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According to the third view in the ancient debate on the nature of
conditionals, a sound conditional requires a connexion between antecedent
and consequent. Both material implication (the first ancient view) and
strict implication (the second ancient view) were rejected by the third
view as satisfactory accounts of the conditional relation because they
deliver conditionals such as those of the paradoxes of implication which
are unsound, presumably on the ground that they fail to meet the require-
ment of connexion. We do not know what conditionals were said to meet
this requirement, other than Identity, A—A (a principle that was expli-
citly rejected under the fourth ancient view).

The third ancient view has reappeared in the modern debate as to
the nature of entailment, implication and conditionality, where the con-
nexion requirement is commonly imposed as a requirement of meaning
or content connexion between antecedent and consequent of valid impli-
cations. This requirement coincides with the broad requirement of rele-
vance: for if antecedent and consequent enjoy a meaning connexion then
they are relevant in meaning to one another, and if they are relevant
in meaning to one another then they have through the relevance relation
a connexion in meaning. Thus the general classes of connexive and rele-
vant logics are one and the same. And all these logics — provided only
that they contain a quite minimal negation — can conform to a characteri-
zation of implication in terms of incompatibility, i.e. of A—>B as A/~B
where | is the Chrysippus-Sheffer stroke, and thus can satisfy the only
further piece of information we now retain as to the third ancient view,
namely that a conditional is sound when the contradictory of its conse-
quent is incompatible with its antecedent (see [5], p. 129 ff.) Since material
and strict accounts can also satisfy this condition, it was presumably
intended that the incompatibility relation concerned be genuinely two-
-place and not reducible to a modal operator applying to truth functions.
In fact very many connexive logics will meet this irreducibility requirement
(cf. [4], p. 462 ff.)

As a great variety of logics fall under the general head of connexive
(or relevant) logic, even when suitably rigorous connexion and irreducibility
requirements are imposed, various rudimentary classifications of these
logics have been attempted, for example along the route pursued in [3]
in terms of the way the logics resolve — as they are bound to do — Lewis’s
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“independent” arguments for paradoxes of (strict) implieation. For ingtan-
ce, relevant logics in the narrower sense are at bottom connexive logics
which solve the paradoxes through the (criticism and) rejection of the
principles of Disjunctive Syllogism, Antilogism, and the like. (Of course,
to characterise such relevant logics more fully some inclusions as well ag
exclusions should be specified: this may be achieved as in ([3], 2.9), by
requiring that a relevant logic, narrowly construed, is also a conservative
extension of distributive lattice logic, DLL.) Connexive logics, in the mo-
dern narrow sense, resolve the standard paradoxes by qualifying or reje-
sting Simplification (4 e B>A4, A e B—~B) and, usually, its dual Addition
(4—-AvB, B>AvB).

But what typifies modern connexivism is not merely — or even o
much — the qualification of Simplification, as the perhaps surprising
acceptance of certain non-classical but traditional principles such as
Aristotle, ~(A4A—>~A) and some of its strengthenings. As McCall, to whom
we owe the modern use of ‘connexive’, asserts ([4], p. 438) ‘the idee
maitresse of connexive logic ... is that no proposition should imply or
be implied by its own negation’. But in fact these two features, which we
take to characterise connexive logics in the nmarrow sense, namely (1)
rejection or qualification of Simplification and its equivalents and (2)
acceptance of Aristotle’s thesis along with Identity, are intuitively related:
both may be explained, and in this way rendered not at all surprising,
by a traditional and rather appealing intuitive theory of incompatibility
and negation.

Specifically connexive principles of importance other than Aristotle
and its mate ~{(~A4—>A) are:

~[(A—>B)s(A—~B)] (Strawson), and

A—->B—>.~(A—>~B); A->~B->.~(A->B) (Boethius)
These principles not only have a venerable history; they have received
substantial support in recent literature (see [3], 2.3). Aristotle long ago
gave the following argument for Strawson:

(A—>B)e(A—+~B)>(A—>B)e(B—>~A)
—(A—>~A4).
Hence as ~(4—+~A4), ~[(A—>B)e(A—>~B)]}: And Boethius is affirmed
by Boethius (see [5], p. 191)2 Modern connexivism, with connexive
logic as a formal sentential logic, begins with Nelson [9], and has since

1 This argument is discussed in Fukasiewicz [6]. L.ukasiewicz, I think correctly,
takes Aristotle to be asserting the principle ~ (4 —+~A4) quite generally. But there
remains room for argument, because it could be claimed that Aristotle’s (rather
primitive) variables are restricted to contingent statements.

2 An affirmation the Kneales far too hastily write off as a mistake. But the
Kneales procedure does rather nicely illustrate the way history gets coloured by
currently-received perceptions of correctness.
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received more semantically tractable formulation in the work of Angell
(see especially [1]) and McCall (e.g. [2]). A semantical analysis of McCall’s
system of [2] and some related systems has been presented previously,
in [10]; but the semantics proposed was not adequate to deal with more
satisfactory connexive systems, such as Angell’s system (of [1]) and sys-
tems in its vicinity. The present paper closes that gap and provides seman-
tics for a very extensive class of connexive logics.

Why is it worth looking for semantics for these logics? Partly because
to float a bold hypothesis, connexivism seems to underlie much of tradi-
tional Aristotelian logic, and semantics for connexive logics could help
to clarify substantially the underlying thinking. That is, much traditional
logical and semantical thinking is connexivist in character. (In this respect,
however, the semantical analysis so far obtained falls seriously short,
as will be indicated below, in § 6). More weakly and less speculatively,
connexivism does represent an important, but neglected, traditional
position in logic, and one of much modern interest. Firstly, unlike most
alternatives to classical logic, it is not a mere sublogic of classical logic,
but contains distinctive non-classical principles of its own. In this respect
it stands, as McCall has remarked ([4], p. 435) “to classical logic rather
as Reimannian and Lobatchevskian geometries stand to Euclidean.’ Se-
condly, it offers what is often regarded as a very appealing line on the
paradoxes of implication, attributing these paradoxes not to suppres-
sion features, e.g. of strict implication, but to the addition in the first
place of irrelevant components. And the position has a simple and direct
explanation, in terms of its quite intuitive subtraction, i.e. cancellation,
account of negation as to why the very first steps in Lewis’ hard paradox
argument, namely Ae~A-—->4 and Ae~A—>~A, fail. For” ~A cancels
out 4, so that the conjoined content, of Ae ~A4, is less than that of A
and of that of ~A. But implication requires content inclusion, so these
(degenerate) examples of Simplification fail. This explains, in a sketchy
way, the character of the connexivist argument against Simplification.?
The same argument explains why Ae~A does not imply ~(de~4),
and provides a basis for an argument for Aristotle, along these lines: —
No contingent or necessary statement implies its own negation, i.e. if B
is possible then ~(B-—+~B). But if B is impossible then B is equivalent
to some statement A & ~A; hence, by replacement of equivalents in
~((Ae~A)—>~(Ae~A)), ~(B—>~B) when B is impossible. Hence
Aristotle, ~(B-»~B), holds for every B.

Given Aristotle, Boethius is derivable in stronger logical systems.
But in less strong, and more satisfactory systems, Boethius requires in-

3 A fuller development, and assesment, of the argument may be found in [3].
I owe several of the informal arguments for connexive assumptions to V. Routley.
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dependent argument. McCall’s argument for Boethius is premissed on
the plausibility of the principle, Compatibility, A +B—.A4A0B, that what
a statement implies it is compatible with. Boethius, A—+B-—+>~(A—~B),
then follows using the definition of compatibility, Ao B = , ~(4—>~B),
and connexively acceptable negation principles (which are included in
basic system CB). Compatibility, which is indeed a principle of wide
appeal — for example, Lewis and Langford ([7], p. 157; my italics) in
presenting the orthodox strict position, say that ‘the principle p 3¢ 3
3 .poq which might be expected to hold, does not, in fact, hold without
exceptions’ — may be defended using traditional accounts of implication.
For example, if 4 implies B then B is (contentwise) part of A; but if B
is part of A, it must (surely ?) be compatible with A, for something cannot
have a part incompatible with it. A slightly deeper argument for Com-
patibility, which gets closer to the traditional ideas underlying connexivism,
goes as follows: — if 4 is incompatible with B then A e B says less than A
and than B because B has negated and so cancelled part of A; thus AeB
does not imply 4 and does not imply B, so A does not imply B. In short,
the cancellation account of negation, in combination with a content
account of implication, especially one which connects A—B with A e B—A,
vindicates Boethius.

§1. Connexive systems amd others. The systems — many of which
are not connexive systems in the narrower sense explained — are for-
mulated (as in Angell [1]) with connective set {—, ~, ¢} and with v
defined: AVB =, ~(~Ae~B), [ defined: A/B =,  A—~B, o defined:
AoB =, ~(A—+~B), and <« defined: A-B =) (A—B)e(B—A).
Orthodox notational conventions are adopted without further elaboration
in what follows: they are essentially those in [3] and [4]. The basic system
CB has the following postulate: —

Al. A—A (Identity) A2. ~~A—A (Double Negation)
Rl1. A, A—>B->B; read: where A and A—B are theorems so is B
(Modus Ponens)

R2. A—-»B,C—-»>D>B—->C—~>.A-D (Affixing)
R3. A—>C,B—>D->AeB—>CelD (Rule Praeclarum)
R4. A—-~B->B—>~A (Rule Contraposition)

OB can be alternatively, and perhaps more neatly, axiomatised in terms
different primitive, e.g. with |/ or o replacing —. Some of the theorems
and derived rules of CB used in what follows are these:

i. A—->~~A; from Al and B4.

Note that the resources of CB do not permit the integration of both
forms of Double Negation to Ae~~A4, ie. (A>~~A)e(~~A—>A),
since the system lacks an Adjunction rule. Nor would it permit the adop-
tion of A<>~~A as a workable axiom since the basic system does not
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sanction even Rule Simplification. These are weaknesses stronger connexive

type systems will do something to repair.
1i.
iii.
iv.
V.

A—-B-+>B—-(C—.A~>C
A-+>B->C—-A—~.C—>B
A—B, B>(C-—>4—C
A—B->~B—+>~A

(Rule Suffixing)
(Rule Prefixing)
(Rule Syllogism)

And, more generally, all forms of Rule Contraposition are forthcoming,
using the postulates derived.
Additional postulates drawn from the following lists may be added to
the basic system CB singly or combination to yield a wealth of stronger
systems (some of the postulate labels are taken over from [3]): —

B3.
B4.
B5.
B6.
BT.
BS.
B10.

Cl1.
2.
C3.
C4.
C5.
Ce.
CT.
C8.
C9.

DI1.
D2.
' D3.
D4.
D5.
D6.
D7.

Ds.
Do.

DC1.
DC2.
DC3.

A-+B—+.B—-(0—.A—C
A-+B—-.C—-A--.C—B
A—+(A—-B)—> A—+B

A+ A—-B—B
A—>(B—~C)—>. B+ 4—~C
A—-(B—->C)>A—~+B-+ 4—~C
A—->.B—>B

Ae(A-~>B)—>B
(A—B).(B—>(C)—>.A—-C
A—>(B—C)—.(Ae B)—>C
AeB->Be A
Ae(Be()>(AeB)e(
A—-+B-—>.(CeAd)—(CeB)
4-—+.B-—>AeB

A—>AeA

A—>Be(C—->D—> Ae(C—+BeD

AeB—>(C—.(Ae~C)—>~B
~(Ade~A)
A—sr~Ad—. ~A

A—->~B—> B->~A
Ae~(Ae~B)—>B
Ae(Bv(C)—>.AeBvAel

(Suffixing)
(Prefixing)
(Contraction)
(Assertion)
(Commutation)
(Self-Distribution)
(84 Paradox)

(Conjunctive Assertion)
(Conjunctive Syllogism)
(Importation)
{Commutation)
(Associativity)

(Factor)

(Adjunction)
(Tautology)
(Praeclarum)

(Antilogism)
(Non-contradiction)
{Reduction)
(Contraposition)
(Disjunctive Syllogism)
(Distribution)

AeB—s>~(A—+~B) (i.e. A—>B—>~(Ae~DB)

~(A—~B)—>AeB
AeB—>AVvE

~(A-—>~A)
~((A—B)e(A—>~B))
A—->B->.~(A—~B)

7 — Studia Loglca, 4/78

(Ackermann, Counterexample)
(Sheffer)

(Aristotle)
(Strawson)
(Boethius)
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DR1. A—+(A—B)—>B (Necessitation)

DR2. A,B—>AeB (Rule Adjunction)
DR3. A—+B-+~(Ae~DB) (Rule Counterexample)
DR4. A—(B—(C)—>A4eB—(C (Rule Importation)
DR5. AeB->0C—+A—>B->C (Rule Exportation)

Several of the rules are deribitionally equivalent to axioms, e.g. DR3
is equivalent to ~(4 e~A). The rule yields the principle using Identity.

Conversely, 4A—B—>~B—->~A by R4
—~Ae~B-—>Ade~A by R3
—»>~(Ae~A)>~(Ade~B) by R4
—>~(Ae~DB) using R1.

DR4 is equivalent to: (4 —B)e A—B. The rule yields thg thesis immediately
using Identity. Conversely,
A—>(B—-(C)>AeB—~(B—>C)eB by R3
—~AeB—>C using R2.
DR5 is equivalent to A—.B-+>AeB. The thesis results using Identity,
and the rule results by Affixing.

§2. Conmexive modellings. Connexive modellings do not differ from
relevant modellings as to the implication connective: thus the pure entail-
ment theories are the same. It is only when negation and conjunction
are introduced that marked diffcrences begin to emerge. Both negation,
where the crucial distinguishing formmlae are located, and conjunction
can be added separated to the implicational base, but here they will be
treated together: their separate treatment can easily be isolated, and will
be drawn attention to subsequently.

As in [3] chapter 3, both affixing and reduced models are elaborated
at once. The reduced models, which provide neater modellings for con-
nexive logics in the literature, will be assembled in a later section. A OB
model M — a basic model for connexive logics —is a structure 4
=<(T,0,K,R,8,% @, I), where O and K are sets with O < K, T is an
element of O, R and S are three-place relations on K, * is an operation
on K, G is a relation on Wff and worlds, i.e. on wffx K, and I is a two-
valued interpretation function from Wffx K to II = {1, 0}, such that
generally:

pl. a< a, where b < ¢ = p(Px € O)Rxbe.
p2. if a < d and Rdbd then Rabe.

p3. a =a*".

p4. if a<b then b* < a*.

5. if a<<b and Scda then Sedb.

il. if I(P,a)=1 and a<b then I(P,b) =1, for every sentential
parameter P.
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i2. I(B—C,a) =1 iff for every b and ¢ such that Rabe if I(B,b) = 1
then I(C,¢c) =1.

i3. I(Be(,a) =1 iff for some b and ¢ such that Sbeca I(B,d) =1
and I(C,¢)=1.

id, I(~A,a)=1iff I(4,a* %1

ib. if AGb then I(4,d)=1

What is new in connexive modelling, as distinet from relevant logic
modelling, is, first, the evaluation of conjunction through a 3-place rela-
tion §, and sccond, the introduction of a relation G of generation. The
first has a good precedent in relevant logic, in the semantical treatment
of fusion (or intensional conjunction) o (see [3], chapter 4) which is eva-
luated in a quite analogous way to « but using relation R. (Since e is not
however linked with — by Portation rules as o is, a different relation than
R has to be chosen to assess intensional conjunction generally). The evalua-
tion rule for e reveals at once that the connective is indeed intensional:
its assessment in a situation involves consideration of what happens in
other (not merely operationally linked) situations. And there is a fair
sense, as will emerge, in which connexive conjunection is irreducibly inten-
sional. The second innovation, the incorporation of G in the model, ap-
pears to be without precedents, though the notion of generation used is
well-known from algebra and is regularly used in completeness arguments
for relevant logics. ‘AGbH’ reads: A generates (situation) b — by which
is meant that everything that holds in situation b is implied by 4. Rela-
tion @G plays an important role in the modelling conditions for distincti-
vely connexive logical principles. Condition i5, though not entirely desira-
ble since it is not induectively defined, is of a type now familiar from ac-
cepted semantical analyses (c.g. those for conditional logies and for da
Costa’s O systems).

A reduced OB model .# is a structure (T, K, R, 8, *, G, I), i.e. with O
clided, which otherwise differs from a CB model only in defining b < ¢
as RThe. In reduced models certain modelling conditions simplify; but
only (excessively) powerful systems have reduced modellings. A sufficient
condition for reduced modelling can be given through the following:
a strong connexive logic L is an extension of OB which contains at least
the following principles B3, B4, C1, C9, D4, DR2. Essentially a strong
logic converts the rules of OB to implications. The minimal strong logic
under this characterisation is the system SB: —

A->B—+.B->(C0—>.4A—-C B->(C—>.A—-B—-. A—->C

A—A ~~A-—A
A—>~B—>B->~A A>Be(C—>D—> Ae(C—>BeD
Ae(A—+B)—>B

A,A—->B-+>B A,B->AeB

SB so formulated contains some redundancies. Both A—4 and 4A-—
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—B—,B->0—+.A—C can be deleted without altering the class of theorems
(see [4], pp. 140-1). 8B also has some rather conspicuous deficiencies
for a “strong” logic, e.g. such properties as associativity of conjunction
are not guaranteed. :

Semantical notions are defined in the usual faghion. In particular
a wif A is true in A iff I(A,T) =1, and A is OB valid iff A is true in
every OB model. These notions are extended to apply to each extension I
of CB considered. Furthermore A is reduced L valid iff A is true in every
redueed L model. Modelling conditions for the extensions are as follows,
with ¢; corvesponding to postulate By, ¢, to C;, s; to D,, ds; to DC;, and db;
to rule DRi. These definitions are used: R*abed = (Pz)(Rabz & Rzed);
R’a(be)d =, (Pr)(Raxd & Rbex); RPab(cd)e =, (Pr)(Rabze & Redwx);
UlVa(be)d —p, (Px)(Uard & Vbex); U[Vabed = (Px)(Uabz & Vwed); U*
= U[|U. (Here¢ U and V range over three- place relations such as B and 8.)

q3. if R’abed then R?b(ac)d
q4. if R?abed then R%a(be)d.
gb. if Rabe then R*abbe

q6. if Rabc then Rbac

q7. if R’abed then R*acbd
q8. if R’abed then Riac(bc)d
ql0. if Rabc then b<e

rl. if Sbea then Rcba

r2. if S/Rdebe then RPe¢(db)c

r3. if R/Sa(de)c then R’adec

r4. if Sbca then Scba

r5. if 8’b(de)a then S%bdea

r6. if R/Sa(de)c then S/Rd(ce)c

r7. if Rabc then Sabe

r8. Saaa

r9. it 8/(R/8)fg(de)c then R/(S/R)fd(ge)e, i.e. if R/Sa(defc and Sfga
then for some 2 Rfdr and S/Rx(ge)c.

sl. if R/Sa(de)c then R/Sa(dc*)e*

$2.  if Sbez* then b < ¢*, for x €0; or in reduced form if SbeT* then
b<e* ‘

83. Raa*a

s4. if Rabc then Rac*b*

85. if Sbca then Sba*c*

$6.  if Shea and Sdea* then, for some 2 and y, Sbad” and Sby* and Swyc*

57. if Sbeca then Ra*bc*

s8. if Ra*be* then Sbea

89.  if Sbca and Sdea* then ecither b < d* or ¢ < e*

dsl. (Py)(Rx*yy* & AGy), for every wif A and every « in O
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ds2. if Sbexr* then (Pz, y)(Rbyz & Reyz* & AQy), for z € 0
ds3. (Pw,vy,?)(Razy & Ra*zz & AGr & y < 2%)

drl. (Pzx e O) Raza; or in reduced modellings RaTa.

dr2. (Pzx e O) Szzx; or in reduced form STTT

dr3. if Sbex* then b<<c* for x €0 (cof. 52)

dr4. if Sabc then Rabe (cf. 11)

drb. if Rabc then Sabe (cf. 17)

§3. Soundness theorems. Proofs of soundness follows the lines of

[3], chapter 3, and begin with lemmas which simplify verification pro-
cedures.

HEREDITARINESS LEMMA. Ifa<<band I(A,a) =1 then I(B,b) = 1.

PrOOF is by induction from the given basis. The cases for — and~
are a8 for relevant semantics.

ade. Suppose a <b and I(Be(, a) = 1. Then, for some ¢ and 4 for
which Seda, I(B,¢) =1 = I(C,d). But by p5 Secdb, so I(Be(,b) = 1.

Where L is any of the logics under examination, i.e. any of the exten-
sions of OB considered, and 4 and B any wif of L, A L-implies B in L
model # iff, for every @ in K, if I(4,a) =1 then I(B,a) =1, i.ec. iff
[A] < [B]; and A L-implies B iff A L-implies B in every L model.

SounpNESS LEMMAS. (1) If A L-implies B in A then A—B is true
in M, and, where A is a reduced L model, A L-implies B iff A—B is true
m M.

(2) A L-implies B iff A—B is L-valid.

Proor is like that for lemma 3.2 of [3].

SounpnEss THEOREM for OB. If A is a theorem of OB then A is OB
valid. : ‘

PrOOF is by the usual induction over proofs. That the axioms of OB
are valid follows directly using the soundness lemma (2). Since [4] < [4]
always, Al is OB valid. As to A2, for every L model [~~A4] = {acK:
I(~~A,a) =1} = {a: I(4,a™) =1} = {a: I(4,a) =1} = [A],by D3
and i4, so ~~A—A is valid by (2) above. That the rules preserve validity
is proved as in [3], theorem 3.9; and only R3 is not treated there.

ad R3. Suppose 4AeB—>CeD is not valid. Then for some model .#
and some a €K, I(AeB,a) =1 = I(CeD,a). By the first, for some b
and ¢, Sbea and I(4,b) =1 = I(B,c); and so by the second, as Sbea,
either I(C,b) %1 or I(D,c) # 1. Hence either A does not L-imply C
or B does not L-imply D; that is not both A—C and B—D are valid.
Thus, by contraposition, R3 preserves validity.

SoUNDNESS THEOREMS for extensions L of CB. For such logic L, if A
is a theorem of L then A is L valid, and so reduced L valid.
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PROOF. It suffices to show that where a modelling condition holds
the corresponding axiom or rule is appropriately valid. The arguments
for the purely implicational axioms and rules and for the implication-ne-
gation axioms are exactly as in [3]. Most of the new cases, involving
conjunction, follow very similar lines, so only a few illustrative cases
are presented.

ad C1. Suppose I(4Ae(A—+B), a) = 1. To show, using rl, that I(B, a)
= 1; for the validity of C1 then follows using (2). By i3, for some b, ¢, Sbea
and I(A,b) =1 =I(4—-B,¢). By rl, Rcba, so by i2, if I(4,b) =1
then I(B,a) =1, whence the result.

ad C2. Suppose I(A>BeB—>(,a) =1 £ I(A—>C, a). Then for some
b, ¢, d, ¢ in K, Rabc, Sdea, I(A,b) =1 £ I1(C,¢) and I(A—B,d) =1
= I(B—C, ¢). By r2, for some z € K, Rdbx and Rexc, s0 as I(4,b) =1,
I(B,x) =1 and hence I(C,¢) = 1, which is impossible.

ad D2. By 52, 8beT* 5> b<<c* Suppose I{(~(de~A), T) 1.
I(Ae~A, T*) =1, so for some b and ¢ I(4,b)=1and I(4, ¢*)+#1 and
SbeT*. But then I(4, ¢*) = 1 also, which is impossible.

ad DC1. Suppose I(~(A—>~A4),T) 1 for some L model .# with
base T. I(A—>~A,T*) = 1. Hence, by dsl, I(4,y) =15 I(~A4,y) =1
and AGy. By i5, I(A,y) =1, so I(~A,y*) = 1; that is, I(4,y) # 1,
which is impossible.

ad DC3. Suppose I(A—-B,a) =1 # I(~(A—~B), a). Since by ds3,
for some #, ¥ and 2, Raxy and Ra*xz and AGx, I(A,x) = 1. Thus I(B, y)
=1=1I(~B,z). So I(B,z") #1; but y <z* so I(B,z*) =1, which
is impossible.

§4. Completeness theorems. Proofs again follow the lines of [3],
chapter 3, but the proofs are somewhat simpler than corresponding relevant
proofs because primeness of theories is nowhere required. Where, as
before, L is any of the connexive logics under examination, an L-theory a
is a set of wif closed under provable L-implication, i.e. whenever A €a
and +;A—B then B ea. Note that closure under adjunction is not re-
quired. An L-theory a is regular when all thecorems of L are in a, i.e. iff
when F; A, A € a. Where T is a regular L-theory closed under adjunction
(i.e. when 4, B € T then A eB e€T) a T-L-theory a is a set of wif of L which
is closed under T-implication, i.e. whenever A +Be B (also written FpA4—
—B) and A € a then B ea.

The canonical CB model 4 ,is the structure #, = (L, 0, K, R, 8,*,G, I
defined as follows: — the base L is the class of theorems of L, or more
generally some regular L-theory; O is the class of regular L-theories;
and K the class of L-theories. Where a, b, ¢, d are L-theories, Rabe iff for
every wif 4 and Bif A—>B ea and A €b then B e ¢; Sabe iff for every A
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and B if Aea and Beb then AeBec; a* = {A: ~A ¢a}; AGh iff
b={D: tA->D}; and I(A,a) =1 iff A ea. Where T is a regular
L-theory, the T-canonical CB model .#, on base T is the similar structure
(Tr,[0],K,R,S,* G, I), but T-L-theories replacc L-theories throu-
ghout definitions. O is bracketed because it will prove eliminable.

CANONICAL LEMMA for CB. (I) The canonical CB model #,is a CB
model.

(IT) The T-canonical CB model &, on base T is a CB model.

Proor. Most details are simplifications of corresponding details for
basic relevant system B in [3], chapter 3. But some adjustments emerge
from the different characterisation of X. Case (IT) will only be dealt with
where details diverge from those (I). '

It is immediate that L € 0, O = K, and that R and § are appropriate
three-place relations. By Rule Contraposition a* is an operation on K.
The set b = {D: +,A—D}is an L-theory (by Affixing and Modus Ponens,
50 @ is well-defined. Similarly where b = {D: t,A-—D}, b is a T-L-theory.
For suppose +pB—>C and B eb. Then +p,4—B. By B3 (or, but slightly
differently, B4) and the fact that T is an L-theory, +;B—>C—.4A-—>C:
Hence, by adjunction closure and B1, Fp A-+C, i.e. C € b. The p-postulates
are readily established given the connection
a) aLbiff ach
Suppose @ < b and, to show RLab, that A—B e L and 4 € a. By inclusion
A b and since b is an L-theory B €b. For the converse suppose a <b
and A €a. Then for some regular x, Rzab. By regularity 4—-4 e€a, so
as 4 € @ and Rxab, A €b. pl and p2 are immediate from a), p3 from the
definition of * and Double Negation, and p4 from a} definition of * and
Rule Contraposition.

ad p5. Suppose a < b and Seda and also € ec and D ed; to show
Ce D eb. By the assumptions Ce D € a, 50, using a), Ce D €b.

adil. a<b &Pea>Peb, by a). In fact, quite generally, a <b &
&SI(A,a)=1>.1{4,b) =1.

ad i2. What has to be shown is: B—>Cea iff (b, c)(Rabc & Beb
o ( e¢), where R has its canonical definition. One half is immediate using
definition of B. For the converse suppose B—C ¢ a. Define b = {D: +.B
—D}, ¢ ={E: F E—~C}. Then Beb, C ¢c¢ and b and ¢ are L-theories.
As to the last, suppose on the contrary that for some wif F and F, E ¢,
b E—-F, but F ¢c. Then ~+ E—-C and +,F—C, so t,E—~C, which
is impossible. (In case (II) B3 or B4 and adjunction closure and Bl
are again invoked.) It remains to show Rabe. Suppose otherwise that for
some E and F, E—~F ea and F € b but F ¢ ¢. Then +,B—F and +,F—C,
so by Affixing +; E—F-». B—C, whenee B—C € g, contradicting assumyp-
tions (In case (II) use B3 and B4).
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ad i3. Suppose Sbea & B e€b & C €c. Then, by canonical definition
of 8, Be ( € a. For the converse suppose Be( € a. Define b = {D ., B—>D}
and ¢ = {F ; C—E}. Then, by Identity, B €b and C ec. To show Sbca,
suppose D eb and F ec¢. Then +,B—D and +;0—E, so by Pracclarum
tzBe(C—DeE, whence De F ea, as required. (In case (II) adjunction
closure and the Praeclarum axiom arc used).

ad i4, ie. ~4 ea iff A ¢ a*. By definition of *,

ad i5, 1.c.ift b = {D: t; A—D} then A €b. From Identity.

CanonicAL LeEmMAS for coxtensions L of OB. (I) The canonical L
model A, is an L model.

(II) The T-canonical L model 4, is an L model.

Proor. It suffices given the previous lemma, to prove that where
an axiom or rule is valid the corresponding modelling condition holds
generally. Many of the cases are simplifications of analogous cases in [3],
and very many of the new cases conform to a common pattern; so once
again only a few illustrative cases are set out.

ad r2. Set ¢ = {D: (PE)(E—~D ed & E e€b}. Then « is an L theory
and Rdbx. To show, what remains to be proved, that Rexe, suppose A
—Bee and A ex. It is enough to show Bec. As A ex, for some E,
E—A cdand F eb. As A—B € eand, by hypothesis of r2, Sdea, E->4 e 4

—B € b. Hence by C2, E—B € a. Thus as Eabe, by hypothesis of r2 again,
and ¥ eb, Bee.

ad r5. Suppose Sbea and Sdec, and sct 2 = {D: (PB, C)(F Be(C
—-D &Beb & ed)}. Then ¢ is an L theory and Sbdx. To show, what
remains, Szea, suppose D ex and Eee. As Sdec, Co E ¢, so as Sbea,
Be(CeE)ca. Hence by C5, (Be(C)eFE ca; but +(BeC)eE—~DeE by
R3, whence De F € a as required.

ad s1. Suppose Rabc and Sdeb, and define x* = {D: (PA)(~D—A
€a & ~A ee}. Then 2* is an I theory; for suppose D e z* and +D—E.
For some 4, ~D—+>4 ea and ~A4 ee¢. Since t~E—>~D, t~D—>A4—.
—>.~E—>4, 50 ~E—>A e€a and E € x*. Also Raxe*. For suppose C—~D e«
and C ex but D ¢e for some € and D. Then ~Dee and ~C ¢ 2%, i.c
for every 4, when ~~(C—+A4 €a then ~A4 ee¢, 50 ~~C € a. As to Sde*wz,
suppose otherwise 4 ed, Bec* but AeB ¢x. Then ~(AeB)ex* S0
for some €, ~~(4 e B)—C € a and ~C e e. Since Sdeb however, Ae ~C € b,
whence, as Rabe, ~B e ¢, contradicting B € c*.

ad 82. Suppose Shex* and B eb, for € 0. Then as ~(B & ~B) € «,
B & ~B ¢ x*, 50 ~B ¢e¢, and B ec*.

ad dsl. Let 2 € O and define b = {D: FyA->D}. Then AGb. To
show Rx*bb*, suppose otherwise, for some B and O, B—~C exz*, Beb
and € ¢b* Then t4—->B and, as ~C eb, tA->~C, whence +0—~A.
So Dby Affixing, FB—>(C-—>.4-—>~A4, and Contraposing F~(4—~A)
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—~(B—0). Since x € 0, ~(A—->~A)ex byDC1,so ~(B->0) e, con-
tradicting (B—C) € 2*.

ad ds3. Define x as the situation generated by 4, y = {¥F': (PE)(E—~F
€a & Eex)}and 2 = {C: (PB)(B—~() ca* & B ex)}. Then AGz, Raxy-
and Ra*zz. To show y < 2* suppose otherwise that for some D, D ey,
and D ¢ 2*. Then ~D ez, As D ey, for some F E+D ca where FA—E.
Hence as FE—->D—~>.A—-D, A—>Dea, so by DC3, ~(A—>~D)eca. As
~D ez, for some B, B—>~D ea* where +FA-—>B. Hence as FB—~D
- A->~D, A—>~D ea* and so ~(A—~D)¢a, contradicting ~(4
—~D) ea.

CoMpLETENESS THEOREMS for extensions L of CB.

I. For each such logic L considered, if A is L wvalid then A is a theorem
of L.

II. For each such strong logic L, if A is reduced L walid, then A is
a theorem of L.

Proor. In both cases suppose A is not a theorem of L. Form the
canonical I model .#, with base consistihg of the class T of theorems of
L. Then, by the lemma, .#, is an L model; and since 4 ¢ T, I (A, T) # 1.
Thus 4 is not true in an (the canonical) L model, so 4 is not L valid. In
case (II) it can be verified that a strong logic provides all the properties
required for reduced canonical models to be models (some of the details
are recorded in the proof of the canonical lemma). :

COROLLARY (Implicational Adequacy). +,A—>B iff A L-implies B.

The semantical apparatus developed will also deliver stronger comple-
teness theorems and therewith further information, such as compactness
results. An [adjunctive] L-derivation of A from set S of wif of A, written
8tz A, is a finite sequence of wff 4,,..., 4,, with 4, = A, such that
each member of the sequence either belong to § or is obtainable from
predecessors in the sequence by a provable L-implication [or by Rule
Adjunction]. 4 is [adjunctively] L-derivable from § iff there is an [adjun-
ctive] L-derivation of A from 8.

STRONGER COMPLETENESS THEOREMS. Where A is mot [adjunctively]
L-derivable from reqular set 8, there is a [reduced] L-model .# under which
every member of 8 is true but A is not true.

Proor. Let T be the L-theory closure of 8, i.e. T = {D: 8}, D}
Then 4 ¢ T and T is a regular (adjunctive) L-theory. Form the (reduced)
canonical model .#, with base 7, and then proceed as in the previous
theorem.
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At various points the completeness arguments conspicuously fail to
use all the information now available. For example, in the strong comple-
teness result T could be inflated to a maximal L-theory using Zorn’s
lemma, but properties of maximality are not drawn upon by the modelling.
Similarly an important extension lemma ([3], lemma 3.3), obtained using
Lindenbaum methods, holds for connexive logics which conform to Rule
Adjunction and Distribution, but the properties yielded by the lemma
are not exploited by the modellings given. All this suggests that for signi-
ficant classes of connexive logics there are improved and more informative
modellings yet to be found.

§5. Alternative semantics, and augmented semantics for Simplification
principles. Firstly the semantics given may be represented in operational
form with the relations R and § on K replaced by operations on K. The
operational evaluation rule for implication may be written in either of the
formas.

i2" I(B-0,a) =1 iff, for every b, if I(B, b) = 1 then I(C, a®b) =
or
i2” I(B-C,a) =1 iff, for every b, if I(B,a®b =1 then I(C,b) =1,

depending on whether the suffixing or prefixing rule is favoured in the
completeness argument (see [8]). Here the more familiar i2’ is chosen.
Correspondingly the rule for conjunction may be written in two forms, of
which the following is chosen:

i3 I(Be(C,a) =1 iff, for some b, I(B,b) =1 =I(C,a®b).

An L operational model differs from an L model primarily in replacing B
by operation @ and S by operation ® and adding an ordering relation <.
But modellings conditions have also to be reexpressed in operational form.
To illustrate the conditions are set down in the case of basic system CB:
operational conditions for many of the postulates listed are given in [3].
In a OB operational model conditions p1-p5 are replaced by the following
conditions.

pl’. < 2Pa, for x €0

p2’. 1f a<<b then a®e¢ < bPc

p3 and p4 are as before,

pb’. if a<<b then a@e<LbOe.

Semantical notions are extended in the expected way; in particular
a wit 4 is L o (perationally) valid iff it is true in all I operational models,
ie. I{4,T) =1 for every L o model.

OPERATIONAL ADEQUACY THEOREM for CB. A is a theorem of OB iff
A 18 CB o valid.
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PROOF of soundness is like that for the relational semantics. The main
new feature of the completeness proof lies in the canonical definitions
of the operations. In the canonical 0 model define a®b = {C: (PB)(B
—~Ceca &Beb)}and a®Ob = {C: (D)(Deb> De( ca}. Then a®b and
a®b are L-theories where a and b are. Consider, to illustrate the new
features, the verification of i3’ in the canonical model. Suppose, firstly,
Beb and Cea®b; to show Be( ca. But this is immediate using the
definition of ©. For the converse, suppose Be( €a. Define b = {D: B
—D}. b is a COB-theory and Beb. To show Cea®b, suppose Deb
arbitrary Dj; to show De( ea. Since rB—>D, +Be(C—>De( by R3
(or Rule Factor), whence De( €a.

Each of the I modelling conditions given maybe reexpressed in opera-
tional form. Sometimes the operational conditions are very attractive
combinatorically and algebraically, sometimes they merely mirror the
corresponding axioms just two examples:

B3, A-B—+.B->(—>.4—-0 3. bP(a®c)< (aDb)Pe
DC3. A—>B->~(4A—>~B) ds3’. (Pz)(AGz & adz < (a*Dx)¥)

OPERATIONAL ADEQUACY THEOREM for extension, L of CB. For each
extension considered, theoremhood and validity coincide.

The operational semantics lead directly to alternative formulations
of connexive logics, to subscripted semantic tableaux, subscripted natural
deduction formulations, and subscripted Gentzen formulation for each
system L (details are as in [3]). The semantics also lead, using filtration
methods, to decidability results for several of the logics considered, but
not — so far at least — in the case of strong logics of interest.

The semantics may also be reformulated functionally, in a way that
eliminates all reference to worlds, by rewriting I(4, a) as a(4) and re-
expressing modelling conditions as conditions on functions, e.g. < is
replaced by a relation < of functional extension.

In order to model Conjunctive Simplification, A e B—+A4, and its special
case, A e A—~A, the models given have to be angmented in the first case
by a property C of situational occupation, and in the second case by an
operation n of situational intersection.

(Both semantical devices have been previously exploited, in forerunners
to [3].) The notions are subject to these interpretational conditions:

i6. If, for some B, I(B,a) =1, Ca;
i7. I I(4,a) =1 =1(4,b), I(A,and) =1.

The modelling conditions are these:

El. AeA-A t1. if Sbea then bnc< a
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E2. AeB-4 t2. if Sbea and Cc then b < a
E3. BeA—>A t3. if Sbea and Cb then c¢< a
E4. AeB—A t4. if Sbex and Cec then b <« for z in O.

ENLARGEMENT OF ADEQUACY THEOREMS to cover El1-E4.

Proor of adequacy is by cases.
ad E1. Suppose I(Ae A, a) = 1. Then for some b, ¢, Sbeca and I(4, b)
=1 =1I(4,¢). Hence, by i7, I(4,bn¢) =1, s0 by El, I(4,a) = 1.

ad t1, and associated requirements. Definebne = {A: A eb & Aec}.
Then N is an operation on K. For suppose, to show bne¢ is an L theory
when band care, 4 ebn¢and FA—B.Thenas Aeband 4 e¢, Beband Bee,
i.e. B ebne. Also i7 follows. To establish t1, suppose Sbeca and A € bne.
Then 4 eb and A e¢, so by Sbea, Ae A €a; and thus, by El, 4 €a.

ad E2. Suppose I(4eB, a) = 1. Then for some b, ¢, Sbea and I(4, b)
=1 = I(B,c¢). By i6, Cc¢, so by t2, b << a. Hence I(4,a) = 1.

ad t2, and associated requirements. Define Ca iff, for some B, B e a.
So i6 holds. As to t2, suppose Sbea and Ce¢, and A €b. Let D be a wif in ¢.
By Sbca, AeD e a, whence, by E2, A e a. The further cases are similar.

Some may have reservations, by this stage, at the multiplication of
semantical apparatus. But really nothing has been introduced that is not
reflected in commonplace semantical thinking. The notion of situational
occupation, for example, is on a par with the notion of non-nullness of
situational domains, yet no objection is generally made to the requirement
that some domain be non-null or to the explicit statement of this in a se-
manties. And the idea of situational-intersection, of the common part of
two situations, is an almost everyday one.

The enlargement, to include Simplification principles, means that the
analysis given comprehends all the usual relevant affixing systems as well
as the modern connexivist systems, which however reject or qualify
Simplification. What the enlargement fails to do is to reflect the underlying.
semantical reasons for connexivists’ rejection of Simplification or to cater
directly for all the qualified forms they would allow. But these are pro-
blems for later more sophisticated and less brutal days.

§6. Semantics for Angell’s system P,,. Angell’s ‘propositional logic
with subjunctive conditionals’, P4, of [1], has, when reformulated with
axiom schemes, the following postulates:

A, (=B4). B-+(C—+.A->B+>A->C

A, (=06, C4). A->B—->.CeA—>Be(
A, (=D1). A—>~(Be()>.BeAd—>~C
A, (=Cb). Ae(Be()—>Be(Ade()
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Ay (=D4). A->~B->B->~A
(= A2). ~~A-A
A, (=D7. A->B->~(Ae~B)
(cf. E2). ~((4deB)e~A4)
(cf. C8). ~(Ade~(4deA)
A, (=DC3). 4A-»B->~(4-~B)
R, (=R1). A,A->B-B R,(=DR2). A,B—>AeB

Since P4, includes system SB (see the derivations in [1], especially *24,
*43 and those following *52), a reduced modelling can be adopted. A P,
model is then a reduced OB model (T, K, R, 8, *@, C, I), with situational
occupaney C, such that

q4. if R’abed then R*a(be)d

r6’. if R/Sa(de)c then R/[Saedc

s1’. if R/Sa(de)c then E/Sd(ae)c

rb’. if 8*b(de)a then S*d(be)a

s4. if Rabc then Rac*d*

§7. if Sbea then Ra*bc*

e5. if 8%decT" and Ce then d < c*

§10. if SbeT* then for some x Szzc* and b <
ds3. (Pz,y,2)(Raxy & Ra*xe & AGx &y < 2"
dr2. STTT

ADEQUACY THEOREM for P4,. Wff A is a theorem of P,y iff 4 is P4y
valid.

Proof is a variation of earlier results; the only fresh detail is that
coneerning ¢b and sl10.

ad $10. Suppose SbeT* and define # = {A: Ae 4 ec’}. Then Swad®,
Algso zis a P theory. For suppose Ae 2 and FP 4, A—B. Then, by Factor,
FAeA—>BeA and tBeA—>BeB, 50 FAeA—>BeB As Acxz, Aed ec*;
but ¢* is a P, theory, so BeB € ¢*, whence B € 2. To show b < #, suppose
Aecb. By Ay Ao~(AeA)¢T* 50 A¢bor ~(AdeA)cc. Thus Aed ec,
i.e. A e as required.

But the modelling, though formally adequate, is not intuitively very
satisfying: as it stands the modelling is rather complex, with the modelling
conditions exceeding in number the postulates they model, and basic
connexive postulates like Boethius, instead of being validated in a natural
way, have fairly intractable conditions.

§7. Two reductions of conmexivism and further shortcomings of the
semantics. One of the constant trials confronting exponents of non-
-classical logies is that of reduction: reduction of the espoused systems
to something else, at worst to classical precepts. In the connexivists’
case full classical reduction would be a fate worse than death, since total
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triviality would be the aftermath. But lesser reduections remain a worry,
e.g. modal reductions, as with Meyer’s reduction of McCall’s first degree
connexive logic striet implication (see [4]).

The semantics given suggests two reductions, of § to R or vice versa,
both of which should also be resisted. The first — which would make
connexive logic a, perhaps bizarre, branch of relevant logic — simply
supposes that Sabe iff Rabe. Such a requirement models exactly the two-
way rule

AeB—->(C—A—-> B->C (Portation)

or equivalently the axioms: A->BeAd—+B and A—>.B—>AeB. But all
these principles are unacceptable, as [3] tries to explain. If the reduction
were to succeed, connexive conjunction would be nothing but the fusion
connective of relevant logics, and modern connexivism would be a study
within the implication-fusion-negation part of relevant logics.

The second reduction supposes that generally Sbea iff Ra*bc*. The
axioms these conditions model are the questionable A e B—~(A—~B)
and the unacceptable ~(A~B)—>AeB. That is, in a connexive logic
with an adequate biconditional — many connexive logics are deficient
in this department — Ra*bc* iff Sbea corresponds exactly to ~(4-—>~B)
«—AeB,ie. AeB~AoB and Ae B~ ~(A|B). The last interconnection,
together with A—B+«». A/~B, suggests trying to refound this “classical”
connexivism — it does assert 4— B« ~(4 ~B), so that classical logic has
the conditional correctly defined, even if it went a little astray in its
extensional axiomatisation of conjunction — on incompatibility as main,
or sole, primitive. Primitives have already been reduced to the pleasantly
negative pair, incompatibility and negation: but attempts to reduce ne-
gation to incompatibility appear to founder on fundamental connexive
assumptions. Consider Sheffer’s proposal: ~A =p.A4/4, negation is
self-incompatibility. By Aristotle, no statement is self-incompatible, so
Sheffer’s proposal would trivialise connexivism, every statement would
bold true.

Within the confines of incompatibility sentential logic it is hard —
perhaps impossible — to find connexively plausible reductions of negation,
but given sentential quantifiers or constants prospects looks brighter.
For example, given a constant #, representing the True, it is tempting
to define ~A4 as A[t. Then Aristotle becomes (A4/4)/t, which need not
lead to disaster. (Alternatively, when implication alone is taken as primi-
tive, and conjunction, defined, negation can be defined in minimal logic
style thus ~A =p, 4—f, with f a constant representing the False.) But
“the reduction, although it can provide an alternative semantics for “clas-
sical” connexive logics (and also for other connexive logics), does not ease
the semantical problems negation causes in connexive logics, unless a new
beginning is made, e.g. with a new evaluation rule for compatibility which
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somehow delivers Aristotle directly and without the need for devices
such as the generation relation G. (But even a recasting of the compati-
bility rule as I(AoB,a) =1 iff (Pb,c)(Tabec & I(4,b)=1=I(B,¢))
still appears to require use of G in modelling 4o 4: the requisite condition
is (Pb)(AGb & Tabbd).)

The chief reason for dissatisfaction with the semantics furnished for
parrow connexive logics is not, however, that Aristotle and Boethius
are modelled, so to speak, by specially invoked semantical trickery which
too closely parallels the syntax, but that the semantics does not correspond
to, or satisfactorily reflect, semantical ideas underlying connexivist thin-
king and much traditional logic. For example, it does not link with the
traditional theory of positive and negative propositions, or with the idea
underlying the connexivist rejection of A & ~4A—+4 and 4 & ~A—~>~A,
that a negative proposition cancels out or deletes its positive, so that
A & ~A, which says zero as regards 4, says less than either 4 or ~ 4
and so can not imply them — a point which explains, in a way the seman-
tics does not, the connexive rejection of 4 & ~A—-~(4 & ~A4), and
50 how simple counterexamples to Aristotle are dealt with.

Although the semantical analysis resolves many problems concerning
connexive logics and provides new means of attacking other problems,
it leaves many problems — perhaps too many — open. The matter of
decidability of strong logics, already mentioned, is one. Other problems
are those of consistency and non-triviality. Semantical modellings of the
sort given provide no quarantee that the logics modelled are consistent
or even other than trivial. The system R + { ~(4—~A4)} which was model-
led is trivial, and very many of the systems which were modelled are
inconsistent, e.g. B+ { ~(4—~A4)}. (R and B are standard relevant logics,
studied e.g. in [3].) The modellings given do simplify the task of establi-
shing consistency or non-triviality where these properties hold ; for example
the modellings yield matrices which can then be routinely tested by com-
puter. But it would be nice to obtain a somewhat more general and routine
procedure for detecting inconsistency and triviality, e.g. special classes of
models, which like the models of classical model theory, ensure one or
other of these properties. This is just one respect in which the modellings
given fail — to a perhaps greater extent that other modellings, ¢.g. those
of relevant logics — to direct choice of system among connexive logics.

§8. Other Qutstanding issues. The semantics furnished do not cater
for Nelson’s original connexive logic (of [9] and elsewhere) since Nelson’s
system lacks the basic conjunction rule, Praeclarum, and equivalents
such as Rule Factor. In a sequel the connexive semantics will be cularged
to cope with systems like Nelson’s. Also an attempt will be made to appro-
ximate more closely to the underlying intuitive semantics for certain
of the connexive systems already treated.
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