
zv,m= Y T] p(x,) J] e (35)

{ Y1 Yu} k=1 m=1

where the sum goes over sets of matching contours in ¥V (including the
empty set of contours), and V,, is the union of all components of
V\(supp Y, u --- usupp Y,) that have boundary condition m, and

E(V,)= Y eulc) (3.6)

cc Vi

5 The contours are introduced in such a way that the more general cases considered in refs. 11
and 19 are covered as well.
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We point out that the sum in (3.6) goes over all elementary cubes in the
closure ¥V, of V,, a convention which was chosen to ensure that all
elementary cubes ¢ with center in V,, are taken into account.® Note that
by our definition of ¥ as a closed subset of R, the sum (3.5) contains
contours that touch JV (in the sequel, we call these contours boundary
contours) and contours that do not touch @V (ordinary contours). The
contribution of the collection of empty contours to (3.5) is actually a sum
of N terms, 3, e =&V,

In the equalities (3.5) and (3.6) we have introduced “contour weights”
p(Y)eR and “ground-state energies” ¢, (c)e R that depend on a vector
parameter A e %, where % is an open subset of R’. We assume that p(Y)
and e, (c) are translation invariant as long as Y and ¢ do not touch the
boundary of V. More generally, we assume translation invariance along a
(d — k)-dimensional face in 0V as long as Y (or ¢) does not touch the
[(d—k) —1]-dimensional boundary of this face.

As usual, we have to assume a Peierls condition, together with several
assumptions on the ground-state energies e¢,(c). Here, we assume that
e,(c) and p(Y) are C*® functions of # obeying the following bounds:

[p()] e M-En G
dhAY)’ k|1 (Cy [ Y1) e= 111~ Bt (3.8)

and
% <Ck (3.9)

Here >0 is a sufficiently large constant, |Y] denotes the number of
elementary cells in’ supp ¥,

EfY)= Y eylc) with ey(c)=min e, (c) (3.10)

ccsupp ¥V m

k is a multi-index k=(k,),_, , with 1 < |k| <6, [k|=X k,, and C, is a

constant independent of 4 and 7. In addition, we assume that the difference
between e,,(c) and the bulk term e,, is bounded,

Iem(c)—(’m|<7f (311)

® A sum over elementary cubes ¢ V,, would exclude those elementary cubes c < 7, which
touch one of the contours Y,..., Y,.

7 Here, a k-dimensional cell ¢ in supp Y is only counted if there is no (k + 1)-dimensional cell
¢ in supp Y with cc=c'.
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with a constant 0 <y <1 to be specified later. This condition is introduced to
avoid a situation where free b.c. strongly favor cetain phases ne {1,.., N}.
Note that

|em(c) - em| < "K"

for the asymmetric Ising model (2.1). For this model, the condition (3.11)
is therefore satisfied once || < b,J for a suitable constant 0 < b, < c0.

3.3. Main Theorem

In this section we state our main result for the general model intro-
duced in the last section. It actually generalizes Theorem A presented in
Section 2 to a large class of models describing the coexistence of N phases.
As in Section 2, the leading contribution to the partition function Z(V, k)
is the sum

‘Z exp {— 2 e,,,(c)} (3.12)

m=1 ccV

Introducing |0, V| as the joint k-dimensional area of all k-dimensional faces
of ¥ and e'* as solutions of equations

d rd—k
'Ek <n—k> eM=e (c), k=d—1,.,0 (3.13)
whenever ¢ is touching a k-dimensional face of V' and not touching its
(k — 1)-dimensional boundary,® we rewrite

Z em( m |Vl +e(‘1_1) ‘ad—l VI + - +€£’?) |60 Vl (314)

cc ¥V
To see that (3.13) implies (3.14), just notice that a hypercube ¢ touching a
k-dimensional face of ¥ and not touching its (k — 1)-dimensional boundary
is touching (4~*) different n-dimensional faces of dV. Each of these faces is
specified by choosing n — k directions among d — k directions orthogonal to
the concerned k-dimensional face.
As usual we define the bulk free energy f(/) by

flhy= hm mlogZ(V h) (3.15)

8 Note that due to the translation invariance properties of e,,(c), the right-hand side of this
equation is constant for all such elementary cubes c.
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and the magnetization m(V, hy=(m(V, h)),_,__, by
(Vh)—iilo Z(V, h) (3.16)
MO A '

Theorem 3.1. There exist constants 5>0, y,>0, and 75<c0
[ where b and y, depend on d and 7, depends on d, N, and the constant C,
introduced in (3.8) and (3.9)], as well as metastable free energies f,,(h),
surface free energies f¢~"(h),..., edge free energies f'})(h), and corner free
energies f'9(h), such that the followmg statements are true provided the
effective decay constant 7,

Ti=1(l—9/y0)—10>0 (3.17)
[for the definition of = and y see (3.7), (3.8), and (3.11)]:
(1} f(h)=min,, f,(h).

(i) f, and fU, I=d—1,.,0, are six-times differentiable functions
of h.
(i) If |k| <6, then

k

() _
dh* €m)

m

<e—br

(f;'l - em)

<e FF and ‘d—k(f
= dh¥

where I=d—1,..., 0.
{iv) Let

F (V.R)=f,(h) [V + fd7D(h) 104 VI + -+ + [10(h) 10, V] (3.18)
Then

N

dhk[Z(Vh) Ze‘”"""’”]’slVl'““O(e-"*L)maxe—F"-"'-’” (3.19)
1

m

i
provided 0 < |k| <6.
(v) Let 0< k|l <5 and define P, as

N -1
=[ Z e—Fm(V./l)] e —Fa¥ i) (3.20)

m=1

Then

d* v )
dh,\[m(Vh z 1<—@%’—M>P,,] <V O(e=*™)  (3.21)

=
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Here, as in the rest of this paper, O(x) stands for a bound const - x,
where the constant depends only on d, N, and the constant C, introduced
in (3.8) and (3.9).

Theorem 3.1 is the main theorem of this paper. Its proof has three
major parts: the geometric analysis of contours touching the boundary, a
decomposition of Z(V, h) into pure phase partition functions, and the
construction of metastable contour models allowing one to prove the
bounds (3.19) and (3.21). Deferring the technical details to the appendices,
we present the main steps of this proof in Section 4.

3.4. FSS for Local Observables

In addition to the F'SS of thermodynamic quantities such as the magne-
tization or susceptibility, we want to study the FSS of local observables. In
order to state our results in the context of the general models considered
in Section 3.2, we introduce the following notation. An observable A4 is a
function which associates to each configuration contributing to (3.5) a real
number A(Y,,.., ¥,). Its expectation value in the volume ¥V is defined as

1
Z(V, h)

(A= Z(A|V; h) (3.22)

where

n N
ZA|V,ly= Y A(Y,,.. Y) ] p(Y) [] e & (3.23)

{1 Ya} k=1 m=1

As in (3.5), the sum in (3.23) goes over sets of matching contours in V, and
V,, is the union of all components of ¥\(supp Y, v --- usupp Y,) that
have the boundary condition m.

An observable A is called a local observable if there is a finite set of
elementary cubes, denoted supp A in the sequel, such that A(Y,,.., Y,,) does
not depend on those contours Y, for which supp A n(supp Y, ulnt ¥})
= ¥, where Int Y, is the interior of Y, (for the precise definition of Int Y;
see Section 4.1 below).

In most applications, local observables will be bounded, in the sense
that the norm

lAl= sup |A(Y,,.., Y,)l (3.24)

{ Y1, Y}
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is finite. In addition, the observable will either not depend on the vector
parameter 4 at all, or obey bounds of the form
dk

WA( Yl 30ees Yn)’ < |k|' CA(CO |Supp Al)lkl (3253)

where C, is the constant introduced in (3.8), C, is a constant, and k is a
multi-index of order 0 < |k| <6.

Here, we will allow for a slightly more general situation, requiring
only that

dk n
W I: A( Yl 300y Yn)jl;[] p( yvj)]

< k|1 C4(Cy |supp Y, [)* ] e~ 71— Bt (3.25b)

j=1

where supp Y, stands for the set supp A usupp Y, u --- usupp ¥,, kisa
multi-index of the order 0 < jk| <6, C, is the constant introduced in (3.8),
and C, is a constant that is finite® for all # and 7. Assuming this condi-
tion'® and the conditions introduced in Section 3.2, we will be able to
prove the following theorem.

Theorem 3.2. There are “metastable expectation functionals”
¢ ’;,‘ ¢ 9=1,., N, such that the following statements are true provided
the effective decay constant ¥ :=1t(1 — y/y,) — 7, defined in Theorem 3.1 is
positive and 0 < |k| <6:

(1) For each local observable obeying the bounds (3.25a) or (3.25b),
one has

d* N .
W[uy;._ Y <A)’,’,‘qPq] < C,e00 pp Ao =) (3.26)
g=1

where the probabilities P, and the constant b are as in Theorem 3.1 and
e=e"

(1) For each local observable obeying the bounds (3.25a) or (3.25b),
the limits

<A>{;=Vlim A (3.27)
— R4 '

® While we assumed that the constant C, is independent of 4 and 7, we do not require that
C, is independent of 4 and 7.
' Note that (3.7), (3.8), and (3.25a) imply the bound (3.25b).
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exist as C*® functions of 4, and obey the bounds

dk
7 CAYG| < O(1) €4 [supp A| W1 e seer 4 (3.28)

—-1/2

where e=¢

(iii) For each local observable obeying the bounds (3.25a) or
(3.25b), one has

dk
L= ]

< CA lsupp A||k| eO(s)|suppA|0(e—bfdist(supp A,aV)) (329)
where e=e~ 7%

Proof. The proof of Theorem 3.2 is given in Section 5.

4. PROOF OF THEOREM 3.1

The proof of Theorem 3.1 has three major parts: the geometric
analysis of contours, in particular a bound of the form

Njp(Int Y) < const | Y]

where N,,(Int Y) denotes the number of elementary cubes in'' Int ¥ that
touch the boundary 0V of V, the decomposition of Z( ¥V, h) into pure phase
partition functions Z,(V, h),..., Zx(V, k), and the construction of suitable
metastable free energies fi,.., f,. Deferring the technical details to the
appendices, we present the main steps in the following subsections.

4.1. The Geometry of Contours

An important notion in the Pirogov—Sinai theory of contour models is
the notion of the interior and exterior of a contour. For ordinary contours
Y= (supp Y, a(-)), one defines Int Y as the union of all finite components
of R*\supp Y and Int,, Y as the union of all components of Int ¥ which
have the boundary condition m. Since ordinary contours do not touch the
boundary @V of V, the set Ext Y= V\(supp YulInt Y) is a connected set
and a(c) is constant for all cubes ¢ in Ext Y which touch supp Y. We say
that ¥ is an m-contour if a{c) = m for these cubes.

"' We recall that we use the symbol W to denote the closure of a set W.
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We now generalize these notions to boundary contours. To this end,
we first introduce, for each corner k£ of the box V, an “octant” K(k).
Namely, if k& has components k,,..,k;, with k;,=1/2 for ielI_ and
k;=L+1/2for iel,, then

K(k):={xeR¥|x,21/2 foriel_, x,<SL+1/2for iel.}

We then say: a contour Y is short iff there is a corner k such that
supp Y n oV < dK(k). Otherwise Y is called long. Note that short contours
may be ordinary contours or boundary contours, while long contours are
always boundary contours.

For a short contour Y, we then define Int Y as the union of all finite
components of K(k)\supp Y, Int, Y as the union of all components of
Int Y which have the boundary condition m, Ext Y as V\(supp Yu Int Y),
and V(Y) as supp YuInt Y. As before, Ext Y is a connected set, and the
notion of an m-contour is defined by the condition that a(c)=m for all
cubes ¢ in Ext Y that touch supp Y. Note that these definitions are
equivalent to the previous ones if the short contour Y is in fact an ordinary
contour. Note also that the above definitions do not depend on the choice
of the corner k if there are several corners k for which supp ¥ n oV < K(k).

For long contours, there is a priori no natural notion of an exterior or
interior. We choose a convention that ensures that the volume of a compo-
nent C; of Int Y cannot exceed the value L9/2 if Y is a long contour.
Namely, if Y is a long boundary contour, and C,,..., C, are the components
of V\supp Y, then the component C; with the largest volume is called the
exterior Ext Y. If there are several such components C, ..., C,, we choose
the first one in some arbitrary fixed order (for example, the lexicographic
order) as Ext Y. We then define Int Y= V\(supp YUExt Y), V(Y)=
supp Yulnt Y, Int,, Y as the union of all components of Int ¥ which have
the boundary condition m, and an m-contour Y as a contour for which
a(c)=m on all cubes ¢ in Ext Y that touch supp Y.

The following three lemmas state that the sets Ext ¥ and Int Y are
defined in such a way that they have the main properties of an exterior and
interior of the set supp Y. They are proven in Appendix B.

The first of them expresses the fact that for two contours Y, and Y,
which do not touch each other, Y, together with its interior is necessarily
contained in one of the components of Ext Y, ulInt Y,.

Lemma 4.1. Let Y,, Y, be nonoverlapping contours. Then the
following statements are true:

(1) If supp Y,<Ext Y, and supp Y, < Ext Y,, then V(Y,)<cExt Y,
and (Y,)c=Ext Y,.
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(ii) If supp Y)<=C,, where C, is a component of Int Y,, then
MY,)<cC,.

(iii) If supp ¥, cInt Y,, then V(Y,)cInt Y,.

The next lemma expresses the fact that it is not possible that two
contours which do not touch are both included in the interior of each
other.

Lemma 4.2. Let Y, and Y, be nonoverlapping contours. Then one
and only one of the following three cases is true:

(i) supp Y,<Ext Y, and supp Y, < Ext Y,.
(ii) supp Y,<Ext Y, and supp Y, cInt 7,.
(i) supp Y,<Int Y, and supp Y, < Ext ¥,.

Definition 4.3. Let {Y,,.Y,} be a set of nonoverlapping
contours. Then Y, e€{Y,,.., Y,} is called an internal contour iff there exists
a contour Y;e{Y,,.., Y,} with supp ¥, = Int ¥,. Otherwise Y, is called an
external contour. Finally, {Y,,.., Y,} is called a set of mutually external

contours if all contours in {Y,,.., Y,} are external.

The next lemma will be used in Section 4.2 to conclude that all
external contours of a given configuration contributing to (3.5) have the
same external label. This observation will be an important ingredient in the
decomposition of Z(V, h) into single-phase partition functions Z,(V, h),
and therefore in the proof of Theorem 3.1.

Lemma 4.4. Let {Y,,.,Y,} be a set of nonoverlapping contours
in ¥V, and let

Ext= V\ \J (Int Y, Usupp Y)) (4.1)

i=1
Then Ext is a connected component of V\|J7_, supp Y;.

Remark. Let Y, be a contour, and let W, be one of the components
of Int Yy. Then Lemma 4.4 remains valid if V is replaced by W, as can
be seen immediately from the proof in Appendix B.

While the preceding three lemmas, even though tedious to prove, just
express our intuitive notions about exteriors and interiors (in fact, our
definitions were chosen in such a way that they do), the next lemma is less
obvious. In order to explain the need for it, we recall that the ground-state
energies e,,(¢c) may be different from the corresponding bulk term e¢,,. As
a consequence, the boundary may favor an otherwise unstable phase. In
the expansion about the leading contribution e ~#*) to the single-phase

822/79/1-2-5
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partition functions Z,(V, k), this will have the tendency to increase the
weight of boundary contours which describe transitions into one of these
“boundary-favored” phases. In order to control the contributions coming
from such contours (using the exponential decay e ~*'"1), we need a bound
of the form

N, (Int Y) < const-|Y]

where N;,(Int Y) denotes the number of elementary cubes in supp Y that
touch the boundary oV of V. This is the main statement of the next lemma.

Lemma 4.5. Let Y be a contour in V, and let W,,.., W, be the
components of Int Y. Then

Naw(Int Y)S C, | Y] (42)
Z oW1 < C, | Y] (43)
i=1
and
PV <Cs Y] (44)

where C, =2d(2'“+1)/(2"¥—1), C,=C, +2d, and C3=C,+2d.

The proof of this lemma relies on a lattice version of the isoperimetric
inequality and is given in Appendix B. The proof of the required
isoperimetric inequality is given in Appendix A.

4.2, Decomposition of Z{V, h) into Pure Partition Functions

The first step in the proof of Theorem 3.1 is the decomposition of
Z(V, h) into N terms Z(V, h), g=1,.., N, which are obtained as perturba-
tions of the leading terms e ~%("), We start with the observation that all
external contours contributing to (3.5) touch the set Ext introduced in
(4.1). Given that these contours are matching, we conclude that all external
contours of a given configuration contributing to (3.5) have the same label.
Therefore

N
Z(V, i)=Y Z(V,h) (4.5)
g=1
with
n N
ZV,h)= % 11 o(¥y) T e~ 25nt¥m (4.6)
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where the sum goes over sets of matching contours in ¥ for which all
external contours are g-contours. As before, ¥, is the union of all com-
ponents of V\(supp Y,u --- usupp Y,) that have boundary condition m,
and E,(V,,) is defined in (3.6).

More generally, let W be a component of the interior Int ¥, of some
contour Y, in ¥, a set of the form (4.1), or a set obtained from a compo-
nent W, of an interior Int Y, by a similar construction,

W= Wo\ (J (Int Y;usupp ¥ (4.7a)

=1

where {Y,.., Y,} is a set of nonoverlapping contours in W,. We then
define Z (W, h) as

n N
zw,hy= Y I oY) [] e 5" (4.7b)

(Vi Yo} k=1 m=1

where the sum goes over sets of matching contours in ¥ for which all external
contours are g-contours with V(YY) = (supp Yu Int ¥) « W. Here, V,, is now
defined as the union of all components of W\(supp Y, u --- usupp ¥,,)
that have boundary condition m. Note that the sum in (4.7b) contains no
contours which surround the holes in W. Finally, given a volume W which
is a disjoint union of volumes W,,.., W, of the form (4.7a), we define
Z (W, h) as the product of the partition functions Z (W, k), i=1,..,n.

Returning to (4.6), we derive a second expression for Z,(V, k), which
eliminates the matching condition for the labels of Y,,..., ¥,. To this end
we first sum over all sets {Y,.., ¥,} with a fixed collection of external
contours. For each external contour Y this resummation produces a factor
[1Y_, Z,.(Int,, Y, h). This yields the expression

2= 3w ] 1 Z,(nt,, Yl (48)
k=1

m=1

where the sum runs over sets { Y,,.., Y, } .. of mutually external g-contours
in ¥ and Ext is the set defined in (4.1). Assuming that Z (Int,, Y, h) #0,
we divide each Z,, by the corresponding Z, and multiply it back again in
the form (4.7b). Iterating the same procedure on the terms Z (Int,, Y,, A),
we eventually get

Z(V,h)y=e B % ﬁ K[(Y,) (4.9)

{Yivn Ya} k=1
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where the sum goes over sets of nonoverlapping contours which are all
g-contours, while

Y~ Z.(nt,, Y, h)
K = Eq()’) m m 1]
A1) :i=p(Y) 5N T] ZInt,, .5

m=1

(4.10)

The equality (4.9) is the desired alternative expression for Z (¥, h) which
contains no matching condition on contours. Assuming that the new
contour activities K ( Y) are sufficiently small (for 4 in the transition region,
this is actually the case, see Section 4.4), it also expresses the fact that
e~ %" is the leading contribution to Z(V, h).

Obviously, (4.9) can be generalized to volumes W of the form con-
sidered in (4.7). One obtains

Z W, hy=e 5 Y T K(Y) (4.11)
{ Vi Ya} k=1

where the sum goes over sets of nonoverlapping g-contours Y,,..., ¥, with
MY )= W.

4.3. Truncated Contour Models

Given the decomposition (4.5) of Z(V, h) and the representation (4.9)
for Z,(V, h), one might try to obtain the FSS of Z(V, h) by a cluster
expansion analysis of the partition functions Z,(V,h). For such an
analysis, one would need a bound of the form |K(Y)|<é&'" with a suf-
ficiently small constant ¢ > 0. While it turns out that such a bound can be
proven for stable phases g, it is false for unstable phases.

In order to overcome this problem, we will construct truncated
contour activities K(Y) and the corresponding partition functions

Z W, k)=~ Y [] Ky(Y) (4.12)

(Vi Y} k=1
in such a way that:

(i) The truncated contour activities K(Y) obey a bound

IKy(V)| <&M (4.13)

for some small ¢ > 0.
(1) ZYW,h)=Z, (W, h) if the corresponding (infinite-volume) free
energy f, = f,(h) is equal to f=min,, ., f,,, so that the truncated model is

identical to the original model if f, = f (following refs. 26 and 29, we call
these g “stable™).
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(iii) The truncated contour activities and the corresponding free
energies are smooth functions of the external fields A.

Heuristically, the truncated model will be a model where contours
corresponding to supercritical droplets in the corresponding droplet model
are suppressed with the help of a smoothed characteristic function. In the
case of a two-phase model, this idea could be implemented by defining

K (V)=K (V) x(«|Y]—(fr =S) V(D))
K_(N)=K_(Y) x(«|Y| = (f- =S V(D))

where y is a smoothed characteristic function and « is a constant of the
order of 7, for example, « =7/2. While the presence of the characteristic
function would not affect the stable phases since f, — f_ >0 if the + phase
is stable (and f_ —f, >0 if the — phase is stable), it would suppress
contours immersed into an unstable + phase as soon as the volume term
(f.—f_)|V(Y)| is bigger then the decay term proportional to |Y]. As a
consequence, all contours contributing to the “metastable” partition
function Z/, obey a bound of the form (4.13) as desired.

Unfortunately, the above definition of K(Y) is circular because it uses
free energies f, that are defined as free energies of a model with activities
K(Y). To overcome this problem, we will use the following inductive
procedure.

Assume that K(Y) has already been defined for ali ¢ and all contours
Y with [V(Y)| <n, neN, and that it obeys a bound of the form (4.13).
Introduce " ~" as the free energy of a contour model with activities

K(Y?) if |MY9)|<n—1

(n—1) Y9y —
K (¥9 {0 otherwise

(4.14)

Consider then a contour Y with | V( Y)| = n. Since | ¥( ¥)| < for all contours
Y in Int Y, the truncated partition functions Z,(Int,, Y, h) are well defined
for all ¢ and m. Their logarithm can be controlled by a convergent cluster
expansion, and Z(Int,, Y, h)#0 for all ¢ and m. We therefore may define
K,(Y) for a g-contour Y with |V(Y)| =n by

Z,(Int,, ¥, h)

Ky ¥) =1, p(¥) 5N [] 2 s

m

(4.15a)
with

X N=T] x@|YI=(fF="=f0=) D) (4.15b)

m#q
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Here o is a constant that will be chosen later and y is a smoothed charac-
teristic function. We assume that y has been defined in such a way that y
is a C*® function that obeys the conditions

0<x(x)<1 (4.162)
x(x)=0ifx<—1 and x(x)=1ifx>1 (4.16b)
Osix(x) <1 (4.16¢)
dx
k
ZF 0| <8 forall k<6 (4.16d)

for some constant C,.

As the final element of the construction of K7, we have to establish the
bound (4.13) for contours Y with |V(Y)| =n. We defer the proof, together
with the proof of the following Lemma 4.6, to Appendix C.

We use f,=f,(h) to denote the free energy corresponding to the
partition function Z(V, &),

1
lim — log Z, 4.1
Hm Ty o8 AV ) (4.17)

fq= -

and introduce f = flk) and a,=a,(h) as
f=min f, (4.18a)

a,=f,—f (4.18b)

Finally, we recall that for a volume W of the form (4.7a), | W] denotes the
Euclidean volume of W, while for a contour Y or for the boundary dW of
a volume W, |Y] and |0W)] are used to denote the number of elementary
cells, i.e, the number of elementary cubes, plaquettes,..., and bonds in Y
and O W, respectively.

Lemma 4.6. Assume that p(-) and e,(-) obey the conditions (3.7)
and (3.11), and let

£ = g2 +ap—t(1—(1+2C)y (4.19a)
2d

&=F(a_2) (4.19b)
3

Then there exists a constant ¢, > 0 (depending only on d and N) such that
the following statements hold provided ¢ <&, and &= 1:
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(i) The contour activities K7(Y) are well defined for all ¥ and obey
(4.13).

(i) If a, |V(V)|" <4, then x,(Y)=1 and K(Y) =K(Y).
(iii) Ifa,|W V4 < &, then Z (W, h)=Z (W, h).
(iv) For all volumes W of the form (4.7a), one has

|Zq(VV,h)| SE—IIWHO(E) 10W] + ytNay (W) (4.20)

where N,,(W) is the number of elementary cubes in ¥ which touch V.
(v) For W=V the bound (4.20) can be sharpened to

|Zq(V, h)| e Ml +y0) 1871 max{e“'v”"/“, e—MC:)“rlaVl} (4.21)

where C, = C5(d) is the constant defined in Lemma 4.5.

Remarks. (i) Due to the bound (4.13), the partition function
Z,(V, h) can be analyzed by a convergent cluster expansion. As a conse-
quence, one can prove the usual volume, surface,..., corner asymptotics
for its logarithm. Namely, using /", f4~1,.., /' to denote the bulk, sur-
face,..., corner free energies corresponding to Zy(V, h), and introducing

F (W) as
F (W)=} fc) (4.22)

ce W

where f,(c) = f, if ¢ does not touch the boundary 0¥ of V, and, in analogy
to (3.13),

4 rd—k
fe)=3% tm k=d-1,.,0 (4.23)
o \n—k
if ¢ is touching a k-dimensional face of ¥ and not touching its (k—1)-
dimensional boundary, we get

llog Z,(V, h) + F (V)| < |V] O((Ke)*) (4.24)

for some K < oo depending only on N and d.

(i) It is interesting to present a heuristic derivation of the bound
(4.21) in the approximation of the droplet model. To this end, we recall
that the diameter of a critical droplet is proportional to 7/a,. Assume now
that a, L/t is small. Then the size of a critical droplet is larger then the
system size, and Z (¥, h) is a partition function describing small perturba-
tions around a metastable ground state, with the weight

Zq( V,h) ~ e 1IN+ 0UdV1) _ o =S I+ 010N p —aq V] (4.25a)
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For large values of a,L/r, on the other hand, supercritical droplets do
fit into the volume V. As a consequence, the leading configuration con-
tributing to Z,(V, h) contains a big contour (with an interior that is
essentially all of V) describing a transition from the unstable boundary
condition ¢ to a stable phase 4 with f,= f. We conclude that

Z (V, h) ~ e~/ 171+ 000V 1)g—0(0) (011 (4.25b)

if a, L/t is large. Except for the numerical value of the involved constants,
the bound (4.21) exactly describes this behavior.
(iii) The fact that y,(Y) suppresses supercritical droplets manifests
itself in the fact that
X{¥)=0 unless a, |V(Y)|<[a+14+0(¢e)] Y] (4.26)

See Appendix C for the proof of (4.26).

4.4. Bounds on Derivatives

We finally turn to the continuity properties of Z, and Z;. As a finite
sum of C* functions, Z (¥, h) is a C*® function of A. The following lemma
yields a bound on the derivatives of Z (V, h).

Lemma 4.7. There is a constant K [depending on d, N, and the
constants introduced in (3.8), (3.9), and (4.16)] such that the following
statements are true provided e <e¢y and &> 1:

(i) Z/ W, h)is a C® function of / and

an* 4z W, h)‘ < k|1 {[ Co+ O(e)] | W]} I =/ IV1g0) 0MgreNav() (4 77)

for all multi-indices k of order 1 < |k| <6.

(il) K(Y)is a C® functions of 4, and

’WK’ Y)‘s(Ke)'Y' (4.28)

for all multi-indices & of order 1 < |k| <6.
(1) log Z, (W, h)is a C*¢ functions of k4, and

d*
dn*

log Z,(W, h)) [CH+0(e)] | W] (4.29)

for all multi-indices k of order 1< |k| <6.
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(iv) For W=V (and 1 < |k| <6), the bound (4.27) can be sharpened
to

d* '
‘WZ,I( v, h)‘ < k| {[Co+ O(e)] |V|}"" o=/ IWlp1 +77) 131

x max{e =9 M/4 g-4C7 r vy (4.30)

Proof. The proof of this lemma is given in Appendix D.

Remarks. (i) For many models, including the perturbed Ising model
introduced in Section 2, it is possible to prove a degeneracy-removing
condition. In the context of a model with ¥ ground states and a driving
parameter Ae RY~! (N =2 for the perturbed Ising model), one considers
the matrix

d
E:(a (eq—eN)> ) (4.31)

and its inverse E~'. One then proves that for some value k, of A, all
ground-state energies are equal, and that E~! obeys a bound

IE~"| o =max Y [(E™"),| < const (4.32)
Yog
in a neighborhood % of h,, which does not depend on =.
On the other hand, s,=f, —e, is a C® function of 4 with
|fe—e,] < Ofe) (4.33)

and

d
(fy—e)| < O(e) (4.34)

&

by Lemmas 4.6 and 4.7. As a consequence, the inverse of the matrix

d
F= (G5 =) (435)

obeys a bound of the same form as E~!, with a slightly larger constant on
the right-hand side; combined with the inverse function theorem and the
fact that f,(ho) — falho) < O(e), one immediately obtains the existence of a
point h, €, |h,—hy| < O(¢), for which all a, are zero, ie., all phases are
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stable. More generally, one may construct differentiable curves 4 (1),
starting at 4,, on which only the phase g is unstable, surfaces /4, s) on
which phases ¢ and § are unstable, etc. A possible parametrization of these
curves, surfaces, etc., is given by

am(hq(t)) = 5mq t’ am(hqq(ta S)) = 5mqt + 6,"43,...,

(ii) Due to Lemma 4.7(ii), the bound (4.24) can be generalized to the
first six derivatives of log Z(V, h). Namely,

k

d
7 [log Zi(V, h) + F (V]| < |V O((Ke)") (4.36)
for all multi-indices k of order 1 < k| <6.

4.5. Proof of Theorem 3.1

In order to prove Theorem 3.1, we introduce the sets
0={l1,.,N} and S={9eQ|a,L<a} (4.37)

Using the decomposition (4.5) together with Lemma 4.6(iii), we bound

dk
dl"[Z(V -3 e M”

g=1

<X

Lz Vo=

qgesS
+¥ Ll AV h)l + ¥ e-F«“”l (4.38)
g dh" oy dh*

where k is an arbitrary multi-index of order 0 < |k| <6.
Next, we observe that for 1 < |k| <6,

SoF V)‘ <o) ¥ (4.39)

by the assumption (3.9) and the fact that F (V) — E (V) can be analyzed
by a convergent expansion using Lemmas 4.6 and 4.7.
For ge S, we then rewrite

[Z(V, h)—e N = —e=FN[ ] — gFat+loe Z(V. ]
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Using the bounds (4.24), (4.36), and (4.39), we obtain the following bound
on the first sum on the r.h.s. of (4.38):

dk
Z dhk [Z’(V h) —F,,(V)]

gesS

< 0((Kg)L) 14 1kl +1 Z e=FiV

qeS

< O((Ke):) |V ¥+ max e~ V)
qgeS

O((Ke):) | V"™ *+1 max e =5 (4.40)
qeQ

In order to bound the last sum in (4.38), we observe that for g¢ S one
has

[ Sre=n| <oy e
< 0(1) |V| 1k| e[rr+0(£)] IBVle—ﬁ, kg

_ 0(1) |V| Ikl gLyt + O] 18V g —aq [Vip =/ V]

<O(1) |V| Ikl gL2re + O()] 1BV],—ag V] iy @ —Fa V)
9¢Q

<o) V] k) g —[&/2d =2yt — O] 10V] ynax o= Fol¥) (4.41)
qe@Q

where we used the definition (4.37) of S and, in the last step, the fact that
L= |VI=(1/2d) |oV].
Finally, again for g ¢ S, we have

dk
an*

Z (V h)’ <0(1) |V|Ikl el +r0)1o¥] max{ —a/4 | V] e—r/4CJ IaVl} AL

< 0( 1) | Vl k| e(l + 2yt — min{a&/8d, t/4C3} ) |0V] max e—F.,( V) (442)
9€Q

by (4.21) and (4.30).
Inserting the bounds (4.40)-(4.42) into (4.38) and observing that
|0V] = 2dL for all d>2, we finally obtain the bound
dA N
’ A[Z(Vh Y e*F"MHSO(e_"/L")|V|""+‘maxe_F4‘V’ (4.43)
dh a1 geQ
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where

i:=min{—log(Ks) & — 4dyt — O(¢), -—2d 4dyt, —

2d
—2d—4
I ac.” dyr}

3

=min {—log(Ks) —2d —4dyr, 42C“13

Recalling the definitions (4.19) of & and &, together with the fact that
C,=C, +4d, we now rewrite

—2d— 4dyr} (4.44)

—log(Ke)=1—a—(14+2C,)yr— O(1) (4.45a)
X 2d
g—2d—4afy'c=——[oc—(32a’~i—8C,)yr]—0(1) (4.45b)
4 4C,
and
2d 2d
4—C31—2d—4dyr—4—['c—(32d+8C1)y‘c]—0(1)
2d
=2— ——(16d+4C1)yr —~O0(1) (445¢)
Choosing a =1/2 + (16d + 3C, — 1/2) yr, we obtain
1
—Iog(Ks)=%— <§+5C1 + 16d> yr—0(1) (4.462)
& d—4g Zd[ <1+16d+5c> O(1)  (4.46b)
4 =ic |27\ ) ‘
and
1 2d
—=— d
I, 4C3[2 <2+16 +5C> ] o(1)
=—=[1—(1+32d+10C,)yr — 7] (4.46¢)
4C3

where 7, is a constant that depends on N, d, and the constants introduced
in (3.8), (3.9), and (4.16).
Defining

b=>b(d) =-—dCT3 (4.47a)

1

Yo=rold) =105 T0C,

(4.47b)
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and
T=1(1 —y/ye) — 7o (4.47¢)

we obtain 1/L,= b7 and hence the bound (3.19) of Theorem 3.1.
Observing that

£ =2~ (/201 —(1 +16d+10C1)y) _ 52, —(¥/2)(1 —y/¥0) (4.48)

we note that the condition 7> 0 implies the inequality ¢ < ¢, provided 7, is
chosen large enough. The condition @ > 1, on the other hand, is trivial,
since

2d d
Y = — —_ 2—— —
& C3(a 2) C;T o(1)

It remains to prove statements (iii) and (v). While (v) is a direct
consequence of (iv), statement (iii) follows from the fact that (f,, —e,,) and
(f)—e)) can be analyzed by a convergent cluster expansion involving
the decay constant . Observing that O(g) < O(e~%) can be bounded by
e~%, this proves (iii). ||

5. PROOF OF THEOREM 3.2

5.1. Decomposition of Z{A|V, h) into
Pure Phase Partition Functions

The first step in the proof of Theorem 3.2 is the same as the first step
in the proof of Theorem 3.1. Namely, we decompose Z(A4 |V, k) as

N

ZA|V,h)y=Y Z AV, h) (5.1)
1

gq=

with

n N
Z(A|V,h)= Y  A(Yy...Y) [] p(Y) [] e &%  (52)
{ Y1 Yn} k=1 =1
Here the sum goes over sets of matching contours in ¥ for which all external
contours are g-contours.
Next, we group all contours Y, for which V(Y,) nsupp A # J into a
new contour Y, and introduce the sets

supp Y, = {J supp ¥, V(Y,)= U WY)

Ye Yy YeYy

Int Y, = V(Y )\supp Y,, Ext Y, = V\WV(Y,)
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as well as

supp Y, =supp Y, usupp 4, V(Y )=V(Y,)usupp A
Int® Y,=1Int Y \supp 4, Ext'® Y,=Ext Y \supp 4

As usual, Int,, Y, is the union of all components of Int ¥, which have bound-
ary condition m, Int,, Y,=Int Y, V,,, while Int'® ¥, =Int? Y, " V,,.

Recalling that 4 only depends on those contours for which
V(Y) nsupp A4 # &, we then define

n N
p(YA)—A( Yl, . :') 1‘[ ,D( Y;() H e—E,,,(V,,,n(suppA\supp Ya)) (5.3)

k=1 m=1
where Y1,.., Y, are the contours in Y,. Fixing now, for a moment, all

contours Y; in (5.2) for which V{(Y,)nsupp 4 # ¢, and resumming the
rest, we obtain

N
ZAIV,R)=Y p(Y ) Z(ExtP Y, h) [] Z.(IntD Y, h) (54)

Y, m=1

Introducing

Z,(Int® Y, h)

K,(Y,4)=p(Y,){exp[ E (supp Y,)]} mnlm (8.5)

we further rewrite (5.4) as

Z AV, k=3 K(Y ){exp[ —~E (supp Y,)1} Z (Ext'® Y, h)

Yy

x Z (It Y, h) (5.6)

Using finally the representation (4.11) for Z(Ext'®Y,, h) and
Z (Int'” Y, h), we get

Z(A|V,h)=e BT K(Y,) ¥ HK(Yk) (5.7)
Ya

{Yiew Yo} k=1

Here the second sum goes over the set of nonoverlapping g contours
Y. Y,,, such that for all contours Y,, the set V(Y;) does not intersect the
set supp ¥ 4.

In order to make the connection to the standard Mayer expansion for
polymer systems, we then introduce G(Y,, Y,,.., ¥,) as the graph on the
vertex set {0, 1,.,n} which has an edge between two vertices i>1 and
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Jj=1, i#j, whenever supp ¥Y;nsupp Y;# J, and an edge between the
vertex 0 and a vertex i # 0 whenever V(Y;) nsupp Y, # J. Implementing the
nonoverlap constraint in (5.7) by a characteristic function ¢(Y,, ¥, .., Y,)
which is zero whenever the graph G has less than n+ 1 components, we
find that the standard Mayer expansion for polymer systems (see, for
example, ref. 27) then yields

Z A1V ) _ 2 1
S IO S S | TR0 Y ¥

i (5.8)

.....

Here ¢{Y,, Y,,., ¥,) is a combinatoric factor defined in term of the
connectivity properties of the graph G(Y,, Y,,.., ¥,).*” It vanishes if
G(Y,, Y,,. Y,) has more than one component.

5.2. Truncated Expectation Values

In the context of Section 5.1, the expansion (5.8) is a formal power
series in the activities K(Y;). In order to use this expansion, one has to
prove its convergence. As in Section 4, it is useful to introduce truncated
models.

For a contour Y with V(Y) nsupp 4 =, we define K(Y) as before
[see (4.152)], while for Y, ,={Y,,., Y,}, where {Y|,., Y,} is a set of
contours with V{Y)nsupp A # & for all Ye Y, we define

Z,(Int® Y, h)
IT x(1

K(Y.0)=p(Y ,){exp[ E,(supp Y,,)]} H Z (I ¥, h)
A; Ye Y,y

(5.9)
with x,(Y) as in (4.15b). Given this definition, we introduce
Z AV, hy=e BN K(Y,) 3 H K(Y,)
Ya { Y1 Yo} k=1
(5.10)
and
Z(AV, h)
h =_‘1— 5

which can again be expanded as

o 1 n
<A>I['/q=zK;( YA) Z __" Z l: I_I K;( Yk):| ¢c( YA, Yla'“a Yu) (512)
Y4 }

n=0"" {7, ¥} Lk=1
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The following lemma will allow us to prove absolute convergence of the
expansion (5.12), which immediately yields the statements (ii)-(iv) of
Theorem 3.2.

Lemma 5.1. Let ¢ g, and & be as defined in Lemma 4.6, and
assume that ¢ <&, and &> 1. Then the following statements are true:

(1) If
a, }r;ma;( (V)| <a (5.13)
€F¥y
then K (Y ) =K (Y ,).
(i) Let
|Y = ) [|supp Y| (5.14)
YeYy
Then
K ( Y )l < C o0 lsupp Al Yal (5.15)

(iii) Let k be a multi-index of order 1 < |k| <6. Then

k

d
7 K(Y,)

P slsupp Allkl CAeO(e)lsuppAl(K8)|Y,4| (516)

where K is a constant that depends only on d, N, and the constants intro-
duced in (3.8), (3.9), and (4.16).

Proof. The proof of Lemma 5.1 is given in Appendix E.

Using standard estimates for polymer expansions (see, for example,
ref. 27), we see that the bounds of Lemmas 4.6 and 5.1 immediately imply
the absolute convergence of the expansion (5.12),

o l n
IKAYL AT IKUY ) Y — X T 1KYl - 1LY, Y1y T,
Ya n=0""{¥... Yp} k=1
< O(1) C 40 lsurp 41 (5.16a)

and similar bounds for the derivatives, in particular,

dk

7 CADY [ < O(1) Isupp A|¥1 €, e 41 (5.16b)

Theorem 3.2(ii)—(iv) then follows using standard arguments.



First-Order Phase Transitions 79

5.3. Bounds on Z_(A|V, h)

In conjunction with Lemma 4.6, Lemma 5.1 allows one to analyze
Z(A|V,h)/Z(V,h) provided a,L <& In order to prove Theorem 3.2 in
the case where a,L > & for some of the phases g, we need an analog of the
bounds (3.21) and (4.30) for Z (4| V, h).

Lemma 5.2. Let ¢ ¢,, and & be as defined in Lemma 4.6, let
§=max{e, e °7*}, and assume that £<¢, and &> 1. Then the following
statements are true:

(i) |Zq(A | v, h)| < CAeO(E) Isupp 4] oLyt + O(E)] |8V], S V]
—{ag/4) IV ,—(7/4C3}|18V]
xmax{e , e }

(ii) Let k be a multi-index of order 1< |k| <6. Then
dk
‘dh" (A4|V, h) ’ lk|! {[ Co+ O(e)] |V|} ¥ C ,eO@ Isupp Al

x e[yt + 0] 10V~ V1 max{e—(aq/4) IVI’ e — {140y laVI}

Proof. The proof of Lemma 5.2 is given in Appendix E.

5.4. Proof of Theorem 3.2

As pointed out before, the absolute convergence of the cluster expan-
sion (5.12) immediately implies the statements (ii)—(iv). In order to prove
Theorem 3.2(i), we proceed as in the proof of Theorem 3.1, using the
decomposition (5.1), Lemma 5.1, and Lemma 5.2 instead of the decom-
position {4.5), Theorem 4.6, and Theorem 4.7. Defining S as in Section 4.5,
and observing Z (4| V, h)=Z,(A|V, h) if g S, we bound

ik

dh"[ A|Vh)—2e‘F"‘”<A> ]

<X

qu

+2

q¢S

hk{(A) [Z;(V,h)—e‘Fq‘V’]}l

k
Z(Ath)q dk[<A "V.qe‘F"‘V’]\ (5.17)
q¢S dh

dh*

where k is an arbitrary multi-index of order 0 < || <6.

822:79/1-2-6
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Combining the bounds (4.40) and (5.16), and bounding terms of the
form |supp 4[* and |¥]¥!*! by e?PX, we get an estimate for the first sum
on the right-hand side of (5.17) by

k

d
Y |5z [Z A1V, )= Ay e =]
gesS

< C 4099 PP Al KoY L max ¢~ 59 (5.18)
qeQ

Here K is a constant that depends only on N, d, and the constants intro-
duced in (3.8), (3.9), and (4.16). The terms for g ¢ S are bound in a similar
way, leading to

dk
e LA hge |

< CAeO(c) Isupp 4|, — [&/2d =2yt — O] 1O¥] yyyay o= Fol ) (5.19)
qeQ
and
k

< CAeO(E) [supp Ale(2y1+ O(1)— min{a/8d, t/4C3}) |8V] max e—Fq( n (520)
qeQ

Inserting the bounds (5.18)—(5.20) into (5.17), and choosing « as in Section

4.5, we get E=¢ and

dk N
@[Z(Aw,h)— ) e—Fv‘V’<A>’:/,.,]
g=1

< C 0@ PP Al —bTL) max ¢~ Fe¥) (5.21)
qeQ

where b and 7 are the constants introduced in (4.47). Together with
Theorem 3.1 and the observation that a prefactor |¥]*!*! can be absorbed
into the exponential decay term e~°%*, the bound (5.21) implies
Theorem 3.2(i). |

6. PROOF OF THEOREM A

Even though the statement of this section have a generalization (some-
times a very straightfoward one) to the case of several phases, we will
restrict ourselves to the situation where only two phases, plus and minus,
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come into play and the driving parameter is an external field 4. However,
we do not restrict ourselves to the model (2.1) (for which Theorem A is
stated), but consider the two-phase case in the general setting of Section 3.
In particular, we have two ground-state energies e, satisfying, for 4 in an
interval % [containing the point A, for which e (h)=e_(4)], the (non-
degeneracy) bounds

0<d<d%[e_(h)—e+(h)]</f (6.1)
which imply the bounds
0<a<d% [f_(h)—f,(h)]<A4 (62)

on the free energies f, (4) from Theorem 3.1 [cf also (4.17)]. Actually,
A =2C, according to the assumption (3.9). In the situation of Theorem A
we have (d/dh)[e_(h)—e (k)] =2. Considering now the free energies'?

d
F (L k=Y fEh)10, V] (6.3)
k=0
[cf. (3.18)] and their derivatives
d
M (L hy= Y, m{h) |3,V (6.4}
k=0

where m%$(h) = —df {)(h)/dh, and introducing

AF(L, k)=F (L, h)— F_(L, k) (6.52)
AM(L, k)= M (L, h)— M _(L, h) (6.5b)
FyL, =L h)’;F"”" h) (6.50)
MO(L,h)=M+(L’h);’M—(L’h) (6.5d)

we reformulate the bounds (3.21) of Theorem 3.1 for the two-phase case as
d* : 1 1 AM(L, h AF(L, h
—dh—k {m(L, h)— [L_dMO(L, h) +L—JT) tanh <— %)] H

Se—bFL (6.6)

2 We take here 8,V="V.
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with 0<k<5. For the magnetization m(h, L) and its derivative, the
susceptibility y(h, L) =dm(h, L)/dh, these bounds yield

1 1 AM(L, h) AF(L, h) bt
m(L, h) =Z2M0(L, h) +P—2——tanh <— 'T1'> + Ofe b L)
(6.7)
and
1 1 dx(L, h) AF(L, h)
x(L, h) =PX°(L’ h)+p 5 tanh <— —2——>
2

L (ALY o ALY oy (o

Here y,(L, h)=dM (L, h)/dh and Ay(L, h)=dAM(L, h)/dh.

In order to obtain Theorem A, and more generally the corrections to
it in terms of an asymptotic power series in 1/L, we proceed in several
steps:

(1) We expand the funtions AF(L, h), ML, h), AM(L, h), xo(L, h),
and 4dy(L, h) around the point s ,(L) where AF(L, h) =0, obtaining a power
series in (h— h,(L)) with coefficients that are derivatives of 4F(L, h) and
Fy(L, h) at the point A (L).

(ii) We Taylor expand the coefficients in (i) into a power series in
(h(L)—h,). Combined with the volume, surface,.., corner expansion for
the derivatives of F (L, 4) and the fact that A, (L) — A, can be represented
as an asymptotic expansion in powers of 1/L, we obtain the coefficients of
(i) as power series in 1/L, with coefficients that are derivatives of the
infinite-volume free energies f,(h), surface free energies f'¢~"(h),.., and
corner free energies f)'(4) at the infinite-volume transition point 4,.

(i) At h,, the derivatives of f4’(h) are identified with the one-sided
derivatives of the free energies f/'“(k) defined by (2.15).

(iv) We use Lemma 6.1 below to replace the argument of the hyper-
bolic functions in (6.7) and (6.8) by few expansion terms with an additive
error.

(v) In a final step, we use Lemma 6.3 to replace A—h,(L) by
h—h,(L), where h (L) is the position of the susceptibility maximum.

Lemma 6.1. Let x and y be two nonzero real numbers which have
the same sign. Then

tanh x tanh y> x— | (6.92)

|tanh x — tanh y| < min < ,
x
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and

tanh x tanh y> Ix — | (6.9b)

|cosh x —cohh y| <2 min ( ,
x y

Lemma 6.2. For large L there exists a unique point A(L)e % for
which F, (L, h)=F_(L, h). This point satisfies the bound

AF(L,h,) 1 1
h(L)=h, +de[1+0<z):| (6.10)

Lemma 6.3. For large L there exists a unique point 4,(L)e% as
well as a unique point h{L)e % for which the susceptibility y(L, h) and
the Binder cumulant U(L, k), respectively, attain its maximum. To the
leading order in 1/L, their shift with respect to the point A,(L) is given by

_ Xe—x- 1 1
hAL =m0+ 6 Ko 0(m) )
and
e—x. 1 1
hAL)=h '(L)+4(L_X,_)3L2"+O(de+'> (6.12)

Proof of Theorem A. Let us begin with the identification (iii).
Introducing

mQ(h) = —%@, xO(h) = —dz%f;(h), k=d,.,0 (6.13)
we get
f‘é”(h,)=,,ji;,31tof‘k)(h) (6.14)
and
mP(h,) = —dfz,:(h) o x(h) = —%ﬁ(h) s (6.15)

for k=d,..., 0. In particular, the one-sided derivatives (2.16) as well as the
limits (2.17) and (2.18) are expressed in terms of derivatives and limits of
the corresponding differentiable function f:

d
my === f(h) (6.16)

h=h
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and
T, =9k, (6.17)
Also
AF(L)=AF(L, h,) (6.18)

with AF(L, h)=(F .(L,hy—F_(L, h)). To show all this, we first notice
that, for the two-phase case, the bound (3.19) from Theorem 3.1 reads

ddik [Z(L, h) — e—F+(L.h) _ e—F_(L'h)]

< |V|k+1 max(e—F+(L,lr), e—F_(L.h)) O(e—bfL) (619)

Taking into account that F, (L, h) are asymptotically dominated by
f+(h) L% the bound (6.19) implies that for 4> A, the free energies f*)(h),
k=d,.., 0, defined by (2.15) actually equal the corresponding free energies
f ‘f’(h), k=d...,0, from Theorem 3.1 [we have chosen the notation for
which min(f,(k), f_(h))=f.(h) for h>h,]. Similarly, f(h)=f®(h),
k=d,.,0, for every h<h,.'* This identification immediately implies the
equalities (6.14)—(6.18).
Notice also that by (3.9) and Theorem 3.1(iii) one has

dkf(i)
dh*

<Chyett (6.20)

and thus also

1+ ||x]
L

mi(h,(L))=mi+O(|h,(L)—h,|)=mi+0< ) (6.21)

according to Lemma 6.2, where we evaluate 4F(L) with the help of (2.8)
and Theorem 3.1(iii).
Expanding now M (L, ) and F (L, h), we have

M (L,h)=M (L, h(L))+ O([h—h(L)] L9
=m(h{L)) L+ O([h—h,(L)] L?) + O(L?~")
=m, LY+ O([h—h(L)] L) + O((1 + x| ) L") (6.22)
3 For h=h,, the asymptotic behavior will be determined by the first k=d—1,..., 0, for which

S8R~ B (k). For example, if f§=V(h)>f“="(h,), then f*(h,)=f"Yh,) for all
k=d,..,0 [of course, f'@h,)=f"h,)].
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and
—d4F(L,h)=[M (L, h{L))—M _(L, h{L)][h—h(L)]
+O([h—h(L)]* L%
=(m, —m_)[h—h(L)]1LY+ O([h—h(L)]* L)
+O([1+ x|l J[A—h(L)] L")
=2x{1 +O([h—h(L)]} + O([1+[xI1L"")  (6.23)
Here
x="2 "0t n(L)] LY (6.24)

2

Using Lemma 6.1 to replace the argument of the hyperbolic functions in
(6.7) and (6.8) by x, we get

m(L, h)y ="+ “2”"— +’"+;’"- tanh(x) + O([ 1 + [« ] L~1)

+O([h—h(L)] (6.25)

and

_ 2
2L, by = ('"*Tm—) cosh=2(x) L + O([ 1 + x| ] L)

+O([h—h(L)]1LY) (6.26)

In order to replace further the argument x of the hyperbolic functions by
the argument

x=T+—;ﬂ[h—hx(L)]Ld (627)

used in (2.19) and (2.20), we finally use Lemma 6.3 to bound
|tanh x — tanh %| < |x — %| < O(L~%) (6.28a)
and
|cosh =2 x —cosh 2 | < |x — %| < O(L~9) (6.28b)

Combining the bounds (6.24) and (6.28) with the assumption |h — h,(L)| <
O([1+lkllJL™"), we get the bounds (2.19) and (2.20).
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The shifts (2.21a) and (2.21b) as well as the bound (2.22) on the
mutual shift 4,(L)—h,(L) follow from Lemmas 6.2 and 6.3. |

Proof of Lemma 6.1. Without loss of generality, we may assume
that x>y >0. Since (tanh )/t is a decreasing function of ¢, we have
(tanh y)/y > (tanh x)/x and thus

<12 Xyl (6.29)
X

tanh x —tanh y| - tanh y
tanh x B tanh x

This concludes the proof of (6.9a). In order to prove (6.9b), we bound

sin ¢
Jcosh™2 x —cosh =2 y| = ’ J ‘

cosh® ¢

<2

¥y
f cosh 2 tdt‘

x

=2 |tanh x — tanh y| (6.30)

and use (6.9a). |

Proof of Lemma 6.2. Using the bounds (6.2), we get, for sufficiently
large L, the bound

@, ag _4AFL )

< 4 :
5 " 24L (6.31)

Since AF(LY=AF(L, h,) = O(LY~"), we get the existence of a unique #,(L)
for which 4F(L, h) =0. Moreover, h,(L)e (h,— B/L, h,+ B/L) for some B.
For k in this interval, the Taylor expansion of 4F(L, h) around A, yields

AF(L,h)=AF(L)—(m, —m_) L%h—h,)+ (h—h,) O(L*~ 'y (6.32)

This implies (6.10) [valid also for AF(L)=0 when A(L)=h,]. 1

Proof of Lemma 6.3. To get (6.11), we can actually follow the proof
of Theorem (3.3) in ref. 6, replacing only A, by h,(L). Thus we use first (6.8)
combined with the bound

d“F (L, h)

2| <Gl (6.33)
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[here C, may be chosen as C,=(Cy)*+ O(e~%) by (3.9) and
Theorem 3.1(iii}] to get

AF(L, h)
2

ALk =7 d[AM(L h)]? cosh - ( >‘<1+262 (6.34)

Hence
(L, h (L)) — x(L, h)> ,,[AM(L h(L))]?

—ﬁg [4M(L, h)]? cosh—? <%L’h)> —2-4C,
(6.35)

Next, we use (6.31) and (6.33) to bound |(d/dh)[AM(L, h)]?| by 84C,L*.
As a consequence,

|[LAM(L, h)]> = [AM(L, h(L))]*| <8AC,L* |h—h(L)| (6.36)

and
(L. h(L)) ~x(L, h)> 2 [AM(L, h(L))]? [l—cosh*(f@)]
—24C, th—h(L)| L cosh 2 <&2L”_)> 24,
On the other hand, (6.37)
%Ih—h,(L)] L }%Lh)l <A|h—h(L)| L¢ (6.38)

by (6.31) and the fact that 4F(L, h,(L))=0. Using the lower bound
cosh2a2<l+%>—>1+a2>2|a| (6.39)

valid for any «, we imply that

cosh—? <AF(L’ h)

> >< 2 (6.40)

alh—h(L)| L
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Thus, using once more (6.31) and (6.38), we get

1 2 a 44C
x(L,h,(L))—x(L,h)>4—L,,(;—‘Ld) [1—cosh—2 <ZB>]— ot

—2-4C,
(6.41)

whenever we suppose that |h—h,(L)| > BL~“, where B> 0 will be chosen
later. Observing that

cosh 2 <§ B) <1 (6.42)

it is clear that the right-hand side of (6.41) is positive, once L is sufficiently
large (how large depends on the choice of B).

Thus, it remains to consider the case |h —h,(L)| < BL~“ Taking into
account that AF(L, h(L))=0 we get

dX(L:h) - _l__dzMO(L’ h)
dh (L) Ld dhz h(L)
3 dAM(L, h)

AM(L, h(L)) + O(e~"%)  (6.43)

h(L)

4L4 dh
Using the bound (6.33), we get

dy(L, h)
dh

=%(X+—X_)(m+—m_)L"+0(L"“‘) (6.44)

(L)

Applying once more the bound (6.6), this time for k=3, and using (6.31),
we get, for |h—h (L)} <BL™* the bound

+ O(L*)

d%y(L, h) 1 4 1—3tanh*[4F(L, h)/2]
= = 2| -4AM(L,h)| L
dh? 2 [2 ( )] cosh?[4F(L, h)/2]
(6.45)
Taking into account that according to (6.38) one has |AF(L,h)| <
24 |h—h(L)| L* and choosing B> 0 so that
__1-3tanh*(4B)

cosh?(A4B) >0 (6.46)
we get

d*(L, h 1
—X%s —qg (ms—m_)* L% (6.47)
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for [h—h,(L)|<BL~? and L large enough. The bound (6.47) together
with the bound (6.44) implies that there exists a unique zero h,(L)
of dy(L, h)/dh in the interval (h(L)—B/L% h,(L)+ B/LY) and that
hL)y—h(L)=O(L~*).

For h—h(L)= O(1/L*) we have AF(L,h)=0O(1/L) by (6.38) and
thus, using (6.45) and (6.36), we get

d?‘)((L,h)_ 1 4 3d 3d—1
AL 2| Sm—m)| DOy (648)

Taking into account (6.44), we conclude the bound (6.11).
To prove the bound (6.12), we first notice, by a straightforward
computation, that

U(h,<L))=§[1-4-M"——i+o(L)] (6.49)

(m+_m_)2Ld Ld+1

Using the fact that, for L large,

d?y Ld3M0(L,h) Ld3AM(L,h) h(AF(L,h))

L A T2 2

L1 &AM ) AM(Lh)
L dn*  coshi(4F(L, h)/2)

3 <dAM(L, h)>2 1
417 dh cosh®(AF(L, h)/2)

3 dAM(L, k)
2L dh

tanh(4F(L, h)/2)

2
[4M(L, h)] cosh2(AF(L, h)/2)

— 3 tanh*(4F(L, h)/2)
cosh*(4F(L, h)/2)

1 1
3L [AM(L, h)]*

a>4 1 -3 tanh¥(4F(L, h)/2) (6:50)

2dy _ 3d_1_ —
SO(L*)-L 8<2 cosh*(4F(L, h)/2)

we find that UkL, h) is negative [and thus smaller than U(h,(L))] when-
ever
1 —3 tanh*(4F(L, h)/2) < —
cosh¥(4F(L, h)[2)

(6.51)
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for some positive e To meet this condition, it suffices to take
A —h(L)| > B/L? with B such that

B
cosh? (”T) >%(1 +8) (6.52)

for some £>0. Indeed, using (6.38), we get |AF(L, h)| >41aLl? |h—h(L)|
and thus

AF(L, h)\ 3 .
2 — —
cosh < 2 >>2(1 &)
which implies (6.51) with ¢ =28/(1 +¢).
In the interval |h—h(L)| < B/L? we consider the leading terms to
dU(L, h)/dh and d*U(L, h)/dh*. Namely,

dU(L, h) N _ng cosh (AF(L, h))[ _ AM(L, h) sinh <AF(L, h))

dah 2 2 2
B dAM(L, h)/dh cosh? (AF(L, h)>
AM(L, h) 2
ddAM (L, h)/dh . AF(L, h)
e nh< : )] (6.53)
yielding
dU(L, h) 8 s X4 —X-
—_— ~=- L ——=— .54
dh |y, 3 m,—m_ (6:54)
and
d*U(L, h) 2 2 . o (4F(L, h) 3d1
< —%L”(nu, —m_)? (6.55)

Thus, there exists a unique root hy(L) of the equation dU(L, h)/dh =0 in
the interval |h—h,(L)| < B/L* and h (L) — h,(L) = O(L~*?). Moreover, for
h—h(L)y= O(L~*) we have 4F(L, h)= O(L~9) and thus

d*U(L, h) 2

_Z 734 _ 2 3d—1
e 3L {(m,—m_)"+O(L )
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Hence,
dU(L,h) dU(L,h) d>U(L, h)
= h—h(L)=0 6.56
dh dh h(L) dh? ALY+ &(h — (L)) | | ( )

yields the shift (6.12) claimed in the lemma. ||
We are left with the proof of (2.23) and (2.24) for

4d(1 + |xl)

{h—h(L)| >—(m+ “m )L

(6.57)

Using (6.2), (6.11), and the bound (6.38), we first note that the condition
(6.57) implies

AFR(L,h) add _, _q_al .,
—_— 2_ 3
> LA 0L >+ 0L~ (6.58)

Combined with (6.7) and (6.8), we obtain

m(L, h)=L*M (L, h) + O(e~“L'*)

,dM (L, k)

x(L,h)y=L~ ah

+ O(e—-aL/A)

if h>h,(L)+4d(1+ |«x|)/(m,—m_)L and

m(L, h) =L_dM_(L’ h) + 0(e—aL/A)

,dM _(L, k)

X(L,hy=L" T

+ O(e—°L/1)

if h<h/ (L)—4d(1+ |x|)/(m,—m_)L. Expanding M ,.(L,h) and its
derivative into volume, surface,..., corner terms, this leads to
m(L,h)y=m __(h)+ O(1/L)
X(L, h)=x 4 (h)+ O(1/L)
if h>h,(L)+4d(1+ |x||)/(m, —m_)L and
m(L, hy=m_(h)+ O(1/L)
X(L, hy=x_(h)+ O(1/L)

if h<h,(L)+4d(1+ |«|)/(m, —m_)L.
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Next, we recall |e (c)—e.|<|x| for the asymmetric Ising model
(2.1). As a consequence, |4F(L)| <2dL~'[2 ||x| + O(e~*%)]. Combined
with Lemmas 6.2 and 6.3, we conclude that

4d(|lx| + 1)
| L) —h,| s(

(m.—m_DL ()

As a consequence, h<h,(L)+4d(1 + ||x||)/(m . —m_)L implies h <h, and
hence m(h)=m_(h) and x(h)=x_(h), while h>h,(L)+4d(1+ |x|)/
{m, —m_)L implies h > h, and hence m(h)=m (k) and x(h)=x . (h). The
condition (6.57) therefore implies the bounds (2.23) and (2.24).

APPENDIX A. STRONG ISOPERIMETRIC INEQUALITY

Using the standard isoperimetric inequality,

[0 d|wjed—vr (A1)

T
Wz ———
> R+ )7

in the proof of Lemma B.3 below, we would get, for d > 4, a negative factor
on the right-hand side of the bound (B.2). We strengthen (A.1) with the
help of additional information—the fact that the considered sets W are
finite unions of closed elementary cubes.

Lemma A.1. Let ¥ be a union of closed elementary cubes. Then
[0W] = 2d |W)— D (A2)
Proof. The proof is just a particularly simple case of the proof of

optimality of the Wulff shape.*®’ Namely,

|oW] = lim w (A3)

e—0

where ¢C is the rescaling, by the factor ¢, of the (hyper)cube C of side 2
with the center at the origin, and

W+eC={x+y xeW,yeeC} (A4)
is the e-neighborhood of W in the maximum metric. The Brunn-
Minkowski inequality (valid also for nonconvex W, see, for example,

ref. 14) yields

| W+ eC|Y4 = | W)+ |eC) M (AS5)
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Thus

N L e L (L el 2 g el i

£—0 [ =0 &

=d|CI" | W=D =24 | W] (A6)

APPENDIX B. PROOF OF LEMMAS 4.1-4.5

We start with two Lemmas B.1 and B.2 that are an important techni-
cal ingredient to prove Lemmas 4.1, 4.2, and 4.4.

Lemma B.1. Let Y be a short contour with supp ¥ ndV < dK(k).
Then:

(i) supp YnoV=supp YnoK(k)=supp Y~ (0V ndK(k)).
(ii) &Int Y= 0K(k)u 0 supp Y.
(iii) Int YnoV=Int YNnaoK(k)=1Int Y (0Vn oK(k)).

Proof.

(i) supp YnoK(k)=supp YnoK(k)n V=supp YndK(k)ndV
since VnoK(k)=0VndK(k) and supp Yc V. On the other hand,
supp YN oV <cdK(k) implies supp YNnoV<dK(k)mndV and hence
supp Yn oV esupp Y ndK(k) ndV. Combining this with supp ¥ n dK(k)n
dV csupp YN OV, we obtain (i).

(i) Follows from the fact that all components of Int ¥ are com-
ponents of K(k)\supp Y.

(ii) In order to prove (iii), we first prove Int YndV <o Int YnovV.
This can be proven as follows: the inclusion Int ¥ < ¥ implies V° < (Int ¥)*
mmplies  dist(x, V) = dist(x, (Int Y)¢). Therefore dist(x, (Int Y)°) =0
for all xedV and hence for all xelnt YndV. Since xelntY and
dist(x, (Int Y)°) =0 implies xedInt Y, this proves IntYnoVc
dInt Ynav.

Using (ii), the (just proven) fact that Int Yn oV <dInt Yn3dV, and
the fact that d supp YndV < dK(k), one proves that Int Y n oV < 0K(k).
Intersecting both sides with Int ¥ and observing that Int Y= V' while
VnoK(k)=0K(k) ~ 3V, one concludes that

Int YndVelnt YNndK(k)=Int YN OK(k) oV
This combined with the fact that
Int YNndK(k)ndVcInt YnoV

proves (iii). |1
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Lemma B.2. Let Y, and Y, be two nonoverlapping contours with
supp Y, < Int Y,. Assume that Y, is a short contour with ¥V nsupp ¥, <
0K(k) for some corner k. Then Y, is a short contour with ¥V nsupp Y, <
O0K(k) as well. In addition, supp Y, nInt ¥, = .

Proof. By Lemma B.1(iii)) and the fact that supp Y,cIntY,,
supp Y, ndV<Int ¥, 0K(k) = 0K(k). Let now x,esupp Y, =Int Y,. By
the definition of Int Y, and Ext Y,, and by the fact that supp Y, is con-
nected, we may construct a path w in K(k) which connects x,=w(0) to
infinity such that

w(t)elnt Y, for te[0,1)
w(t)esupp Y, for te[1,2)
w(t)eExt Y, for te[2,3)
wo(t)e K(k)\V  for te[3, )

Assume now that supp Y, nInt ¥, # . Since supp Y, is a connected set
which does not intersect supp Y, this implies that supp Y,<Int Y,. As a
consequence, x,=cw(2)eInt ¥, and w|(; ., is a path in K(k) which con-
nects x, e Int Y, to infinity. But this implies that w|,, .., must intersect the
set supp Y;, and hence, by the assumption that supp Y; < Int Y,, the set
Int Y,. This is a contradiction, because « was constructed in such a way
that w(t)¢Int Y, for t=1. |1

Proof of Lemma 4.7. (i) Since supp Y, < Ext Y, supp Y,nInt ¥,
= (. It follows that each point in Int Y, can be connected to @ Int Y, (and
therefore to supp Y,) by a path w which does not intersect supp Y,. As a
consequence, all points in Int ¥, lay in the same connectivity component
of V\supp Y, as supp Y,. Since supp ¥, <=Ext Y,, we conclude that
Int ¥, < Ext Y,, and hence Int ¥, usupp Y, =Ext Y,. In a simillar way,
Int Y,usupp Y,cExt Y,.

(ii) Let us first assume that Y, is a short contour. Then Y, is a short
contour as well and supp Y, nInt Y, = & by Lemma B.2. Continuing as in
the proof of (i), we obtain that Int Y, usupp ¥, < C,.

Next, consider the case where Y, is short while Y, is long, and assume
that supp Y, Int Y, # . Since supp Y, is connected, this would imply
that supp Y, = Int Y,. By Lemma B.2, this would imply that Y, is short as
well. Therefore supp Y, Int ¥, must be empty. Again, this implies
Int Y, usupp ¥, = C,.

As the last case, assume now that both Y, and Y, are long. Since
C,<Int Y,, |C,] < L2 by the definition of the exterior for long contours.
Since supp Y, is a connected set, while C, is a connected component of



First-Order Phase Transitions 95

V\supp Y,, both C, and V\C, are connected sets. Observing that
supp Y, < C, implies ¥\supp ¥, = V\C,, we then introduce the compo-
nent C, of ¥\supp Y, which contains ¥'\C,. A moment of reflection shows
that |C,| > |V\C,|, which, by the fact that |F\C,|>L%?2, implies that
C,=Ext Y,. As a consequence,

Int Y, V\Ext Y, <C,

which concludes the proof of (ii).
(iii) Follows from (ii). |

Proof of Lemma 4.2. We only have to show that supp Y, < Int ¥,
and supp Y,<Int Y, leads to a contradiction. In fact, supp ¥, cInt ¥,
implies that supp ¥, ulnt ¥, <Int ¥, by Lemma 4.1. As a consequence,
Ext Y, > supp Y, uint Y,, which implies that supp Y, < Ext Y,. But this is
incompatible with supp Y,cInt Y,. |}

Proof of Lemma 4.4. let Y, be an internal contour. Due to
Lemma 4.2, this implies that (Int ¥, usupp ¥,) = Int Y, for some j# k and
hence Ext= V\|J;., (Int Y;usupp Y;). Iterating this argument, we get
that the set Ext is given by

Ext = V\ (J (Int Y{Usupp Y¢) (B.1)

i=1

where { Y%,.., Y¢} are the external contours in {Y,..., ¥,}. Obviously, Ext
is separated from the rest of ¥ by the support of the contours Y7,.., Y:.
We therefore only have to show that Ext is connected.

Let

E,=V\(Int Y$usupp Y$)=Ext Y}
and
E,=E,_\(Int Y Usupp Y%).

Assume by induction that E, _, is connected. Let x, y € E,.. We have to show
that x and y can be connected by a path w, in E,. Using the inductive
assumption, we can connect x and y by a path w,_, in E,_,. Assume
without loss of generality that w, _ , intersects the set W=Int Y§ Usupp Y5,
and let x, be the first and y, the last intersection point of w, _, with W. Since
both W and V\W are connected, the boundary

9, W={xeV|dist(x, W)=dist(x, V\W) =0}

822/79/1-2-7
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is connected, and x, and y, can be connected by a path w in 3, W. Using
the path w, _, from x to x,, the path w from x, to y,, and again the path
Wy, _, from y; to y, we obtain a path @, in E, U0, W which connects x to
y. The desired path w, is obtained by a small deformation of &, which
ensures that w, is a path in E,. |

In order to prove Lemma 4.5, we need the following lemma, which is
based on the strong isoperimetric inequality proven in Appendix A.

Lemma B.3. Let W be a union of elementary cubes in ¥, with
[W] < L%?2. Then

2441

oW 00V <5 10W\OV] (B.2)
21441

|6W|<<1+2W >|6W\6V| (B.3)

Proof, We introduce the (d — 1)-dimensional faces

Fi={xeR|x,=1/2,12<x, <L+1/2,k#i}, i=1,.d
Fooi={xeR¥| x,=L+1/2,12<x, <L+1/2,k+#i}, i=1,.d

together with the projections #;: V- F;, n . V- F,, ;, where x' =m,(x)
has coordinates x;,=x, for ki and x;=1/2, while x;=L+1/2 for
x'=ny4,;(x). Finally, for each elementary (d—1)-cell pe¥, we define
n_(p) as the projection #,(p) onto the face F; which is parallel to p, and
n,(p) as my, (p)

Let G;=F,n0W, i=1,.., 2d, and consider an elementary (d— 1)-cell
peG,, together with the line / that links the center of = _(p) to the center
of . (p). Then / must intersect W an even number of time. Define

H;={peG,| there does not exist p’ e OW\V withn _(p')=n_(p)}

and consider an elementary (d—1)-cell pe G\H;, i=1,.., 2d. Then either
both #_(p) and = (p) lie in U 7_\ G\H,, in which case there are at least
two elementary (d— 1)-cells p' e d8W\OV with n_(p') == _(p), or only one
of t_(p) and = .(p) lies in U}i=1 G;\H;, in which case there is at least one
elementary (d—1)-cell p'edW\dV with n_(p')==n_(p). As a conse-
quence,

2d
Y. IGAH|| < [2W\aV] (B4)

i=1
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On the other hand,
|Hi< WL < () W) -

by the fact that |W| < L%2. Using the strong isoperimetric inequality (see
Appendix A), we obtain that

1
|H| <§712'”"I5W| (B.5)

Combining (B.4) and (B.5), we get

2d 2d 2d
eWnavi=Y |G|=Y IG\H|+ Y |H|
i=1 i=1

i=1 =
<|OW\OV| +2- |aW|
=(1+2"14) |aW\OV| + 2~ |9W A V|

and hence 1+2-1M

[OW oV <E“—/d |oW\aV|

which implies (B.2). The bound (B.3) follows from (B.2). ||

Proof of Lemma 4.5. We start with the observation that
[Y1=|Y|4+ | ¥Yyor+ - + Y] (B.6a)

where | Y|, denotes the number of k-dimensional elementary cells in'* Y,
and similarly for the boundary 0W, of a component W, of Int Y,

|aWr[=|aW.‘|d—1+ +|5Wi|1 (B-6b)

Using the fact that |0W,naV|,_,=|0W,n0V|,_,, we then decompose
|oW,| as

_ d—2
|OW,| =10W\OV |+ |0W,n V], + ) |10W ]k (B.7)

k=1

For a long contour ¥, we use Lemma B.3 applied to the set ,, together
with the fact that 0W,c W, to bound

-

- 244
|(7W,-06V|d_1<( s

21—

2W4 11

21/,,—_1> |5W;\5V|4_1<<

) OWNoVl,_, (BS)

4 As in Section 3, a k-dimensional cell ¢ in supp Y is only counted if there is no (k+1)-
dimensional cell ¢’ in supp Y with cc¢'.
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For short contours Y, on the other hand, |0W,n dV|<|0W\oV|, which
implies (B.8) with a better constant. Therefore (B.8) is valid for both long
and short contours.

As a last step we observe that each cube ¢ in supp Y can be shared
by at most 2d elementary faces in (8W \V)u -.- U(dW,\V), while each
(d— 1)-dimensional elementary face in ¥ may be shared by the boundary
of at most two different components of Int YU Ext Y. Since all lower-
dimensional elementary cells in Y belong to a unique component of
Int YU Ext Y, we get that

n n d-2
YIOWNV i+ Y, Y (oW <2dY] (B.9)
i=1

i=1 k=1
Combining (B.7) with (B.8) and (B.9) and the fact that

Nop(Int Y)< ) [0W,;n V| (B.10)
i=1

i=

we obtain the first two bounds of the lemma.
In order to prove (4.4), we observe that V(Y)=supp Yu W, U --- UW,,
which in turn implies dV(Y)cdsupp YUdoW,u --- udW, and hence

|0V(Y)| < |0 supp Y|+ [0W,|+ - +|0W,]

Combined with the bound & supp Y| <2d|Y], we obtain the remaining
bound of Lemma 4.5. [

APPENDIX C. INDUCTIVE PROOF OF LEMMA 4.6

In this appendix, we prove Lemma 4.6. Actually, we first prove the
following Lemma C.1. In order to state the lemma, we recall the definition
of f ;”’ as the free energy of an auxiliary contour model with activities

K'(Y?) if |V(Y?)|<n
K™Y = :
(r®) {0 otherwise (1)
and define
f‘")=minf£l"’ (C.2)
q

an=fm_f (C3)
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We also assign a number »( W) to each volume of the form (4.7a),

W W)= max (V(Y)| (C4)

where the maximum goes over all contours Y with supp ¥ < W. Obviously,
v(Int Y) < |V(Y)| for all contours Y. In fact,

o(Int ¥) < |V(Y)] (C.5)

due to the fact that dist(Y, Y)>1 if ¥ is a contour in Int ¥.

Finally, we recall that for a volume W of the form (4.7a), | W] is used
to denote the Euclidean volume of W, while for a contour Y and the
boundary dW of a volume W, | Y] and |0 W] are used to denote the number
of elementary cells in ¥ and dW, respectively [see Egs. (B.6a) and (B.6b)].

Lemma C.1. Let

(x—2)2d
&

e—-r(l—(2C1+l))’)eaL+2

e= and o=

(C.6)

Then there is a constant ey, depending only on d and N, such that the
following statements are true for all e<g, and all n>0, provided
V(Y)Y <n v(W)<n,and a=1:

(i) Ky (1) <e.

(i) If af;" |[V(Y)|"<«, then yj(¥)=1.

(i) If afl") IV(Y)'<d, then K(Y)=K,(Y).

(iv) Ifal? |W1Y4 <, then Z (W, h)=Z (W, h).

v) |Z,(W, )| eIV GO BW] HyrNoi W),

Proof. We proceed by induction on n, first proving the lemma for

n=0 and then for any given ne N, assuming that it has been already
proven for all integers smaller than n.

Proof of Lemma C.1 for n=0. For |V(Y)|=0 we have y(Y)=1
and thus K (Y)=K,(Y)=p(Y). This makes (i)-(iii) trivial statements.
Using (iii) for |F(Y)| =0, we then conclude that Z (W, h)=Z (W, h) for
v(W)=0. By (i)_, Z (W, h)=Z (W, h) and thus the partition function can
be analyzed by a convergent expansion yielding

0 A0
|Z(W, )| < e~7¥ 1M 00 W1 gleq 1M1= E() < g ~13 1M1 0(0) 10W1 gretiov( W)

Observing that /> f?, this concludes the proof of Lemma C.1 for n=0.
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Proof of Lemma C.1(i} for |V(Y)|=n. Due to (C.5), v(Int Y) <n,
and all contours ¥ contributing to Z,(Int,, Y, h) obey the condition
|V(¥)| < n. This implies that | K ( ¥)| < &' by the inductive assumption (i).
As a consequence, the logarithm of Z(Int,, Y, ) can be analyzed by a
convergent expansion, and

llog Zi(Int,, ¥, i)+ f'~V |Int,, Y|| < O(e) |0 Int,, | + yzNy(Int,, )

(C7)
Combining (C.7) with the induction assumption (v), we get
H Z,,,.(Intm Y, h) < o= Int M y2yeNov(Int ¥) L O(e) T 10 Inty 1]
| Zy(Int,, Y, h)
et It Yl L2C1 T+ 0 1M (C8)
where we have used Lemma 4.5 in the last step. Observing that
len—f1n~ "< O(e) (C9a)
which implies the bound
(e, —e0) —ay' =" < O(e) (6.9b)
we use the assumptions (3.7) and (3.11) to bound
|p(Y) B | g —F 11 greBorsupp V) pleq—co) I¥ld
e~ (r=rr—0EN 1 oV 1y (C.10)

Here |Y|, is defined as the number of d-cells in Y and thus |V(Y)]|=
[Int Y] + | ¥],. Combining now (C.10) with (C.8), we obtain

IKx;( Y)| gxrq( Y) eaf,"_” IV p—(x— O(e) = (1+2C1) 37) | Y] (Cll)
Without loss of generality, we may now assume that y/(Y) >0 [otherwise
K (Y)=0 and the statement (i) is trivial]. By the definition of Xo(Y), this
implies

(S D= INY)I<T+alY|<(1+a)| Y]

for all m+ 4. As a consequence,

al " VIY)I<(+a) Y| (C.12)
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provided x,(Y) #0. Combined with (C.11) and the fact that x;(Y) <1, this
implies that

IK‘;( Y)lge—[r—l—o(e)—a—(l+2C1)rr]IYI (C.13)

which yields the desired bound (i) for |V(Y)| =n.

Proof of Lemma C.1(ii) for k=|V(Y)|<n and al" |V(Y)|"<a.
We just have proved that (i) us true for all contours Y with |V(Y)| <n. As
a consequence, both %) and £ may be analyzed by a convergent cluster
expansion. On the other hand,

a-tia o L G
AN < U Y <521 Y] (C.14)

by the isoperimetric inequality and Lemma 4.5. Using this bound and the
definition of £, one may easily see that all contours Y contributing to the
cluster expansion of the difference fU — " obey the bound

2d d
>4 a-tyd 5 & pra_.
| Y] C3(k+1) C3k ngy

As a consequence,

80— £ < (Ko™

where K is a constant depending only on the dimension d and the number
of phases N. Using the bound (C.14) for the second time and recalling that
IV(Y)| =k, we get

C
=L VIS (Key™ NI 25171 = O(1) no(Re)™ | Y1 < O(e) 1]
(C.15)

Combining (C.15) with the assumption ‘a{” |F(Y)|"“<& and the bound
(C.14), we obtain the lower bound

a| Y| =[fP =TT za Y] —al” |N(Y) - Oe) | Y]
>(a—a%—0<e>)|n
=(2—0(¢)) | Y] 22— O(e)

where, in the next to the last step, we used the definition of & [see (C.6)].
Combined with (4.16b) we obtain the equality y(¥)=1.
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Proof of Lemma C.1{(iii) and (iv). Given (ii) and the definitions of
K (Y) and Z)(W, h), the statement is obvious. See ref. 6 for a formal proof
using induction on the subvolumes of W and Int Y.

Proof of Lemma C.1(v). We say a contour Y is small if
a |V(Y)|¥ < d, while it is large if a'” |V(Y)|"*> & We then use the rela-
tion (4.8) to rewrite Z (W, h) by splitting the set {Y,,..., Y, }, of external
contours into {X,,.., X;.} v{Z,.. Zi.}, where Z,,.., Z,. are the small
contours in {Y,., Y.} and X,,., X, are the large contours in
{Y,,s Y;}e- Note that for a fixed set {X,,., X}, the sum over
{Z,,.,2Z,;.} runs over sets of mutually external small g-contours in
Ext = W\U%_, ¥(X;). Resumming the small contours, we thus obtain

o
ZW,hy= Y Z;““‘"(Ext,h)]_[[p(X,.)HZ,,,(Int,,,X,-,h] (C.16)

{ X100 XY ext i=1 m

Here the sum goes over sets of mutually external large contours in W and
Z\(Ext, h) is obtained from Z(Ext, k) by dropping all large external
g-contours.

Due to the inductive assumption (iii), K (Y)=K,(Y) if Y is small
Since |K,(Y)| <e&' by (i), Z;**"(Ext, h) can be controlled by a convergent
cluster expansion, and

IZ:ma“(EXt, h)l < e—/;m" [Ext| ,O(2) |2 Ext| ,ytNov(Ext) (C17)
where £ is the free energy of the contour model with activities

K, (Y) if |V(Y) <nand Yissmall

0 otherwise (C.18)

szal]( Y) — {
On the other hand,

H |Z,(Int,, X;, h)| < e—ﬁ"_" ltnt Xi{ ,O(e) |9 Int X ,yeNpr(Int X;)
m i

m

by the induction assumption (v). Observing that the small contours
contributing to the difference of £ and f"~! obey the bound

d 2d
—1yd .
|¥] > — nd—0d 5 22 g1 .

3 3

while |V(X;)| <n, we may continue as in the proof of (C.15) to bound

|f7 D= Int X < | f7D = fO - )] < O(1) no(Ke)™ < O(e)
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Since |Int X;| < O(1) |X,| by Lemma 4.5, we conclude that

H |Z,.(Int X,, h)| e~/ It Xil ,0e) [Xil pyeNov(Int X)) (C.19)

Combining (C.17) and (C.19) with the bounds
|P(Xi)| <e~° |Xil —eq | Xila pytNav(supp Xi)

e F— 011X, =S | Xild pyeNov(supp X} (C.20)
and

k' k'
|0 Ext| < [0W] + ), [OV(X))| <[0W]+C; ) | X (€z21)

i=1 i=1

and the equality

o
Noy(Ext) + .Z [Now(supp X;) + Noy(Int X;) ] = Npp (W)

i=1
we conclude that

|Zq( W, k)| < e98) 18W] pytNov( W) PRrAlLd

k,
x Y e UTrmE [T e-lr-o@lix (€ 22)

{ Xt X' Yext i=1

Next, we bound the difference f5™"'— /. In a first step, we use the
isoperimetric inequality together with Lemma 4.5 and the definition of
large contours to bound

1 d d 2dx 1
>— >— (d=1yd 5 — Vd 3 gy =28 — 23
X1 & V0| > ¢ 70| c I sli= (€

q

for all large contours X. Next, we observe that

| (n) _ smalll < (Ke)lo < (C.24)
q q

1
— 1, log(Ke)

where K is a constant depending only on d and N. Recalling the condition
a=1, we get

(n) small 1 (n
Ifim— el < 3a? (C.25)

822/79/1-2-8
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provided ¢ is chosen small enough. Combining (C.22) with (C.25), we
finally obtain

o
iZq( w, h)| <eo(z) 18] oreNav(W) e—!‘")IWi Z e‘("ffl/z) {Ext| H e—t I
{x...., Xiehext i=1
(C.26)
with
T=(r—1) (C27)
At this point we need the following Lemma C.2, which is a variant of a

lemma first proven in ref. 29; see also ref. 3.

Lemma C.2. Consider an arbitrary contour functional K'q(Y)ZO,
and let Z, be the partition function

h
Zm= Y I (R(Y)e™ (C.28)

{¥in Ya} =1

Let 5, be the corresponding free energy, and assume that f('q(Y)sé"",
where & is small (depending on N and d). Then for any a> —3, the
following bound is true:

Y PR (Y)<e%@ ™ (C29)
{ Y. Yie}ext i
where the sum goes over sets of mutually external g-contours in W.

In order to apply the lemma, we define K (Y)=e "M if Yis a large
g-contour, and K, (Y) =0 otherwise. With this choice,

1
0< -5, < (Ke)og——— :
§,< (Ke) 1 Tos(Ke) (C.30)

where /; is the constant from (C.23). As a consequence,

(n)
—5,<d = (C31)

provided ¢ is small enough. Applying Lemma C.2 to the right-hand side of
(C.26), and observing that &:=e~"<¢, we finally obtained the desired
inequality

|Z,(W, b)) < 00 101 gyt g /4" 11

This concludes the inductive proof of Lemma C.1. |
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Proof of Lemma C.2. The partition function Zq is defined in terms
of the polymer model with activities K*(Y)=XK_(Y)e'™. For & small
enough, Z , can be controlled by a convergent cluster expansion and

llog Z (Int ¥) + 3§, |Int ¥|| < O(#) |8 Int Y| < O() | Y]

On the other hand, |W|=|Ext|+ ¥, (|Int ¥;| 4+ |Y,|,) if {¥ ., Yi)exc IS @
set of mutually external contours in W. Combined with the fact that
—ad<3,= 0(&), we obtain

k
Z e—5|Ext| H Kq( Y,)

{"... Yic}ext i=1

k
<ed W Z l—[ I?q( Y) e —Se(lInt ¥il + 1 Yila)
(Vi ViJen i=1

&
< Pl Z 1—[ kq( Y,-) Zq(Int Yi) 9@ Yil =5 Yila

{ Y1, Yite i=1

k
e Y [T K,(Y)e'"" Z (Int Y,)

{ Y1 Vibext i=1

=5z (W) seo(é) oW l
q

Proof of Lemma 4-6. Lemma 4.6(i)-(iv) follows from Lemma C.1 and
the fact that f=lim,_ ., " and a,=lim,_, ., a(".
In order to prove the statement (v), we extract the factor

(n) (|1 X
max e_(aq"/4)IExtle—(T/4)Zn|Xr|

{ X100 X}
< max e~ (@ IEx ,—(3/4Cy) T 12V(XD)
{X11er X}
(n)
< max e~ M W\UI o —(x/4C3) |aU|
Ue W

from the right-hand side of (C.26), and bound the remaining sum as before.
Taking the limit » — oo in the resulting bound, this yields

y =3t/ -
IZq( W, h)] Se””""‘w) el Oe) + Ote 1 18w e ALl

x max e — (@4 IW\Ul o —(/4Cs) 18U (C.32)
UcsWw
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We conclude, with the help of the isoperimetric inequality, that
IZ,,( W, h)l Se"’Na"‘W) e[O(e)+ote-3'/‘)] oW1 5 —/1W1

- - dfid—1)
X max e — (a4 IW\UI —(2dc/4Cy) | U

UcW

= gV™Nev(W) ,[0(2) + Ote™>R)] |aW] , —f | W]
- _ dnd—1)
x max{e (ag/4) |1W1 o —(2de/AC3) | W) } (C.33)

where we used the fact that the maximum over U is obtained for either
U=Wor U=

Observing that 24 |V|¥“~ Y = [8V] and that N, (V) can be bounded
by |0V], we see that the bound (C.33) implies Lemma 4.6(v). |

Proof of the Bound (4.26). Due to the bound (C.12), we have
a =V IV(Y)| <(1+a)|Y] if x,(¥) #0. Using the strategy which was used
to prove (C.15), we replace ai)'~ Y by a,, concluding that y,(Y) # 0 implies
a, || <[1+0(e)+a] Y] 1

APPENDIX D. PROOF OF LEMMA 4.7

We start with a combinatoric lemma that will be used throughout this
appendix.

Lemma D.1. Let k, be a positive integer and let G(4) be a function
which satisfies the bounds
dk
an*

G(h)‘ <A

for all multi-indices k with 1< |k| <k, and some A>0. Then

k

d
- eG(h) S |k|' /llk|eG(h)

for all multi-indices & with 1< |k| <k,.

Proof. Observing that

Wec(m:Hk(h) eG(h)

where H,(h) is a polynomial of degree |k| in the derivatives of G, we
immediately obtain the lemma by induction on |k|. ||
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Keeping the notation of Appendix C, we now prove the following
lemma, which contains statements (i)—(iii) of Lemma 4.7.

Lemma D.2. There is a constant K < oo, depending only on N, d,
and the constants introduced in (3.8), (3.9), and (4.16), such that the
following statements are true provided e<¢gy, &= 1, and n = 0:

(i) For |M(Y)| <n and hye % one has

o m‘ < (Ke)'™ (D.1)

h= ho

provided 1< |k| <6.
(ii) For v(W)<n and h,e % one has

k

d*

log Z,(W, h)‘ <[CH + 0(e)] | W] (D.2)

h=hy

provided 1< |k| <6.
(iii) For v(W)<n and hye % one has

Z (W h) < |k|! {[C0+ 0(8)] |W|}Ikl e ~S1W1 pOle) (oW GytNar(W)

h=hy
(D.3)

k
‘dh"

provided 1 < |k| <6.
Proof. As in the proof of Lemma C.1, we proceed by induction on .

Proof of Lemma D.2 for n=0. For |V(Y)|=0, K(Y)=K(Y)=
p(Y), which makes (i) a trivial statement. As a consequence, the left-
hand side of (D.2) can be analyzed by a convergent cluster expansion,
leading immediately to the bound (D.2) for v(W)=0. Bounding finally
[CHF' + O(e)] | W] by {[Co+ O(¢)] |W|}"! and observing that Z (W, h) =
Z (W, h) if v(W) =0, we obtain (iii) with the help of Lemma D.1.

Proof of Lemma D.2(i) for |V(Y)|=n. Using the assumptions (3.8)
and (3.9) together with Lemma D.1, we can easily generalize the bound
(C.10) to derivatives, giving

k
i;" [,D( Y) eE.,(Y)] |k|! (2C0 |Y|)Ikl e [T—y—0(a]IN paq (Y14 (D.4)
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In a similar way, the bound (C.8) can be generalized to derivatives, using
the inductive assumptions (ii) and (iii) together with Lemma D.1 and
Lemma 4.5. This gives
d_k I—[ Zm(Intm Y9 h)
dn* | %, Z,(Int,, Y, h)

< k|' {[2C,+ O(e)] |Int Y|} ¥l g lint 1 gl2C1re+ 01N (D 5)
Using finally the possibility to analyze the derivatives of f"~"(k) be a
convergent expansion due to the inductive assumption (i), we bound
df 5" h)

dh*

’ < ClH 4 0(e) <[ C, + O(e) W

As a consequence,

Zexn|<te o (D)
for all multi-indices of order |k| < 6. Here C, is a constant that depends on
N and the constants introduced in (3.8), (3.9), and (4.16). Combining
(D.4)—(D.6) and bounding terms of the form O(1) |V(Y)| and O(1) | Y] by
e%MM we obtain the bound (D.1).

Proof of Lemma D.2(ii) for viW) =n. We just have proved that (i)
is true for all contours Y with |V(Y)| <n. As a consequence the deivatives
of log Z,(W, h) can be analyzed by a convergent cluster expansion. The
bound (D.2) immediately follows.

Proof of Lemma D.2(iii) for v(W)=n. We define: a contour Y
is small if a hy) |V(Y)|"<a& while a contour Y is called large if
a (ho) IV(Y)|">a. As in Appendix C, we then rewrite Z (W, h) as

ZW,h= Y z;m"(Ext,h)ﬁ p(X,.)]_[Z,,,(Int,,,X,.,h)] (D.7)

{X11es Xp}em i=1
where the sum goes over sets of mutually external large contours in W and
Z:™(Ext, h) is obtained from Z (Ext, ) by dropping all large external
g-contours.

Due to Lemma 4.6, K (Y) = K (Y) if Y is small and # = A,. Combining
this with the bound (4.13) and the inductive assumption (D.1), we con-
clude that
dk
dn*

K! (Y)’ (2Ke)! (D.8)
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is a certain neighborhood %, of h,. As a consequence, the derivatives of
log Z:™*!(Ext, h) can be controlled by a convergent cluster expansion, and

k

log Z:™(Ext, )| < [ CI¥ + O(e)] |Ext| < {[ Co+ O()] |Ext|} ¥

dh*
(D9)
provided 4 € %,. Combining (D.9) with the bound
|Zsmel(Ext, hy)| < e~/ Ext| 20le) 12 Ext] ,yeNsy(Ext) (D.10)
q ] = g
where f ;‘“*" is the free energy of the contour model with activities
K,(Y) if Yissmall,
small ] D.11
K n= { if Yislarge ( )
we obtain
Zsmall(Ext h)‘
dhk h=hy

< k|t {[ Co+ O(e)] |Ext|} l ¢=/3" IExtl (012 Extl gredav(Ext) () 1)

On the other hand,
k

dr*

p(X-)‘ < k]! (Co | X)) &= LF = 0@ iXil g =7 1Xila+ Nov(supp Xi)
; !
| CIkl g =Lt —lklfe — O(e)] 1Xil o —f|Xila+ Nov(supp X))
<kt Cyle e (D.13)

Combining (D.7) with the inductive assumption (D.3) and the bounds
(D.12) and (D.13), we may continue as in Appendix C to get

d* , , .
‘dh"Z (W, h) . < [k|! {[ Co+ O(e)] | W)} K1 g~/ 1#1 grelav (W) gO(2) (91
h=ho
x Z e~ @/ [Ext] ﬁ et 1Xi (D.14)
{ X10es Xn}ext i=1
where now
T=1—6/e—1 (D.15)

Note the extra term 6/e with respect to (C.27), which comes from the term
|k|/e in (C.13) (recall that we assumed (k| <6).
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Given the bound (D.14), the proof of (D.3) for v(W)=n now
follows using Lemma C.2 from Appendix C. This concludes the proof of
Lemma D.2. |

Proof of Lemma 4.7(v). Starting from (D.14), statement (iv) of
Lemma 4.7 is obtained in the same way as statement (v) of Lemma 4.6 was
obtained in Appendix C. |

As a corollary of this proof, one obtains the analogs of (C.32) and
(C.33) for derivatives, namely

dk

—2Z W, h)

dhk § h=hg

< k! {[Co + 0(e)] |W|}lkl eTNov (W) ,[ Oz} + Ole™3 ] jaW , —f W]
X max e~ /4 1F\U| 5 —(x/4C3) 1201 (D.16)
Ve W
and
dk
dhk 7 h=bho

< ki { [Co+ O(e)] | W|} k| gyeNay(W)} o[ Ofe) + O(e™¥)] 19W] , —f W]

x max{e =4/ W] = (2de/aCy) |11y (D.17)

APPENDIX E. PROOF OF LEMMAS 5.1 AND 5.2

Proof of Lemma 5.1. Observing that all components W of Int'® ¥,
obey the bound |W|<max,.y, |V(Y)|, we see that the statement (i) of
Lemma 5.1 immediately follows from Lemma 4.6.

In order to prove (ii), we first note that for Y, ={Y,,.., ¥,},

p(Y ) exp[ E (supp ¥ ,)

=A( Yl >0y Yn) H P( YI) exp[Eq( Yl)]

i=1

x [] exp{E/Int,, Y,nsupp 4)—E,(Int,, Y ,nsupp A)] (E.1)

m¥#gq

which implies that
|p(Y 4) exp[ E (supp Y )]l
< C exp[ —(t—y1) | Y 4] exp[ 2ytN4(Int YA nsupp 4)]
xexp[ (e, — eo)(Isupp ¥,[,+ [Int ¥, nsupp 4],)] (E2)
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Next we use Lemma 4.6 to bound

N ()]
Z,,,(Intm YA’ h) <e™ Int!® Y4 + O(e) 18 Int!® v4| ezera(Im(“) Y4 (E 3)

1 Z oy, )| <
Bounding e, — e, <a, + O(e), observing that
Int® Y ,| +|Int Y, ~supp A| = |Int Y, (E4)
and bounding
[0Int® Y, < |8 Int Y| + |0 supp 4| < |8 Int Y|+ 2d |supp 4|
we get the bound

IK'( YA)l < CAe—[r—rr—O(e)] [Yal p2reNo(Int Ya) paq [V(Y4)| + O(e) |supp 4] (E.5)
g .

Bounding now N(Int Y,) by C, | Y 4|, and observing that [T, y, x,(¥) #0
implies that a, |(Y )| <[a+1+ O()] | Y,| due to the bound (4.26), we
finally get

|K;( YA)l < CAe—r[l = (1 +2C)y] 1Y4l p[1+a+O@)] Y4l e 9te) lsupp 4| (E.6)

which implies the bound (5.15).
We are left with the proof of (iii). By (E.1), Lemma D.1, and the
assumptions (3.9) and (3.25b),

d* -
W”( Y, )exp[ E (supp ¥ ,)]
< |k!| C,CH(|supp Y 4| +|Y 4] +2 |Int Y, ~supp A|)*!
xexp[ — (v —y1) | Y,4|] exp[2yzNo(Int Y, nsupp 4)]
x exp[ (e, —eo)([supp Y| + [Int ¥, nsupp 4[,)] (E7)

On the other hand,

d_k ﬁ Z,(Int® v, h)
dh* m=1 Z;(Inti,?) Y4, h)

< {[2C0+ 0(8)] lInt(O) YA|}|k| e"" |Int(®) ¥,

x e0&)1d Int® ¥, eZera(Int(‘” Y4) (E.8)
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by Lemma 4.7, while

d* _ Ik|
7 L an|<| e % | (E9)

Ye Yy Ye ¥,

by (D.6).
Combining the bounds (E.7)-(E.9), and bounding

Collsupp Y, |+ 1Y ] +2 |Int Y, nsupp 4))
+[2Co+ 0(e)] It Y, |+ C, Y, V(D)

YeY,

< Colsupp 4|+ [2C, + O NI Yl + Int Y, )+ C, Y WY

YeY,

< |supp A] e 17l (E.10)

we may then continue as in the proof of (E.6) to obtain te bound (5.16). |

Proof of Lemma 5.2. We start from the representation (5.4) and use
the assumptions (3.25) and (3.11) to bound

(Y )< C exp[ —7|Y | — Eo{supp Y,)] exp[ —Ey(Int Y, nsupp 4)]
xexp[ —E(Ext Y ,nsupp 4)]
< C,exp[yTN,(supp Y )] exp{ —[t— O(e)]1 Y 4}
x exp[ O(e) |supp A|] exp(—f|supp Y ,|)
xexp(—a, |Ext Y, nsupp A]) (E.11)
Lemma 4.6 to bound

N
Z Zm(Intir(r)) YA,h)

m=1

< e—/llm“’J Y4l OE)| Y4l + Isupp A)) ertNa(Im“” Ya) (E.12)
and the inequality (C.32) in conjunction with the estimate
|0 Ext'® Y | < |8 supp 4| + |0V + |0V(Y,)| < 2d |supp A| + |0V] + C5 | Y|
to bound

g v (0) — (0)
Izq(Ext(O) YA, h)l seO(s)(IaVI-f—lsupp AD leNa(EX( YA) e S |Extt®) ¥ 4

e —{aq/4) JExt(® Y,\U| e—(t/4C3) 1241

(E.13)

x %Yl max
UcExtD v,
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where & is the constant introduced in Lemma 5.2. Combining the bounds
(E.11)—(E.13) with (5.4), we obtain

IZq(A | v, h)| < CAeO(E) Isupp 4l HLyT+ O] 1BV ,—SIVI

xY e~ =D may (@) IBxt YAUL p—(4C) 10U

{0}
Y4 U< Ext% v,

(E.14)
where we used the bounds
a, |Ext nsup 4| + (a,/4) [Ext® Y \U| <(a,/4) [Ext Y \U|

and Ny V)< |dV]. Extracting the factor

max e~V Y4l ay o —(ag/4) [Ext YAUL o —(x/4C3) 3U]

Yy U Exti? vy

<max e~ (AN PVIYN may o (a8 IIVAYONU] ,—(1/4Cy) jOU)
Y4 U= Ext!® vy

< max g 14/ NS o —(1/4C3) 105

SV
<max{e =@/ M, (/43 |6V1}
from the right-hand side of (E.14), we are left with a sum 3, e =74~ 14
which we bound as follows:
[~ a) 1 n
Ze‘“’/““”""'s Yy = y e~ BT =DV | < 0@ Isupp 4|
!
Ya n=0n' YV ()nsupp 4 #

Putting everything together, we obtain the bound (i) of Lemma 5.2.
In order to prove (it); we generalize (E.11)-(E.13) to derivatives. In
(E.11), these derivatives produce an extra factor,

C,4 k|1 (Cq [supp Y 4| + C, |supp A\supp Y ,)"*!
< C, k|1 (2C, [supp 4] + Cq | Y 4)*!
< C4 k|1 (Cy |supp A|)*! O 174l

while in (E.12) and (E.13), they produce factors
[kt {{Co+ O(e)] |Int® ¥, }
and

k! {{ Co+ O(e)] |Ext® Y |}
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On the right-hand side of (E.14), this leads to an extra factor

Ca kIt {[ Co+ O(&)] [ P1} W1 eoD1¥d

Observing that the sum ¥, e =074~ 9114l can be bounded by e Isupp 41
as well, we obtain Lemma 5.2(ii). |
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