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Introduction 

When the differential operator --d~/dt 2, with homogeneous boundary con- 
ditions on both ends of a finite interval I of the t-axis, is replaced by the second 
difference quotient on a finite mesh in I the resulting finite-dimensional operator 
has a number of agreeable properties: (a) its inverse is a positive operator, 
(b) this inverse operator is bounded independently of the refinement of the mesh, 
(c) the "difference" between the inverses of the infinitesimal and the finite 
operator tends to zero with the refinement of the mesh. These properties are 
typical for a number of well-known discretizations of boundary-value problems 
(see e.g. [t]). With discretizations of initial-value problems, properties (b) and 
(c) are commonly called "s tabi l i ty"  and "strong stability" (see e.g. [2]), resp., 
and play an important role in the analysis of discretization methods. With 
boundary-value problems, they are hardly ever explicitly discussed but rather 
taken for granted. 

In this paper we will show that there are natural consistent discretizations of 
the above differential operator which do not possess all or any of the properties 
(a) to (c) (naturally, not (b) implies not (c)). The investigations were stimulated 
by  the observation that  with initial-value problems there are many classes of 
consistent discretizations which are not strongly stable or not stable at all while 
for boundary-value problems no such cases seem to have been reported. Also it 
seemed to be an open question whether properties (a) and (c) are correlated. 

For the interval I =  [0,t3, the inverse operator G to --d2/dt 2, with y(0)---- 
1 

y ( t ) =  0, is given by G/:= fg(t, 3)/(3) dr, 
0 

/ ( t - 0 3 ,  ~__<t, 
g(t, 3) :-- Lt (t - ~), ~ > t. 

Let I~ : =  {vN, v--0 (t)n} be the mesh in I ;  a function I~-+R is naturally 
represented by an element of R *-1 if we restrict ourselves to functions satisfying 
the above boundary conditions, mappings between such functions are represented 
by square matrices of order n - - t .  The finite approximation to --d*/dt ~ generated 
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by  the  second difference quot ient  on I ,  is represented b y  n2A where 

t 2 - -1  0 0 
A : =  - - t  2 - - t  0 , w i t h A - l = : ( y ~ , ) ,  

• , ° 
" * . ,  • . • 

. . . . .  v__<__/~, 
n 

(0.t) Y ~ ' : =  • (n -v)  v==/~. 

n 

the inverse opera tor  represented b y  the  ma t r ix  ~ A-1 is positive, is bounded  Thus  

b y  ~ in m a x i m u m  norm independent ly  of n, and l i r a  ~ (n  ~ A-l)----- t - ~ - .  Fur ther -  

more,  if we define a discretization G, of G as the ma t r ix  n g n - '  };~ we have  
t 

n~ A - l =  G,  which is the non plus ul t ra  of s trong stabil i ty.  

We  will now restrict  ourselves to the consideration of the  opera tor  --d2/dt ~ 
on the  function space {y: I - +  R : y C C(a [0, 1 ], y (0) = y"(0) = y (1) = y" ( l )  = 0}. ~ 
Then each m e m b e r  of the class P of finite-difference operators  represented by  

(0.2) n ~ (A + a l l  * + - . .  + ~ A  ~+1) = : nap (A), m >_ 1, 

is a consistent  approx ima t ion  to --dZ/dt z on I~. Each  of the  matr ices  p(A) is 
a symmet r i c  b a n d  ma t r i x  wi th  m + t non-vanishing codiagonals.  I t  is within 
this simple class of opera tors  t h a t  we will find a va r ie ty  of phenomena  which 
are in s tr iking contras t  to  the t ame  behavior  of A for n - +  oo. 

I. Stability with Respect to Euclidean Norm 
Le t  

d(A) := p ( A ) - I - - A  -1. 

We call a discretization f rom class P represented b y  the ma t r ix  nap (A) 

I 
s table  n g lip (A)-lll = 0 (t) 

if as n - +  oo. 
t 

s t rongly s table  n~ lid (a)lt = o O) 

As the orders of tile matr ices  involved tend to infini ty wi th  n - ~  oo s tabi l i ty  
propert ies  m a y  depend on the choice of norms  ~. 

I t  is well-known tha t  the  spec t rum of A consists of the n -  t values 

(tA) 0 < ~ : =  4 s i n 2 ~  - ~ - < 4 ,  v = t  ( l ) n - - t .  

Since p(A) -1 as well as d(A) are ra t ional  functions of A their  spectral  radii  are 
easily establ ished f rom ( t . t ) .  Due  to the  normal i ty  of A the  behavior  of these 

x The restrictions are not  essential: The conditions on y'" can always be met  by 
a simple transformation, the condition on the differentiability of y is reasonable when 
one considers higher order approximations. 

2 Matrix norms will always be the 1.u.b. norms associated with the given vector 
norms. 
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spectral radii for n--> oo displays the stabil i ty and strong stability, resp., of our 
discretization operator with respect to the Euclidean norm. 

Theorem 1. Let  p (x) > 0, x E (0, 4), and 
m+l  

(1.2) p ( 4 - - x ) =  Z 0 , (4--x)  v. 
/*=0 

W.r.t .  the Euclidean norm the discretization is 

strongly stable c o :~ 0, 
stable but  not strongly stable if c o = 0, q 4= 0, 

unstable with I[n~p(A)-lllg=O(n ~'-~) c o . . . . .  c , _ 1 = 0 ,  c, 4 :0 .  

Proo/. Follows immediately from (tA) and 

II# (A)-IIIE- - max , p ( A , )  " 

[[d(A)]IE= max, I P (~)t ;t,t I 

since p ( x ) =  x-t-O(x ~) according to (0.2). 

For  ~ E (0, 4) we define 

(t.3) arc cos (~/2 --  1) : : ~ (~) : : r (~) z~. 

When p has a zero ~ in (0, 4) the behavior of p(A) -x and d(A) is dependent 
upon r (~). 

m+l 
Theorem 2. Let  p ( x ) =  ~. cv(x--~y ' ,  ~E(0, 4), p(x) =~0 for x :#~,  xE(0, 4]. 

#=1 
If  r(~) is a rational number,  r(~)=k/ l ,  k , l  relatively prime, p(A) is singular 
for n =  ql, q integer. For n from any infinitely increasing sequence of integers 
not  containing multiples of t, w.r.t, the Euclidean norm the discretization is 

strongly stable c x 4 = 0, 
stable but  not  strongly stable if c x = 0, c2 4: 0, 
unstable with ][n~ p (a )-lHE : O (n s-~) c 1 . . . . .  Cs_l = O, cs ~i= O. 

If r (~) is irrational, the discretization is never strongly stable w.r.t, the Euclidean 
norm for n from an arbi trary increasing sequence of integers. I t  is stable for any  
such sequence if r (~) is a quadratic irrationality and ~ a simple zero, otherwise 
i t  is generally unstable. 

Proo/. a) r ( ~ ) :  k/l: For n = ql, q integer, p (~qk) = 0. For  n 4: ql, [ r (~) --v/n[ > ~-~ 

for the closest rational approximation with denominator n which implies 
<: n l Is 

lp(z=)-~l = ~ ,  by  0.3).  
b) r (~) irrational: By  a well-known theorem on continued fractions (see e.g. [3]) 

there are infinitely m a n y  integers n and associated numerators  v such tha t  
~2 

[ r (~) - -  v/n [ < t /n  2. Hence [ l /p  (~L~)[ > [ sin ~ (~) [ for these n so tha t  ~-,o~lim ~n lid (A)l[g 

does not exist. For  quadratically irrational r (~), there exists a constant  C such tha t  
]r(~)--v/n[ > C/n ~ for the closest rational approximation with denominator  n 
(see e.g. [3]) which implies stabil i ty if p'(~) 4: O. For other types of irrationalities 
no such inequalities can be established. 

lob Numer. Math., Bd. 12 
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II. Stability w i t h  R e s p e c t  to  the Maximum Norm 

Since we are interested in the behavior for n--~ co the various norms for R * 
are not equivalent but  we have 

Lemma 1 (e.g. [4]). For an arbitrary n ×n-matr ix A 

(2.t) ~ _ ~  # [IA~, 
the equality being attainable. 

Furthermore, for normal A and rational [(A), we have the natural relation 

(2.2) [l! ( A ) [ ~  => 0 (! (A)) = Ill (A)liE- 

Hence, all results of sect. I of the type H...[L~=o(n*), [s[ > t ,  can be trans- 
lated into maximum norm results at least qualitatively. However, the important 
assertions of the type [[... l]g=O (t) cannot be claimed w.r.t, the maximum norm. 
We will therefore prove that  the results of sect. I carry over to the maximum 
norm without change in the powers of n involved, at least for a more restricted 
class of matrices p (A). 

Let  p ( x ) = :  x13(x) with 13(0)=t  by  (0.2). Then we have from 

p ( A ) q =  [13(A)A]q=Aq + d(A), 

A -1 = (A q + d(A)) 13(A), 

(2.4) d (A) = A q (I --t3 (A)) 13 (A) q.  

As we will need explicit estimates of the elements of d(A) we will now con- 
sider only quadratic polynomials p (A)=A + ~ A  2, ~ 4:0. For these 

d (A)=- -~ ( I+0~A)  -1 

and the elements 6v, of d(A) can easily be calculated from the recursion 

0, v < p  and v > p ,  

with boundary values 6vo= 6~,,= 0. This yields for ~ 4: - -  ~ (0t 4= 0) : 

(z~-~-z-¢~-~) ( z ' - z - , )  
(~ -~-~)  (z-z-~) ' ~ < ~ '  

(2.5) ~v ,=  (zv--z-v) (z~-'--z-(n-')) 
- ( ~ " - z - " )  ( z - z - ~ )  , v _ ~ / ~ ,  

where z is one of the zeros of z z -  1 + 2 ~  z + 1. gC 

For quadratic p(x), ~ > - - ~  implies p ( x ) > 0  in (0, 4] while for ~ < - - ~  p(x) 
t 

has a simple zero at $=---I-E(0,~ 4]. For ~ < - - ~ -  we can rewrite (2.5) with 

the aid of (t.3): 
s i n ( n - - ~ )  ~ s i n ~ f  

(2.6) ~ ,  = --  sin ~* ~0 sin ~ , v _~/~, 
sin p ~ sin (~-- v) ~v v >/~. 

sin ~ ~o s in ~ ' - -  
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Theorem 3. For p (A) = A +0~A ~ 

1 
~ lid(A)l~.~ = 

0 (nt--,) for 

0 ( ~ ) f o r  

0(1) for 

~ >  - - I ,  

e <  - - I  with r(~) ----k/l rational, 

n 4= q l, q integer, 

~ =  - - I  and for 0c< - - 1  with r(~) 
quadratically irrational. 

1 
For ~ < -  4-' the order of ~-~ lld(A)l[~, ~ may equal any positive power of n 

along certain infinite sequences corresponding to the type of irrationality (other 
than quadratic) of r (~). 

Pro@ a) For e > -  ~, in (2.5) we may assume [z[ > 1  without restriction 
of generality. Summation of (2.5) yields: 

n--1 Y [ ~ , . I -  I~1 I . l ' - I ~ l - ' - ( l ~ l ~ - I . l - " ) - ( l ~ l ' - " - I . I  -c--.~) 
I(1~. I -1) ' : '  I z l ' -  Izl - "  

< 1"1 [1 - 2 ] I"1 independent of n 

b) For ~ < -  ¼, Ila(A)ll~a~ obviously depends on the smallness of sin n~0 
and hence again on the number theoretic properties of r (~). The assertions follow 
through the same arguments as in the proof of Theorem 2. 

c) For ~ = -- I ,  it is easy to see that  

~,. :=  ( - t )"+'~,,.. (2.7) 

hence 
I 1 1 

~ I[d(A)ltmax= ~ ItA-Xl~a~-- 8 4= 0. 

Theorem 3 suggests that  all O(n') assertions may carry over from sect. I 
without change also for general p (A). One further evidence for this conjecture is 
provided by the consideration of a double root of p (x) at x----= 4: 

I t  is easy to see that  p ( x ) = x - - x ~ / 2 + x 3 / t 6  satisfies the assumptions of 
Theorem t with Co= q =  0, c~ + 0. Application of (2.4) yields 

and by inspection one finds 

A A' t IA,I (2.9) P(A) = I - -  5-  +- i6-  16 

where t(~,)t :=  ( i~ , l ) -  Due to the distribution of minus signs along alternate 
codiagonals in A and A s this implies 

I~(A)-ll = t6A-, ,  

II~ (A)-llL~ = 16 IIA -~llm~ ---- 0 (n~), ~ U d (A)[ ~ < 0 (n~). 

But due to (2.2) and Theorem t, the equality sign has to hold. 

i O c  Numer. Math,, Bd, 12 
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III. Monotonicity 
All discretizations of --d*/dt  2 considered in the literature so far turned out 

to share the inverse positivity of n~A (see e.g. [t, 5]). Since all these discretizations 
have a positive spectrum one might conjecture tha t  a consistent finite difference 
approximation to --d2/dt  ~ with positive spectrum has a positive inverse. Also 
since all these discretizations are strongly stable one might conjecture that  this 
property implies the positivity of the inverse. 

We will show that  both conjectures are false but that  within the class of 
approximations A + mA 2 the combination of positivity of the spectrum and strong 
stability is necessary and sufficient for the positivity of the inverse. This suggests 
the conjecture that  this may be the correct criterion for any consistent discretiza- 
tion of --d~/dt  ~ to have a positive inverse. 

Theorem 4. Let  p (A)-- A + , t A ' .  Then 

> 0  for e > - - l ,  

p(A)-I > 0  for ~ = - - ¼ ,  

contains negative elements for 

Proo/. a) For -- ~ < 0¢ <= 0, 

2+5oc - - ( 1 + 4 ~ )  

- -  (t + 4~) 2 + 60t 
A + ~ A ~ =  ~ --(1 +4~)  

0 " - .  

4" 

0 
-- (1 + 4~) ~ .0 ) 

2 + 6a --  (l + 4~) 

• . " , .  " .  . .  

is of positive type (i.e. satisfies the weak row-sum criterion). For ~>  0, we use 
a regular splitting of p(A)  (see e.g. [tJ): 

A + o ~ A 2 = o ~ B 2 - -  t--[- I with 
4~ 

I 
(3.t) B := A + - ~  I , B-I  > O. 

According to Theorem t.1.)  of [6] it remains to prove o(4- ~ B - ' ) <  1. But (3.1) 

implies this inequality due to (t . t) .  

b) For a = --  ~[, (2.7) implies 

{22,~0>0 for # + v  even, 
(P(A)q)~"= for /~+v  odd. 

sin (n -- v) ~o n-- v 
c) For 0t< --  ¼, compare ~1, = sin n ~ and 2'1,-- n < t. For suf- 

ficiently large 1 n, there are always values of v such that  81,<: --  t which implies 
( A ) - %  = r l ,  + o.  

Thus p ( A ) q > O  fails equally for the case ~ =  - - ~  with positive spectrum 
but no strong stability and for cases a <  -- ~ with strong stability (see Theorems 2 
and 3) but  some negative eigenvalues p (;l,). 

* Actually one has to exclude only a few trivial cases. 
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While only vanishing but  no negative elements are present in ( A -  ¼A2) -1 

our example p ( A ) = A  -- -~ A* + 
t 

~ A  3 represents a consistent approximation to 

--d2/dt ~ with p (2~)> 0, v = 1 ( t ) n - - t ,  and negative elements in p(A) -1 as can 
be easily established from the representation (2.8) with the help of (2.9). 

IV. Further Phenomena, Conclusions 

A further unusual phenomenon which can be shown to occur with some 
discretizations of d2/dt 2 is that  the stability properties may be changed (usually 
improved) by  the addition of terms which are discretizations of "lower order 
te rms"  in the corresponding differential operator: Discretizations which are 
genuinely unstable for - -  y" = ] (t) may  be stable for - -  y" + g y =  ] (t), g > O. 

Also it is evident from Theorem t that  an instability due to a multiple zero 
of p (x) at x =  4, e.g., may  be "overcome"  by a sufficiently high order of con- 
sistency since the divergence of p(A) -a is only proportional to a power of n. 

When all the phenomena displayed in this paper have received little or no 
attention so far, this seems to be due to the fact that  in the numerical solution 
of boundary-value problems by  discrete variable methods the traditional view 
point has been somewhat different from that  with initial-value problems: With 
boundary-value problems the basic discretization has usually been chosen in a 
natural  manner (e.g., from variational principles) while much emphasis has been 
placed on how to solve the generated system of equations economically. With 
initial-value problems, on the other hand, multitudes of different discretizations 
have been suggested which gave rise to the analysis of various instability phenom- 
ena. The results reported in this paper  show tha t  similarly unexpected phenom- 
ena may  occur with discretizations of boundary-value problems when one 
analyzes the behavior of classes of consistent approximations containing also 
members which would normally not be considered seriously. 

In conclusion, it should be remarked that  most of the effects reported have 
been verified in a number  of numerical experiments. Further experiments and 
analytic considerations are under way to clarify more fully the abnormalities 
which may  occur with discretizations of boundary-value problems. 
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