
Semantics for Connexive Logics. I 
ROUTLEY 

According to the third view in the ancient debate on the nature of 
conditionals, a sound conditional requires a connexion between antecedent 
and consequent. Both material  implication (the first ancient view} and 
strict in~plication (the second ancient view) were rejected by the third 
view as satisfactory accounts of the conditional relation because they 
deliver conditionals such as those of the paradoxes of implication which 
are unsound, presumably on the ground tha t  they  fail to meet the require- 
ment  of connexion. We do not know what  conditionals were said to meet 
this requirement,  other than Ident i ty ,  A--->A (a principle that  was expli- 
citly rejected under the fourth ancient view). 

The third ancient view has reappeared in the modern debate as to 
the nature  of entailment,  implication and conditionality, where the con- 
nexion requirement is commonly imposed as a requirement of meaning 
or content connexion between antecedent  and consequent of valid impli~ 
c~tions. This requirement coincides with the broad requirement of rele- 
vance: for if antecedent  and consequent enjoy a meaning connexion then 
they are relevant in meaning to one another, and if they  are relevant 
in meaning to one another then they have through the relevance relation 
a connexion in meaning. Thus the general classes of counexive and rele- 
vant  logics are one and the same. And all these logics - -p rov ided  only 
tha t  they  contain a quite minimal negation -- c~n conform to a characteri- 
zation of implication in terms of incompatibility, i.e. of A - ~ B  as A / N B  
where / is the Chrysippus-Sheffer stroke, and thus can satisfy the only 
fur ther  piece of information we now retain as to the third ancient view, 
namely tha t  a conditional is sound when the contradictory of its conse- 
quent is incompatible with its antecedent (see [5], p. 129 ft.) Since material 
and strict accounts can also satisfy this condition, it was presumably 
intended tha t  the incompatibility relation concerned be genuinely two- 
-place and not reducible to a modal operator applying to t ru th  functions. 
In fact very many  connexive logics will meet this irreducibility requirement 
(cf. [4], p. 462 ft.) 

As a great variety of logics fall under  the general head of eonnexive 
(or relevant) logic, even when suitably rigorous connexion and irreducibility 
requirements are imposed, various rudimentary  classifications of these 
logics have been at tempted,  for example along the route pursued in [3] 
in terms of the way the logics resolve L as they are bound to do -- Lewis's 
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" independen t"  a rguments  for paradoxes  of. (strict) implication.  Fo r  instan- 
ce, re levant  logics in t he  na r rower  sense are  a t  b o t t o m  connexive logics 
which solve t he  paradoxes  t h rough  the  (criticism and) re jec t ion of t h e  
principles of Dis j lmct ive Syllogism, Antilogism, and  the  like. (Of course, 
to character ise  such re levant  logics more  ful ly some inclusions as well as 
exclusions should be specified: this  m a y  be achieved as in ([3], 2.9), by  
requir ing t h a t  a re levant  logic, nar rowly  construed,  is also a conservat ive  
extension of dis t r ibut ive la t t ice  logic, DLL.)  Connexive logics, in t he  mo- 
dern  na r row sense, resolve the  s t anda rd  paradoxes  by  qual ifying or reje- 
st ing Simplif icat ion (A  ,, B - - - > A , A .  B--~B) and,  usually,  its dual  Addi t ion 
( A - > A  v B , B--->A v B).  

But  wha t  typifies modern connevsivism is no t  m e r e l y -  or even so 
m u c h -  t he  qualif ication of Simplification, as t he  perhaps  surprising 
acceptance  of cer ta in  non-classical bu t  t rad i t ional  principles such as 
Aristotle,  ,-.~(A--->~A) and  some of its s t rengthenings.  As McCall, to whom 
we owe the  modern  use of 'connexive ' ,  asserts ([4], p. 438) ' the  idee 
maitresse of connexive logic . . .  is t h a t  no proposit ion should imply  or 
be implied by  its own negation ' .  Bu t  in fact  these  two features ,  which we 
t ake  to character ise  connexive logics in t h e  na r row sense, n a m e l y  (1) 
reject ion or qualification of Simplification and  its equivalents  and  (2) 
acceptance  of Aristotle 's  thesis along with  Iden t i ty ,  are in tu i t ively  re la ted :  
bo th  m a y  be explained,  and  in this w a y  rendered  not  a t  all surprising, 
by  a t radi t ional  and  ra the r  appealing intui t ive theory  of incompat ibi l i ty  
and  negat ion .  

Specifically connexive principles of impor tance  other  t h a n  Aristot le  
and its m a t e  ~ (  ~ A  -->A) are:  

~ [ ( A - + B )  �9 ( A - + ~ B ) ]  (Strawson), and  
A-->B--->. ,~( A--+ ,~B)  ; A-+,-~B-+. ,..~( A---> B)  (Boethius) 

These principles not  only have  a venerable  h i s tory ;  t h e y  have  received 
substant ial  support  in recent  l i tera ture  (see [3], 2.3). Aristot le  long ago 
gave the  following a rgumen t  for Strawson:  

(A -  > B)  �9 (.4--->~B)-+(.4--->B) �9 ( B--->,-.,A ) 
--+ ( A ---> ,.~ A ) . 

Hence  as ~ ( A - + ~ A ) ,  ~ [ ( A - + B )  �9 ( A - ~ B ) ]  1. And  Boethius  is a f f i rmed 
by  Boethius  (see [5], p. 191) ~. Modern connexivism, wi th  connexive 
logic as a formal  sentent ial  logic, begins with Nelson [9], and has since 

This argument is discussed in Lukasiewiez [6]. Lukasie~icz, I think correctly, 
takes Aristotle to be asserting the principle N ( A ~ , ~ A )  quite generally. But there 
remains room for argument, because it could be claimed that Aristotle's (rather 
primitive) variables are restricted to contingent statements. 

2 An affirmation the Kneales far t.oo hastily write off as a mistake. But tho 
Kneales procedm'e does rather nicely illustrate the way history gets coloured by 
currently-received perceptions of correctness. 
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received more semantically tractable formulation in the work of Angell 
(see especially [1]) and McCall (e.g. [2]). A semantical analysis of McCall's 
system of [2] and some related systems has been presented previously, 
in [10]; but  the semantics proposed was not adequate to deal with more 
satisfactory connexive systems, such as AngelUs system (of [1]) and sys- 
tems in its vicinity. The present paper closes tha t  gap and provides seman- 
tics for a very extensive class of connexive logics. 

~Vhy is it worth looking for semantics for these logics ? Par t ly  because 
to float a bold hypothesis, connexivism seems to underlie much of tr~tdi- 
tional Aristotelian logic, and semantics for connexive logics could help 
to clarify substantially the lmderlying thinking. That  is, much traditional 
logical and semantical thinking is eonnexivist in character. (In this respect, 
however, the semantical analysis so far obtained falls seriously short, 
as will be indicated below, in w 6). More weakly and less speculatively, 
connexivism does represent an important,  but  neglected, traditional 
position in logic, and one of much modern interest. Firstly, unlike most 
alternatives to classical logic, it is not a mere sublogic of classical logic, 
but  contains distinctive non-classical principles of its own. In this respect 
it stands, a.s McCall has remarked ([4], p. 435) ~to classical logic ra.ther 
as l~eimannian and Lobatchevskian geometries stand to Euclidegn.' Se- 
condly, it offers what  is often regarded as a very appealing line on the 
paradoxes of implication, at tr ibuting these paradoxes not to suppres- 
sion featm'es, e.g. of strict implication, but  to the addition in the first 
place of irrelevant components. And the position has a simple and direct 
explanation, in terms of its quite intuitive subtraction, i.e. cancellation, 
account of negation as to why the very first steps in Lewis' hard paradox 
argument,  namely A e ~ A ~ A  and A.. .~A-->~A, fail. For" ~ A  cancels 
out A, so tha t  the conjoined content, of Ae ~ A ,  is less than tha t  of _4 
and of tha t  of ~ A .  But implication requires content inclusion, so these 
(degenerate) examples of Simplification fail. This explains, in a sketchy 
way, the character of the connexivist argument against Simplification. s 
The same argument  explains why A e ~ A  does not imply ~ ( A e N A ) ,  
and provides a basis for an arg~lment for Aristotle, along these lines: -- 
~o  contingent or necessary statement implies its own negation, i.e. if B 
is possible then ..~(B--->~B). But if B is impossible then B is equivalent 
to some s ta tement  A & ~ A ;  hence, by replacement of equivalents in 
~ ( ( A e ~ A ) - - > N ( A e ~ A ) ) ,  N(B--->~..B) when B is impossible. Hence 
Aristotle, ~(B-+..~B), holds for every B. 

Given Aristotle, Boethius is derivable in stronger logical systems. 
But  in less strong, and more satisfactory systems, Boethius requires in- 

s i fuller development, and assesmenS, of the argument may be found in [3]. 
I owe several of the informal arguments for connexive assumptions to V. Routley. 
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dependent argument.  ~IcCall's argument  for Boethins is premissed on 
the plausibility of the principle, Compatibility, A--~B--->.AoB, tha t  what  
a s ta tement  implies it is compatible with. Boethins, A--->B--->,.-,(A--->,~B), 
then follows using the definition of compatibility, A o B  ---- DI ,'-.,(A---)','-,B), 
and connexively acceptable negation principles (which are included in 
basic system C.B). Compatibility, which is indeed a principle of wide 
appeal - - f o r  example, Lewis and Langford ([7], p. 157; my  italics) in 
presenting the orthodox strict position, say tha t  ' the principle p --3 q -3 

. p o q  which might be expected to ho~d, does not, in fact, hold without  
exceptions' -- may be defended using traditional accounts of implication. 
For example, if A implies B then B is (contentwise) part  of A; but  if B 
is part  of A, it must  (surely?) be compatible with A ,  for something cannot 
have a part  incompatible with it. A slightly deeper argument  for Com- 
patibility, which gets closer to the traditional ideas underlying connexivism, 
goes as follows: -- if A is incompatible with B then A �9 B says less than  A 
and than B because B has negated and so cancelled part  of A; thus A .  B 
does not  imply A and does not imply B, so A does not imply B. In  short, 
the cancellation account of negation, in combination with a content  
account of implication, especially one which connects A.--->B with A �9 B+..-~A, 
vindicates Boethius. 

w Connexive systems and others. The s y s t e m s -  m a n y  of which 
are not  connexive systems in the narrower sense explained - - a r e  for- 
mulated (as in hngell [1]) with connective set {-->, N ,  .} and with v 
defined: A v B =DS N ( ~ A * ~ B ) ,  /def ined :  A / B  =D/A---~--,B, o defined: 
A o B  =DI ,.~(A--->,-~B), and r defined: A~-~B ----DI (A->B).(B--->A). 
Orthodox notational conventions are adopte~l without further  elaboration 
in what follows: they are essentially those in [3] and [4]. The basic system 
CB has the following postulate: -- 

h l .  A--->A (Identity) A2. ,.~,--~A---)-A (Double :Negation) 
1~1. A ,  A---)-B--).B; read: where A and A-->B are theorems so is B 

(Modus Ponens) 
1%2. A .  >B, C--->.D--)-B---->C--->.A---~D (Affixing) 
1~3. A.--->C, B-->.D--)-A o B.--~Co.D (l%ule Praeclarum) 
1%4. A.--> ,.~B-.~..B---~ ~ A  (l~ule Contraposition) 

GB can be alternatively, and perhaps more neatly, axiomatised in terms 
different primitive, e.g. with / or o replacing ->. Some of the theorems 
and derived rules of CB used in what follows are these: 

i. A-->,~ ,~A;  from A1 and B4. 
:Note tha t  the resources of CB do not permit the integration of both 

forms of Double :Negation to A~--~N,.~A, i.e. (A.->, .~ , - , ,A) . ( ,~NA--~A),  
since the system lacks an Adjunction rule. :Nor would it permit the adop- 
tion of A , ~ , - . , ~ A  as a workable axiom since the basic system does not  
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sanction even Rule Simplification. These are weaknesses stronger comaexive 
type systems will do something to repair. 

ii. A -+B--~ B-+C--~.A--~C 
iii. A --> B --~ C -~ A ->. C --> B 
iv. A - + B ,  B---->C--~'A -+C 
v. A--> B--~, ,--,B---~,~A 

(Rule Sttffixing) 
(:Rule Prefixing) 
(Rule Syllogism) 

And, more generally, ~ll forms of Rule Contraposition are forthcoming, 
using the postula.tes derived. 

Additional postulates drawn from the following lists may be added to 
the basic system CB singly or combination to yield a wealth of stronger 
systems (some of the postulate labels are taken over from [3]): -- 

B3. A - + B - + . B - + C ~ . A - + C  (Suffixing) 
B4. A --> B ~ .  C-->A 4 .  C--> B (Prefixing) 
]35. A - + ( A - ~ B ) - - ~ . A - + B  (Contraction) 
]36. A - ~ . A - + B ~ B  (Assertion) 
]37. A -+ (B-7 C) -~. B-7. A ~ C (Commutation) 
BS. A - + ( B - - > C ) ~ . A - ~ B - ~ . A - + C  (Self-Distribution) 
]310. A - ~ . B - + B  ($4 Paradox) 

C1. A * ( A - + B ) ~ B  
C2. ( A - + B ) . ( B - - + C ) ~ . A ~ C  
C3. A--~(B-+C)--->.(A * B)-->C 
C4. A * B ~ B * A  
C5. A * (B * C)-+ (A *B) * C 
C6. A - > B - + . ( C * A ) - + ( C * B )  
C7. A -+.B-+A *B 
C8. A-+A * A 
C9. A - + B * C - + D - + . A * C - + B * . D  

D]. A *B-->C-+. (A* ,~C) -+,~B 
D2. ~ ( A *  HA) 
D3. A -+ HA --~. HA 
D4. A ~ B - - + . B - - > , ~ A  
D5. A* ~ ( A *  ~ B ) - + B  
D6. A . ( B v C ) - + . A  . B v  A . C  
D7. 

(Conjunctive Assertion) 
(Conj~mctive Syllogism) 
(Importation) 
(Commutation) 
(Associativity) 
(Factor) 
(Adjunction) 
(Tautology) 
(Praeclarum) 

D8. 
D9. 

( h ntilogism) 
(Non-contradiction) 
(Reduction) 
(Contraposition) 
(Disjunctive Syllogism) 
(Distribution) 

A .B--->,.~(A -+,~B) (i.e. A -+B--->~.,,(A.,~,B) 
(Ackermann, Counterexample) 

(A --> ~B)  --~A , B  (Sheffer) 
A . B - + A  v B 

DC1. 
DC2. 
DC3. 

, ~ (A- ->~A)  
,.~( (A-->B) �9 ( A - + N B )  ) 
A -+B-+. ,~(A -+,~B) 

(Aristotle) 
(Strawson) 
(Boethius) 

- -  S t u d l a  L o g l c a ,  4f/S 
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DR1. A--~-(A--+B)~B 
DR2. A ,  B-)-A � 9  
DR3. A---~B--~-,~(A�9 
DR4. A--,(B..+C)-+A �9 
DR5. A �9 

(~ces s i t a t i on )  
(Rule Adjunct ion)  
(Rule Counterexample)  
(Rule Impor ta t ion)  
(Rule Expor ta t ion)  

Several of the  rules are deribition~dly equivalent  to axioms~ e.g. DR3 
is equivalent  to ~ ( A  . ~ A ) .  The rule yields the  principle using Ident i ty .  

Conversely, A--+B--->,'~B--+~-,A by R4 
-->A*,~B->A*--~A by ~ 3  
--~,.-,(Ao,.,.,A)-+~(A.,~B) by 1~4 
--->,.~(Ao,-..,B) using R1.  

DR4 is equivalent  to : (A--).B) �9 A.-+B. The rule yields the  thesis immediate ly  
using Ident i ty .  Conversely, 

A--->(B---~C)-->A oB--->(B-+C) �9 B by R3 
--> A . B->G using R2.  

DR5 is equivalent  to A-->.B->A�9 The thesis results using Ident i ty ,  
and the  rule results by Affixing. 

w Co~exive modellings. Connexive modellings do not  differ f rom 
relevant modellings as to the  implication connective:  thus  the  pure entail- 
men t  theories are the  same: I t  is only when negation a.nd conjunction 
are introduced tha t  marked differences begin to emerge. Both  negation, 
where the  crucia.1 distinguishing formulae ~re located, and  conjunct ion 
can be added  separated to the  implication~I base, but  here they  will be 
ires.ted together :  their  separate t r ea tmen t  can e~sily be isolated, and will 
be drawn a t tent ion  to subsequently.  

As in [3] chapter  3, both affixing und reduced models are elaborated 
at  once. The reduced models, which provide nearer modellings for con- 
nexive logics in the  li terature,  will be assembled in a later section. A GB 
model . # [ -  ~ basic model for connexive l o g i c s -  is a s t ructure  
= (T ,  O, K ,  R ,  S,  *, G, I} ,  where 0 and K are sets with 0 _~ K, T is an  
element  of O, R and S are three-plt~ce relations on K, * is an operat ion 
on K, G is a relation on W f f  a.nd worlds, i.e. on w f f •  and I is a two- 
valued interpret;~tion funct ion from W f f x K  to I I  = {1,0}, such t ha t  
generally : 

pl .  a <~ a, where b <~ e = DI(.Px e O)Rxbc. 
p2. if a ~< d and Rdbd t hen  .Babe. 
p3. a ~ a 
p4. if a ~< b then  b* ~< a*. 
p5. if a~< b and Scda then  Scdb. 

i l .  if I(_P,a)----1 and a~<b then  I ( P , b ) = 1 ,  for every 
parameter  P.  

sentential  



Semantics for eonnexive logics. I 399 

i2. I(B--->C, a) ---- 1 iff for every b ,~nd c such tha,t Rabc if I ( B ,  b) ---- 1 
then I(C,,  c) = 1.  

i3. I ( B . C , a )  = 1  iff for some b a,nd c such tha t  Sbca I ( B , b )  ---=1 
and I ( C ,  c) ---- 1. 

i4. I ( , ~ , A ,  a) = 1 iff  I ( A ,  a*) =/= 1 
i5. if AGb then I ( A ,  b ) =  1 

~Vha,t is new in connexive modelling, a.s distinct from releva.nt logic 
modelling, is, first, the evnlua.tion of conjunction through n 3-pluce rel,~- 
tion S, a,nd second, the introduction of ~ rela,tion G of gener,~tion. The 
first h~s ~ good precedent in relevnnt logic, in the semantical tre,~tment 
of fusion (or intensiona,1 conjunction) o (see [3], chnpter 4) which is eva- 
luated in a, quite a.nalogous way to �9 but  using relation R. (Since �9 is not 
however linked with --> by Port,~tion rules a,s o is, ,~ different relution thnn 
R has to be chosen to ,~ssess intension,~l conjunction genera,lly). The ev,~lu~- 
tion rule for �9 revea,ls ,~t once tha.t the connective is indeed intensional: 
its ~ssessment in ,~ situa,tion involves consideration of wh~t ha.ppens in 
other (not merely operntiona,lly linked) situations. And there is ,~ f~ir 
sense, a.s will emerge, in which connexive conjunction is irreducibly inten- 
siona,1. The second innovution, the incorporation of G in the model, ~p- 
pe~rs to be without precedents, though the notion of generation used is 
well-known from ~lgebr~ a,nd is regularly used in completeness a,rguments 
for relevant logics. 'AGb' rends: A gener,~tes (situution) b - - b y  which 
is mea,nt tha,t everything tha,t holds in situation b is implied by A. I~ela,- 
tion G pla.ys a,n importa.nt role in the modelling conditions for distincti- 
vely eonnexive logiea,1 principles. Condition i5, though not entirely desira- 
ble since it is not inductively defined, is of ~ type now fa,mili,~r from ~c- 
cepted semuntica,1 a,na.lyses (e.g. those for conditiona,1 logics und for r 
Cost.~'s C systems). 

A reduced CB model d / i s  .~ structure <T, K,  R, S, *, G, I ) ,  i.e. with 0 
elided, which otherwise differs from a, CB model only in defining b ~ c 
a,s l~Tbc. I n  reduced models certnin modelling conditions simplify; but  
only (excessively) powerhfl systems huve reduced modellings. A sufficient 
condition for reduced modelling cnn be given through the following: 

strong connexive logic ~5 is a,n extension of CB which contuins ~t lea, st 
the following principles B3, B4, C1, C9, D4, Dl~2. Essentiully ~ strong 
logic converts the rules of CB to implic~tions. The minima.1 strong logic 
~mder this cha,ra,cterisa,tion is the system S B :  -- 

A -+ B -+. B -> C-~. A -> C 
A - > A  
A - >  N B - > . B - >  ~..A 
A �9 ( A - > B ) - + B  
A ,  A- ->B-+B 

S B  so formnla,ted conta.ins 

B-->C--~.A-->B->.A--~C 
~ . . .A ->A 
A - > B  �9 C->D->. A �9 C-->B �9 D 

A ,  B - - ~ A * B  

some redund.~ncies. Both A - + A  a,nd A-~ 



400 tCiohazd ttautley 

-+B-+. B--> G-->. A-+  C can be  de le ted  wi thou t  al ter ing the  class of theorems  
(see [4], pp.  140-1).  SB also has some ra the r  conspicuous deficiencies 
for a " s t rong"  logic, e.g. such proper t ies  as assoc ia t iv i ty  of conjunct ion  
are no t  guaran teed .  

Semant ical  not ions are defined in the  usual  f~shion. In par t icular  
a wff A is true in d! iff I (A ,  T) = 1, and A is CB valid iff A is t rue  in 
every  GB model. These not ions are ex t ended  to app ly  to  each extens ion J5 
of CB considered. Fm ' the rmore  A is reduced Z valid iff A is t rue  in eve ry  
reduced 1) model.  Modelling condit ions for  the  extensions  are  as follows, 
with qi corresponding to postal.~te B i, t.~ to C i, si to Di, dsi to DC~, and  db~ 
to rule _DRi. Tilcse definit ions a.re used:  t~2abcd--(Px)(Rabx &Rxcd); 
R2a(be)d =~,I(Px)(Raxd & I~,bcx); Raab(cd) e =~I (Px)( R2abxe & Rcdx); 
U/Va(bc) d =-=m (t?x)(Uaxd & Vbcx); U/Vabcd =- (Px)(Uabx & Vxcd); U ~ 
= U/U. (/~crc U :rod Vr~ngc  over  three- place rel,~tions such ~s R and S.) 

q3. if 
q4. if 
qS. if 
q6. if 
q7. if 
q8. if 
qlO. if 

r] .  if 
r2. if 
r3. if 
r4. if 
r5. if 
r6. if 
1'7. 
r8. 
r9. 

s l .  
s2. 

s3. 
s4. 
s5. 
s6. 
s7. 
88. 
,~9. 

dsl .  

R2abcd then  R:b(ac)d 
R2abed then  R2a(be)d. 
~abe then  ]~abbe 
_~abc then  Rbae 
R 2 abed t hen  R 2acbd 
_~: abed t hen  2~3 ac(be)d 
_Rabc t hen  b ~< c 

Sbca then  Rcba 
S/Rdebc ~hen ~e(db)e 
R/Sa (de) c t hen  R ~ adev 
Sbca then  Seba 
S~b(de)a t hen  S2bdea 
~lSw(de) c then  SIRd (ce) e 

if Rabe t hen  Sabc 
Saaa 

if S/(R/S)fg(de)c then  t~/(S/R)fd(ge)c, i.e. if R/Sa(de~e and  Sfga 
then  for some x t~fdx and  S/Rx(ge)c. 

if l~/Sa(de)c t hen  l~/Sa(de*)e* 
if Sbcx* t hen  b ~< v*, for x e 0; or  in reduced  fo rm if SbeT* t hen  
b <~ e* 
t~aa* a 
if ~abe t hen  Rae*b* 
if Sbca t hen  Sba*c* 
if Sbca and Sdea* then  , for  some x and  y, Sbxd* a n d  Sby* and  Sxye* 
if Sbca t hen  Ra*be* 
if Ra*bc* then  Sbca 
if Sbca and  Sdea* then  e i ther  b <~ d* or c ~< e* 

(Py)(Rx*yy* & AGy), for eve ry  wff  A and  eve ry  x in 0 
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ds2. 
ds3. 
d r l .  
dr2. 
dr3. 
dr4. 
dr5. 

if Sbex* t h e n  (Px,  y)(Rbyz & Rcyz* & AGy), for x e 0  
(Px,  y ,  z)(Raxy & Ra*xz & AGx & y < z*) 
(t)x e O) Raxa; or in reduced  modellings RaTa. 
(.Px e O) Sxxx; or in reduced  fo rm S T T T  
if Sbcx* t h e n  b < e *  for x e 0  (cf. s2) 
if Sabc t h e n  Rabc (cf. r l )  
if l~abc t h e n  S'~.bc (cf. r7) 

w Soundness theorems. Proofs of soundness follows the  lines of 
[3], chupter  3, ~nd begin wi th  lemmus which simplify verif ication pro- 
cedm'es. 

�9 I~REDITARINESS L E t u P .  I f  a ~ b and I ( A ,  a) = 1 then I ( B ,  b) = 1. 

PROOF is by  induct ion f rom the  give, n ba, sis. The cases for -+ a , n d ~  
are as for re levant  semantics.  

ad. .  Suppose a ~ b a n d  I ( B . C , a )  = 1 .  Then,  for some c a n d  d for 
which Soda, I ( B , c )  ----1 = I ( C , d ) .  Bu t  by  p5 Scdb, so I ( B . C , b )  ~ 1 .  

Where  J5 is a n y  of the  logics under  exuminnt ion,  i.e. uny  of the  exten- 
sions of CB considered, and  A and  B a.ny w~ of ~, A Z-implies B in L 
model  d4 iff, for eve ry  a in K, if I ( A ,  a) = 1 t hen  I ( B ,  a) ---1, i.e. iff 
[A] ~ [B];  and A r,-implies B iff A L-implies B in every  Z model. 

S o ~ D ~ s s  L E M ~ S .  (1) I f  A .5-implies B in o14 then A-- ,B is true 
in ~[, and, where ,t4 is a reduced L model, A L-implies B iff  A-- ,B is true 
in .14. 

(2) A Z-implies B if f  A - ~ B  is L-valid. 

I ~ 0 0 F  is like t h a t  for l emma 3.2 of [3]. 

SOUNDNESS Tm~0REM for CB. I f  A is a theorem of CB then A is CB 
valid. 

P~ooF is by  the  usual  induct ion over proofs. Tha t  t he  axioms of CB 
,~re vMid follows direct ly  using the  soundness lemm~ (2). Since [A] _ [A] 
a,lwa,ys, A1 is CB valid. As to A2, for every  L model  [ ~ A ]  : {a ~ K :  
I ( ~ A ,  a) : 1} -- {a: I ( A ,  a**) ---= 1} = {a: I ( A ,  a) ---- 1} : [ A ] , b y  p3 
and  i4, so ~,.-~A--->A is valid by  (2) above. Tha t  the  rules preserve val idi ty  
is p roved  as in [3], t heo rem 3.9; a.nd only 1%3 is no t  t r ea t ed  there.  

ad 1%3. Suppose A.B-- ->C.D is no t  vMid. Then  for some model  J /  
and  some a e K ,  I ( A , B ,  a) = 1 :/: I ( C . D ,  a). By the  first, for some b 
~nd e, Sbca ~nd I ( A ,  b) : 1 = I ( B ,  c); and  so by  the  second, ss Sbca, 
ei ther  I (C,  b) va 1 or I ( D ,  e) r 1. Hence  ei ther  A does not  %-imply C 
or B does not  L- imply  D;  t h a t  is no t  bo th  A-+G ~nd B--->D are vMid. 
Thus, by  contraposit ion,  1%3 preserves vMidity. 

SOU~DNESS THEORE]~S for extensions ~ of~UB. For such logic L, i f  A 
is a Sheorem of Z then A is ~ va~id, and so reduced ~ va~id. 
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:P~ooF. I t  suffices to  show t h a t  where  .~ nmdell ing condi t ion holds 
the  corresponding ax iom or rule is appropr i a t e ly  valid.  The a rgument s  
for the  pure ly  implication~l axioms and  rules ~nd for the  implicat ion-ne-  
ga.tion axioms ~re exac t ly  ~s in [3]. Most  of the  new ca.ses, involving 
conj lmction,  follow ve ry  similar lines, so only  a few i l lus t ra t ive  ca.ses 
are presented .  

ad C1. Suppose  I ( A  �9 (A->B) ,  a) = 1. To show, using r l ,  t h a t  I ( B ,  a) 
= 1 ; for the  va l id i ty  of C1 then  follows using (2). B y  i3, for some b, c, Sbca 
and I ( A , b )  -----1 =I(A--->B,e). B y  r l ,  Rcba, so b y  i2, if I ( A , b )  = 1  
t hen  I ( B ,  a) ----1, whence the  result .  

ad C2. Supl)ose I(A-->B�9 a) ~- i =/= I ( A ~ C ,  a). Then for some 
b, c, d, e in K, Babe, Sdea, I ( A , b )  ----1 =/: I (C,e)  and I(A--+B,d) = 1  
= I(B-->C, e). :By r2, for some x � 9  Rdbx and Rexc, so as I ( A ,  b) = 1, 
I ( B ,  x) = 1 a.nd hence I(C,  e) = 1, which is impossible.  

ad D2. :By s2, SbcT* ~ b <~ c*. Suppose  I ( ~ ( A � 9  T) ~ 1. 

I ( A .  ~ A ,  T*) = 1, so for some b and c I ( A ,  b ) =  1 and  I ( A ,  e * ) r  and 

SbeT*. :But then  I ( A ,  e*) ---- 1 ~lso, which is impossible.  
ad DC1. Suppose  I ( ~ ( A - ~ - ~ A ) ,  T) r 1 for some 25 model  J /  with  

ba.se T. I ( A - - ~ A ,  T*) = 1. Hence ,  b y  ds l ,  I ( A ,  y) = 1 ~ I (  ~ A ,  y) = 1 
~nd AGy. B y  i5, I ( A ,  y) = 1, so I ( , ~ A ,  y*) = 1; t h a t  is, I ( A ,  y) r 1, 
which is impossible.  

ad DG3. Suppose  I (A->B,  a) = 1 r I ( ~ ( A - - > ~ B ) ,  a). Since b y  ds3, 
for some x, y ~nd z, Raxy ~nd Ra*xz and AGx, I ( A ,  x) = 1. Thus I ( B ,  y) 
= 1  ---- I ( ~ B ,  z). So I (B , z* )  ~=1; b u t  y < z * ,  so I (B , z* )  = 1 ,  which 

is impossible.  

w Completeness theorems. :Proofs again  fol low the  lines of [3], 
chapter  3, b u t  t he  proofs are somewhat  simpler t han  corresponding re levant  
proofs  because  prinleness of theories is nowhere  required.  Where ,  as 
before,  35 is any  of the  connexive  logics under  examina.tion, an L- theory  a 
is a set  of w~f closed under  p rovab le  25-implication, i.e. whenever  A e a 
and  FLA-->B t hen  B e a. No te  t h a t  closure lmder  ad j lmct ion  is not  re- 
quired. An 25-theory a is reguZar when all theorems of 25 are in a, i.e. iff 
when FL A, A e a. Where  T is a regular  25-theory closed under  ad junc t ion  
(i.e. when A, B e T then  A . B  �9 T) a T-25-theory a is a set of wff of 25 which 
is closed under  T-implicat ion,  i.e. whenever  A--~B �9 B (~lso wr i t t en  ~ A - ~  
-->B) and  A �9 a Chen B �9 a. 

The canonica~ CB modal J/de is t he  s t ruc ture  J/~ = (Z, O, K, R, S, *, G, I )  
defined as follows: - - t h e  base  25 is the  class of theorems of Z, or more  
general ly some regular  25-theory; 0 is t he  class of regular  Z- theor ies ;  
and  K the  class of 25-theories. Where  a, b, c, d are 25-theories, Rabe iff for 
every  wff  A and  B if A-+B e a and  A �9 b then  B �9 e; Sabe iff for every  A 
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and  B if A e a  and B e b  t hen  A o B e c ;  a* = { A :  H A  ~a} ;  AGb iff 
b = {D" ~-LA-->D}; and  I ( A ,  a) = 1 iff A ea .  Where  T is a regular  
L- theory ,  the  T-canoniea~ CB mode~ ~/[c o~ base T is the  similar s t ructm'e  
( T ,  [0 ] ,  K ,  R ,  S ,  *, G, I ) ,  b u t  T-L-theories  replace L-theories  throu-  
ghou t  definitions. 0 is b racke ted  because  it will p rove  eliminable.  

CANONICAL LEM:~A for 0B.  (I) The canonical CB model o4/c is a CB 
mogel. 

(II)  The T-canonica~ CB mode~ ~///c on base T is a CB model. 

PROOF. Most  details are simplifications of corresponding details for 
basic  re levan t  sys t em B in [3], chap te r  3. B u t  some ad jus tmen t s  emerge 
f rom the  different  characterisa.tion of K.  Case (II) will on ly  be dealt  with 
where  details diverge f rom those  (I). 

I t  is immedia te  t h a t  L e O, 0 ~_ K ,  ,~nd t h a t  R and S are appropr ia te  
three-place  relations.  B y  Rule  Contraposi t ion a* is an opera t ion on K. 
The set b = {D: ~-LA-->D} is an L- theory  (by Affixing and Modus Ponens,  
so G is well-defined. Similarly where b = {D: F~A---~D}, b is a T-Z- theory .  
Fo r  suppose FTB->C and  B e b. Then F~A--~B. B y  B3 (or, b u t  sl ightly 
different ly ,  B4) and  the  fact  t ha t  T is an L- theory ,  FTB---~C--~.A--~C: 
Hence ,  b y  ad j lmct ion  closure and  B1, FTA--~C , i.e. C e b. The p-pos tu la tes  
are readi ly  es tabl ished given the  connect ion 

~) a ~ b  iff a ~_ b 

Suppose a _ b and,  to show RLab,  t ha t  A--~-B e L and  A e a. By  inclusion 
A e b and  since b is an L- theory  B e b. :For the  converse snppose a ~ b 
and  A e a. Then for some regular  x, Rxab. B y  regular i ty  A - > A  e a, so 
a.s A e a and Rxab, A e b. p l  a.nd p2 are in]mediate f rom a.), p3 fl'om the  
definit ion of * and  Doub le  Negat ion,  and  p4 f rom a) definition of * and 
Rule  Contraposi t ion.  

ad p5. Suppose  a ~ b  and Scda and also C e c  and D e d ;  to show 
C . D  e b. B y  the  assumpt ions  C . D  e a, so, using a), C . D  e b. 

a d i l .  a ~ b  & P e a ~ P e b ,  b y  a.). In  fact,  qui tegent , ra l ly ,  a ~ b  & 
& I ( A ,  a) = 1 = . I ( A ,  b) = 1. 

ad i2. Wha.t has to  be  shown is: B ~ C e a  iff (b ,c ) (Rabc  & B e b  
C e c), where  R has its canonica.1 definition. One half is immedia te  using 

definit ion of R. For  the  converse s u p p o s e B - > C  ~a .  Define b = {D: FLB 

-~D}, e = { E :  F L E ~ C  }. Then B e b ,  C C e  and b and c arc L-theories.  
As to  the  last,  suppose  on the  con t ra ry  t ha t  for some ~ff~ E and F ,  E e c, 
~-LE-->_F, b u t  ~ r c. Then ~I-LE-->(~ and F-L.E-+C , so [-LE-->C, which 
is impossible.  (In case (II) B3 or B4 and  adjunct ion  closure and B1 
are again invoked.)  I t  remains  to show Rabc. Suppose otherwise tha t  for 
some E ~nd/~,  E - > ~  e a and E e b b u t  ~ ~ c. Then I - L B ~ E  ,~nd F-L.E-->C , 
so b y  Affixing F-LE.-)-.E-+.B-~C , whence B ~ C  e a, contradict ing assump- 
tions (In case (II)  use B3 and B4). 
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ad i3. Suppose Sbca & B e b & C e c. Then, by  canonical  defini t ion 
of S, B �9 C e a. For  the  converse suppose B �9 C e a. Define b -= {D i-r. B--->D} 
and  c = {E I- z C--.E}. Then, by  Iden t i t y ,  B e b and  C e c. To show Sbca, 
suppose D e b and  E e c. Then ~-LB~D and F-LC---*E , SO by  Praec la rum 
F-LB. C--->D,, E,  whence D .  E e a, as required.  (In case (II) ad j lmct ion  
closure and  the  Praec la rum a.xiom are used). 

ad i4 ,  i.e. ~ A e a i f f A t a * .  By  defini t ion of * 

ad i5, i.e. if b = {D: F-LA--->D } then  A e b. F r o m  Iden t i t y .  

CA~0~IC~L L E ~ A S  for extensions L of CB. (I) The canonical L 
model dto is an r, model. 

(II) The T-canonical • model J/t~ is an Z model. 

:['ROOF. I t  slfffices given the  previous lemma,, to  prove t h a t  where 
an axiom or rule is va.lid the  corresponding modell ing condit ion holds 
generally. Many of the cases are simplifications of ana,logous cases in [3], 
and  very  m a n y  of the  new cases conform to a common pa t t e rn ;  so once 
again only a few i l lustrat ive cases are set out.  

a d r 2 .  Set x = { D :  ( P E ) ( E - ~ D e d  & E e b } .  Then x i s  a,n L t h e o r y  
and  Rdbx. To show, wha t  remains to be proved,  t h a t  Rexc, suppose A 
- + B e e  a, nd  A ex .  I t  is enough to show B ec .  As A e x ,  for some E ,  
E - * A  e d and  E e b. As A - - . B  e e and, by  hypothesis  of r2, Sdea, E->A ,, A 
-*B e b. Hence by  C2, E - . B  e a. Thus as Rabc, by  hypothes is  of r2 a.gain, 
a.nd E e b ,  B e c .  

ad r5. Suppose Sbca and  Sdec, and set x = { D :  ( P B ,  C ) ( t - B . C  
-*D & B e b & C e d)}. Then x is an Z theo ry  and  Sbdx. To show, wha t  
remains,  Sxea, suppose D e x  and  E e e. As Sdec, C . E  e c, so as Sbca, 
B . ( C . E )  ea .  Hence by  C5, ( B , , C ) . E e a ;  bu t  t - ( B . C ) , , E ~ D . E  by  
R3, whence D .  E e a as required.  

ad sl .  Suppose Rabc and Sdeb, and  define x* = {D: ( P A ) ( N D - - . A  
e a  & ~ A  ee}. Then x* is an Z t heo ry ;  for ~uppose D ex*  and  ~-D--.E. 
For  some A ,  .-..D--.A e a  and ~ A  ee .  Since }-NE--...~D, F-,~D-->A--*. 
--*..-~E-->A, so ,~E--->A e a and ~ e x*. Also l~axe*. For  suppose C-+ D e a 
and C e x  bu t  D e e  for some C and  D. Then ~ D e e  and ~ C t x * ,  i.c 
for every A, when ,~,-.~C--.A �9 a then  ~ A  �9 c, so ~ C  �9 a. A:s to Sdc*x, 
suppose otherwise A �9 d, B �9 c* but  A . B t x. Then ,-.~(A . B) �9 x*, so 
for some C, , ~ , ~ ( A  . B ) - > C  �9 a and ~ C  �9 e. Since Sdeb however,  A .  ~ C  �9 b, 
whence, as Rabc, ,~B �9 c, contradic t ing B �9 c*. 

ads2 .  S u p p o s e S b c x * a n d B � 9  f o r x � 9  T h e n a s  ~-~(B & ~ B ) � 9  
B & , ~ B t x * ,  so ~ B r  and  B � 9  

ad dsl .  Le t  x � 9  and  define b----{D: F -zA - .D  }. Then AGb. To 
show Rx*bb*, suppose otherwise,  for some B and  C, B--->C � 9  B � 9  
and  C r b*. Then t - A - . B  and,  ~s ~ C  �9 b, ~-A->,'.~C, whence t-C---.NA. 
So by Affixing, I-B--->C-->.A--->.~A, and  Contraposing ~-~(A--.,..~A) 
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-+~.v(B-->(7). Since x ~ O, ~-.,(A-+-.~A) ~ x by DC1, so ~(B-+G)  e x, con- 
tradict ing (B-+G) ~ x*. 

ad ds3. Define x as the situation generated by A, y = {/~: (P/~) (E-~/~ 
e a  & R e x ) }  and z -- {G: (PB)(B-+C) ca* & B  ex)}. Then AGx,  l~axy- 
and Ra*xz. To show y <~ z*, suppose otherwise tha t  for some D,  39 e y, 
and 39 ~ z*. Then ~ D  e z. As D e y, for some E E ->D e a where kA->E. 
Hence as FJ~->D->.A->D, A ->D e a, so by DC3, N(A-+,- .~D)ea.  As 
N D e z ,  for some B , B - - > ~ D e a *  where FA-+B. Hence as FB-->...~D 
-+.A->~D,  A - + ~ D  ~ a*, and so ~(A-->ND) ~ a, contradicting ~ ( A  
- - > ~ 1 ) )  e a. 

COYt-PLETENESS THEORE]~S for extensions Z of CB. 
I. ~or each such logic Z considered, i f  A is Z valid then A is a theorem 

e l L .  
II.  2or each such strong logic Z, i f  A is reduced Z valid, then A is 

a theorem of Z.  

PR00P. In  both  cases suppose A is not  a theo rem of Z. F o r m  the  
canonical L model  dr wi th  base consisting of the  class T of theorems of 
Z. Then,  by the lemma,  ~ c  is an Z model ;  and since A r T, I ( A ,  T) ~ 1. 
Thus A is not t rue in an (the c~nonical) Z model, so A is not L valid. In 
case (II) it can be verified tha t  a strong logic provides all the properties 
reqlfired for reduced canonical models to be models (some of the details 
are recorded in the proof of the canonical lemma). 

COROLT,ARY (Implicational Adequacy). FLA->B iff A Z-implies B. 

The semantical apparatus developed will also deliver stronger comple- 
teness theorems and therewith fur ther  information, such as compactness 
results. An [adjunctive] Z-derivation of A from set S of wff of A, writ ten 
S ~L A,  is a finite sequence of wff A1, . . . ,  An, with A n --~ A, such tha t  
each member of the sequence either belong to S or is obtainable from 
predecessors in the sequence by a provable L-implication [or by Rule 
Adjunction]. A is [adjunctively] L-derivable from S iff there is an [adjun- 
ctive] L-derivation of A from S. 

STRONGER COMPLETENESS T]TEORE~IS. Where A is not [adjunctivdy] 
Z-derivable from regular set S, there is a [reduced] L-model ~ f  under which 
every member of S is true but A is not true. 

PROOF. Let T be the Z-theory closure of S, i.e. T = {D: A~ F L D} 
Then A ~ T and T is a regular (adjunctive) Z-theory. Form the (reduced) 
canonical model d4 c with base T, and then proceed as in the previous 
theorem. 
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At various points  the  completeness a rguments  cons10icuously fail to 
use all the  inforlnation now available. For  exmn101e, in the  s t rong comple- 
teness result  T could be inflated to a maximal  Z- theory using Zorn's  
lemma, bu t  10ro10erties of maximal i ty  arc not  drawn upon  by  the  modelling. 
Similarly an im10ortant extension lemma ([3], l emma 3.3), obta ined using 
Lindenbaum methods,  holds for connexive logics which conform to lgule 
Adjunct ion  and Distr ibution,  bu t  the  10ro10erties yielded by the  lemma 
are not  ex101oited by the  modellings given. All this suggests t ha t  for signi- 
ficant classes of connexive logics there  are inlproved and more informat ive  
modellings ye t  to be found.  

w Alternative semantics, and augmented semantics for Simplification 
principles. Firs t ly  the  semantics given may  be represented in operat ional  
form with the  relations R and S on K replaced by operations on K. The 
o10erational evaluat ion rule for im101ication may  be wri t ten in either of the  
forms. 

i2' I(B--->C, a) = 1 iff, for every b, if I ( B ,  b) ---- 1 then  I (C,  aOb) = 1, 
or 

i2" I ( B ~ C , a )  ---1 iff, f o r e v e r y b ,  i f I ( B , a @ b  = l t h e n I ( C , b )  = 1 ,  

depending on whether  the  suffixing or prefixing rule is favoured in the  
completeness a rgument  (see [8]). ~ e r e  the  more familiar i2' is chosen. 
Correspondingly the  rule for~ conjunct ion may  be wri t ten  in two forms, of 
which the  following is chosen: 

i3' I ( B . C , a )  = 1  iff, for some b, I ( B , b )  = l = I (C,  aQb).  

An Z operationa~ model differs f rom a.n Z model  pr imari ly  in replacing R 
by operation �9 and S by operat ion | and  adding an ordering relation 4 .  
But  modellings conditions have also to be reex10ressed in operat ional  form. 
To illustrate the  conditions are set down in the  case of basic sys tem GB: 
o10erational conditions for many  of the  10ostulates listed are given in [3]. 
In a CB operational model  conditions 101-105 are replaced by the  following 
conditions. 

101'. a ~ x(~a, for x e 0 
102'. if a ~ b then  aOc ~ bGc 
133 and 104 are as before. 
p5'.  if a ~ b  t hen  a |  
Semantical  notions arc ex tended  in the  expected way;  in 10articular 

a w~ A is L o (10erationMly) valid iff it is t rue  in all Z o10erational models, 
i.e. I ( A ,  T) = 1 for every Z o model. 

OPERATIONAL ADEQUACY T~EORE~ for OB. A is a Sheorem of CB i f f  
A i8 GB o valid. 
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P~.ooP of soundness is like tha t  for the relational semantics. The main 
new feature of the completeness proof lies in the canonical definitions 
of the operations. In  the canonicM o model define aOb ----{C: (PB)(B 
- + C ~ a  & B e b ) } a n d a |  ----{C: ( D ) ( D e b ~ D . C e a } .  Then aQb and 
a | are /i-theories where a and b are. Consider, to illustra.te the new 
featllres, the verification of i3' in the canonical model. Suppose, firstly, 
B �9 b and C �9 a |  to show B eC �9 a. But  this is immediate using the 
definition of (9. :For the converse, suppose B �9 C �9 a. Define b ---- {D: FB 
-+D}. b is a CB-theory and B � 9  To show C � 9 1 7 4  suppose D � 9  
arbitrary D; to show D . ( 7 � 9  Since kB-+D, b B . C - - , 1 ) . C  by 1~3 
(or l%ule :Factor), whence J ) eC  �9 a. 

:Each of the L modelling conditions given maybe reexpressed in opera- 
tional form. Sometimes the operational conditions are very at tract ive 
combinatoricMly and algebraically, sometimes they  merely mirror the 
corresponding axioms just two examples: 

B3. A-->B->.B->C-~.A-->C (13 ' .  bG(aOc) ~ (aOb)Gc 
DC3. A - - > B - ~ ( A - - > N B )  ds3'. (Px)(AGx & aOx  ~ (a*Ox)*) 

OPERATIOI~IAL ADEQUACY TH:EOI~EI~ for extension, L of CB. For each 
extension considered, theoremhood and validity coincide. 

The operational semantics lead directly to alternative formulations 
of connexive logics, to subscripted semantic tableaux, subscripted natural  
deduction formulations, and subscripted Gentzen formulation for each 
system L (details are as in [3]). The semantics also lead, using filtration 
methods, to decidability results for several of the logics considered, but  
not  -- so far at  least -- in the case of strong logics of int.erest. 

The semantics may Mso be reformulated functionally, in ~ way tha t  
eliminates all reference to worlds, by  rewriting I ( A ,  a) as a(A) and re- 
expressing modelling conditions as conditions on functions, e.g. ~< is 
replaced by  a relation _~ of functional extension. 

In  order to model Conjunctive Simplification, A .B->A,  and its special 
case, A . A - + A ,  the models given have to be augmented in the first case 
by a property  C of situational occupation, and in the second case by an 
operation n of situational intersection. 

(Both semantical devices have been previously exploited, in forerunners 
to [3].) The notions are subject to these interpretational conditions: 

i6. If, for some B,  I ( B ,  a) = 1, Ca; 
i7. I f  I ( A ,  a) = 1 = I ( A ,  b), I ( A ,  anb) = 1. 

The modelling conditions are these: 

:El. A o A-->A t l .  if Sbea then bnc ~ a 
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Ef .  A eB--*A t2. if Sbca ~nd Co then  b ~ a 
E3. B eA--*A t3. if Sbca and Cb then c ~  a 
E4. AeB-->A t4. if Sbcx and Cc then b ~ x  for x in 0. 

ENLAI~GEhs OF 2~DEQUAGY T]~-E01~]~[S to cover EI-E4. 

P~ooF of adequacy is by cases. 

ad El .  Suppose I ( A  �9 A,  a) = 1. Then for some b, c, Sbca a n d / ( A ,  b) 
= 1  = I ( A , c ) .  t tence,  by i7, I ( A , b n c )  = 1 ,  so by E l ,  I ( A , a )  = 1 .  

ad t l ,  and associated requirements. Define b nc = {A: A e b & A e c}. 
Then n is an operation on K. For suppose, to show b nc  is an L theory 
when b and c are, A e b n c and ~ A-*B. Then as A e b and A e c, B e b and B ~ c, 
i.e. B e b no. Also i7 follows. To establish t l ,  suppose Sbca a.nd A e b (~c. 
Then A eb  and A ec,  so by Sbca, A . A  c a ;  and thus, by E l ,  A ca .  

ad E2. Suppose I ( A . B ,  a) = 1. Then for some b, c, Sbca and I ( A ,  b) 
= 1 = I ( B ,  c). :By i6, Cc, so by t2, b ~ a. Hence I ( A ,  a) = 1. 

ad t f ,  and a, ssociated requirements. Define Ca i.ff, for some B, B e a. 
So i6 holds. As to t2, suppose Sbca and Co, and A e b. Let D be a wff in e. 
:By Nbca, A e D  e a, whence, by E2, A e a. The ft~rther cases are similar. 

Some ma.y have reservations, by this stage, at the multiplication of 
semantical apparatus. But  really nothing has been introduced tha t  is not 
reflected in commonplace semanticM thinking. The notion of situational 
occupation, for example, is on a par with the notion of non-nullness of 
situational domains, yet  no objection is generally made to the requirement 
tha t  some domain be non-null or to the explicit s ta tement  of this in a se- 
mantics. And the idea of situational-intersection, of the common par t  of 
two situations, is an a.hnost everyday one. 

The enlargement, to include Simplification principles, means tha t  the 
analysis given comprehends all the usual relevant affixing systems as well 
as the modern connexivist systems, which however reject or qualify 
Simplification. What  the enla.rgement fails to do is to reflect the lmderlying. 
semantical reasons for connexivists' rejection of Simplification or to cater 
directly for all the qualified forms they would allow. But these are pro- 
blems for later more sophisticated and less bruta.1 days. 

w Semantics for Amgell's system PAl- Angell's 'propositional logic 
with subjlmetive conditionals', P ~  of [1], has, when reformulated with 
axiom schemes, the following postulates: 

A1 ( =  B4). B---*C--*.A---->B--~-.A-->C 
As ( =  C6, C4). A---*B--*.CeA--*BeG 
A 3 (=  D1). A---*,~(BoC)---*.BeA---*,~C 
A, (=C5).  Ae(BeC)--*Be(AeC) 
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A6 ( =  Dd). 
he  ( =  A2). 
A 7 (-~ ])7). 
As (cf. E2). 
A~ (cf. C8). 
A10 (= DC3). 
1~,2 (= 1~1). 

A ---> ,~B--->.B---> ~ A  
~ A  --+A 

A--->B--->,'-~(A * ~,B) 
,..~((a .B) .  ,.~A) 

. . a )) 

A--+B->,',-,(A-->,'-,B) 
A ,  A-+B-+B 1~2( = D1~2). A,  B--->A *B 

Since PAl includes system SB (see the  derivations in [1], especially *24, 
*43 a, nd  those following *52), a reduced modelling can be adopted.  A P~_~ 
model  is then  a. reduced CB model <T, K ,  R,  S, *G, C, I}, with situational 
occupancy C, such tha.t 

qd. if l~2abed then  R2a(be)d 
r6'. if l~/Sa(de)e then  R/Saedc 
sl ' .  if l~/Sa(de)c then  R/Sd(ae)e 
r5'. if S2b(de)a t hen  S2d(be)a 
sd. if Rabc t hen  Rac*b* 
s7. if Sbca then  Ra*be* 
e5. if S2deeT * and Ce t hen  d ~ o* 
sl0. if SbeT* then  for some x Sxxo* and b ~ x  
ds3. (Px, y ,z)(Raxy &Ra*xz &AGx & y ~ z *  
dr2. STTT 

ADEQVACY T~EORE~ for P,41. Wff  A is a theorem of PAl iff  A is PA~ 
valid. 

Proof is a variat ion of earlier results;  the  only fresh detail is t ha t  
concerning e5 and sl0. 

ad sl0. Suppose SbeT* and define x : {A: A . A  e e*}. Then Sxxo*, 
Also x is a Pa~ theory.  For  suppose A s  x and FPzttA---~B. Then, by Factor ,  
bA*A-->B*A and ~B.A--~B.B,  so bA.A-->B.B As A ex,  A . A  se*;  
bu t  v* is a P~I theory,  so B . B  e e*, whence B e x. To show b ~_ x, suppose 
A eb.  ByAp,  A . ~ ( A . A )  fT*,  so A •b or ~ ( A . A . )  ec. Thus A . A  ev*, 
i.e. A e x a.s required. 

Bu t  the  modelling, though  formally adequate,  is not  intui t ively very 
satisfying: ~s it s tands the  modell ing is ra ther  complex, with the  modelling 
conditions exceeding in number  the  postulates they  model, and basic 
connexive postulates like Boethius,  instead of being val idated in a naturul  
way, have fairly intractable  conditions. 

w Two reductions of eonnexivism and further shortcomings of the 
semantics.  One of the  constant  tr ials confront ing exponents  of non- 
-classical logics is t ha t  of reduct ion:  reduct ion of the  espoused systems 
to something else, at  worst to classical precepts. In the  connexivists '  
c~se full cla, ssical reduct ion would be a fate worse t han  death,  since tota l  
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t r iv iah ty  would be the  af termath .  Bu t  lesser reduct ions remain  a worry, 
e.g. modal  reductions,  as with NIeyer's reduct ion of YlcCali's first degree 
connexive logic strict  implicat ion (see [4]). 

The semantics given suggests two reductions,  of S to  R or vice versa, 
bo th  of which should also be resisted. The first - - w h i c h  would make  
connexive logic a, perhaps  bizarre, b ranch  of re levant  l o g i c -  simply 
supposes t ha t  Sabe iff Rabc. Such a requi rement  models exact ly  the  two- 
way rule 

A �9 B---~--~A-~. B--->C (Portat ion) 

or equivalent ly the  axioms:  A - ~ B . A - > B  and A-->.B->A.B .  But  all 
these principles are unacceptable,  as [3] tries to explain. If  the  reduct ion 
were to succeed, connexive conjunct ion would be noth ing  bu t  the  fusion 
connective of re levant  logics, .~nd modern  connexivism would be a s tudy  
within the  implication-fusion-negation pa r t  of re levant  logics. 

The second reduct ion supposes t ha t  generally Sbca iff Ra*bc*. The 
axioms these conditions model  are the  questionable A . B - - > N ( A ~ , ~ B )  
and the  unacceptable  , .~(A~B)--->A.B.  That  is~ in a eonnexive logic 
with an adequate  b i c o n d i t i o n a l -  m a n y  eonnexive logics are deficient 
in this depa r tmen t  -- Ra*bv* iff Sbca corresponds exact ly  to N(A--->..~B) 
~ A  �9 B, i.e. A �9 B~-~AoB and A �9 B~--~.-~(A/B). The last interconnection,  
together  with A---)-B+--~. A / , ~ B ,  suggests t ry ing to refound this "classical" 
connexivism -- it does assert A ~ B ~ - ~ , ~ ( A , ~ B ) ,  so tha t  classical logic has 
the  conditional correctly defined, even if it  went  a little as t ray  in its 
extensional axiomatisat ion of conjunct ion - - o n  incompat ibi l i ty  as main,  
or sole, primitive.  Pr imit ives  have already been reduced to the  pleasant ly 
negat ive pair, incompatibi l i ty  and negat ion:  bu t  a t t empt s  to reduce ne- 
gation to incompatibi l i ty  appear  to founder  on fundamenta l  connexive 
assumptions.  Consider Shefffer's proposal :  H A  ~-z)fA/A, negat ion is 
self-incompatibility. By Aristotle, no s ta tement  is self;incompatible, so 
Sheffer's proposal wolfld trivialise connexivism, every s ta tement  would 
hold true.  

With in  the  confines of incompatibi l i ty  sentential  logic it is hard  -- 
perhaps impossible -- to f ind connexively plausible reductions of negation,  
bu t  given sentential  quantifiers or con~stants prospects looks brighter.  
:For eymmple, given a constant  t, represent ing the  True, it is t empt ing  
to define ~ A  as A/t.  Then Aristotle becomes (A/A)/t ,  which need no t  
le~d to disaster. (Alternatively, when implication alone is taken  as primi- 
tive, and  conjunction,  defined, negat ion can be defined in minimal  logic 
style thus  N A  = D s A ~ f ,  with f a constant  representing the  False.) Bu t  

- the  reduction,  a l though it can provide an al ternat ive semantics for "clas- 
sical" connexive logics (and also for other  connexive logics), does not  ease 
~he semuntical  problems negat ion causes in connexive logics, unless a new 
beginning is made,  e.g. with a new evaluat ion rule for compatibi l i ty  which 
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somehow delivers Aristotle directly and without the need for devices 
such as the generation relation G. (But even a recasting of the compati- 
bility rule as I ( A o B ,  a) = 1 iff (Pb, c)(Tabc & I ( A ,  b) = 1 = I ( B ,  c)) 
still appears to require use of G in modelling A o A :  the requisite condition 
is (.Pb)(AGb & Tabb).) 

The chief reason for dissatisfaction with the semantics flu'nishcd for 
narrow connexive logics is not, however, tha t  Aristotle and Boethius 
~re modelled, so to speak, by specially invoked semantical tr ickery ~-hich 
too closely parallels the syntax, but  tha t  the semantics does not correspond 
to, or satisfactorily reflect, semantical ideas underlying connexivist thin- 
l~ing and much traditional logic. :For example, it does not link with the 
traditional theory of positive ~nd negative propositions, or with the idc~ 
underlying the connexivist rejection of A & ,.-,A--->A ~nd A & ,--,A-->,-,A, 
tha t  ~ negative proposition cancels out or deletes its positive, so tha t  
A & ~ A ,  which s~ys zero a.s rega.rds A,  says less tha.n either A or ~ A 
and so can not imply then] -- a point which explains, in a way the seman- 
tics does not, the connexive rejection of A & ,~,A-->,-.,(A & ,~A), and 
so how simple counterexamples to Aristotle are dealt with. 

Although the sem,~ntical a.nalysis resolves m~ny problems concerning 
connexive logics ~nd provides new means of at tacking other problems, 
it leaves many p r o b l e m s -  perhaps too m a n y -  open. The mat ter  of 
decidability of strong logics, already mentioned, is one. Other problems 
~re those of consistency and non-triviality. Semantical modellings of the 
sort given provide no quarantee tha t  the logics modelled are consistent 
or even other than trivial. The system R + { ~(A-+--~A)} which was model- 
led is trivial, and very many of the systems which were modelled a.re 
inconsistent, e.g. B + { ~(A-->,-~A)}. (R and B are s tandard relevant logics, 
studied e.g. in [3].) The modellings given do simplify the task of establi- 
shing consistency or non-triviality where these properties hold; for example 
the modellings yield matrices which e~n then be routinely tested by com- 
puter. But  it would be nice to obtain ~ somewhat more general and routine 
procedure for detecting inconsistency and trivia.lity, e.g. special classes of 
models, which like the models of classic,~l model theory, ensure one or 
other of these properties. This is just one respect in which the modellings 
given fail -- to a perhaps greater extent  tha t  other modellings, e.g. those 
of relevant logics - - t o  direct choice of system among connexive logics. 

w Other Outstanding issues. The semantics furnished do not cater 
for :Nelson's original connexive logic (of [9] and elsewhere) since Nelson's 
system lacks the basic conjlmction rule, Praeclarum, and equivalents 
such as t~ule Factor. In a sequel the connexive semantics will be enlarged 
to cope with systems like :Nelson's. Also an a t tempt  will be made to appro- 
ximate more closely to the underlying intuitive semantics for certain 
of the connexive systems already treated. 
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